CN113241446A - 一种新型固态锂空气电极及其应用 - Google Patents

一种新型固态锂空气电极及其应用 Download PDF

Info

Publication number
CN113241446A
CN113241446A CN202110545940.9A CN202110545940A CN113241446A CN 113241446 A CN113241446 A CN 113241446A CN 202110545940 A CN202110545940 A CN 202110545940A CN 113241446 A CN113241446 A CN 113241446A
Authority
CN
China
Prior art keywords
lithium
air electrode
solid
nanorod
array
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202110545940.9A
Other languages
English (en)
Inventor
王诚
雷一杰
高帷韬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tsinghua University
Original Assignee
Tsinghua University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tsinghua University filed Critical Tsinghua University
Priority to CN202110545940.9A priority Critical patent/CN113241446A/zh
Publication of CN113241446A publication Critical patent/CN113241446A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/8647Inert electrodes with catalytic activity, e.g. for fuel cells consisting of more than one material, e.g. consisting of composites
    • H01M4/8657Inert electrodes with catalytic activity, e.g. for fuel cells consisting of more than one material, e.g. consisting of composites layered
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M12/00Hybrid cells; Manufacture thereof
    • H01M12/08Hybrid cells; Manufacture thereof composed of a half-cell of a fuel-cell type and a half-cell of the secondary-cell type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/8605Porous electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/8663Selection of inactive substances as ingredients for catalytic active masses, e.g. binders, fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0068Solid electrolytes inorganic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0082Organic polymers

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Nanotechnology (AREA)
  • Manufacturing & Machinery (AREA)
  • General Physics & Mathematics (AREA)
  • Composite Materials (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Inert Electrodes (AREA)

Abstract

本发明公开了属于固态锂空气电池技术领域的一种新型固态锂空气电极及其应用。所述固态锂空气电极的结构包括:定向生长成同质纳米棒阵列结构的锂固体电解质和在纳米棒表面上负载的催化剂薄层;每根纳米棒和其表面的催化剂薄层构成纳米电极,由阵列纳米电极构成有序化的固态锂空气电极;阵列间隙构成气体通道,纳米棒阵列构成Li+传输通道和电子传导通道。真正意义上实现电化学反应的电子、Li+和氧气的多相传质有序化,大幅提升电化学三相反应界面,改善Li2O2的分解和生成效率,提升电池充放倍率性能。

Description

一种新型固态锂空气电极及其应用
技术领域
本发明属于固态锂空气电池技术领域,尤其涉及一种新型固态锂空气电极及其应用。
背景技术
Littauer、Tsai等人于1976年提出了锂空气电池(Lithium-air battery)概念,20年过后 Abraham等人首次实现锂空气电池的充放电循环。锂空气电池是集锂电池和燃料电池两者优势于一体的先进储能体系,相较于传统封闭的电池,锂空气电池的独特半开放结构赋予其超高的理论能量密度(5217W.h/kg)以及良好的安全性,在发展能量密度更高的储能装置以突破锂离子电池性能限制的现阶段,锂空电池成为了新能源领域的研究热点。其结构主要由金属锂负极、电解质、空气电极(多孔气体扩散电极)三部分组成。锂空气电池由于是半开放系统,金属锂很难稳定,因此必须向固态电解质方向发展。固态电解质包括无机固态电解质和聚合物电解质。
在忽略副反应的情况下,锂空气电池充放电反应方程式为:
Figure BDA0003073510420000011
(E0=2.96V有机系)。在放电过程中,氧气首先在空气电极表面被还原成O2-(即氧还原反应,ORR)),然后与两个Li+结合直接生成Li2O2,或者先与一个Li+结合生成LiO2,随后两个LiO2分子发生歧化反应生成Li2O2。无论按哪种放电机制反应,最终的放电产物均为Li2O2。在充电过程中, Li2O2首先分解为LiO2和Li+,随后LiO2再进一步分解为氧气和Li+(即氧析出反应,OER),或者Li2O2直接分解成氧气和Li+
由于锂氧电池的放电产物Li2O2具有绝缘、不溶的特性,因此,随着放电的进行,电极表面会逐渐被其钝化而导致放电终止。大尺寸Li2O2的生成对延缓正极表面的钝化、延长放电时间、提高电池容量有所帮助。但是,大尺寸Li2O2在电极表面往往随机散落,难以保证其与电极材料之间的有效接触,从而限制了电池的倍率性能和能量效率。因此限制的Li2O2生成位置和生成尺寸,对提高电池的性能起到关键性的影响。
空气电极一般采用贵金属材料(如金、铂、钯、钌以及二氧化钌、二氧化铱等)、碳材料 (如Super P、KB碳、乙炔黑、Vulcan XC-72、Black Pearl、石墨烯、碳纳米管、介孔碳以及掺杂碳材料等)、过渡金属氧化物以及钙钛矿氧化物等催化剂,与粘接剂或添加剂制备而成,制备过程极易造成制备不均等问题。
尽管目前锂空气电池已经在高比能量和安全性指标方面已经取得了突破性进展,但仍然存在能量密度远低于理论值、充电电压高、循环寿命短、倍率性能差以及副反应多等缺点,这些问题都与半开放结构的空气电极有关,使得锂空气电池尚不能满足电动汽车和各种便携式电子产品的应用需求。
对于固态电解质锂空气电池,目前欠缺在空气电极中有效构筑电子、离子和氧气通道的方法,在电极中催化剂、Li+导体与孔隙均为无序分布状态,存在制约电池性能、容量、循环寿命的问题。锂空气电池的空气电极源自于燃料电池的阴极,它像一把“双刃剑”:与锂负极、电解质的交叉创新既带来了高比能量和良好安全性的优势,同时现有正极材料综合性能不佳以及落后的电池结构设计也大大阻碍了锂空气电池的发展。因此,发明适用于锂空气电池的高性能空气电极和与之匹配的电池构型对解决当前问题具有重要意义。
结合锂空气电池实用化的基本思路是:通过空气电极的催化层结构、制备方法与基础理论研究,以实现空气电极体系创新,从而达到商用目标;使得高比能量的锂空气电池新体系对于电动汽车、电子产品的进一步发展和实现智能社会具有重要意义。
发明内容
为了解决上述问题,本发明提出了本发明提出一种新型固态锂空气电极,所述固态锂空气电极的结构包括:定向生长成同质纳米棒阵列结构的锂固体电解质和在纳米棒表面上负载的催化剂薄层;
每根纳米棒和其表面的催化剂薄层构成纳米电极,由阵列纳米电极构成有序化的固态锂空气电极;阵列间隙构成气体通道,纳米棒阵列构成Li+传输通道和电子传导通道。
所述纳米棒阵列由锂固体电解质原位生长得到,使生长纳米棒阵列端作为空气电极离子传导通道,非生长纳米棒阵列端作为固体电解质膜。
所述催化剂薄层覆盖纳米棒表面,并通过纳米棒的根部连接成一个整体。
纳米棒阵列结构为:阵列间距5纳米~100微米,纳米棒长度1微米~500微米,纳米棒直径为50纳米~1000纳米。
采用热压法,将片状的多孔阳极氧化铝模板和固体电解质溶胶经过热压,然后脱除多孔阳极氧化铝模板并去除阳离子杂质,最后高温烧结加固处理得到有序化固态锂空气电极的一体化基体骨架,即纳米棒阵列结构的锂固体电解质。
所述催化剂薄层的材料包括:铂、钌或铱任意一种或几种组合。
所述催化剂薄层的厚度为:催化层的厚度与纳米棒的长度相同,为1微米~500微米。
所述催化剂薄层的接触电阻为:5mΩ.cm2~50Ω.cm2
所述催化剂薄层采用铂、钌或铱的前驱体溶液制备,前驱体浓度为0.01M~1M。
所述催化剂薄层采用分次制备,制备次数为2~10次。
采用所述新型固态锂空气电极构筑锂空气电池,将锂负极、有机电解质、固态锂空气电极和正极材料顺序连接构筑锂空气电池,固态锂空气电极的非生长纳米棒阵列端连接有机电解质,生长纳米棒阵列端连接正极材料,纳米棒的长度方向与电子传导方向一致。
置入有机电解质作为缓冲层可避免锂金属直接接触固体电解质发生还原反应,保持负极与电解质界面阻抗低位水平,非生长纳米棒阵列端作为固体电解质膜与缓冲层连接,使固体电解质浸泡在有机电解液中,从而提供更高的Li+电导率。有机电解质缓冲层的厚度根据锂空气电池的实际需要进行设置。
本发明的有益效果在于:
1、固体电解质纳米棒不仅是负载催化剂薄层的支撑体,而且由于纳米尺寸效应使得其具有快Li+传导率,能保持电极全域Li+的高效传导;所述固体电解质纳米棒阵列定义了固态锂空气电极中反应气体通道、Li+传输通道和电子传导通道均为定向直通道,真正意义上实现电化学反应的电子、Li+和氧气的多相传质有序化,大幅提升电化学三相反应界面,改善Li2O2的分解和生成效率,提升电池充放倍率性能。
2、固体电解质纳米棒阵列作为负载催化剂薄层的支撑体,能制备出巨大的电化学催化比表面,同时纳米棒表面催化剂的薄层结构会诱导Li2O2共形有序生长为薄层状,从而赋予锂空气电池优异的高容量特性、能量效率和循环寿命。
3、纳米棒阵列直接由固体电解质膜上原位生长出来,使催化层与固体电解质膜为一体化结构,无需转印或热压步骤,从而保持完整的有序化结构,并具有较小的界面阻抗,有利于提升电池稳定性和电化学性能。
附图说明
图1为基于一体化有序空气电极组装的新型锂空气电池结构示意图;
具体实施方式
以下结合附图和具体实施例对本发明作进一步的详细说明:
实施例1:
采用一片多孔阳极氧化铝模板(AAO模板)和Li10GeP2S12固体电解质溶胶,通过热压法制备出“Li+固体电解质-纳米棒阵列-AAO”;
然后经过脱AAO模板、去除阳离子杂质等后处理、高温烧结加固处理制备出有序化空气电极的一体化基体骨架“Li+固体电解质-纳米棒阵列”,即纳米棒阵列结构的锂固体电解质,其中纳米棒的长度为1微米,直径为1微米,阵列间距为100微米。
采用原子层沉积实验手段在每根纳米棒表面负载催化层,具体过程包括:将有序化空气电极的一体化基体骨架暴露出丛林状纳米棒,置于催化剂原子层沉积设备中,先通入催化剂的前驱体MeCpPtMe3,浓度为0.01M;经过3个循环后达到原子层级的前躯体化学吸附在纳米棒基体表面,然后通入氮气将多余的前躯体排走,通入氢等离子体进行还原,得到纳米棒上均匀负载Pt催化层的固态锂空气电极,在纳米棒结构尺寸的基础上,通过调控催化层的制备次数,得到催化层的接触电阻控制在5mΩ.cm2
上述方法制备的催化层具有各向同性的制备优点,形成基于纳米棒阵列的有序化固态锂空气电极。Pt催化剂以纳米颗粒状态结合在固体电解质纳米棒表面上形成催化层薄膜,兼具催化与传导电子功能。然而如何实现固体电解质纳米棒上催化层薄膜的可控制备是本项目的关键。当催化剂载量很小时,固体电解质纳米棒骨架的表面很难被催化剂均匀覆盖,造成电子链路中断;而当催化剂载量过多时,会阻碍氧传质和Li2O2的析出和分解。为应对这个挑战,采用 0.01M~1M的稀浓度的前驱体溶液,进行2~10次催化层制备技术,并通过测试催化层的接触电阻是否达到5mΩ.cm2~50Ω.cm2来综合判断催化剂的载量是否足够。通过调控纳米棒阵列的结构、催化剂的种类和载量的不同,得到固态锂空气电极,调控电极与组装成的锂空气电池的电性能之间的关系。
将锂金属负极、有机电解质缓冲层(0.2mol.L-1双三氟甲磺酰亚胺锂的四乙二醇二甲醚溶液)与上述制备的一体化、有序的固态锂空气电极以及碳布电极在充满氩气的手套箱中组装成锂空气电池,如图1所示。通过性能测试,获得了优异的高容量(5488mAh.g-1@400mA.g-1) 和循环稳定性能(400mA.g-1时为112次循环@500mAh.g-1),并且Li2O2的析出依附于纳米棒表面催化剂的薄层结构,有序生长为薄层状。
实施例2:
采用一片AAO模板和Nafion聚合物固体电解质,通过热压法制备出“固体电解质-纳米棒阵列-AAO”;
然后经过脱AAO模板、去除阳离子杂质等后处理制备出有序化空气电极的一体化基体骨架“固体电解质-纳米棒阵列”。其中纳米棒的长度为100微米,直径为50纳米,阵列间距为5 纳米。
采用化学沉积手段负载催化层,化学沉积法采用U型液相反应器通过浸渍和多步反应法分别制备Ru催化层。控制RuCl3·3H2O溶液的浓度为1M,pH值以及水解反应条件,在Nafion 纳米棒表面上沉积RuO2细颗粒形成催化剂。通过调控催化层的制备次数,经过7次循环制备,得到催化层的接触电阻控制在50Ω.cm2
上述方法制备催化层具有各向同性的制备优点,形成基于纳米棒阵列的有序化空气电极。 Ru催化剂以纳米颗粒状态结合在固体电解质棒表面上形成催化层薄膜,兼具催化与传导电子功能,如何实现固体电解质纳米棒上催化层薄膜的可控制备是本项目的关键。当催化剂载量很小时,固体电解质纳米棒骨架的表面很难被催化剂均匀覆盖,造成电子链路中断;而当催化剂载量过多时,会阻碍氧传质和Li2O2的析出和分解。为应对这个挑战,采用稀浓度前驱体以及多次催化层制备技术,并通过催化层的电阻来综合判断催化剂的最佳载量。将上述一体化有序空气电极与锂金属负极、缓冲层(如0.6mol.L-1双三氟甲磺酰亚胺锂的四乙二醇二甲醚溶液) 在充满氩气的手套箱中组装成锂空气电池。通过性能测试,获得了优异的高容量 (7000mAh.g-1@500mA.g-1)和循环稳定性能(500mA.g-1时为350次循环@600mAh.g-1)。
实施例3:
采用一片AAO模板和Li7La3Zr2O12固体电解质溶胶,通过热压法制备出“Li+固体电解质- 纳米棒阵列-AAO”;
然后经过脱AAO模板、去除阳离子杂质等后处理、高温烧结加固处理制备出有序化空气电极的一体化基体骨架“Li+固体电解质-纳米棒阵列”。其中纳米棒的长度为9微米,直径为300 纳米,阵列间距为50纳米。
采用原子层沉积实验手段负载催化层,将有序化空气电极的一体化基体骨架暴露出丛林状纳米棒及其底面放在催化剂原子层沉积设备中,先通入催化剂的前驱体Ir(CH3COCHCOCH3)3,浓度为0.1M,经过5个循环后达到原子层级的前躯体会化学吸附在纳米棒基体表面,并通过覆盖纳米棒的根部连成一体。然后通入氮气将多余的前躯体排走,通入氢等离子体进行还原。通过结合纳米棒的长度,调控催化层的制备次数,得到催化层的接触电阻控制在10Ω.cm2
上述方法制备催化层具有各向同性的制备优点,形成基于纳米棒阵列的有序空气电极。Ir 催化剂以纳米颗粒状态结合在固体电解质棒表面上形成催化层薄膜,兼具催化与传导电子功能,如何实现固体电解质纳米棒上催化层薄膜的可控制备是本项目的关键。当催化剂载量很小时,固体电解质纳米棒骨架的表面很难被催化剂均匀覆盖,造成电子链路中断;而当催化剂载量过多时,会阻碍氧传质和Li2O2的析出和分解。为应对这个挑战,采用稀浓度前驱体以及多次催化层制备技术,并通过催化层的电阻来综合判断催化剂的最佳载量。
将上述一体化有序空气电极与锂金属负极、缓冲层(0.8mol.L-1双三氟甲磺酰亚胺锂的四乙二醇二甲醚溶液)在充满氩气的手套箱中组装成锂空气电池。通过性能测试,获得了优异的高容量(7888mAh.g-1@450mA.g-1)和循环稳定性能(450mA.g-1时为150次循环@600mAh.g-1) 。

Claims (9)

1.一种新型固态锂空气电极,其特征在于,所述固态锂空气电极的结构包括:定向生长成同质纳米棒阵列结构的锂固体电解质和在纳米棒表面上负载的催化剂薄层;
每根纳米棒和其表面的催化剂薄层构成纳米电极,由阵列纳米电极构成有序化的固态锂空气电极;阵列间隙构成气体通道,纳米棒阵列构成Li+传输通道和电子传导通道。
2.根据权利要求1所述一种新型固态锂空气电极,其特征在于,所述纳米棒阵列由锂固体电解质原位生长得到,使生长纳米棒阵列端作为空气电极离子传导通道,非生长纳米棒阵列端作为固体电解质膜。
3.根据权利要求4所述一种新型固态锂空气电极,其特征在于,所述催化剂薄层覆盖纳米棒表面,并通过纳米棒的根部连接成一个整体。
4.根据权利要求3所述一种新型固态锂空气电极,其特征在于,纳米棒阵列结构为:阵列间距5纳米~100微米,纳米棒长度1微米~500微米,纳米棒直径为50纳米~1000纳米。
5.根据权利要求3所述一种新型固态锂空气电极,其特征在于,所述催化剂薄层的接触电阻为:5mΩ.cm2~50Ω.cm2
6.根据权利要求3所述一种新型固态锂空气电极,其特征在于,所述催化剂薄层采用铂、钌或铱的前驱体溶液制备,前驱体浓度为0.01M~1M。
7.根据权利要求3所述一种新型固态锂空气电极,其特征在于,所述催化剂薄层的材料包括:铂、钌或铱任意一种或几种组合。
8.根据权利要求6所述一种新型固态锂空气电极,其特征在于,所述催化剂薄层采用分次制备,制备次数为2~10次。
9.采用权利要求1-8任一项所述新型固态锂空气电极构筑锂空气电池,其特征在于,将锂负极、有机电解质、固态锂空气电极和正极材料顺序连接构筑锂空气电池,固态锂空气电极的非生长纳米棒阵列端连接有机电解质,生长纳米棒阵列端连接正极材料。
CN202110545940.9A 2021-05-19 2021-05-19 一种新型固态锂空气电极及其应用 Pending CN113241446A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110545940.9A CN113241446A (zh) 2021-05-19 2021-05-19 一种新型固态锂空气电极及其应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110545940.9A CN113241446A (zh) 2021-05-19 2021-05-19 一种新型固态锂空气电极及其应用

Publications (1)

Publication Number Publication Date
CN113241446A true CN113241446A (zh) 2021-08-10

Family

ID=77137551

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110545940.9A Pending CN113241446A (zh) 2021-05-19 2021-05-19 一种新型固态锂空气电极及其应用

Country Status (1)

Country Link
CN (1) CN113241446A (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011096586A (ja) * 2009-10-30 2011-05-12 Ohara Inc リチウム空気電池
CN102881925A (zh) * 2012-09-28 2013-01-16 孙公权 一种新型有序化膜电极及其制备方法和应用
US20130189592A1 (en) * 2010-09-09 2013-07-25 Farshid ROUMI Part solid, part fluid and flow electrochemical cells including metal-air and li-air battery systems
US20130337348A1 (en) * 2010-11-05 2013-12-19 Jian-ping (Jim) Zheng Alkali metal-air flow batteries
CN103474675A (zh) * 2013-09-02 2013-12-25 清华大学 一种有序化固体氧化物膜电极的制备方法
CN106887598A (zh) * 2015-12-16 2017-06-23 中国科学院大连化学物理研究所 一种有序化膜电极及其制备和应用
CN108550904A (zh) * 2018-04-19 2018-09-18 北京理工大学 一种纳米多孔阵列状固态化电解质、制备方法及锂电池
CN109921075A (zh) * 2017-12-13 2019-06-21 中国科学院大连化学物理研究所 基于纳米管阵列的有序化气体扩散电极的制备及其应用

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011096586A (ja) * 2009-10-30 2011-05-12 Ohara Inc リチウム空気電池
US20130189592A1 (en) * 2010-09-09 2013-07-25 Farshid ROUMI Part solid, part fluid and flow electrochemical cells including metal-air and li-air battery systems
US20130337348A1 (en) * 2010-11-05 2013-12-19 Jian-ping (Jim) Zheng Alkali metal-air flow batteries
CN102881925A (zh) * 2012-09-28 2013-01-16 孙公权 一种新型有序化膜电极及其制备方法和应用
CN103474675A (zh) * 2013-09-02 2013-12-25 清华大学 一种有序化固体氧化物膜电极的制备方法
CN106887598A (zh) * 2015-12-16 2017-06-23 中国科学院大连化学物理研究所 一种有序化膜电极及其制备和应用
CN109921075A (zh) * 2017-12-13 2019-06-21 中国科学院大连化学物理研究所 基于纳米管阵列的有序化气体扩散电极的制备及其应用
CN108550904A (zh) * 2018-04-19 2018-09-18 北京理工大学 一种纳米多孔阵列状固态化电解质、制备方法及锂电池

Similar Documents

Publication Publication Date Title
Zhuang et al. Single-atom catalysis enables long-life, high-energy lithium-sulfur batteries
Wu et al. Rational design of multifunctional air electrodes for rechargeable Zn–Air batteries: Recent progress and future perspectives
Xu et al. Morphology controlled La2O3/Co3O4/MnO2–CNTs hybrid nanocomposites with durable bi-functional air electrode in high-performance zinc–air energy storage
Tian et al. In-situ cobalt-nickel alloy catalyzed nitrogen-doped carbon nanotube arrays as superior freestanding air electrodes for flexible zinc-air and aluminum-air batteries
Gao et al. Recent progress in hierarchically structured O2-cathodes for Li-O2 batteries
Li et al. Synthesis of ordered mesoporous NiCo2O4 via hard template and its application as bifunctional electrocatalyst for Li-O2 batteries
Xue et al. Hierarchical porous nickel cobaltate nanoneedle arrays as flexible carbon-protected cathodes for high-performance lithium–oxygen batteries
Wang et al. Co (II) 1–x Co (0) x/3Mn (III) 2 x/3S Nanoparticles Supported on B/N-Codoped Mesoporous Nanocarbon as a Bifunctional Electrocatalyst of Oxygen Reduction/Evolution for High-Performance Zinc-Air Batteries
Ran et al. Modulating electronic structure of honeycomb-like Ni2P/Ni12P5 heterostructure with phosphorus vacancies for highly efficient lithium-oxygen batteries
CN112331858B (zh) 一种催化剂原位生长于有序结构微孔层上的燃料电池电极及膜电极的制备方法
Li et al. CoSe nanoparticle embedded B, N-codoped carbon nanotube array as a dual-functional host for a high-performance Li-S full battery
Cheng et al. Fabricating Pt-decorated three dimensional N-doped carbon porous microspherical cavity catalyst for advanced oxygen reduction reaction
CN107799751B (zh) 一种有序排列的硅填充碳纳米管材料及制备方法和用途
CN105070923B (zh) 纳米结构的Co3O4/Ru复合电极及其制备方法和应用
Chi et al. Boosting hydrogen evolution via integrated construction and synergistic cooperation of confined graphene/CoSe2 active interfaces and 3D graphene nanomesh arrays
Xie et al. Effect of mesoporous carbon on oxygen reduction reaction activity as cathode catalyst support for proton exchange membrane fuel cell
Gao et al. Lithiophilic Zn-doped CuO/ZnO nanoarrays modified 3D scaffold inducing lithium lateral plating achieving highly stable lithium metal anode
CN103840179A (zh) 表面包覆MnO2和Au纳米颗粒的三维石墨烯基复合电极、制备方法和应用
Liu et al. CoTe2/NiTe2 heterojunction embedded in N-doped hollow carbon nanoboxes as high-efficient ORR/OER catalyst for rechargeable zinc-air battery
Wang et al. Job-synergistic engineering from Fe3N/Fe sites and sharp-edge effect of hollow star-shaped nitrogen-doped carbon structure for high-performance zinc-air batteries
Yao et al. Metal-organic frameworks-derived hollow dodecahedral carbon combined with FeNx moieties and ruthenium nanoparticles as cathode electrocatalyst for lithium oxygen batteries
CN115863600A (zh) 一种硅碳负极材料及其制备方法和应用
Shang et al. Effect of Co-Fe alloy nanoparticles on the surface electronic structure of molybdenum disulfide nanosheets and its application as a bifunctional catalyst for rechargeable zinc air battery
Guo et al. MOFs-derived integrated flower shaped porous carbon anchored with core-shell Ni-NiO nanoparticles as efficient multifunctional electrode for Li–S batteries
Yan et al. Pt nanowire electrocatalysts for proton exchange membrane fuel cells

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20210810