WO2017104032A1 - 耐熱性絶縁電線とその絶縁層の形成に用いる電着液 - Google Patents

耐熱性絶縁電線とその絶縁層の形成に用いる電着液 Download PDF

Info

Publication number
WO2017104032A1
WO2017104032A1 PCT/JP2015/085291 JP2015085291W WO2017104032A1 WO 2017104032 A1 WO2017104032 A1 WO 2017104032A1 JP 2015085291 W JP2015085291 W JP 2015085291W WO 2017104032 A1 WO2017104032 A1 WO 2017104032A1
Authority
WO
WIPO (PCT)
Prior art keywords
insulating layer
heat
particles
resistant
resin
Prior art date
Application number
PCT/JP2015/085291
Other languages
English (en)
French (fr)
Inventor
慎太郎 飯田
礼子 泉
桜井 英章
研 林井
桂子 芦田
Original Assignee
三菱マテリアル株式会社
三菱電線工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱マテリアル株式会社, 三菱電線工業株式会社 filed Critical 三菱マテリアル株式会社
Priority to EP15910722.6A priority Critical patent/EP3392886B1/en
Priority to CN201580085302.6A priority patent/CN108475562B/zh
Priority to KR1020187016421A priority patent/KR102515689B1/ko
Priority to PCT/JP2015/085291 priority patent/WO2017104032A1/ja
Priority to US16/060,715 priority patent/US10395798B2/en
Publication of WO2017104032A1 publication Critical patent/WO2017104032A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B7/00Insulated conductors or cables characterised by their form
    • H01B7/17Protection against damage caused by external factors, e.g. sheaths or armouring
    • H01B7/29Protection against damage caused by extremes of temperature or by flame
    • H01B7/292Protection against damage caused by extremes of temperature or by flame using material resistant to heat
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/44Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes for electrophoretic applications
    • C09D5/4488Cathodic paints
    • C09D5/4492Cathodic paints containing special additives, e.g. grinding agents
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/60Additives non-macromolecular
    • C09D7/61Additives non-macromolecular inorganic
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/66Additives characterised by particle size
    • C09D7/67Particle size smaller than 100 nm
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/66Additives characterised by particle size
    • C09D7/68Particle size between 100-1000 nm
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D13/00Electrophoretic coating characterised by the process
    • C25D13/12Electrophoretic coating characterised by the process characterised by the article coated
    • C25D13/16Wires; Strips; Foils
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/002Inhomogeneous material in general
    • H01B3/006Other inhomogeneous material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/02Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of inorganic substances
    • H01B3/10Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of inorganic substances metallic oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/18Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
    • H01B3/30Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/18Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
    • H01B3/30Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes
    • H01B3/303Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups H01B3/38 or H01B3/302
    • H01B3/306Polyimides or polyesterimides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/18Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
    • H01B3/30Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes
    • H01B3/44Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes vinyl resins; acrylic resins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/18Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
    • H01B3/30Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes
    • H01B3/44Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes vinyl resins; acrylic resins
    • H01B3/447Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes vinyl resins; acrylic resins from acrylic compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B7/00Insulated conductors or cables characterised by their form
    • H01B7/02Disposition of insulation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B7/00Insulated conductors or cables characterised by their form
    • H01B7/17Protection against damage caused by external factors, e.g. sheaths or armouring
    • H01B7/29Protection against damage caused by extremes of temperature or by flame
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2244Oxides; Hydroxides of metals of zirconium
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • C08K3/36Silica

Definitions

  • the present invention relates to an insulated wire having a heat-resistant insulating layer and an electrodeposition liquid for forming the insulating layer.
  • the present application is based on Japanese Patent Application No. 2014-138113 filed in Japan on July 3, 2014, the contents of which are incorporated herein by reference.
  • Insulated wires are widely used for magnet coils and the like.
  • An immersion method and an electrodeposition method are known as methods for forming an insulating layer of an insulated wire.
  • the dipping method is a method of forming an insulating coating on the surface of a wire by dipping a conductive wire used as a core material of an insulated wire in a paint such as a resin varnish, lifting it, and drying it.
  • the wire is placed in an electrodeposition solution containing a paint component such as a resin varnish, and the wire is used as an anode or a cathode and energized between a counter electrode and the paint component is electrodeposited on the surface of the wire and then baked.
  • an insulating layer is formed by treatment (see Patent Document 1 and Patent Document 2).
  • the dipping method has a drawback in that the paint hardly adheres to the corners of the flat electric wire, and the layer thickness of the corners becomes thinner than the layer thickness of the flat part.
  • the electrodeposition method has an advantage that an insulating layer having the same thickness as the flat portion or a thickness equal to or larger than the flat portion can be formed at the corner portion because the paint is sufficiently electrodeposited also at the corner portion of the flat electric wire.
  • Patent Document 3 A coating material for enameled wire containing bismuth is known (Patent Document 3).
  • the paint described in Patent Document 3 is for the dipping method, and cannot be used for the electrodeposition method with the liquid composition or liquid state of the disclosed paint.
  • the dipping method it is necessary to repeat dipping and drying many times in order to reach a desired layer thickness. For example, seven dippings are repeated to form a coating having a layer thickness of 35 ⁇ m that is practically used. For this reason, productivity is low. Further, the dipping method cannot solve the disadvantage that the layer thickness of the corner portion becomes thinner than that of the flat portion in the flat wire.
  • an organic solvent is used as a solvent / dispersion medium for resin and oxide fine particles, the environmental load is large.
  • the immersion method when silica fine particles are contained in the insulating layer, since the immersion is repeated in the paint containing the silica fine particles, the silica fine particles are included in each layer, and the silica fine particles are dispersed throughout the insulating layer. Become. However, since the surface of the insulating layer is most exposed to heat at a high temperature, the surface of the insulating layer is likely to be damaged if there are few silica particles near the surface of the insulating layer.
  • the present invention solves the above-mentioned problems in the conventional insulated wire by the dipping method and its manufacturing method, and has a heat-resistant insulated wire with excellent heat resistance near the surface of the insulating layer and an electric wire for forming the insulating layer. Provide the landing liquid.
  • Each aspect of the present invention has the following configuration.
  • An insulated wire having a heat-resistant insulating layer characterized in that the insulating layer contains heat-resistant particles, and the heat-resistant particles are concentrated in a surface layer thickness portion of the insulating layer.
  • Heat resistant insulated wire The heat-resistant insulating layer is usually formed on the surface of the conductive wire.
  • the “dense” means that heat-resistant particles are dispersed in the surface layer thickness portion of the insulating layer at a relatively higher density than other portions of the insulating layer.
  • the amount (concentration) of the heat-resistant particles contained in a layer thickness portion of 0.5 ⁇ m from the surface of the insulating layer is the amount of the heat-resistant particles contained in the central portion in the thickness direction of the insulating layer (
  • the average particle size of the resin particles is more preferably 10 to 100 nm, and the average particle size of the heat-resistant particles is more preferably 0.5 to 400 nm.
  • the rate of increase in the softening temperature resistance of the insulating layer is more preferably 1.2 to 1.6.
  • metal oxide one or a mixture of two or more selected from alumina, zirconia and the like, and as the metal nitride, one or a mixture of two or more selected from aluminum nitride, boron nitride and the like can be used.
  • the heat-resistant insulated wire since the heat-resistant particles are concentrated on the surface portion of the insulating layer, the heat resistance of the surface portion of the insulating layer that is most exposed to heat at high temperature is high. For this reason, even if the total amount of heat-resistant particles contained in the entire insulating layer is small, excellent heat resistance can be obtained.
  • the electrodeposition liquid according to another aspect of the present invention can form an insulating layer with dense heat-resistant particles on the surface portion. Therefore, it is possible to obtain an insulation coated electric wire having a high softening temperature.
  • the rate of increase in the softening temperature represented by the formula [softening temperature of insulating layer (° C.)] / [Softening temperature of insulating layer resin (° C.)] is 1.2 or more, preferably 1.2 to 1. .6, more preferably 1.3 to 1.5 heat resistant insulation coating.
  • the above electrodeposition liquid is used in the electrodeposition method, a desired layer thickness can be obtained by a single electrodeposition process.
  • an insulating coating can be uniformly formed at the corners of the flat electric wire.
  • water can be used as a dispersion medium for the electrodeposition liquid, the load on the environment is small.
  • 2 is a partial cross-sectional photograph of an insulated wire formed in Example 1.
  • 2 is an EDS analysis chart at a position where a distance from the surface of the insulating layer is 0.25 ⁇ m on a perpendicular line connecting the surface of the copper wire 10 and the surface of the insulating layer 20 in FIG. 1.
  • 2 is an EDS analysis chart at a position where the distance from the surface of the insulating layer is a half of the thickness of the entire insulating layer on a perpendicular line connecting the surface of the copper wire 10 and the surface of the insulating layer 20 in FIG.
  • a heat-resistant insulated wire is an insulated wire having a conductive wire and a heat-resistant insulating layer provided on the surface of the conductive wire, wherein the heat-resistant particles are contained in the insulating layer. And the heat-resistant particles are densely packed in the surface layer thickness portion of the insulating layer.
  • the conductive wire may be any commonly used metal such as copper, copper alloy, silver, silver alloy, aluminum, aluminum alloy.
  • the shape may be any shape such as a circular cross-section, a cross-sectional ellipse, a cross-sectional quadrangle, and a cross-sectional flat plate shape.
  • the insulating layer is formed on the surface of the conductive wire with a substantially uniform thickness.
  • the corners are formed relatively thicker (for example, about 10 to 30% thicker) than other parts.
  • the surface layer thickness portion of the insulating layer is a layer whose distance (depth) from the surface of the insulating layer is 0.5 ⁇ m on the perpendicular connecting the surface of the conductive wire of the insulated wire and the surface of the insulating layer. Thick part. In general, the thickness of the entire insulating layer is generally 2 to 50 ⁇ m, and usually 3 to 30 ⁇ m.
  • the amount (concentration) of heat-resistant particles contained in the layer thickness portion of 0.5 ⁇ m from the surface of the insulating layer is in the central portion in the thickness direction of the insulating layer. It is at least twice the amount (concentration) of heat-resistant particles contained.
  • the central portion in the thickness direction of the insulating layer is a vertical line connecting the surface of the conductive wire and the surface of the insulating layer, and 1/3 ⁇ from the surface of the insulating layer with respect to the layer thickness L of the entire insulating layer. The range from the position of L to the position of 2/3 ⁇ L.
  • FIG. 1 is a partial cross-sectional view of a heat-resistant insulated wire according to this embodiment.
  • the heat-resistant insulated wire has a conductive wire 10 (copper wire 10 in the illustrated example) and a heat-resistant resin insulating layer 20 that covers the copper wire 10 with a certain thickness.
  • grains 30 are contained.
  • the white spots inside the insulating layer 20 are the heat-resistant particles 30.
  • the heat-resistant particles 30 in the illustrated example are silica fine particles. As shown in the figure, white spots are concentrated in the 0.5 ⁇ m thick portion from the surface of the insulating layer 20, and it can be seen that the heat-resistant particles 30 are unevenly distributed in this portion.
  • FIG. 2 and FIG. 3 show the results of elemental analysis by energy dispersive X-ray spectroscopic analysis (hereinafter referred to as EDS analysis) for the elements contained in the cross-sectional portion shown in FIG.
  • FIG. 2 is a chart of an EDS analysis result at a position where the distance from the surface of the insulating layer is 0.25 ⁇ m on a perpendicular line connecting the surface of the copper wire 10 and the surface of the insulating layer 20.
  • FIG. 3 shows an EDS analysis result at a position where the distance from the surface of the insulating layer is a half (thickness center) of the entire insulating layer on a perpendicular line connecting the surface of the copper wire 10 and the surface of the insulating layer 20. It is a chart.
  • the analysis region on the sample surface is a circle having a diameter of 1 ⁇ m.
  • the heat-resistant particles contained in the insulating layer are concentrated in the surface layer thickness portion of the insulating layer.
  • the heat-resistant insulated wire is included in the surface layer thickness portion of the insulating layer. Since the amount of silica fine particles is about four times the amount of silica fine particles contained in the central portion of the insulating layer, the heat resistance of the surface layer thickness portion that is most exposed to heat at high temperatures is high. For this reason, even if there is little quantity of the heat resistant particle contained in the whole insulating layer, the outstanding heat resistance can be obtained.
  • the insulating layer is made of acrylic resin, polyesterimide resin, polyimide resin, or the like, and the heat-resistant particles contained in the insulating layer are metal oxide fine particles, metal nitride fine particles, boron nitride fine particles, and One type or two or more types selected from silica fine particles.
  • the metal oxide is, for example, one or a mixture of two or more selected from alumina and zirconia
  • the metal nitride is one or a mixture of two or more selected from aluminum nitride and boron nitride. Particularly preferred are alumina and zirconia.
  • the insulating layer can be formed by the following electrodeposition liquid.
  • the electrodeposition liquid of this embodiment is a suspension in which resin particles and heat-resistant particles are dispersed in a solvent. This electrodeposition liquid can be obtained by mixing a suspension in which heat-resistant particles are dispersed in a suspension in which resin particles are dispersed.
  • the dispersion medium of the resin particle suspension may be any liquid used in the electrodeposition method, and may be water, water-N, N dimethylformamide mixed solution, water-N methylpyrrolidone mixed solution, water-dimethyl sulfoxide mixed solution, etc. A mixture of water and aprotic polar solvent is used.
  • a dispersion medium having good compatibility with the resin particle suspension is suitable for the dispersion of the heat-resistant particle suspension. For example, one or a mixture of two or more selected from water, methanol, methyl ethyl ketone, and the like are used.
  • the electrodeposition liquid of this embodiment is a suspension having a turbidity of 1 mg / L or more, preferably 10 to 600 mg / L, in which resin particles and heat-resistant particles are dispersed. Turbidity can be measured with a commercially available integrating sphere turbidimeter. If the turbidity of the electrodeposition liquid is less than 1 mg / L, the dispersion state of the resin particles and heat-resistant particles in the liquid is insufficient, and the amount of the resin particles and heat-resistant particles is insufficient. It is difficult to form a thick insulating layer.
  • the turbidity of the electrodeposition liquid is 1 mg / L or more, the dispersion state of the resin particles and heat-resistant particles in the liquid is good, and since a sufficient amount of resin particles and heat-resistant particles are contained, good heat resistance An insulating layer can be formed.
  • a direct current is mainly passed between the conductive wire immersed in the electrodeposition liquid and the counter electrode, and the resin particles and the heat-resistant particles in the liquid are electrically moved to the surface of the wire to be electrodeposited.
  • the electrodeposition solution is required to have a low viscosity so that the solution does not solidify. If the viscosity of the electrodeposition liquid is too high, the liquid is solidified and cannot be used for film formation.
  • the viscosity of the electrodeposition liquid is preferably 100 cP or less, and more preferably 0.5 to 90 cP. If the viscosity of the electrodeposition liquid is 100 cP or less, a good insulating layer can be formed without solidifying the liquid.
  • a coating material that forms an insulating layer is used in the dipping method.
  • a highly viscous liquid is used so that the paint does not flow down.
  • the viscosity of a coating forming paint used in the dipping method is 1000 cP or more. Since the resin component of the coating composition for dipping coating is dissolved in the paint and is not a suspension in which resin particles are dispersed in the liquid, the turbidity of the paint is generally less than 0.01 mg / L, It is a light transmissive liquid.
  • the viscosity of these paints is 1000 cP or more and turbidity.
  • the viscosity is less than 0.01 mg / L, and the viscosity and turbidity of the liquid are completely different from the electrodeposition liquid for forming an insulating layer of the present invention.
  • the electrodeposition liquid of this embodiment has a markedly lower viscosity than the insulating layer paint used in the dipping method.
  • the type of resin particles contained in the electrodeposition liquid of this embodiment is one or a mixture of two or more selected from acrylic resin, polyesterimide resin, polyimide resin, or the like.
  • the average particle diameter of the resin particles is preferably 1 ⁇ m or less, more preferably 10 to 100 nm. If resin particles having an average particle diameter of 1 ⁇ m or less are used, the dispersion stability of the resin particles is improved.
  • the content of the resin particles contained in the electrodeposition liquid of the present invention is preferably 1 to 30% by mass. Since the electrodeposition liquid of the present invention contains the resin particles having the above content, an insulating layer having a sufficient thickness can be formed.
  • the shape of the resin particles may be spherical, elliptical, or other different shapes.
  • the average particle size of the resin particles can be determined by a commercially available dynamic light scattering particle size distribution measuring device.
  • heat-resistant particles are dispersed together with the resin particles.
  • the heat-resistant particles are one or more selected from metal oxide fine particles, metal nitride fine particles, boron nitride fine particles, and silica fine particles.
  • metal oxide for example, one or a mixture of two or more selected from alumina and zirconia, and one or a mixture of two or more selected from aluminum nitride and boron nitride can be used as the metal nitride.
  • the heat-resistant particles are dispersed in advance in a dispersion medium having good compatibility with the suspension, and the dispersion is used as a suspension of the resin particles. To be mixed.
  • the heat resistant particles are preferably colloidal particles of 500 nm or less, and more preferably 0.5 to 400 nm. Since the colloidal particles having the above particle diameter are dispersed without being settled in the liquid, a heat resistant coating in which the heat resistant particles are uniformly contained can be formed.
  • the shape of the heat-resistant particles may be spherical, elliptical, or other irregular shapes.
  • the average particle diameter of the heat-resistant particles can also be determined by a commercially available dynamic light scattering particle size distribution measuring apparatus.
  • the content of the heat resistant particles is preferably 1 to 100 parts by mass with respect to 100 parts by mass of the resin particles.
  • the content is less than 1 part by mass, the heat resistance of the insulating layer becomes insufficient, and when it exceeds 100 parts by mass, the flexibility of the insulating layer is lowered.
  • the electrodeposition liquid of the present invention contains the above-mentioned heat-resistant particles, an insulating layer having sufficient heat resistance and flexibility can be formed. More preferably, it is 20 to 80 parts by mass with respect to 100 parts by mass of the resin particles.
  • an electrodeposition film is formed by energization between the conductive wire immersed in the electrodeposition liquid and the counter electrode.
  • the energization conditions at this time are not different from the case of using a general electrodeposition liquid.
  • electrodeposition can be performed at a DC voltage of 5 to 100 V, an electrodeposition time of 0.1 to 30 seconds, and an electrodeposition liquid temperature of 5 to 40 ° C.
  • the charged state of the heat-resistant particles and the resin particles are different, and the resin particles are more easily electrodeposited than the heat-resistant particles. Therefore, the concentration of the heat-resistant particles is higher on the surface of the electrodeposition film.
  • the baking conditions may be the same as when a general electrodeposition solution is used.
  • the conductive wire on which the electrodeposition film is formed may be placed in a baking furnace, heated at 200 to 600 ° C. for 2 to 120 seconds, and baked to form an insulating film.
  • an insulating layer in which heat-resistant particles are densely formed in the surface layer thickness portion can be formed.
  • the heat-resistant insulated wire of the present embodiment since the heat-resistant particles are concentrated on the surface portion of the insulating layer, the heat resistance of the surface portion of the insulating layer that is most exposed to heat at high temperature is high. For this reason, even if there is little quantity of the heat resistant particle contained in the whole insulating layer, the outstanding heat resistance can be obtained.
  • the electrodeposition liquid of the present embodiment can form an insulating layer in which heat-resistant particles are dense on the surface portion. Therefore, it is possible to obtain an insulation coated electric wire having a high softening temperature.
  • the rate of increase in the softening temperature represented by the formula of [softening temperature of insulating layer (° C.)] / [Softening temperature of insulating layer resin (° C.)] is 1.2 or more, preferably A heat resistant insulation coating of 1.3 to 1.5 can be formed.
  • the electrodeposition liquid of this embodiment is used for the electrodeposition method, a desired layer thickness can be obtained by a single electrodeposition process.
  • An insulating coating can be uniformly formed on the corner of the flat electric wire.
  • water or a water mixture can be used as a dispersion medium for the electrodeposition liquid, the burden on the environment is small.
  • Example 1 Acrylic resin particles having an average particle diameter of 50 nm were dispersed in water to obtain an aqueous suspension having a resin particle concentration of 20% by mass. Silica particles having an average particle size of 10 nm or an average particle size of 360 nm were dispersed in water to obtain a silica sol having a silica particle concentration of 30% by mass and water of 70% by mass. Furthermore, the water suspension and the silica sol were mixed at various ratios to prepare a plurality of water-dispersed electrodeposition solutions. Table 1 shows parts by mass of the silica particles with respect to 100 parts by mass of the resin particles in the electrodeposition liquid.
  • Table 1 shows the turbidity, viscosity, liquid state, resin particle concentration, and average particle size of the resin particles of each electrodeposition solution.
  • the amount of water in each electrodeposition solution was adjusted so that the resin particle concentration was the value shown in Table 1.
  • the average particle diameters of the acrylic resin particles and the silica particles were measured by a dynamic light scattering particle size distribution analyzer (LB550: trade name) manufactured by HORIBA.
  • the turbidity of the electrodeposition solution was measured with an integrating sphere turbidimeter (ANA-148: trade name) manufactured by Tokyo Photonic Co., Ltd.
  • the viscosity of the electrodeposition liquid was measured with a capillary viscometer according to JIS (Z8803: 2011-6).
  • Each electrodeposition solution is placed in an electrodeposition bath at 25 ° C., and a copper wire having a diameter of 0.1 mm is passed through the electrodeposition bath at a wire speed of 15 m / min.
  • the copper wire is used as an anode, and the electrodeposition bath is used as a cathode.
  • Acrylic resin and silica particles were electrodeposited on the wire surface.
  • a mist treatment with DMF was performed, the treated wire was passed through a baking furnace, and a baking treatment was performed at a heating temperature of 300 ° C. for a heating time of 10 seconds to form an insulating layer having a thickness of 10 ⁇ m on the copper wire surface.
  • the flexibility, softening temperature, softening temperature increase rate, and ratio of the heat-resistant particle amount of the insulating layer surface layer thickness portion to the heat-resistant particle amount of the central portion of the insulating layer were measured.
  • the results are shown in Table 1.
  • self-diameter winding was performed according to JIS (C3005: 2000-4.20.1), and the presence or absence of peeling of the insulating layer was examined with an optical microscope.
  • the softening temperature was measured according to JIS (C3216-6: 2011-4).
  • the rate of increase in the softening temperature was determined by the formula [softening temperature of insulating layer (° C.)] / [Softening temperature of insulating layer resin (° C.)].
  • the ratio of the heat-resistant particle amount in the insulating layer surface layer thickness portion to the heat-resistant particle amount in the central portion of the insulating layer was measured in the same manner as the above-described Si / C ratio measurement method.
  • Example 14 to 23 Zirconia particles having an average particle diameter of 100 nm were dispersed in water to obtain a zirconia sol having a zirconia particle concentration of 30% by mass and water of 70% by mass. Further, alumina particles having an average particle diameter of 50 nm were dispersed in water to obtain an alumina sol having an alumina particle concentration of 30% by mass and water of 70% by mass. A water-dispersed electrodeposition solution was prepared in the same manner as in Examples 1 to 13 except that these sols were used. Table 2 shows the parts by mass of zirconia particles or alumina particles with respect to 100 parts by mass of the resin particles in the electrodeposition liquid.
  • Table 2 shows the turbidity, viscosity, liquid state, resin particle concentration, and average particle diameter of the resin particles.
  • the amount of water in the electrodeposition solution was adjusted so that the resin particle concentration was the value shown in Table 2.
  • the average particle diameter of the acrylic resin particles and silica particles, the turbidity and viscosity of the electrodeposition solution were measured in the same manner as in Examples 1 to 13. Using these electrodeposition solutions, an insulating layer having a thickness of 10 ⁇ m was formed in the same manner as in Examples 1 to 13.
  • Polyesterimide resin particles having an average particle diameter of 200 nm were dispersed in water to obtain an aqueous suspension having a resin particle concentration of 20% by mass.
  • Silica particles having an average particle diameter of 10 nm were dispersed in water to obtain a silica sol having a silica particle concentration of 30% by mass and water of 70% by mass. Furthermore, these were mixed at various ratios to prepare a plurality of water-dispersed electrodeposition solutions.
  • Table 3 shows parts by mass of the silica particles with respect to 100 parts by mass of the resin particles in each electrodeposition liquid. The turbidity, viscosity, liquid state, resin particle concentration, and average particle diameter of the resin particles were measured. The results are shown in Table 3.
  • the amount of water in the electrodeposition solution was adjusted so that the resin particle concentration was the value shown in Table 3.
  • the average particle diameter of the polyesterimide resin particles and silica particles, the turbidity and viscosity of the electrodeposition solution were measured in the same manner as in Examples 1 to 13.
  • an insulating layer having a thickness of 10 ⁇ m was formed in the same manner as in Examples 1 to 13.
  • the flexibility, softening temperature, softening temperature increase rate, and ratio of the heat-resistant particle amount of the insulating layer surface layer thickness portion to the heat-resistant particle amount of the central portion of the insulating layer were measured.
  • the results are shown in Table 3.
  • the ratios of flexibility, softening temperature, softening temperature rise rate, and heat-resistant particle amount in the insulating layer surface layer thickness portion to heat-resistant particle amount in the central portion of the insulating layer are the same as in Examples 1 to 13. It was measured.
  • Example 31 to Example 35 Polyimide resin particles having an average particle diameter of 400 nm were dispersed in water to obtain an aqueous suspension having a resin particle concentration of 20% by mass. Silica particles having an average particle diameter of 10 nm were dispersed in water to obtain a silica sol having a silica particle concentration of 30% by mass and water of 70% by mass. Furthermore, these were mixed and the water dispersion type electrodeposition liquid was prepared. Table 3 shows parts by mass of the silica particles with respect to 100 parts by mass of the resin particles in the electrodeposition liquid. Table 3 shows the turbidity, viscosity, liquid state, resin particle concentration, and average particle diameter of the resin particles.
  • the amount of water in the electrodeposition solution was adjusted so that the resin particle concentration was the value shown in Table 3.
  • the average particle diameter of the polyimide resin particles and silica particles, the turbidity and viscosity of the electrodeposition solution were measured in the same manner as in Examples 1 to 13.
  • an insulating layer having a thickness of 10 ⁇ m was formed in the same manner as in Examples 1 to 13.
  • the flexibility, softening temperature, softening temperature increase rate, and ratio of the heat-resistant particle amount of the insulating layer surface layer thickness portion to the heat-resistant particle amount of the central portion of the insulating layer were measured.
  • the results are shown in Table 3.
  • the ratios of flexibility, softening temperature, softening temperature rise rate, and heat-resistant particle amount in the insulating layer surface layer thickness portion to heat-resistant particle amount in the central portion of the insulating layer are the same as in Examples 1 to 13. It was measured.
  • Example 36 to 40 Polyamideimide resin particles having an average particle diameter of 300 nm were dispersed in water to obtain an aqueous suspension having a resin particle concentration of 20% by mass. Silica particles having an average particle diameter of 10 nm were dispersed in water to obtain a silica sol having a silica particle concentration of 30% by mass and water of 70% by mass. Furthermore, these were mixed and the water dispersion type electrodeposition liquid was prepared. Table 4 shows parts by mass of the silica particles with respect to 100 parts by mass of the resin particles in the electrodeposition liquid. Table 4 shows the turbidity, viscosity, liquid state, resin particle concentration, and average particle diameter of the resin particles.
  • the amount of water in the electrodeposition solution was adjusted so that the resin particle concentration was the value shown in Table 4.
  • the average particle diameter of the polyimide resin particles and silica particles, the turbidity and viscosity of the electrodeposition solution were measured in the same manner as in Examples 1 to 13.
  • an insulating layer having a thickness of 10 ⁇ m was formed in the same manner as in Examples 1 to 13.
  • the flexibility, softening temperature, softening temperature increase rate, and ratio of the heat-resistant particle amount of the insulating layer surface layer thickness portion to the heat-resistant particle amount of the central portion of the insulating layer were measured.
  • the results are shown in Table 4.
  • the ratios of flexibility, softening temperature, softening temperature rise rate, and heat-resistant particle amount in the insulating layer surface layer thickness portion to heat-resistant particle amount in the central portion of the insulating layer are the same as in Examples 1 to 13. It was measured.
  • the turbidity of the electrodeposition solution is 30 mg / L or more, the viscosity is 100 cP or less, and the softening temperature of the formed insulating layer is 400 ° C. or more.
  • the softening temperature increase rate was 1.2 or more, and the heat resistance was high.
  • the softening temperature and the softening temperature increase rate increased according to the content of the heat-resistant particles.
  • the amount of the heat-resistant particles is preferably 1 to 100 parts by mass with respect to 100 parts by mass of the resin particles.
  • Acrylic resin particles having an average particle size of 50 nm, polyesterimide resin particles having an average particle size of 200 nm, polyimide resin particles having an average particle size of 400 nm, and polyamideimide resin particles having an average particle size of 300 nm are each dispersed in water to obtain a resin particle concentration of 20 A mass% aqueous suspension was obtained and used as an electrodeposition solution.
  • Table 5 shows the turbidity, viscosity, liquid state, resin particle concentration, and average particle diameter of the resin particles. The amount of water in the electrodeposition solution was adjusted so that the resin particle concentration was the value shown in Table 5.
  • the average particle diameter of the resin particles, the turbidity and viscosity of the electrodeposition solution were measured in the same manner as in Examples 1 to 13. Using these electrodeposition solutions, an insulating layer having a thickness of 10 ⁇ m was formed in the same manner as in Examples 1 to 13. About these insulated wires, the flexibility, softening temperature, and softening temperature increase rate were measured. The results are shown in Table 5. The flexibility, softening temperature, and softening temperature increase rate were measured in the same manner as in Examples 1 to 13. In Comparative Examples 1 to 4, the insulating layer was formed by the electrodeposition method, but since it does not contain heat-resistant particles, the softening temperature does not increase and the softening temperature increase rate is 1.
  • silica particles having an average particle diameter of 10 nm were dispersed in a mixed solution of xylene and butanol to obtain a silica sol.
  • the silica sol was mixed with the paint while stirring the paint, and dispersed so that the silica particles were 20 parts by mass with respect to 100 parts by mass of the resin content of the paint.
  • Table 5 shows the turbidity, viscosity, liquid state, and resin concentration of the electrodeposition liquid. The amount of xylene and butanol in the electrodeposition solution was adjusted so that the resin particle concentration was the value shown in Table 5.
  • the turbidity and viscosity of the electrodeposition solution were measured in the same manner as in Examples 1 to 13. Using this electrodeposition solution, an insulating layer was formed in the same manner as in Examples 1 to 13. However, the turbidity of the electrodeposition solution was less than 0.01 mg / L and the viscosity exceeded 1000 cP. A layer could not be formed.
  • Polyesterimide resin particles having an average particle diameter of 200 nm were dispersed in water to obtain an aqueous suspension having a resin particle concentration of 40% by mass.
  • Silica particles having an average particle diameter of 10 nm were dispersed in water to obtain a silica sol having a silica particle concentration of 30% by mass and water of 70% by mass.
  • the water suspension and the silica sol were mixed so as to obtain 1 part by mass of silica particles with respect to 100 parts by mass of the polyesterimide resin, thereby obtaining an electrodeposition solution.
  • Table 5 shows the turbidity, viscosity, liquid state, resin particle concentration, and average particle diameter of the resin particles.
  • the amount of water in the electrodeposition solution was adjusted so that the resin particle concentration was the value shown in Table 5.
  • the average particle diameter of the resin particles, the turbidity and viscosity of the electrodeposition solution were measured in the same manner as in Examples 1 to 13. An attempt was made to form an insulating layer using these electrodeposition solutions in the same manner as in Examples 1 to 13. However, since the resin particle concentration was high and the viscosity of the electrodeposition solution was too high, the solution solidified and could be electrodeposited. There wasn't.
  • the present invention provides a heat-resistant insulated wire excellent in heat resistance near the surface of the insulating layer, and an electrodeposition liquid for forming the insulating layer. Therefore, it has industrial applicability.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Wood Science & Technology (AREA)
  • Inorganic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Nanotechnology (AREA)
  • Molecular Biology (AREA)
  • Electrochemistry (AREA)
  • Metallurgy (AREA)
  • Ceramic Engineering (AREA)
  • Insulated Conductors (AREA)
  • Organic Insulating Materials (AREA)
  • Paints Or Removers (AREA)

Abstract

 耐熱性の絶縁層を有する絶縁電線であって、上記絶縁層中に耐熱性粒子を含有し、上記耐熱性粒子が上記絶縁層の表面層厚部分に密集している。例えば、上記絶縁層の表面から0.5μmの層厚部分に含まれる耐熱性粒子の量は、上記絶縁層の中央部分に含まれる耐熱性粒子の量の2倍以上である。上記絶縁層の形成に用いる電着液は、樹脂粒子が分散した懸濁液に、耐熱性粒子を分散させてなり、粘度は100cP以下であり、かつ濁度は1mg/L以上である。

Description

耐熱性絶縁電線とその絶縁層の形成に用いる電着液
 本発明は、耐熱性の絶縁層を有する絶縁電線と上記絶縁層を形成する電着液に関する。
 本願は、2014年7月3日に日本出願された特願2014-138113号に基づき、その内容をここに援用する。
 絶縁電線はマグネットコイルなどに広く用いられている。絶縁電線の絶縁層を形成する方法として浸漬法と電着法が知られている。浸漬法は絶縁電線の心材になる導電性の線材を樹脂ワニス等の塗料に浸漬して引き上げ、乾燥させて線材表面に絶縁被覆を形成する方法である。電着法は上記線材を樹脂ワニス等の塗料成分を含む電着液に入れ、上記線材を陽極あるいは陰極にして対極との間に通電し、上記線材表面に塗料成分を電着させた後に焼付処理して絶縁層を形成する方法である(特許文献1、特許文献2参照)。
 浸漬法は平角電線の角部に塗料が付着し難く、角部の層厚が平坦部の層厚に比べて薄くなるという欠点がある。一方、電着法では平角電線の角部にも塗料が十分に電着するので、角部にも平坦部と同じ厚さ、もしくは平坦部以上の厚さの絶縁層を形成できる利点がある。
 近年、広範な用途に対応するために耐電圧強度や耐熱性に優れた絶縁電線が求められており、絶縁層の耐熱性を高める手段として、絶縁層の樹脂中に金属酸化物微粒子やシリカ微粒子を含有させたエナメル線用塗料が知られている(特許文献3)。
 しかし、特許文献3に記載されている塗料は浸漬法用であり、開示されている塗料の液組成や液状態のものでは電着法に用いることができない。浸漬法では所望の層厚に達するため何度も浸漬と乾燥を繰り返す必要があり、例えば、実用に供される程度の層厚35μmの被覆を形成するために7回の浸漬を繰り返している。このため生産性が低い。さらに浸漬法は平角線材では角部の層厚が平坦部に比べて薄くなる欠点を解消できない。また、樹脂や酸化物微粒子の溶媒・分散媒として有機溶剤を使用しているため環境負荷が大きい。
 さらに浸漬法では、絶縁層にシリカ微粒子を含有させる場合、シリカ微粒子を含む塗料に浸漬を繰り返すので、各層ごとにシリカ微粒子が含まれることになり、絶縁層全体にシリカ微粒子が分散された状態になる。しかし、高温下で最も熱に曝されるのは絶縁層表面であるため、絶縁層表面付近のシリカ微粒子が少ないと絶縁層表面が損傷を受けやすくなる。
特開昭62-037396号公報 特開平03-241609号公報 特開2001-307557号公報
 本発明は、従来の浸漬法による絶縁電線およびその製造方法における上記問題を解決したものであり、絶縁層の表面付近の耐熱性が優れた耐熱性絶縁電線と上記絶縁層を形成するための電着液を提供する。
 本発明の各態様は以下の構成を有する。
 [1]耐熱性の絶縁層を有する絶縁電線であって、上記絶縁層中に耐熱性粒子を含有し、上記耐熱性粒子が上記絶縁層の表面層厚部分に密集していることを特徴とする耐熱性絶縁電線。上記耐熱性の絶縁層は、通常、導電性線材の表面上に形成されている。上記「密集」とは、上記絶縁層の表面層厚部分に、上記絶縁層の他の部分よりも相対的に高い密度で耐熱性粒子が分散されていることをいう。
 [2]上記絶縁層の表面から0.5μmの層厚部分に上記耐熱性粒子が密集している上記[1]に記載の耐熱性絶縁電線。
 [3]上記絶縁層の表面から0.5μmの層厚部分に含まれる上記耐熱性粒子の量(濃度)が、上記絶縁層の厚さ方向の中央部分に含まれる上記耐熱性粒子の量(濃度)の2倍以上である上記[1]または上記[2]に記載の耐熱性絶縁電線。より好ましくは、0.5μmの層厚部分に含まれる上記耐熱性粒子の密度が、上記絶縁層の厚さ方向の中央部分に含まれる上記耐熱性粒子の密度の2~6倍とされる。
 [4][1]に記載した絶縁電線の上記絶縁層の形成に用いる絶縁層形成用電着液であって、樹脂粒子が分散した懸濁液に上記耐熱性粒子を分散させてなり、粘度が100cP以下であって、かつ濁度が1mg/L以上であることを特徴とする絶縁層形成用電着液。より好ましくは、電着液の粘度は0.5~50cPであり、濁度は10~600mg/Lである。
 [5]上記樹脂粒子の含有量が1~30質量%であって、上記樹脂粒子100質量部に対して上記耐熱性粒子が1~100質量部含有されている上記[4]に記載の絶縁層形成用電着液。
 [6]上記樹脂粒子の平均粒子径が1μm以下であり、上記耐熱性粒子の平均粒子径が500nm以下である上記[4]または上記[5]に記載の絶縁層形成用電着液。上記樹脂粒子の平均粒子径は、より好ましくは10~100nmであり、上記耐熱性粒子の平均粒子径は、より好ましくは0.5~400nmである。
 [7]上記絶縁層の耐軟化温度上昇率が1.2以上の絶縁層を形成する上記[4]~上記[6]の何れかに記載の絶縁層形成用電着液。上記絶縁層の耐軟化温度上昇率は、より好ましくは1.2~1.6である。
 [8]上記樹脂粒子がアクリル樹脂、ポリエステルイミド樹脂、ポリイミド樹脂、またはポリアミドイミド樹脂から選択される一種または2種以上である上記[5]~上記[7]の何れかに記載の絶縁層形成用電着液。
 [9]上記耐熱性粒子が金属酸化物の微粒子、金属窒化物の微粒子、窒化ホウ素の微粒子、およびシリカの微粒子から選択される1種または2種以上である上記[5]~上記[8]の何れかに記載の絶縁層形成用電着液。金属酸化物としては、アルミナ、ジルコニアなどから選択される1種または2種以上の混合物、金属窒化物としては窒化アルミニウム、窒化ホウ素などから選択される1種または2種以上の混合物が使用できる。
 本発明の一態様に係る耐熱性絶縁電線は、絶縁層の表面部分に耐熱性粒子が密集しているので、高温下で最も熱に曝される絶縁層の表面部分の耐熱性が高い。このため絶縁層全体に含まれる耐熱性粒子の総量が少なくても優れた耐熱性を得ることができる。
 本発明の他の態様に係る電着液は、表面部分に耐熱性粒子が密集した絶縁層を形成することができる。従って、耐軟化温度の高い絶縁被覆電線を得ることができる。例えば、[絶縁層の耐軟化温度(℃)]/[絶縁層樹脂の耐軟化温度(℃)]の式によって表される耐軟化温度上昇率が1.2以上、好ましくは1.2~1.6、より好ましくは1.3~1.5の耐熱性の絶縁被覆を形成できる。
 上記電着液は電着法に用いられるので、所望の層厚を一回の電着処理によって得ることができる。また、平角電線の角部にも均一に絶縁被覆を形成することができる。さらに、電着液の分散媒として水を用いることができるので、環境に対する負荷が小さい。
実施例1において形成した絶縁電線の部分断面写真である。 図1の銅線10の表面と上記絶縁層20の表面を結んだ垂線上において上記絶縁層表面からの距離が0.25μmの位置のEDS分析チャートである。 図1の銅線10の表面と上記絶縁層20の表面を結んだ垂線上において上記絶縁層表面からの距離が上記絶縁層全体の層厚の1/2の位置のEDS分析チャートである。
 本発明の一実施形態に係る耐熱性絶縁電線は、導電性線材と、この導電性線材の表面に設けられた耐熱性の絶縁層を有する絶縁電線であって、上記絶縁層中に耐熱性粒子を含有し、上記耐熱粒子が上記絶縁層の表面層厚部分に密集していることを特徴とする。導電性線材は、銅、銅合金、銀、銀合金、アルミニウム、アルミニウム合金など通常用いられるいかなる金属でもよい。また、その形状は断面円形、断面楕円形、断面四角形、断面平板状などいかなる形状であってもよい。前記絶縁層は、導電性線材が断面円形または断面楕円形の場合には導電性線材の表面にほぼ均一の厚さで形成される。一方、導電性線材が角部のある断面形状の場合には、角部において他の部分よりも相対的に厚く(例えば10~30%程度厚く)形成されている。
 上記絶縁層の表面層厚部分とは、上記絶縁電線の導電性線材の表面と上記絶縁層表面を結んだ垂線上で、上記絶縁層表面からの距離(深さ)が0.5μmまでの層厚部分である。一般に絶縁層全体の層厚は概ね2~50μmであり、通常は3~30μmである。
 本実施形態の耐熱性絶縁電線では、好ましくは、上記絶縁層の表面から0.5μmの層厚部分に含まれる耐熱性粒子の量(濃度)が、上記絶縁層の厚さ方向の中央部分に含まれる耐熱性粒子の量(濃度)の2倍以上である。上記絶縁層の厚さ方向の中央部分とは、導電性線材の表面と上記絶縁層表面を結んだ垂線上で、上記絶縁層全体の層厚Lに対して上記絶縁層表面から1/3・Lの位置から2/3・Lの位置までの範囲である。
 本実施形態の耐熱性絶縁電線の一例を図1に示す。図1は本実施形態に係る耐熱性絶縁電線の部分断面図である。この耐熱性絶縁電線は、導電性線材10(図示する例では銅線10)と、この銅線10を一定の厚さで覆う耐熱樹脂製の絶縁層20とを有し、絶縁層20に耐熱性粒子30が含まれている。図中、絶縁層20の内部の白い斑点が耐熱性粒子30である。図示する例の耐熱性粒子30はシリカ微粒子である。図示するように、絶縁層20の表面から0.5μmの層厚部分に白い斑点が密集しており、この部分に耐熱性粒子30が偏在していることが分かる。
 図1に示す断面部分に含まれる元素について、エネルギー分散型X線分光分析(以下、EDS分析と云う)による元素分析の結果を図2および図3に示す。図2は、銅線10の表面と絶縁層20の表面を結んだ垂線上において上記絶縁層表面からの距離が0.25μmの位置のEDS分析結果のチャートである。図3は銅線10の表面と絶縁層20の表面を結んだ垂線上において上記絶縁層表面からの距離が上記絶縁層全体の層厚の1/2(厚さ中心)の位置のEDS分析結果のチャートである。試料表面における被分析領域は、直径1μmの円形である。
 炭素の強度ピーク(図中C)に対するケイ素の強度ピーク(図中Si)の比(Si/C)は、分析5回の平均値で、図2ではSi/C=20/80であるが、図3ではSi/C=5/95であり、図2に示す上記絶縁層の表面層厚部分に含まれるシリカ微粒子量が、図3に示す上記絶縁層中央部分に含まれるシリカ微粒子量の約4倍であった。
 本実施形態の耐熱性絶縁電線は、絶縁層に含まれる耐熱性粒子が上記絶縁層の表面層厚部分に密集しており、例えば図示する例では、上記絶縁層の表面層厚部分に含まれるシリカ微粒子量は上記絶縁層中央部分に含まれるシリカ微粒子量の約4倍であるので、高温下で最も熱に曝される表面層厚部分の耐熱性が高い。このため絶縁層全体に含まれる耐熱性粒子の量が少なくても優れた耐熱性を得ることができる。
 上記絶縁層はアクリル樹脂、ポリエステルイミド樹脂、またはポリイミド樹脂などによって形成されており、上記絶縁層に含まれる上記耐熱性粒子は金属酸化物の微粒子、金属窒化物の微粒子、窒化ホウ素の微粒子、およびシリカの微粒子から選択される1種または2種以上などである。上記金属酸化物は例えばアルミナ、ジルコニアから選択される1種または2種以上の混合物、金属窒化物としては窒化アルミニウム、窒化ホウ素から選択される1種または2種以上の混合物などである。特に好ましいのは、アルミナおよびジルコニアである。
 上記絶縁層は、下記の電着液によって形成することができる。本実施形態の電着液は、溶媒中に樹脂粒子および耐熱性粒子が分散した懸濁液である。この電着液は、樹脂粒子が分散した懸濁液に、耐熱性粒子を分散させた懸濁液を混合して得ることができる。樹脂粒子懸濁液の分散媒は、電着法に用いる液体であればよく、水、水-N,Nジメチルホルムアミド混合液、水-Nメチルピロリドン混合液、水-ジメチルスルホキシド混合液などの、水-非プロトン性極性溶媒の混合液などが用いられる。耐熱性粒子懸濁液の分散煤は樹脂粒子懸濁液と相溶性のよい分散媒が適し、例えば水、メタノール、メチルエチルケトンなどから選択される1種または2種以上の混合物などが用いられる。
 本実施形態の電着液は、樹脂粒子および耐熱性粒子が分散している濁度1mg/L以上、好ましくは濁度10~600mg/Lの懸濁液である。濁度は市販の積分球式濁度計などで測定可能である。電着液の濁度が濁度1mg/L未満では液中の樹脂粒子および耐熱性粒子の分散状態が不十分であり、また樹脂粒子や耐熱性粒子の量が不十分であるので、十分な厚さの絶縁層を形成することが難しい。電着液の濁度が1mg/L以上であれば、液中の樹脂粒子および耐熱性粒子の分散状態が良好であり、十分な量の樹脂粒子および耐熱性粒子を含むので、良好な耐熱性を有する絶縁層を形成することができる。
 電着法では、電着液に浸漬した導電性線材と対電極の間に主として直流電流を通電し、液中の樹脂粒子および耐熱性粒子を上記線材表面に電気的に移動させて電着させることによって絶縁層を形成するが、液が固化しないように、電着液は低粘度であることが求められる。電着液の粘度が高すぎると液が固化してしまい成膜に使用することができない。電着液の粘度は100cP以下が好ましく、粘度0.5~90cPがより好ましい。電着液の粘度が100cP以下であれば、液が固化することなく良好な絶縁層を形成することができる。
 一方、浸漬法では絶縁層を形成する塗料が用いられる。この塗料は絶縁電線の導電性線材の表面に塗布されたときに、塗料が流れ落ちないように粘度の高い液が用いられる。一般に浸漬法で用いる被覆形成用塗料の粘度は1000cP以上である。浸漬法の被覆形成用塗料の樹脂成分は塗料中に溶解しており、液中に樹脂粒子が分散した懸濁液ではないので、上記塗料の濁度は一般に0.01mg/L未満であり、光透過性の液である。
 また、浸漬法では、具体的には、ポリウレタン樹脂、ポリエステル樹脂、ホルマール樹脂、ポリエステルイミド樹脂、ポリアミドイミド樹脂、ポリイミド樹脂を用いた塗料が用いられており、これらの塗料の粘度は1000cP以上、濁度0.01mg/L未満であり、本発明の絶縁層形成用の電着液とは、液の粘度および濁度が全く異なる。本実施形態の電着液は浸漬法で用いる絶縁層用塗料に比べて粘度が格段に低い。
 本実施形態の電着液に含まれる樹脂粒子の種類は、アクリル樹脂、ポリエステルイミド樹脂、またはポリイミド樹脂などから選択される1種または2種以上の混合物である。上記樹脂粒子の平均粒子径は1μm以下が好ましく、10~100nmがより好ましい。平均粒子径が1μm以下の樹脂粒子を用いれば樹脂粒子の分散安定性が向上する。本発明の電着液に含まれる樹脂粒子の含有量は1~30質量%が好ましい。本発明の電着液は上記含有量の樹脂粒子を含むので十分な厚さの絶縁層を形成することができる。樹脂粒子の形状は、球形であっても、楕円球であっても、その他の異形状であってもよい。樹脂粒子の平均粒径は、市販の動的光散乱式粒径分布測定装置によって求めることができる。
 本実施形態の電着液には上記樹脂粒子と共に耐熱性粒子が分散している。上記耐熱性粒子は金属酸化物の微粒子、金属窒化物の微粒子、窒化ホウ素の微粒子、およびシリカの微粒子から選択される1種または2種以上である。金属酸化物は例えばアルミナ、ジルコニアから選択される1種または2種以上の混合物、金属窒化物としては窒化アルミニウム、窒化ホウ素から選択される1種または2種以上の混合物などが使用できる。上記耐熱性粒子を上記樹脂粒子の懸濁液に均一に分散させるには、上記懸濁液と相溶性のよい分散媒に予め耐熱性粒子を分散させ、この分散液を樹脂粒子の懸濁液に混合すればよい。
 耐熱性粒子は500nm以下のコロイド粒子が好ましく、0.5~400nmの粒子がより好ましい。上記粒子径のコロイド粒子は液中で沈降せずに分散するので、耐熱性粒子が均一に含まれる耐熱性被覆を形成することができる。耐熱性粒子の形状は、球形であっても、楕円球であっても、その他の異形状であってもよい。耐熱性粒子の平均粒径も、市販の動的光散乱式粒径分布測定装置によって求めることができる。
 耐熱性粒子の含有量は上記樹脂粒子100質量部に対して1~100質量部が好ましい。この含有量が1質量部未満では絶縁層の耐熱性が不十分になり、100質量部を超えると絶縁層の可撓性が低下する。本発明の電着液は上記含有量の耐熱性粒子を含むので十分な耐熱性および可撓性を有する絶縁層を形成することができる。より好ましくは上記樹脂粒子100質量部に対して20~80質量部である。
 本実施形態の電着液を用い、上記電着液に浸漬した導電性線材と対電極の間で通電して電着膜を形成する。このときの通電条件は一般の電着液を用いた場合と変わらない。例えば、直流電圧5~100V、電着時間0.1~30秒、電着液温度5~40℃で電着を行うことができる。耐熱性粒子と樹脂粒子の帯電状態は異なり、耐熱性粒子よりも樹脂粒子の方が電着され易いため、電着膜の表面の方が耐熱性粒子の濃度が高くなる。
 上記電着後に焼き付けを行う。焼き付け条件は一般の電着液を用いた場合と同様でよい。例えば、電着膜を形成した導電性線材を焼付け炉に入れ、200~600℃で、2~120秒間加熱し、焼付け処理して、絶縁膜を形成すればよい。
 上記のように、本実施形態の電着液を用いることによって、表面層厚部分に耐熱性粒子が密集した絶縁層を形成することができる。
 本実施形態の耐熱性絶縁電線は、絶縁層の表面部分に耐熱性粒子が密集しているので、高温下で最も熱に曝される絶縁層の表面部分の耐熱性が高い。このため絶縁層全体に含まれる耐熱性粒子の量が少なくても優れた耐熱性を得ることができる。
 本実施形態の電着液は、表面部分に耐熱性粒子が密集した絶縁層を形成することができる。従って、耐軟化温度の高い絶縁被覆電線を得ることができる。具体的には、例えば、[絶縁層の耐軟化温度(℃)]/[絶縁層樹脂の耐軟化温度(℃)]の式によって表される耐軟化温度上昇率が1.2以上、好ましくは1.3~1.5の耐熱性の絶縁被覆を形成することができる。
 本実施形態の電着液は電着法に用いられるので、所望の層厚を一回の電着処理によって得ることができる。平角電線の角部にも均一に絶縁被覆を形成することができる。さらに、電着液の分散媒として水もしくは水混合物を用いることができるので、環境に対する負荷が小さい。
 本発明の実施例を比較例と共に以下に示す。
[実施例1~実施例13]
 平均粒子径50nmのアクリル樹脂粒子を水に分散し、樹脂粒子濃度20質量%の水懸濁液を得た。平均粒子径10nmまたは平均粒子径360nmのシリカ粒子を水に分散し、シリカ粒子濃度30質量%および水70質量%のシリカゾルを得た。さらに上記水懸濁液と上記シリカゾルを種々の割合で混合して水分散型の電着液を複数種調製した。上記電着液中の樹脂粒子100質量部に対するシリカ粒子の質量部を表1に示す。上記各電着液の濁度、粘度、液の状態、樹脂粒子濃度、樹脂粒子の平均粒子径を表1に示す。
 樹脂粒子濃度が表1の値になるように上記各電着液の水量を調整した。アクリル樹脂粒子およびシリカ粒子の平均粒子径は、HORIBA社の動的光散乱式粒径分布測定装置(LB550:商品名)によって測定した。電着液の濁度は東京光電株式会社の積分球式濁度計(ANA-148:商品名)で測定した。電着液の粘度はJIS(Z8803:2011-6)に従って細管粘度計により測定した。
 各電着液を25℃の電着槽に入れ、電着槽にφ0.1mmの銅線を線速15m/minで通過させ、銅線を陽極とし、電着槽を陰極として通電し、銅線表面にアクリル樹脂とシリカ粒子を電着塗装した。電着後にDMFによるミスト処理を行い、処理後の線材を焼付炉に通過させて加熱温度300℃、加熱時間10秒で焼付処理を行い、銅線表面に厚さ10μmの絶縁層を形成した。
 これらの絶縁電線について、可撓性、耐軟化温度、耐軟化温度上昇率、および絶縁層中央部分の耐熱性粒子量に対する絶縁層表面層厚部分の耐熱性粒子量の比を測定した。その結果を表1に示した。
 可撓性はJIS(C3005:2000-4.20.1)に従って自己径巻付後、光学顕微鏡で絶縁層の剥離の有無を調べ、剥離なしを○印、剥離ありを×印で示した。耐軟化温度はJIS(C3216-6:2011-4)に従って測定した。耐軟化温度上昇率は[絶縁層の耐軟化温度(℃)]/[絶縁層樹脂の耐軟化温度(℃)]の式によって求めた。絶縁層中央部分の耐熱性粒子量に対する絶縁層表面層厚部分の耐熱性粒子量の比は、前述したSi/C比率の測定方法と同様にして測定した。
 [実施例14~実施例23]
 平均粒子径100nmのジルコニア粒子を水に分散し、ジルコニア粒子濃度30質量%および水70質量%のジルコニアゾルを得た。また、平均粒子径50nmのアルミナ粒子を水に分散し、アルミナ粒子濃度30質量%および水70質量%のアルミナゾルを得た。これらのゾルを用いた以外は実施例1~実施例13と同様にして水分散型電着液を調製した。上記電着液中の樹脂粒子100質量部に対するジルコニア粒子またはアルミナ粒子の質量部を表2に示す。上記電着液の濁度、粘度、液の状態、樹脂粒子濃度、樹脂粒子の平均粒子径を表2に示す。樹脂粒子濃度が表2の値になるように上記電着液の水量を調整した。アクリル樹脂粒子およびシリカ粒子の平均粒子径、電着液の濁度および粘度は実施例1~実施例13と同様にして測定した。
 これらの電着液を用い、実施例1~実施例13と同様にして、厚さ10μmの絶縁層を形成した。この絶縁電線について、可撓性、耐軟化温度、耐軟化温度上昇率、および絶縁層中央部分の耐熱性粒子量に対する絶縁層表面層厚部分の耐熱性粒子量の比を測定した。その結果を表2に示した。可撓性、耐軟化温度、耐軟化温度上昇率は実施例1~実施例13と同様にして測定した。絶縁層中央部分の耐熱性粒子量に対する絶縁層表面層厚部分の耐熱性粒子量の比は前述したSi/C比率の測定方法において、実施例14~実施例18はSiをZrに置き換え、実施例19~実施例23はSiをAlに置き換えて同様に測定した。
 [実施例24~実施例30]
 平均粒子径200nmのポリエステルイミド樹脂粒子を水に分散し、樹脂粒子濃度20質量%の水懸濁液を得た。平均粒子径10nmのシリカ粒子を水に分散し、シリカ粒子濃度30質量%および水70質量%のシリカゾルを得た。さらに、これらを種々の割合で混合して複数の水分散型電着液を調製した。各電着液中の樹脂粒子100質量部に対するシリカ粒子の質量部を表3に示す。電着液の濁度、粘度、液の状態、樹脂粒子濃度、樹脂粒子の平均粒子径を測定した。その結果を表3に示す。樹脂粒子濃度が表3の値になるように上記電着液の水量を調整した。ポリエステルイミド樹脂粒子およびシリカ粒子の平均粒子径、上記電着液の濁度および粘度は実施例1~実施例13と同様にして測定した。
 これらの電着液を用い、実施例1~実施例13と同様にして、厚さ10μmの絶縁層を形成した。これらの絶縁電線について、可撓性、耐軟化温度、耐軟化温度上昇率、および絶縁層中央部分の耐熱性粒子量に対する絶縁層表面層厚部分の耐熱性粒子量の比を測定した。その結果を表3に示した。可撓性、耐軟化温度、耐軟化温度上昇率、および絶縁層中央部分の耐熱性粒子量に対する絶縁層表面層厚部分の耐熱性粒子量の比は実施例1~実施例13と同様にして測定した。
 [実施例31~実施例35]
 平均粒子径400nmのポリイミド樹脂粒子を水に分散し、樹脂粒子濃度20質量%の水懸濁液を得た。平均粒子径10nmのシリカ粒子を水に分散し、シリカ粒子濃度30質量%および水70質量%のシリカゾルを得た。さらに、これらを混合して水分散型電着液を調製した。上記電着液中の樹脂粒子100質量部に対するシリカ粒子の質量部を表3に示す。上記電着液の濁度、粘度、液の状態、樹脂粒子濃度、樹脂粒子の平均粒子径を表3に示す。樹脂粒子濃度は表3の値になるように上記電着液の水量を調整した。ポリイミド樹脂粒子およびシリカ粒子の平均粒子径、電着液の濁度および粘度は実施例1~実施例13と同様にして測定した。
 これらの電着液を用い、実施例1~実施例13と同様にして、厚さ10μmの絶縁層を形成した。これらの絶縁電線について、可撓性、耐軟化温度、耐軟化温度上昇率、および絶縁層中央部分の耐熱性粒子量に対する絶縁層表面層厚部分の耐熱性粒子量の比を測定した。その結果を表3に示した。
 可撓性、耐軟化温度、耐軟化温度上昇率、および絶縁層中央部分の耐熱性粒子量に対する絶縁層表面層厚部分の耐熱性粒子量の比は実施例1~実施例13と同様にして測定した。
 [実施例36~実施例40]
 平均粒子径300nmのポリアミドイミド樹脂粒子を水に分散し、樹脂粒子濃度20質量%の水懸濁液を得た。平均粒子径10nmのシリカ粒子を水に分散し、シリカ粒子濃度30質量%および水70質量%のシリカゾルを得た。さらに、これらを混合して水分散型電着液を調製した。上記電着液中の樹脂粒子100質量部に対するシリカ粒子の質量部を表4に示す。上記電着液の濁度、粘度、液の状態、樹脂粒子濃度、樹脂粒子の平均粒子径を表4に示す。樹脂粒子濃度は表4の値になるように上記電着液の水量を調整した。ポリイミド樹脂粒子およびシリカ粒子の平均粒子径、電着液の濁度および粘度は実施例1~実施例13と同様にして測定した。
 これらの電着液を用い、実施例1~実施例13と同様にして、厚さ10μmの絶縁層を形成した。これらの絶縁電線について、可撓性、耐軟化温度、耐軟化温度上昇率、および絶縁層中央部分の耐熱性粒子量に対する絶縁層表面層厚部分の耐熱性粒子量の比を測定した。その結果を表4に示した。
 可撓性、耐軟化温度、耐軟化温度上昇率、および絶縁層中央部分の耐熱性粒子量に対する絶縁層表面層厚部分の耐熱性粒子量の比は実施例1~実施例13と同様にして測定した。
 実施例1~実施例40の電着液は、何れも電着液の濁度は30mg/L以上、粘度は100cP以下であり、形成された絶縁層の耐軟化温度は400℃以上であり、耐軟化温度上昇率は1.2以上であって、高い耐熱性を有していた。また何れの樹脂種においても、耐熱性粒子の含有量に応じて耐軟化温度および耐軟化温度上昇率が高くなった。実施例8はシリカ粒子の含有量が多いので可撓性試験において絶縁層の剥離が生じた。この結果から耐熱性粒子の量は樹脂粒子100質量部に対して1~100質量部が好ましいことが解った。
 [比較例1~比較例4]
 平均粒子径50nmのアクリル樹脂粒子、平均粒子径200nmのポリエステルイミド樹脂粒子、平均粒子径400nmのポリイミド樹脂粒子、および平均粒子径300nmのポリアミドイミド樹脂粒子を、それぞれ水に分散し、樹脂粒子濃度20質量%の水懸濁液を得て、電着液として用いた。上記電着液の濁度、粘度、液の状態、樹脂粒子濃度、樹脂粒子の平均粒子径を表5に示す。樹脂粒子濃度は表5の値になるように上記電着液の水量を調整した。上記樹脂粒子の平均粒子径、電着液の濁度および粘度は実施例1~実施例13と同様にして測定した。
 これらの電着液を用い、実施例1~実施例13と同様にして、厚さ10μmの絶縁層を形成した。これらの絶縁電線について、可撓性、耐軟化温度、耐軟化温度上昇率を測定した。その結果を表5に示した。可撓性、耐軟化温度、耐軟化温度上昇率は実施例1~実施例13と同様にして測定した。
 比較例1~比較例4は電着法によって絶縁層が形成されたが、耐熱性粒子を含まないので、耐軟化温度が上昇せず、耐軟化温度上昇率は何れも1である。
 [比較例5]
 平均粒子径10nmのシリカ粒子をキシレンとブタノールの混合液に分散し、シリカゾルを得た。ポリエステルイミド樹脂が溶解した塗料を用い、この塗料を撹拌しながら、上記シリカゾルを上記塗料に混合し、塗料の樹脂分100質量部に対してシリカ粒子が20質量部になるように分散させた。
 上記電着液の濁度、粘度、液の状態、樹脂濃度を表5に示す。樹脂粒子濃度は表5の値になるように上記電着液のキシレンとブタノール量を調整した。電着液の濁度および粘度は実施例1~実施例13と同様にして測定した。この電着液を用い、実施例1~実施例13と同様にして絶縁層の形成を試みたが、電着液の濁度0.01mg/L未満および粘度1000cPを超えるので、電着によって絶縁層は形成できなかった。
 [比較例6]
 平均粒子径200nmのポリエステルイミド樹脂粒子を水に分散し、樹脂粒子濃度40質量%の水懸濁液を得た。平均粒子径10nmのシリカ粒子を水に分散し、シリカ粒子濃度30質量%および水70質量%のシリカゾルを得た。上記ポリエステルイミド樹脂100質量部に対してシリカ粒子1質量部になるように、上記水懸濁液と上記シリカゾルを混合し、電着液を得た。上記電着液の濁度、粘度、液の状態、樹脂粒子濃度、樹脂粒子の平均粒子径を表5に示す。樹脂粒子濃度は表5の値になるように上記電着液の水量を調整した。上記樹脂粒子の平均粒子径、電着液の濁度および粘度は実施例1~実施例13と同様にして測定した。これらの電着液を用い、実施例1~実施例13と同様にして絶縁層の形成を試みたが、樹脂粒子濃度が高く電着液の粘度が高すぎるので液が固化し、電着できなかった。
 [比較例7]
 平均粒子径10nmのシリカ粒子をキシレンとブタノールの混合液に分散し、シリカゾルを得た。トリス-ヒドロキシエチルイソシアヌレート変性ポリエステルイミドが溶解した塗料を用い、この塗料を撹拌しながら、上記シリカゾルを上記塗料に混合し、塗料の樹脂分100質量部に対してシリカ粒子が20質量部になるように分散させた。この塗料を用い、実施例1~実施例13と同様にして電着法によって絶縁層の形成を試みたが、樹脂成分が溶解した液であるため電着法では絶縁層を形成することができなかった。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
 本発明は、絶縁層の表面付近の耐熱性が優れた耐熱性絶縁電線と、上記絶縁層を形成するための電着液を提供する。よって、産業上の利用可能性を有する。
 10 銅線
 20 絶縁層
 30 耐熱性粒子

Claims (9)

  1.  耐熱性の絶縁層を有する絶縁電線であって、上記絶縁層中に耐熱性粒子を含有し、上記耐熱性粒子が上記絶縁層の表面層厚部分に密集していることを特徴とする耐熱性絶縁電線。
  2.  上記絶縁層の表面から0.5μmの層厚部分に上記耐熱性粒子が密集している請求項1に記載の耐熱性絶縁電線。
  3.  上記絶縁層の表面から0.5μmの層厚部分に含まれる上記耐熱性粒子の量が、上記絶縁層の厚さ方向の中央部分に含まれる上記耐熱性粒子の量の2倍以上である請求項1または請求項2に記載の耐熱性絶縁電線。
  4.  請求項1に記載した絶縁電線の上記絶縁層の形成に用いる絶縁層形成用電着液であって、樹脂粒子が分散した懸濁液に上記耐熱性粒子を分散させてなり、粘度が100cP以下であって、かつ濁度が1mg/L以上であることを特徴とする絶縁層形成用電着液。
  5.  上記樹脂粒子の含有量が1~30質量%であって、上記樹脂粒子100質量部に対して上記耐熱性粒子が1~100質量部含有されている請求項4に記載の絶縁層形成用電着液。
  6.  上記樹脂粒子の平均粒子径が1μm以下であり、上記耐熱性粒子の平均粒子径が500nm以下である請求項4または請求項5に記載の絶縁層形成用電着液。
  7.  上記絶縁層の耐軟化温度上昇率が1.2以上の絶縁層を形成する請求項4~請求項6の何れかに記載の絶縁層形成用電着液。
  8.  上記樹脂粒子がアクリル樹脂、ポリエステルイミド樹脂、ポリイミド樹脂、またはポリアミドイミド樹脂である請求項5~請求項7の何れかに記載の絶縁層形成用電着液。
  9.  上記耐熱性粒子が金属酸化物微粒子またはシリカ微粒子の少なくとも一種である請求項5~請求項8の何れかに記載の絶縁層形成用電着液。
PCT/JP2015/085291 2015-12-16 2015-12-16 耐熱性絶縁電線とその絶縁層の形成に用いる電着液 WO2017104032A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP15910722.6A EP3392886B1 (en) 2015-12-16 2015-12-16 Electrodeposition liquid for forming an insulating layer for a heat-resistant insulated wire
CN201580085302.6A CN108475562B (zh) 2015-12-16 2015-12-16 耐热性绝缘电线与用于形成其绝缘层的电沉积液
KR1020187016421A KR102515689B1 (ko) 2015-12-16 2015-12-16 내열성 절연 전선과 그 절연층의 형성에 사용하는 전착액
PCT/JP2015/085291 WO2017104032A1 (ja) 2015-12-16 2015-12-16 耐熱性絶縁電線とその絶縁層の形成に用いる電着液
US16/060,715 US10395798B2 (en) 2015-12-16 2015-12-16 Heat-resistant insulated wire and electrodeposition liquid used to form insulating layer therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/085291 WO2017104032A1 (ja) 2015-12-16 2015-12-16 耐熱性絶縁電線とその絶縁層の形成に用いる電着液

Publications (1)

Publication Number Publication Date
WO2017104032A1 true WO2017104032A1 (ja) 2017-06-22

Family

ID=59056237

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/085291 WO2017104032A1 (ja) 2015-12-16 2015-12-16 耐熱性絶縁電線とその絶縁層の形成に用いる電着液

Country Status (5)

Country Link
US (1) US10395798B2 (ja)
EP (1) EP3392886B1 (ja)
KR (1) KR102515689B1 (ja)
CN (1) CN108475562B (ja)
WO (1) WO2017104032A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11008453B2 (en) * 2018-01-16 2021-05-18 Arkema France Polymeric composite articles comprising the heterogeneous surface/bulk distribution of discrete phase

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020059689A1 (ja) * 2018-09-20 2020-03-26 住友精化株式会社 電着塗料及び絶縁被膜
CN109935392B (zh) * 2019-03-14 2022-05-03 住井科技(深圳)有限公司 绝缘电线用清漆、绝缘电线以及电机
CN111945205A (zh) * 2020-09-02 2020-11-17 湖州冠居金属装饰材料股份有限公司 一种隔热效果好的仿铜铝合金型材的制备方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5466941A (en) * 1977-11-07 1979-05-29 Mitsubishi Electric Corp Electrodeposition coating compound
JPS6237396A (ja) 1985-08-12 1987-02-18 Mitsubishi Cable Ind Ltd 電着塗装体の製造方法
JPH03241609A (ja) 1990-02-20 1991-10-28 Mitsubishi Cable Ind Ltd 平角状超薄膜絶縁電線
JP2000331539A (ja) * 1999-05-21 2000-11-30 Hitachi Cable Ltd 耐インバータサージエナメル線
JP2001307557A (ja) 2000-02-16 2001-11-02 Hitachi Cable Ltd 耐部分放電性エナメル線用塗料及び耐部分放電性エナメル線
JP2001338531A (ja) * 2000-05-26 2001-12-07 Hitachi Cable Ltd 耐熱絶縁電線
JP2002206060A (ja) * 2000-10-09 2002-07-26 Nexans ワニス組成物、この組成物の製造方法、被覆巻線及び得られたコイル
WO2008139990A1 (ja) * 2007-05-07 2008-11-20 Mitsubishi Cable Industries, Ltd. 電着塗料組成物及び電着方法
JP2013234257A (ja) * 2012-05-08 2013-11-21 Mitsubishi Cable Ind Ltd 電着塗料組成物および電着方法、ならびに絶縁部材

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4058444A (en) 1975-03-31 1977-11-15 Mitsubishi Denki Kabushiki Kaisha Process for preparing an insulated product
JPS5829701B2 (ja) * 1975-03-31 1983-06-24 三菱電機株式会社 デンチヤクゼツエンホウホウ
US4131690A (en) * 1975-05-05 1978-12-26 Northern Electric Company Limited Method of powder coating an insulated electrical conductor
JPS61198512A (ja) * 1985-02-27 1986-09-02 東洋電機製造株式会社 電気絶縁導体の製造方法
US7829488B2 (en) * 2008-01-22 2010-11-09 Johns Manville Non-woven glass fiber mat faced gypsum board and process of manufacture
EP2331631B1 (en) 2008-09-16 2015-10-21 Union Carbide Chemicals & Plastics Technology LLC Crack-resistant, flame retardant, halogen-free, cable assembly and coating composition
US8335460B2 (en) * 2009-03-19 2012-12-18 Fuji Xerox Co., Ltd Resin film manufacturing method, transfer belt, transfer unit, and image forming apparatus
US8784993B2 (en) * 2010-12-15 2014-07-22 General Electric Company High temperature high frequency magnet wire and method of making
JP5636224B2 (ja) * 2010-08-06 2014-12-03 三井金属鉱業株式会社 フィラー含有樹脂層付金属箔及びフィラー含有樹脂層付金属箔の製造方法
JP5609732B2 (ja) * 2011-03-22 2014-10-22 日立金属株式会社 絶縁塗料及びそれを用いた絶縁電線
JP5854930B2 (ja) 2011-08-25 2016-02-09 日東電工株式会社 絶縁フィルム
CN202282181U (zh) 2011-10-24 2012-06-20 安徽华通电缆集团有限公司 一种低密度聚乙烯绝缘直流高压电缆
KR102020066B1 (ko) * 2013-02-01 2019-09-10 엘에스전선 주식회사 내부분방전성 및 부분방전 개시전압 특성이 우수한 절연 전선
US9514859B1 (en) * 2014-01-09 2016-12-06 Whitney Blake Company Heat resistant communications cable and cord
CN204407080U (zh) 2015-03-27 2015-06-17 四川华西九方电缆有限公司 一种耐热低烟无卤耐用太阳能电缆

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5466941A (en) * 1977-11-07 1979-05-29 Mitsubishi Electric Corp Electrodeposition coating compound
JPS6237396A (ja) 1985-08-12 1987-02-18 Mitsubishi Cable Ind Ltd 電着塗装体の製造方法
JPH03241609A (ja) 1990-02-20 1991-10-28 Mitsubishi Cable Ind Ltd 平角状超薄膜絶縁電線
JP2000331539A (ja) * 1999-05-21 2000-11-30 Hitachi Cable Ltd 耐インバータサージエナメル線
JP2001307557A (ja) 2000-02-16 2001-11-02 Hitachi Cable Ltd 耐部分放電性エナメル線用塗料及び耐部分放電性エナメル線
JP2001338531A (ja) * 2000-05-26 2001-12-07 Hitachi Cable Ltd 耐熱絶縁電線
JP2002206060A (ja) * 2000-10-09 2002-07-26 Nexans ワニス組成物、この組成物の製造方法、被覆巻線及び得られたコイル
WO2008139990A1 (ja) * 2007-05-07 2008-11-20 Mitsubishi Cable Industries, Ltd. 電着塗料組成物及び電着方法
JP2013234257A (ja) * 2012-05-08 2013-11-21 Mitsubishi Cable Ind Ltd 電着塗料組成物および電着方法、ならびに絶縁部材

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3392886A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11008453B2 (en) * 2018-01-16 2021-05-18 Arkema France Polymeric composite articles comprising the heterogeneous surface/bulk distribution of discrete phase

Also Published As

Publication number Publication date
CN108475562A (zh) 2018-08-31
US10395798B2 (en) 2019-08-27
KR102515689B1 (ko) 2023-03-29
CN108475562B (zh) 2021-01-08
EP3392886A1 (en) 2018-10-24
EP3392886A4 (en) 2019-07-31
EP3392886B1 (en) 2021-02-17
US20180366241A1 (en) 2018-12-20
KR20180093921A (ko) 2018-08-22

Similar Documents

Publication Publication Date Title
WO2017104032A1 (ja) 耐熱性絶縁電線とその絶縁層の形成に用いる電着液
JP6001014B2 (ja) 耐熱性絶縁電線とその絶縁層の形成に用いる電着液
JP5609732B2 (ja) 絶縁塗料及びそれを用いた絶縁電線
CN111357062B (zh) 绝缘导体及绝缘导体的制造方法
WO2014069074A1 (ja) 導電性ペーストおよびダイボンディング方法
JP2009212034A (ja) 耐部分放電性エナメル線用塗料及び耐部分放電性エナメル線
TW201511036A (zh) 用於氮化鋁基板的厚膜印刷銅糊漿
JP6404614B2 (ja) コアシェル型金属微粒子の製造方法、コアシェル型金属微粒子、導電性インクおよび基板の製造方法
JP2017057098A (ja) 薄膜形成用窒化ホウ素凝集粒子、絶縁皮膜、該凝集粒子の製造方法、絶縁電着塗料の製造方法、エナメル線及びコイル
JPH0332725A (ja) 電気泳動によって多孔導電性支持体上に半透膜を製造するための方法
CN110352463A (zh) 绝缘电线、其制造方法、使用该绝缘电线的线圈的制造方法及线圈
KR20180097559A (ko) 수분산형 절연 피막 형성용 전착액
JP7281179B2 (ja) 導電性接着剤及び導電性接着剤の使用方法
JP2009256790A (ja) 酸化チタンのコーティング方法
TW201723103A (zh) 耐熱性絕緣電線與形成其絕緣層所使用之電沉積液
JP2019012632A (ja) 絶縁皮膜
JP2002298674A (ja) 絶縁電線の製造方法および絶縁電線
JP2017059335A (ja) 絶縁皮膜
JP6769076B2 (ja) 電着塗料組成物及びそれを用いた絶縁電線の製造方法
JP6784159B2 (ja) 絶縁電線の製造方法及びそれに用いる補充塗料の調製方法
WO2023022034A1 (ja) 染色粉体、塗料組成物、撥水皮膜及び撥水部材、並びに、染色粉体及び撥水部材の製造方法
JP2699210B2 (ja) 平角状絶縁電線
WO2022202363A1 (ja) 絶縁皮膜付き平板導電板及びその製造方法
JP6760236B2 (ja) 絶縁電線の製造方法及びそれに用いる電着塗装装置
WO2017175624A1 (ja) 絶縁電線及びその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15910722

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20187016421

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2015910722

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: JP