WO2017101132A1 - 一种有序化膜电极及其制备和应用 - Google Patents
一种有序化膜电极及其制备和应用 Download PDFInfo
- Publication number
- WO2017101132A1 WO2017101132A1 PCT/CN2015/098158 CN2015098158W WO2017101132A1 WO 2017101132 A1 WO2017101132 A1 WO 2017101132A1 CN 2015098158 W CN2015098158 W CN 2015098158W WO 2017101132 A1 WO2017101132 A1 WO 2017101132A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- ordered
- layer
- membrane
- array carrier
- ordered array
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/86—Inert electrodes with catalytic activity, e.g. for fuel cells
- H01M4/8647—Inert electrodes with catalytic activity, e.g. for fuel cells consisting of more than one material, e.g. consisting of composites
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/86—Inert electrodes with catalytic activity, e.g. for fuel cells
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y30/00—Nanotechnology for materials or surface science, e.g. nanocomposites
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/86—Inert electrodes with catalytic activity, e.g. for fuel cells
- H01M4/88—Processes of manufacture
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/02—Details
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Definitions
- the invention belongs to the technical field of fuel cells, and in particular relates to a membrane electrode for a fuel cell;
- the invention also includes methods and applications for the preparation of the membrane electrode.
- the membrane electrode (MEA) is a core component of a proton exchange membrane fuel cell or a basic anion exchange membrane fuel cell, and is usually composed of a gas diffusion layer, a catalytic layer, and a proton exchange membrane or an anion exchange membrane.
- the catalytic layer is the place where the electrochemical reaction occurs in the membrane electrode assembly (MEA).
- the utilization rate of the electrocatalyst in the catalytic layer and the transfer of gas, electrons and protons largely affect the electrochemical performance of the membrane electrode (MEA).
- the cost of the electrocatalyst in the catalytic layer occupies a large proportion of the total cost of the membrane electrode (MEA).
- the catalyst nanoparticle layer was prepared by magnetron sputtering on the surface of the ordered array carrier to reduce the amount of electrocatalyst in the membrane electrode catalyst layer and reduce the mass transfer resistance.
- the preparation method of the catalytic layer in the commonly used MEA is as follows: the electrocatalyst is dispersed in a solvent such as ethanol or ethylene glycol, and an appropriate amount is added. As a binder, it is sufficiently dispersed to form a uniform catalyst slurry.
- the catalyst slurry is prepared by a spray coating, a brush coating, a doctor blade coating or the like to form a membrane electrode of a GDE structure in a diffusion layer or a membrane electrode formed in a proton exchange membrane to form a CCM structure.
- the catalyst particles are A loose porous layer is formed under the action of a binder, and the catalyst loading is high, and the mass transfer resistance is large, which affects the overall performance of the battery.
- the preparation of the ordered electrode catalytic layer is very important for reducing the cost of a proton exchange membrane fuel cell or a basic anion exchange membrane fuel cell and improving the performance of a proton exchange membrane fuel cell or a basic anion exchange membrane fuel cell.
- the object of the present invention is to provide an ordered electrode catalytic layer which has the characteristics of low catalyst loading, high effective utilization rate, small mass transfer resistance, and the like, and can be used for a proton exchange membrane fuel cell or a basic anion exchange membrane.
- the fuel cell is not limited to a proton exchange membrane fuel cell.
- the ordered electrode catalytic layer comprises an ordered array carrier and a catalyst nanoparticle layer microscopically attached to the surface thereof; the ordered array carrier is vertically grown on the surface of the gas diffusion layer or vertically grown in an attached manner a surface of the metal layer on the surface of the electrolyte membrane;
- the ordered array carrier is composed of a conductive high molecular polymer or a mixture of a conductive high molecular polymer and an ionic conductor; the ordered array carrier is microscopically a conical structure or a rod-like structure.
- the plurality of conical structures or rod-like structures in the ordered array carrier exhibit a parallel arrangement structure or a urchin-like cluster structure or a rattan-like cluster structure.
- the conductive polymer is one or more of a polyaniline or a polyaniline derivative, a polypyrrole or a polypyrrole derivative, a polythiophene or a polythiophene derivative.
- the density of the ordered array carrier on the metal layer on the surface of the gas diffusion layer or the electrolyte membrane is 10-100 conical structures or rod-like structures per square micrometer; the height of the conical or rod-shaped structure is 50-1300 nm; The diameter of the bottom of the conical or rod-shaped structure is 10-180 nm; the ordered array carrier has a conductivity of 1-100 S cm -1 and an ionic conductivity of 3-25 S cm -2 .
- the catalyst nanoparticle layer has a thickness of 5-25 nm; the catalyst nanoparticle layer has a coverage of 50-100% on the surface of the ordered array carrier; and the catalyst loading is 0.004-0.4 mg cm -2 .
- the metal layer attached to the surface of the electrolyte membrane is prepared by electroless plating or sputtering on the surface of the electrolyte membrane; the metal layer is Pd metal or Pd-Cu alloy or Pd-Ag alloy or Pd-Ni alloy or Pd- Ag-Ni alloy; the metal layer is complete and smooth, and one of the surfaces is closely attached to the electrolyte membrane
- the gas diffusion layer is carbon paper or carbon cloth.
- the gas diffusion layer further includes a microporous layer; the microporous layer is one of XC-72, acetylene black carbon powder, BP2000 or two or more mixed PTFE or Then, it is prepared by spraying, scraping, brushing or the like on the surface of the support layer.
- the electrolyte membrane is a proton exchange membrane or a basic anion exchange membrane; the ionic conductor is a proton conductor or an anion conductor.
- the electrolyte membrane is a proton exchange membrane
- the ionic conductor is a proton conductor
- the catalyst nanoparticles are an alloy of Pt or Pt and one or both of Ni, Pd, Co, Ru, Fe, and Mo.
- the ionic conductor is an anion conductor; the catalyst nanoparticle Pt or Pt-Pd alloy or Pt-Ag alloy or Pt-Co alloy or Pt-Ru alloy.
- the proton exchange membrane is a perfluorosulfonic acid proton exchange membrane or a hydrocarbon hydrocarbon proton exchange membrane; the perfluorosulfonic acid proton exchange membrane is a commodity Membrane or recast
- the hydrocarbon hydrocarbon proton exchange membrane is a sulfonated polyaryletherketone, an acid-doped polybenzimidazole, a sulfonated polyarylethersulfone, or a sulfonated polyimide.
- the basic anion exchange membrane is an imidazolium salt film, a quaternary ammonium salt film, a quaternary phosphonium salt film, or a phosphonium salt film.
- the proton conductor is One or a mixture of two or more of a sulfonated poly(aryl ether ketone), an acid-doped polybenzimidazole, a sulfonated polyaryl ether sulfone, and a sulfonated polyimide.
- the anion conductor is one or a mixture of two or more of an imidazole salt organic substance, a quaternary ammonium salt organic substance, a quaternary phosphonium salt organic substance, and a phosphonium salt organic substance.
- the method for preparing the ordered membrane electrode comprises the following steps:
- an ordered array carrier is prepared on the surface of a gas diffusion layer or a surface of a metal layer attached to the surface of the electrolyte membrane by an electrochemical method or a chemical polymerization method;
- the catalyst nanoparticle layer was prepared by magnetron sputtering on the surface of the ordered array carrier.
- the magnetron sputtering method adopts a magnetron sputtering device, and one or more of argon gas, nitrogen gas and oxygen gas are used as carrier gases, and the catalyst material is used as a target for magnetron sputtering.
- the method for preparing the ordered membrane electrode comprises the following steps:
- the electrochemical method in the step (1) is to immerse one side of the gas diffusion layer or the metal layer of the electrolyte membrane to which the metal layer is attached, in the aniline or aniline derivative, pyrrole or pyrrole derivative, thiophene or thiophene derivative.
- a gas diffusion layer or a metal layer of an electrolyte membrane to which a metal layer is attached is used as a working electrode, and a Pt sheet is used as a working electrode.
- a counter electrode, a saturated calomel electrode was used as a reference electrode, and a three-electrode system was used for electrodeposition to obtain an ordered array carrier.
- the electrodeposition potential of the electrodeposition is 0.60-1.0V with respect to a standard hydrogen electrode; the electrodeposition time of the electrodeposition is 0.25-1 h;
- the concentration of the aniline or aniline derivative, pyrrole or pyrrole derivative, thiophene or thiophene derivative is 0.004-0.5M;
- the supporting electrolyte is one of sodium p-toluenesulfonate, sodium dodecylsulfonate, ⁇ -naphthalenesulfonic acid, bistrimethylsilyltrifluoroacetamide, perchlorate, sulfate, and chloride. Or several; the concentration of the supporting electrolyte is 0.01-1.0M.
- the ionic conductor is Sulfonated poly(aryl ether ketone), acid-doped polybenzimidazole, sulfonated polyaryl ether sulfone, sulfonated polyimide, imidazolium salt organic, quaternary ammonium organic, quaternary phosphonium organic, strontium salt organic One or several; the ionic conductor concentration is 0.05-1.00 wt%.
- the chemical polymerization method in the step (1) is one in which a metal layer side of the gas diffusion layer or an electrolyte membrane to which the metal layer is attached is placed in an aniline or an aniline derivative, a pyrrole or a pyrrole derivative, a thiophene or a thiophene derivative.
- the chemical polymerization is carried out in one or more kinds of electrolytes, and the ordered array carrier is obtained by in-situ chemical polymerization on one side or the side of the metal layer side of the electrolyte membrane to which the metal layer is attached.
- the concentration of the aniline or aniline derivative, pyrrole or pyrrole derivative, thiophene or thiophene derivative is 1-500 mM;
- a dopant is added to the solution, and the dopant used is one of hydrochloric acid, sulfuric acid, perchloric acid, phosphoric acid, p-toluenesulfonic acid, naphthalenesulfonic acid; the concentration of the dopant in the solution is 0.01-2.0M. ;
- An oxidizing agent is added to the solution, and the oxidizing agent used is one of ammonium persulfate, ferric chloride, hydrogen peroxide, potassium iodate, potassium dichromate, and the concentration of the oxidizing agent in the solution is 1-200 mM;
- the solvent in the solution is one or a mixture of two or more of water, acetonitrile, chloroform, acetone or ethanol.
- the chemical polymerization temperature is -5 ° C to 50 ° C; the reaction time is 1 h to 96 h.
- a gas diffusion layer having an ordered array carrier or an electrolyte membrane with a metal layer attached thereto is used as a substrate, and a catalyst nanoparticle layer is sputtered on the surface of the ordered array carrier;
- the carrier gas flow rate is 5-30 ml/min; the temperature of the substrate is 20-250 °C.
- the preparation method of the membrane electrode prepared in the step (2) further comprises a post-treatment process, specifically, the ordered membrane electrode prepared in the step (2) is subjected to high-temperature treatment in a high-temperature equipment, and the treatment temperature is 200-600 ° C, and the treatment is performed.
- the time is 2-6h.
- the ordered membrane electrode is used in a proton exchange membrane fuel cell or a basic anion exchange membrane fuel cell.
- the present invention has the following advantages:
- the membrane electrode of the present invention is compared with a membrane electrode prepared by a conventional process (including a GDE structure and a CCM structure membrane electrode, the same below), and an ordered conductive array is prepared in the gas diffusion layer or the electrolyte membrane, Conducive to gas, proton and electron mass transfer;
- the ordered catalytic layer membrane electrode of the present invention increases the catalyst utilization rate by using a magnetron sputtering method to form a nanometer thickness catalytic layer, thereby effectively reducing the catalyst loading.
- the preparation process of the method is simple and controllable, easy to enlarge, and suitable for mass production.
- the catalytic layer of the present invention has the advantages of ordered protons, electron and gas mass transfer channels, adequate distribution of catalyst particles to ordered carriers, and low catalyst loading compared to conventional membrane electrode catalytic layers.
- Figure 2 is a scanning electron micrograph of an ordered array carrier prepared by the method of the present invention.
- Figure 3 is a scanning electron micrograph of an ordered catalytic layer prepared by the method of the present invention.
- Figure 4 is a (a) membrane electrode cyclic voltammetry test of a membrane electrode prepared by the method of the present invention (Example 1, Comparative Example 1); (b) Oxygen reduction kinetic current diagram (Example 1, Comparative Example) 1);
- Figure 5 is a (a) scanning electron micrograph of an ordered catalytic layer in an ordered carbon nanotube array by magnetron sputtering; (b) a projection electron micrograph (Comparative Example 2);
- Figure 6 is a scanning electron micrograph of an ordered catalytic layer prepared by an magnetron sputtering method on an ordered titanium dioxide array (Comparative Example 3).
- the Toray carbon paper was immersed in a 5% aqueous solution of PTFE, thoroughly immersed, taken out, and air-dried, and the weight was weighed. The above procedure was repeated repeatedly until the PTFE loading was about 10%.
- the XC-72 carbon powder was uniformly mixed with a 60% PTFE aqueous solution with a total mass, diluted with ethanol, and dispersed under ultrasonic conditions for 30 minutes to be uniformly stirred.
- the hydrophobic treated carbon paper is fixed on a glass plate, and then the slurry is scraped on the surface of the carbon paper, air-dried, and weighed. The above steps are repeated until the toner loading is 0.4 mg cm -2 , that is, a gas diffusion layer is obtained;
- the gas diffusion layer was placed at the substrate position of the magnetron sputtering apparatus, and a catalytic layer was obtained under an Ar gas atmosphere, a power of 30 W, and a sputtering time of 10 min.
- Tian Zhiqun of Singapore and Chen Jun of Australia used chemical vapor deposition to prepare ordered carbon nanotube arrays on the surface of aluminum foil.
- the array was a curved filament structure; the curved filament structure was 1300 nm in length and 10 nm in diameter; ordered carbon nanotubes
- the carrier has electron conductivity, but does not have proton transfer capability; the catalytic layer is prepared by the magnetron sputtering method on the ordered array carrier, and the nano catalyst is dispersed on the surface of the ordered carrier, but the catalyst nanoparticle layer is not formed.
- Shao Zhigang and others from the Dalian Institute of Chemical Physics of the Chinese Academy of Sciences formed an ordered titanium dioxide carrier on the surface of carbon paper, and prepared an ordered electrode by magnetron sputtering.
- the titanium dioxide array grows along the carbon fiber and has a columnar structure with a diameter of 180 nm. Spread on the surface of the ordered carrier, no secondary nanostructure catalytic layer is formed.
- the Toray carbon paper was immersed in a 5% aqueous solution of PTFE, thoroughly immersed, taken out, and air-dried, and the weight was weighed. The above procedure was repeated repeatedly until the PTFE loading was about 10%.
- the XC-72 carbon powder was uniformly mixed with a 60% PTFE aqueous solution with a total mass, diluted with ethanol, and dispersed under ultrasonic conditions for 30 minutes to be uniformly stirred.
- the above-mentioned hydrophobic treated carbon paper was placed on a glass plate, and then the slurry was blade-coated on the surface of the carbon paper, air-dried, and weighed. The above procedure was repeated until the toner loading was 0.4 mg/cm 2 to obtain a gas diffusion layer.
- the ordered array was prepared by chemical polymerization method.
- the gas diffusion layer was placed in a solution containing 0.01 M aniline, 1 M perchloric acid and 0.007 M ammonium persulfate, and reacted at 4 ° C for 24 h to obtain a conical structure ordered array carrier, which was parallel.
- Arrangement structure 68 conical structures per square micron; cone structure height is 290 nm; conical structure bottom diameter is 70 nm; conductivity is 56 S cm -1 .
- the ordered array carrier is placed at the substrate position of the magnetron sputtering apparatus, and a nanostructure catalytic layer is obtained under Ar gas atmosphere, gas flow rate 5 ml/min, 30 W power, 10 min sputtering time, and 22 ° C substrate temperature;
- the particle layer has a thickness of 5-10 nm;
- the catalyst loading is 0.160 mg cm -2 ;
- the catalyst nanoparticle layer has a coverage of 100% on the surface of the ordered array carrier, and the catalyst nanoparticle layer Rather than uniformly spreading and ordering the carrier surface, a catalytic layer with a secondary nanostructure facilitates gas transport and electron conduction.
- the aniline concentration is 0.5M
- the ordered array carrier of the conical structure is obtained, which has a parallel arrangement structure: 85 conical structures per square micrometer; the height of the conical structure is 500 nm; the diameter of the bottom of the conical structure is 110 nm; The conductivity is 68S cm -1 .
- the reaction temperature in the preparation process of the ordered carrier is 25 ° C
- the ordered array carrier of the conical structure is obtained, which has a rattan-like cluster structure: 89 conical structures per square micrometer; the height of the conical structure is 177 nm; the diameter of the bottom of the conical structure is 56 nm; the conductivity is 35 S cm -1 . .
- reaction time in the preparation process of the ordered carrier is 96 h, and the ordered array carrier of the conical structure is obtained, which has a parallel arrangement structure: 80 conical structures per square micrometer; the height of the conical structure is 200 nm; the conical structure The bottom diameter is 95 nm; the conductivity is 60 S cm -1 .
- the gas flow rate is 10 ml/min, and the catalytic layer having a nanostructure is obtained; the thickness of the catalyst nanoparticle layer is 20-25 nm; the catalyst nanoparticle layer is The surface of the ordered array carrier has a coverage of 100%; the catalyst loading is 0.084 mg/cm 2 .
- the substrate temperature is 200 ° C, and the nanostructured catalytic layer is obtained; the thickness of the catalyst nanoparticle layer is 10-20 nm; the catalyst nanoparticle layer is in the The coverage of the surface of the ordered array carrier was 100%; the catalyst loading was 0.078 mg/cm 2 .
- An ordered array was prepared by electrochemical polymerization, and the electrolyte membrane was placed in a buffer containing 0.02 M pyrrole, 0.1 M sodium p-toluenesulfonate and 0.2 M phosphate as a working electrode of a three-electrode system, and a saturated calomel electrode was used as a reference.
- the specific electrode, the Pt piece is the counter electrode, and the electrodeposition potential is deposited for 0.6 min with respect to the standard hydrogen electrode at 0.60 V to obtain a conical structure ordered array carrier, which has a parallel arrangement structure: 84 conical structures per square micrometer; the cone structure height is 180 nm.
- the diameter of the bottom of the conical structure is 100 nm; the conductivity is 62 S cm -1 .
- the ordered array carrier is placed at the substrate position of the magnetron sputtering apparatus, and a nanostructure catalytic layer is obtained under Ar gas atmosphere, gas flow rate 5 ml/min, 30 W power, 10 min sputtering time, and 22 ° C substrate temperature;
- the particle layer has a thickness of 5-10 nm;
- the catalyst nanoparticle layer has a coverage of 100% on the surface of the ordered array carrier; and the catalyst loading is 0.160 mg/cm 2 .
- the electrodeposition potential is 0.65 V with respect to the standard hydrogen electrode, and an ordered array carrier of a rod-like structure is obtained, which has a parallel arrangement structure: 48 rod-like structures per square micrometer; the height of the rod-like structure is 260 nm; The bottom of the structure has a diameter of 110 nm; the conductivity is 57 S cm -1 .
- the electrodeposition potential is 0.70 V with respect to the standard hydrogen electrode, and an ordered array carrier of a rod-like structure is obtained, which has a parallel arrangement structure: 42 rod-like structures per square micrometer; the height of the rod-like structure is 1100 nm; The bottom of the structure has a diameter of 120 nm; the conductivity is 51 S cm -1 . .
- Example 7 The difference from the above Example 7 is that the concentration of the pyrrole is 0.5M, and the ordered array carrier of the rod-like structure is obtained, which has a parallel arrangement structure: 82 rod-shaped structures per square micrometer; the height of the rod-like structure is 280 nm; the diameter of the bottom of the rod-shaped structure is 160 nm; The conductivity is 78S cm -1 . .
- Example 7 The difference from the above Example 7 is that the Nafion material is added to the electrochemical polymerization solution, the mass fraction is 0.5 wt%, and the ordered array carrier of the rod-like structure is obtained, which has a parallel arrangement structure: 45 rod-like structures per square micrometer; the height of the rod structure It is 1300 nm; the bottom of the rod-shaped structure has a diameter of 80 nm; the conductivity is 56 S cm -1 , and the ionic conductivity is 5 S cm -2 ; compared with the comparative example, the ordered carrier prepared in Example 11 has electron conduction, ion transport, and gas. The transfer capacity, while the ordered electrode catalytic layer has a high catalyst utilization.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- Manufacturing & Machinery (AREA)
- Nanotechnology (AREA)
- Composite Materials (AREA)
- Sustainable Energy (AREA)
- Life Sciences & Earth Sciences (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Materials Engineering (AREA)
- Crystallography & Structural Chemistry (AREA)
- Sustainable Development (AREA)
- Catalysts (AREA)
- Inert Electrodes (AREA)
Abstract
一种有序化膜电极,包括有序阵列载体和微观上附着于其表面的催化剂纳米粒子层;所述有序阵列载体原位垂直生长于一气体扩散层表面或原位垂直生长于一附着于所述电解质膜表面的金属层的表面;所述有序阵列载体由导电高分子聚合物构成,或由导电高分子聚合物和离子导体的混合物构成;所述有序阵列载体微观上为圆锥结构或棒状结构。有序化电极催化层的制备包括:步骤(1)有序阵列载体的制备,步骤(2)磁控溅射方法制备催化剂纳米粒子层。与现有技术相比,所述膜电极在气体扩散层或电解质膜制备有序导电阵列,有利于气体、质子和电子传质;采用磁控溅射方法形成纳米厚度催化层载量低、催化剂利用率高;制备过程简单可控,易于放大,适用于批量化生产。
Description
本发明属于燃料电池技术领域,具体的说涉及一种燃料电池用膜电极;
本发明还包括所述膜电极的制备方法和应用。
因高效、环境友好、使用温度低等优点,质子交换膜燃料电池或碱性阴离子交换膜燃料电池近些年受到国内外研究机构的广泛关注。膜电极(MEA)作为质子交换膜燃料电池或碱性阴离子交换膜燃料电池的核心部件,通常由气体扩散层、催化层和质子交换膜或阴离子交换膜组成。催化层是膜电极组件(MEA)中发生电化学反应的场所,催化层中电催化剂的利用率以及气体、电子和质子的传递很大程度上影响了膜电极(MEA)的电化学性能,同时催化层中电催化剂的成本占据了膜电极(MEA)总成本的较大比例。为了提高催化剂的利用率,减少传质阻力,本文设计在有序阵列载体表面采用磁控溅射制备催化剂纳米粒子层以降低膜电极催化层电催化剂用量和减少传质阻力。目前,常用MEA中催化层的制备方法为:将电催化剂分散在乙醇、乙二醇等溶剂中,加入适量作为粘结剂,充分分散形成均匀催化剂浆液。该催化剂浆液通过喷涂、刷涂、刮涂等方法制备于扩散层形成GDE结构的膜电极或者制备于质子交换膜形成CCM结构的膜电极。上述传统膜电极中,催化剂颗粒在粘结剂作用下形成疏松多孔的薄层,催化剂载量较高,传质阻力较大,影响电池整体性能。
综上所述,制备有序化电极催化层对于降低质子交换膜燃料电池或碱性阴离子交换膜燃料电池成本以及提高质子交换膜燃料电池或碱性阴离子交换膜燃料电池性能非常重要。
发明内容
本发明的目的在于提供一种有序化电极催化层,该电极催化层具有催化剂载量低、有效利用率高、传质阻力小等特点,可用于质子交换膜燃料电池或碱性阴离子交换膜燃料电池。
为实现上述目的,本发明采用以下具体方案来实现:
所述有序化电极催化层包括有序阵列载体和微观上附着于其表面的催化剂纳米粒子层;所述有序阵列载体原位垂直生长于气体扩散层表面或原位垂直生长于一附着于所述电解质膜表面的金属层的表面;
所述有序阵列载体由导电高分子聚合物构成,或由导电高分子聚合物和离子导体的混合物构成;所述有序阵列载体微观上为圆锥结构或棒状结构。
所述有序阵列载体中的多个圆锥结构或棒状结构呈现平行排列结构或海胆状团簇结构或藤条状团簇结构。
所述导电聚合物为聚苯胺或聚苯胺衍生物、聚吡咯或聚吡咯衍生物、聚噻吩或聚噻吩衍生物中的一种或二种以上。
所述有序阵列载体于气体扩散层或电解质膜表面的金属层上的密度为每平方微米10-100个圆锥结构或棒状结构;所述圆锥结构或棒状结构的高度为50-1300nm;所述圆锥结构或者棒状结构的底部直径为10-180nm;所述有序阵列载体电导率为1-100S cm-1,离子电导率3-25S cm-2。
所述催化剂纳米粒子层的厚度为5-25nm;所述催化剂纳米粒子层于所述有序阵列载体表面的覆盖度为50-100%;所述催化剂载量为0.004-0.4mg cm-2。
所述附着于电解质膜表面的金属层通过于电解质膜表面化学镀或溅射的方法制备得到;所述金属层为Pd金属或Pd-Cu合金或Pd-Ag合金或Pd-Ni合金或Pd-Ag-Ni合金;所述金属层完整、光滑,且其中一侧的表面与电解质膜紧密贴合
所述气体扩散层为碳纸或碳布。
所述电解质膜为质子交换膜或碱性阴离子交换膜;所述离子导体为质子导体或为阴离子导体。
所述电解质膜为质子交换膜时,所述离子导体为质子导体,所述催化剂纳米粒子为Pt或者Pt与Ni、Pd、Co、Ru、Fe、Mo中一种或两种的合金。
所述电解质膜为碱性阴离子交换膜时,所述离子导体为阴离子导体;所述催化剂纳米粒子Pt或Pt-Pd合金或Pt-Ag合金或Pt-Co合金或Pt-Ru合金。
所述碱性阴离子交换膜为咪唑盐类膜、季铵盐类膜、季磷盐类膜、胍盐类膜。
所述阴离子导体为咪唑盐有机物、季铵盐有机物、季磷盐有机物、胍盐有机物中的一种或两种以上的混合物。
所述有序化膜电极的制备方法,包括以下步骤:
(1)有序阵列载体的制备:采用电化学方法或化学聚合方法于气体扩散层表面或附着于电解质膜表面的金属层的表面制备有序阵列载体;
(2)催化剂纳米粒子层的制备:于有序阵列载体表面采用磁控溅射的方法制备催化剂纳米粒子层。
所述磁控溅射方法为采用磁控溅射设备,以氩气、氮气、氧气中的一种或两种以上为载气,催化剂材料为靶材进行磁控溅射。
所述有序化膜电极的制备方法,包括以下步骤:
步骤(1)所述电化学方法为将气体扩散层一侧或附着有金属层的电解质膜的金属层一侧浸渍于含有苯胺或苯胺衍生物、吡咯或吡咯衍生物、噻吩或噻吩衍生物中的一种或者两种以上、同时含有支持电解质的电解液中或含有支持电解质和离子导体的电解液中,将气体扩散层或附着有金属层的电解质膜的金属层作为工作电极,Pt片作为对电极,饱和甘汞电极作为参比电极,采用三电极体系进行电沉积,得到有序阵列载体。
所述电沉积其电沉积电位相对于标准氢电极为0.60-1.0V;所述电沉积其电沉积时间长度为0.25-1h;
所述苯胺或苯胺衍生物、吡咯或吡咯衍生物、噻吩或噻吩衍生物的浓度为0.004-0.5M;
所述支持电解质为对甲苯磺酸钠、十二烷基磺酸钠、β-萘磺酸、双三甲基硅基三氟乙酰胺、高氯酸盐、硫酸盐、氯化物中的一种或几种;所述支持电解质的浓度为0.01-1.0M。
步骤(1)所述化学聚合方法为将气体扩散层一侧或附着有金属层的电解质膜的金属层一侧置于苯胺或苯胺衍生物、吡咯或吡咯衍生物、噻吩或噻吩衍生物中的一种或二种以上的电解液中进行化学聚合反应,于一侧或附着有金属层的电解质膜的金属层一侧表面原位化学聚合得到有序阵列载体。
所述苯胺或苯胺衍生物、吡咯或吡咯衍生物、噻吩或噻吩衍生物的浓度为1-500mM;
所述溶液中添加有掺杂剂,所用掺杂剂为盐酸,硫酸,高氯酸,磷酸,对甲苯磺酸,萘磺酸中的一种;溶液中掺杂剂的浓度为0.01-2.0M;
所述溶液中添加有氧化剂,所用氧化剂为过硫酸铵,氯化铁,过氧化氢,碘酸钾,重铬酸钾中的一种,溶液中氧化剂的浓度为1-200mM;
所述溶液中溶剂为水,乙腈,氯仿,丙酮或乙醇中的一种或两种以上的混合物。
所述化学聚合反应温度为-5℃至50℃;反应时间为1h至96h。
步骤(2)所述磁控溅射方法中以制备有有序阵列载体的气体扩散层或附着有金属层的电解质膜为基底,于有序阵列载体表面溅射催化剂纳米粒子层;
所述载气流速为5-30ml/min;所述基底的温度为20-250℃。
步骤(2)所述制备膜电极的制备方法还包括后处理过程,具体为对步骤(2)制备得到的有序化膜电极于高温设备中进行高温处理,处理温度为200-600℃,处理时间为2-6h。
所述有序化膜电极用于质子交换膜燃料电池或碱性阴离子交换膜燃料电池。与现有
技术相比,本发明具有以下优点:
1有序导电阵列:本发明所述膜电极与采用传统工艺制备的膜电极(包括GDE结构和CCM结构膜电极,下同)相比,在气体扩散层或电解质膜制备有序导电阵列,有利于气体、质子和电子传质;
2催化剂载量低:本发明所述有序催化层膜电极相对于传统膜电极,因采用磁控溅射方法形成纳米厚度催化层而提高催化剂利用率,有效降低催化剂载量。
3可批量化生产:本方法制备过程简单可控,易于放大,适用于批量化生产。
图1本发明所述(a)有序化催化层、(b)传统膜电极催化层示意图。从图中可以看出,与传统膜电极催化层相比,本发明所述催化层具有有序质子、电子和气体传质通道、催化剂粒子充分分布于有序载体以及低催化剂载量等优点。
图2一种采用本发明所述方法制备的有序阵列载体的扫描电镜照片。
图3一种采用本发明所述方法制备的有序化催化层的扫描电镜照片;
图4一种采用本发明所述方法制备的膜电极的(a)膜电极循环伏安测试(实施例1,对比例1);(b)氧还原动力学电流图(实施例1,对比例1);
图5一种采用磁控溅射方法在有序碳纳米管阵列制备有序催化层的(a)扫描电镜图;(b)投射电镜图(对比例2);
图6一种采用磁控溅射方法在有序二氧化钛阵列制备有序催化层的扫描电镜图(对比例3)。
以下通过实例对本发明作详细描述,但本发明不仅限于以下实施例。
对比例1
1)气体扩散层的制备
将Toray碳纸浸渍于5%的PTFE水溶液,充分浸渍后取出风干,称量重量。反复重复上述步骤,直至PTFE载量为10%左右。将XC-72碳粉与相对于总质量60%PTFE水溶
液混合均匀,用乙醇稀释后,在超声条件下分散30min搅拌均匀。将上述疏水处理碳纸置于玻璃板上固定,然后将浆液刮涂于碳纸表面,风干后称重,重复上述步骤直至碳粉载量为0.4mg cm-2,即得气体扩散层;
2)催化层的制备
将上述气体扩散层置于磁控溅射仪器基底位置,在Ar气气氛、30W功率、10min溅射时间下,获得催化层。
对比例2
新加坡的田志群和澳大利亚的陈军等人采用化学气相沉积方法在铝箔表面制备有序碳纳米管阵列,阵列为弯曲丝状结构;弯曲丝状结构长度为1300nm,直径为10nm;有序碳纳米管载体具有电子传导能力,但不具备质子传递能力;采用磁控溅射方法在上述有序阵列载体制备催化层,纳米催化剂分散于有序载体表面,但没有形成催化剂纳米粒子层。
对比例3
中国科学院大连化学物理研究所的邵志刚等人在碳纸表面形成有序二氧化钛载体,采用磁控溅射方法制备有序电极;二氧化钛阵列沿着碳纤维生长,呈柱状结构,直径为180nm;催化层平铺于有序载体表面,没有形成二级纳米结构催化层。
实施例1
1)气体扩散层的制备:
将Toray碳纸浸渍于5%的PTFE水溶液,充分浸渍后取出风干,称量重量。反复重复上述步骤,直至PTFE载量为10%左右。将XC-72碳粉与相对于总质量60%PTFE水溶液混合均匀,用乙醇稀释后,在超声条件下分散30min搅拌均匀。将上述疏水处理碳纸置于玻璃板上固定,然后将浆液刮涂于碳纸表面,风干后称重,重复上述步骤直至碳粉载量为0.4mg/cm2,即得气体扩散层。
2)有序阵列载体的制备
采用化学聚合方法制备有序阵列,将上述气体扩散层置于含有0.01M苯胺、1M高氯酸、0.007M过硫酸铵溶液中,在4℃反应24h,获得圆锥结构有序阵列载体,呈平行排列结构:每平方微米68个圆锥结构;圆锥结构高度为290nm;圆锥结构底部直径为70nm;电导率为56S cm-1。
3)有序催化层的制备
将上述有序阵列载体置于磁控溅射仪器基底位置,在Ar气气氛、气体流速5ml/min、30W功率、10min溅射时间、22℃基底温度下,获得具有纳米结构催化层;催化剂纳米粒子层的厚度为5-10nm;所述催化剂载量为0.160mg cm-2;与对比例相比,所述催化剂纳米粒子层于有序阵列载体表面的覆盖度为100%,催化剂纳米粒子层不是均匀铺展与有序载体表面,而是具有二级纳米结构的催化层,有利于气体传输和电子传导。
实施例2
与上述实施例1不同之处在于:苯胺浓度为0.5M,获得圆锥结构有序阵列载体,呈平行排列结构:每平方微米85个圆锥结构;圆锥结构高度为500nm;圆锥结构底部直径为110nm;电导率为68S cm-1。
实施例3
与上述实施例1不同之处在于:有序载体制备过程中反应温度为25℃,获得圆锥结构有序阵列载体,呈藤条状团簇结构:每平方微米89个圆锥结构;圆锥结构高度为177nm;圆锥结构底部直径为56nm;电导率为35S cm-1。。
实施例4
与上述实施例1不同之处在于:有序载体制备过程中反应时间为96h,获得圆锥结
构有序阵列载体,呈平行排列结构:每平方微米80个圆锥结构;圆锥结构高度为200nm;圆锥结构底部直径为95nm;电导率为60S cm-1。
实施例5
与上述实施例1不同之处在于:有序催化层制备过程中,气体流速为10ml/min,获得具有纳米结构催化层;催化剂纳米粒子层的厚度为20-25nm;所述催化剂纳米粒子层于所述有序阵列载体表面的覆盖度为100%;所述催化剂载量为0.084mg/cm2。
实施例6
与上述实施例1不同之处在于:有序催化层制备过程中,基底温度为200℃,获得具有纳米结构催化层;催化剂纳米粒子层的厚度为10-20nm;所述催化剂纳米粒子层于所述有序阵列载体表面的覆盖度为100%;所述催化剂载量为0.078mg/cm2。
实施例7
将在Pd溶液中浸渍10min,取出膜并用去离子水清洗,将其置于还原剂溶液中浸渍10min,重复上述两步4-6次;将上述膜置于0.2wt%PdCl2、0.56MNH4Cl、16MNH4OH、0.13MNa2PO2溶液中,在48℃反应30min,获得膜。
2)有序阵列载体的制备
采用电化学聚合方法制备有序阵列,将上述电解质膜置于含有0.02M吡咯、0.1M对甲苯磺酸钠、0.2M磷酸缓冲液中,作为三电极体系的工作电极,饱和甘汞电极作为参比电极,Pt片为对电极,在电沉积电位相对于标准氢电极为0.60V沉积45min,获得圆锥结构有序阵列载体,呈平行排列结构:每平方微米84个圆锥结构;圆锥结构高度为180nm;圆锥结构底部直径为100nm;电导率为62S cm-1。
3)有序催化层的制备
将上述有序阵列载体置于磁控溅射仪器基底位置,在Ar气气氛、气体流速5ml/min、30W功率、10min溅射时间、22℃基底温度下,获得具有纳米结构催化层;催化剂纳米粒子层的厚度为5-10nm;所述催化剂纳米粒子层于所述有序阵列载体表面的覆盖度为100%;所述催化剂载量为0.160mg/cm2。
实施例8
与上述实施例7不同之处在于:电沉积电位相对于标准氢电极为0.65V,获得棒状结构有序阵列载体,呈平行排列结构:每平方微米48个棒状结构;棒状结构高度为260nm;棒状结构底部直径为110nm;电导率为57S cm-1。
实施例9
与上述实施例7不同之处在于:电沉积电位相对于标准氢电极为0.70V,获得棒状结构有序阵列载体,呈平行排列结构:每平方微米42个棒状结构;棒状结构高度为1100nm;棒状结构底部直径为120nm;电导率为51S cm-1。。
实施例10
与上述实施例7不同之处在于:吡咯浓度为0.5M,获得棒状结构有序阵列载体,呈平行排列结构:每平方微米82个棒状结构;棒状结构高度为280nm;棒状结构底部直径为160nm;电导率为78S cm-1。。
实施例11
与上述实施例7不同之处在于:电化学聚合溶液中添加Nafion物质,质量分数为0.5wt%,获得棒状结构有序阵列载体,呈平行排列结构:每平方微米45个棒状结构;棒状结构高度为1300nm;棒状结构底部直径为80nm;电导率为56S cm-1,离子电导率为5S cm-2;与对比例相比,实施例11所制备的有序载体具有电子传导、离子传递和气体传输能力,同时有序化电极催化层具有较高的催化剂利用率。
Claims (16)
- 一种有序化膜电极,其特征在于:所述有序化膜电极的催化层包括有序阵列载体和微观上附着于其表面的催化剂纳米粒子层;所述有序阵列载体原位垂直生长于一气体扩散层表面或原位垂直生长于一附着于所述电解质膜表面的金属层的表面;所述有序阵列载体由导电高分子聚合物构成,或由导电高分子聚合物和离子导体的混合物构成;所述有序阵列载体微观上为圆锥台结构、圆锥结构或棒状结构中的一种或二种以上。
- 如权利要求1所述有序化膜电极,其特征在于:所述有序阵列载体中的圆锥台结构、圆锥结构或棒状结构中的一种或二种以上于平整的气体扩散层表面或平整的电解质膜上金属层表面时呈现平行排列结构,或,圆锥台结构、圆锥结构或棒状结构中的一种或二种以上于带有微孔层的气体扩散层的微孔层表面时呈现海胆状团簇结构或藤条状团簇结构。
- 如权利要求1所述有序化膜电极,其特征在于:所述导电高分子聚合物为聚苯胺或聚苯胺衍生物、聚吡咯或聚吡咯衍生物、聚噻吩或聚噻吩衍生物中的一种或二种以上。
- 如权利要求1-3任一所述有序化膜电极,其特征在于:所述有序阵列载体于气体扩散层或电解质膜表面的金属层上的密度为每平方微米10-100个圆锥台结构、圆锥结构或棒状结构中的一种或二种以上;所述圆锥台结构、圆锥结构或棒状结构中的一种或二种以上的高度为50-1300nm;所述圆锥台结构、圆锥结构或棒状结构中的一种或二种以上的底部直径为10-180nm;所述有序阵列载体电导率为1-100S cm-1,离子电导率为3-50S cm-2。
- 如权利要求1-3任一所述有序化膜电极,其特征在于:所述催化剂纳米粒子层的厚度为5-25nm;所述催化剂纳米粒子层于所述有序阵列载体表面的覆盖度为50%-100%;所述有序化电极中催化剂载量为0.004-0.4mg cm-2。
- 如权利要求1所述有序化膜电极,其特征在于:所述附着于电解质膜表面的金属层通过于电解质膜表面化学镀或溅射的方法制备得到;所述金属层为Pd金属或Pd-Cu合金或Pd-Ag合金或Pd-Ni合金或Pd-Ag-Ni合金中的一种或二种以上;所述金属层完整、光滑,且其中一侧的表面与电解质膜紧密贴合。
- 如权利要求1所述有序化膜电极,其特征在于:所述气体扩散层为碳纸或碳布。
- 如权利要求1或6所述有序化膜电极,其特征在于:所述电解质膜为质子交换膜或碱性阴离子交换膜;所述离子导体为质子导体或为阴离子导体;所述电解质膜为质子交换膜时,所述离子导体为质子导体,所述催化剂纳米粒子为Pt或者Pt与Ni、Pd、Co、Ru、Fe、Mo中一种或两种以上的合金;所述电解质膜为碱性阴离子交换膜时,所述离子导体为阴离子导体;所述催化剂纳米粒子为Pt或Pt-Pd合金或Pt-Ag合金或Pt-Co合金或Pt-Ru合金。
- 一种权利要求1所述有序化膜电极的制备方法,其特征在于:包括以下步骤,(1)有序阵列载体的制备:采用电化学方法或化学聚合方法于气体扩散层表面或附着于电解质膜表面的金属层的表面制备有序阵列载体;(2)催化剂纳米粒子层的制备:于有序阵列载体表面采用磁控溅射的方法制备催化剂纳米粒子层;所述磁控溅射方法为采用磁控溅射设备,以氩气、氮气、氧气中的一种或两种以上为载气,催化剂材料为靶材进行磁控溅射。
- 如权利要求11所述有序化膜电极的制备方法,其特征在于:步骤(1)所述电化学方法为将气体扩散层一侧或附着有金属层的电解质膜的金属层一侧浸渍于含有苯胺或苯胺衍生物、吡咯或吡咯衍生物、噻吩或噻吩衍生物中的一种、同时含有支持电解质的电解液中,将气体扩散层或附着有金属层的电解质膜的金属层作为工作电极,Pt片作为对电极,饱和甘汞电极作为参比电极,采用三电极体系进行电沉积,得到有序阵列载体;所述电沉积其电沉积电位相对于标准氢电极为0.60-1.00V;所述电沉积其电沉积时间长度为0.25-1h;所述苯胺或苯胺衍生物、吡咯或吡咯衍生物、噻吩或噻吩衍生物的浓度为0.004-0.5M;所述支持电解质为对甲苯磺酸钠、十二烷基磺酸钠、β-萘磺酸、双三甲基硅基三氟乙酰胺、高氯酸盐、硫酸盐、氯化物中的一种或二种以上;所述支持电解质的浓度为0.01-1.0M。
- 如权利要求11所述有序化膜电极的制备方法,其特征在于:步骤(1)所述化学聚合方法为将气体扩散层一侧或附着有金属层的电解质膜的金属层一侧置于苯胺或苯胺衍生物、吡咯或吡咯衍生物、噻吩或噻吩衍生物中的一种或二种以上的溶液中进行化学聚合反应,于一侧或附着有金属层的电解质膜的金属层一侧表面原位化学聚合得到有序阵列载体;所述苯胺或苯胺衍生物、吡咯或吡咯衍生物、噻吩或噻吩衍生物的浓度为1-500mM;所述溶液中添加有掺杂剂,所用掺杂剂为盐酸,硫酸,高氯酸,磷酸,对甲苯磺酸,萘磺酸中的一种;溶液中掺杂剂的浓度为0.01-2.0M;所述溶液中添加有氧化剂,所用氧化剂为过硫酸铵,氯化铁,过氧化氢,碘酸钾,重铬酸钾中的一种,溶液中氧化剂的浓度为1-200mM;所述溶液中溶剂为水,乙腈,氯仿,丙酮或乙醇中的一种或两种以上的混合物;所述化学聚合反应温度为-5℃至50℃;反应时间为1h至96h。
- 如权利要求11所述有序化膜电极的制备方法,其特征在于:步骤(2)所述磁控溅射方法中以制备有有序阵列载体的气体扩散层或附着有金属层的电解质膜为基底,于有序阵列载体表面溅射催化剂纳米粒子层;所述载气流速为5-30ml/min;所述基底的温度为20-250℃。
- 如权利要求11所述有序化膜电极的制备方法,其特征在于:还包括后处理过程,具体为对步骤(2)制备得到的有序化膜电极于高温设备中进行高温处理,处理温度为200-600℃,处理时间为2-6h。
- 一种如权利要求1-10所述有序化膜电极的应用,其特征在于:所述膜电极用于质子交换膜燃料电池或碱性阴离子交换膜燃料电池。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510941226.6 | 2015-12-16 | ||
CN201510941226.6A CN106887598B (zh) | 2015-12-16 | 2015-12-16 | 一种有序化膜电极及其制备和应用 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2017101132A1 true WO2017101132A1 (zh) | 2017-06-22 |
Family
ID=59055580
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2015/098158 WO2017101132A1 (zh) | 2015-12-16 | 2015-12-22 | 一种有序化膜电极及其制备和应用 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN106887598B (zh) |
WO (1) | WO2017101132A1 (zh) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108110290A (zh) * | 2017-12-19 | 2018-06-01 | 长春工业大学 | 燃料电池用交联咪唑型聚醚醚酮阴离子交换膜及其制备方法 |
CN109921042A (zh) * | 2017-12-13 | 2019-06-21 | 中国科学院大连化学物理研究所 | 一种阴离子交换膜燃料电池金属阵列催化层及其制备方法 |
CN111293304A (zh) * | 2020-02-19 | 2020-06-16 | 湖北大学 | 一种碳纤维-氧化锌纳米棒复合材料及其制备方法和应用 |
CN112670522A (zh) * | 2020-12-08 | 2021-04-16 | 安徽枡水新能源科技有限公司 | 一种制备燃料电池有序化膜电极载体的方法 |
CN114188551A (zh) * | 2021-11-12 | 2022-03-15 | 江苏大学 | 原位生长于气体扩散层上的铂钯合金催化剂的制备方法及其应用于燃料电池电极 |
CN114361501A (zh) * | 2021-12-09 | 2022-04-15 | 江苏大学 | 具有有序微结构的pemfc气体扩散层及加工方法 |
SE2130154A1 (en) * | 2021-06-04 | 2022-12-05 | Smoltek Ab | An electrolyzer with a nanostructured catalyst support |
WO2024160092A1 (zh) * | 2023-02-01 | 2024-08-08 | 无锡隆基氢能科技有限公司 | 一种适用于电解装置的有序化电极及其制备方法 |
Families Citing this family (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109921075B (zh) * | 2017-12-13 | 2021-07-06 | 中国科学院大连化学物理研究所 | 基于纳米管阵列的有序化气体扩散电极的制备及其应用 |
CN109921034B (zh) * | 2017-12-13 | 2021-04-27 | 中国科学院大连化学物理研究所 | 一种阴离子交换膜燃料电池分级有序催化层的制备方法及应用 |
CN109126891B (zh) * | 2018-07-09 | 2021-08-06 | 江汉大学 | 一种改性的二氧化钛掺杂的聚吡咯纳米团簇的制备方法 |
CN111326742A (zh) * | 2018-12-14 | 2020-06-23 | 中国科学院大连化学物理研究所 | 一种复合电极及其制备和应用 |
CN110527087A (zh) * | 2019-05-28 | 2019-12-03 | 大连理工大学 | 一种单环铵离子聚苯并咪唑及阴离子交换膜及其制备方法和应用 |
CN111206259B (zh) * | 2020-01-14 | 2021-03-19 | 武汉科技大学 | 一种高效稳定产过氧化氢的新型炭黑空气扩散阴极片的制备方法 |
CN111540912A (zh) * | 2020-04-02 | 2020-08-14 | 天津大学 | 一种提高燃料电池稳定性的固定层和膜电极及其制备方法 |
CN114628750A (zh) * | 2020-12-10 | 2022-06-14 | 中国科学院苏州纳米技术与纳米仿生研究所 | 一种膜电极集合体及其制备方法和应用 |
CN114824393B (zh) * | 2021-01-29 | 2024-01-30 | 武汉氢阳能源有限公司 | 一种季胺盐复合质子交换膜及其制备方法 |
CN113241446A (zh) * | 2021-05-19 | 2021-08-10 | 清华大学 | 一种新型固态锂空气电极及其应用 |
CN115839031A (zh) * | 2022-11-25 | 2023-03-24 | 中国科学院大连化学物理研究所 | 一种有序化导电聚合物复合材料及其制备方法、应用 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1913206A (zh) * | 2005-03-07 | 2007-02-14 | 三星Sdi株式会社 | 膜电极组件及其制备方法以及包含它的燃料电池系统 |
CN102738478A (zh) * | 2012-06-15 | 2012-10-17 | 武汉理工大学 | 基于3维质子导体的单电极和燃料电池膜电极及制备方法 |
CN102738477A (zh) * | 2012-06-15 | 2012-10-17 | 武汉理工大学 | 基于3维质子导体的有序化单电极和膜电极及制备方法 |
CN102881925A (zh) * | 2012-09-28 | 2013-01-16 | 孙公权 | 一种新型有序化膜电极及其制备方法和应用 |
CN103887531A (zh) * | 2012-12-21 | 2014-06-25 | 中国科学院大连化学物理研究所 | 一种有序化气体扩散电极及其制备和应用 |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103123974B (zh) * | 2011-11-18 | 2014-12-31 | 中国科学院大连化学物理研究所 | 导电聚合物/金属/质子交换膜型复合膜及其制备和应用 |
US9093715B2 (en) * | 2012-03-09 | 2015-07-28 | Brown University | Multimetallic nanoparticle catalysts with enhanced electrooxidation |
-
2015
- 2015-12-16 CN CN201510941226.6A patent/CN106887598B/zh active Active
- 2015-12-22 WO PCT/CN2015/098158 patent/WO2017101132A1/zh active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1913206A (zh) * | 2005-03-07 | 2007-02-14 | 三星Sdi株式会社 | 膜电极组件及其制备方法以及包含它的燃料电池系统 |
CN102738478A (zh) * | 2012-06-15 | 2012-10-17 | 武汉理工大学 | 基于3维质子导体的单电极和燃料电池膜电极及制备方法 |
CN102738477A (zh) * | 2012-06-15 | 2012-10-17 | 武汉理工大学 | 基于3维质子导体的有序化单电极和膜电极及制备方法 |
CN102881925A (zh) * | 2012-09-28 | 2013-01-16 | 孙公权 | 一种新型有序化膜电极及其制备方法和应用 |
CN103887531A (zh) * | 2012-12-21 | 2014-06-25 | 中国科学院大连化学物理研究所 | 一种有序化气体扩散电极及其制备和应用 |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109921042A (zh) * | 2017-12-13 | 2019-06-21 | 中国科学院大连化学物理研究所 | 一种阴离子交换膜燃料电池金属阵列催化层及其制备方法 |
CN108110290A (zh) * | 2017-12-19 | 2018-06-01 | 长春工业大学 | 燃料电池用交联咪唑型聚醚醚酮阴离子交换膜及其制备方法 |
CN108110290B (zh) * | 2017-12-19 | 2020-08-21 | 长春工业大学 | 燃料电池用交联咪唑型聚醚醚酮阴离子交换膜及其制备方法 |
CN111293304A (zh) * | 2020-02-19 | 2020-06-16 | 湖北大学 | 一种碳纤维-氧化锌纳米棒复合材料及其制备方法和应用 |
CN112670522A (zh) * | 2020-12-08 | 2021-04-16 | 安徽枡水新能源科技有限公司 | 一种制备燃料电池有序化膜电极载体的方法 |
SE2130154A1 (en) * | 2021-06-04 | 2022-12-05 | Smoltek Ab | An electrolyzer with a nanostructured catalyst support |
CN114188551A (zh) * | 2021-11-12 | 2022-03-15 | 江苏大学 | 原位生长于气体扩散层上的铂钯合金催化剂的制备方法及其应用于燃料电池电极 |
CN114361501A (zh) * | 2021-12-09 | 2022-04-15 | 江苏大学 | 具有有序微结构的pemfc气体扩散层及加工方法 |
CN114361501B (zh) * | 2021-12-09 | 2023-03-21 | 江苏大学 | 具有有序微结构的pemfc气体扩散层及加工方法 |
WO2024160092A1 (zh) * | 2023-02-01 | 2024-08-08 | 无锡隆基氢能科技有限公司 | 一种适用于电解装置的有序化电极及其制备方法 |
Also Published As
Publication number | Publication date |
---|---|
CN106887598B (zh) | 2020-04-10 |
CN106887598A (zh) | 2017-06-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2017101132A1 (zh) | 一种有序化膜电极及其制备和应用 | |
Du et al. | Catalyst loading for Pt-nanowire thin film electrodes in PEFCs | |
Du et al. | The effect of Nafion ionomer loading coated on gas diffusion electrodes with in-situ grown Pt nanowires and their durability in proton exchange membrane fuel cells | |
Xia et al. | Vertically oriented polypyrrole nanowire arrays on Pd-plated Nafion® membrane and its application in direct methanol fuel cells | |
Chen et al. | High performance and durability of order-structured cathode catalyst layer based on TiO2@ PANI core-shell nanowire arrays | |
Wei et al. | High performance polymer electrolyte membrane fuel cells (PEMFCs) with gradient Pt nanowire cathodes prepared by decal transfer method | |
CN108722453B (zh) | 一种用于碱性电催化析氢的磷化钼/碳复合纳米材料 | |
US9847534B2 (en) | Metal-alloy graphene nanocomposites and methods for their preparation and use | |
Ong et al. | Applications of graphene nano-sheets as anode diffusion layers in passive direct methanol fuel cells (DMFC) | |
CN108539206B (zh) | 一种催化层全有序燃料电池电极和膜电极 | |
Yue et al. | Graphene–poly (5-aminoindole) composite film as Pt catalyst support for methanol electrooxidation in alkaline medium | |
CN108448138B (zh) | 一种催化层全有序结构燃料电池电极和膜电极的制备方法 | |
CN111370717A (zh) | 一种阴极催化剂浆料、阴极催化剂层、膜电极及燃料电池 | |
Hezarjaribi et al. | Gas diffusion electrode based on electrospun Pani/CNF nanofibers hybrid for proton exchange membrane fuel cells (PEMFC) applications | |
Gharibi et al. | Optimization of the amount of Nafion in multi-walled carbon nanotube/Nafion composites as Pt supports in gas diffusion electrodes for proton exchange membrane fuel cells | |
Su et al. | Controlling Pt loading and carbon matrix thickness for a high performance Pt-nanowire catalyst layer in PEMFCs | |
Wang et al. | An ordered structured cathode based on vertically aligned Pt nanotubes for ultra-low Pt loading passive direct methanol fuel cells | |
Daş et al. | PEDOT/C composites used as a proton exchange membrane fuel cell catalyst support: role of carbon amount | |
Fu et al. | Polypyrrole nanowires as a cathode microporous layer for direct methanol fuel cell to enhance oxygen transport | |
Yang et al. | Polymer electrolyte fuel cell with vertically aligned carbon nanotubes as the electrocatalyst support | |
Sevjidsuren et al. | Effect of different support morphologies and Pt particle sizes in electrocatalysts for fuel cell applications | |
US8124297B2 (en) | Solid polymer fuel cell and method for producing MEA used for solid polymer fuel cell | |
Hamoudi et al. | Binderless nanothin catalyst layers for next generation of micro-fuel cells: concept, fabrication, results and prospective | |
Kim et al. | Fabrication of an Ionomer-Free Electrode Containing Vertically Aligned One-Dimensional Nanostructures for Alkaline Membrane Fuel Cells | |
JP2009140864A (ja) | 燃料電池用触媒層、膜電極接合体、燃料電池および燃料電池用触媒層の製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 15910601 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 15910601 Country of ref document: EP Kind code of ref document: A1 |