WO2017099299A1 - 도금 강판의 표면처리용 조성물, 이를 이용하여 표면처리된 강판, 및 이를 이용한 표면처리 방법 - Google Patents

도금 강판의 표면처리용 조성물, 이를 이용하여 표면처리된 강판, 및 이를 이용한 표면처리 방법 Download PDF

Info

Publication number
WO2017099299A1
WO2017099299A1 PCT/KR2016/002655 KR2016002655W WO2017099299A1 WO 2017099299 A1 WO2017099299 A1 WO 2017099299A1 KR 2016002655 W KR2016002655 W KR 2016002655W WO 2017099299 A1 WO2017099299 A1 WO 2017099299A1
Authority
WO
WIPO (PCT)
Prior art keywords
weight
steel sheet
surface treatment
less
composition
Prior art date
Application number
PCT/KR2016/002655
Other languages
English (en)
French (fr)
Inventor
조수현
장준상
Original Assignee
주식회사 포스코
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 포스코 filed Critical 주식회사 포스코
Priority to JP2018529207A priority Critical patent/JP6667636B2/ja
Priority to CN201680072189.2A priority patent/CN108368360B/zh
Publication of WO2017099299A1 publication Critical patent/WO2017099299A1/ko

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D163/00Coating compositions based on epoxy resins; Coating compositions based on derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D191/00Coating compositions based on oils, fats or waxes; Coating compositions based on derivatives thereof
    • C09D191/06Waxes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/60Additives non-macromolecular
    • C09D7/61Additives non-macromolecular inorganic
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/66Additives characterised by particle size
    • C09D7/67Particle size smaller than 100 nm
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/04Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
    • C23C2/06Zinc or cadmium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/26After-treatment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/34Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the shape of the material to be treated
    • C23C2/36Elongated material
    • C23C2/40Plates; Strips

Definitions

  • the present invention relates to a surface treatment composition of a coated steel sheet, a steel sheet surface treated using the same, and a surface treatment method using the same.
  • Steel plates used for fuel tanks of vehicles are the main components directly connected to vehicle safety, and have basic strength and durability, but also have corrosion resistance to fuel and joints where fuel tanks and other subsidiary materials are connected. It is necessary to ensure a certain level of weldability to prevent the leakage of fuel in the part.
  • Metal nanoparticles in one embodiment of the invention, relative to the total weight (100% by weight), Metal nanoparticles, more than 0.1% by weight and less than 15% by weight
  • Amine curing agent of more than 0.5% by weight and less than 15% by weight
  • Adhesion promoter greater than 1 weight% and less than 30 weight ⁇ 3 ⁇ 4,
  • composition for surface treatment of a coated steel sheet the components of which are briefly described below.
  • the metal nanoparticles may be one kind of metal nanoparticles selected from the group containing Ni, Zn, Al, Cu, Ag, W, Mo, Co, Pd, and Au, or a mixture thereof.
  • the size of the metal nanoparticles may be more than 0.1 nm and less than 600 nm.
  • the binder resin has a number average molecular weight of more than 300 and less than 2000,
  • the weight average molecular weight may be more than 500 and less than 3000.
  • the binder resin may be a modified epoxy resin, an epoxy resin, or a mixture thereof.
  • the modified epoxy resin may be an amine modified epoxy resin.
  • the colloidal silica may be 5 to 20 parts by weight dispersed in 100 parts by weight of water or ethanol.
  • the adhesion promoter phosphate ester (Ester phosphate), phosphoric acid
  • Ammonium phosphate or mixtures thereof.
  • the wax may be a polyethylene wax, a polytetrafluoroethylene (FTFE) wax, or a combination thereof.
  • FTFE polytetrafluoroethylene
  • the plated steel sheet includes a cold rolled steel sheet and a plating layer located on one or both surfaces of the non-rolled steel sheet,
  • the surface treatment layer is located on the plated layer of the plated steel sheet,
  • the volume fraction ( ⁇ / ⁇ ) of the metal nanoparticle ( ⁇ ) in the surface treatment layer ( ⁇ ) may be greater than 5 and less than 60.
  • One surface adhesion amount of the surface treatment per layer (m 2) of the coated steel strip (mg) is, 200 mg / m 2 than can be 3000 mg / m 2 below.
  • the plating layer is located on both sides of the cold rolled steel sheet, the same or different on both sides of the natural steel sheet, independently of each other, may be a zinc plating layer, or a zinc-based alloy plating layer.
  • the plating layer is a zinc plating layer
  • one surface (m 2) per coating weight (mg) of the zinc plated layer of the steel sheet is nyaengyeon
  • the coating layer is O and the linkage alloy plating layer
  • one surface (m 2) per mass (mg) of the zinc-based alloy plating layer of the nyaengyeon steel sheet may be 5 g / m 2 greater than 60 g / m 2 is less than .
  • a plated steel sheet comprising a steel sheet and a plating layer on one or both surfaces of the cold rolled steel sheet
  • the surface treatment composition based on the total weight (100% by weight), more than 0.1% by weight 15% "metal nanoparticles less than 3 ⁇ 4, more than 5% by weight less than 60% by weight binder resin, more than 0.5% by weight 15% by weight Less than amine curing agent, more than 1% by weight less than 40% by weight Colloidal silica, comprises an adhesion promoter, 0.1 parts by weight ⁇ 3 ⁇ 4 increased more than 7 ⁇ 3 ⁇ 4 under the wax, and the balance of the solvent is less than 30 weight% to 1% by weight,
  • Applying the surface treatment composition on the plated layer of the coated steel sheet may be performed by a coating method, a spray method, or a deposition method.
  • Curing the coated surface treatment composition, to form a surface treatment layer may be performed in a temperature range of more than 100 or less than 230 on the basis of the steel sheet temperature (MT—Metal Temperature),
  • Preparing the plated steel sheet may be performed using a plating bath in which a current shielding device (edge mask) is located at one side.
  • a current shielding device edge mask
  • the steel sheet surface-treated using the composition for surface treatment of the coated steel sheet does not contain heavy metals, it is environmentally friendly, excellent corrosion resistance and weldability.
  • Fig. 2 schematically shows an apparatus for evaluating fuel resistance, which is used in the evaluation example of the present invention.
  • Figure 3 schematically shows the overall process of one-side plating and surface treatment, used in the embodiment of the present invention.
  • Metal nanoparticles with more than 0.1% by weight and less than 15% by weight ⁇ 3 ⁇ 4
  • Binder resin greater than 5% by weight and less than 60% by weight ⁇ 3 ⁇ 4
  • Amine curing agent of more than 0.5% by weight and less than 15% by weight
  • Colloidal silica of more than 1% by weight and less than 40% by weight
  • Adhesion promoter greater than 1 weight percent and less than 30 weight percent
  • the plated steel sheet includes a cold rolled steel sheet 110 and a plated layer 120 located on one or both sides of the cold rolled steel sheet,
  • the surface treatment layer 130 is located on the plated layer 120 of the plated steel sheet, relative to the total weight (loo weight%) of the surface treatment layer, greater than ⁇ weight% less than 15 weight% metal nanoparticles, 5 Binder resins of greater than 60% by weight less than 1 3 ⁇ 4, greater than 0.5% by weight and less than 15% by weight of amine-based curing agents, greater than 1% by weight and less than 40% by weight of colloidal silica, greater than 1% by weight and less than 30% by weight of adhesion promoter, And more than 0.1 wt% less than 7 wt% wax,
  • a plated steel sheet comprising a natural steel sheet and a plating layer disposed on one or both surfaces of the natural steel sheet;
  • composition for surface treatment more than 0.1% by weight of less than 15% by weight of metal nanoparticles, more than 5% by weight less than 60% by weight of binder resin, more than 0.5% by weight and less than 15% by weight relative to the total weight (100% by weight)
  • Amine-based curing agent more than 1% by weight, less than 40% by weight of colloidal silica, more than 1% by weight and less than 30% by weight adhesion promoter, more than 0.1% by weight and less than 7% by weight of wax, and the balance of the solvent ,
  • the surface treatment composition according to one embodiment of the present invention may be used for surface treatment of a plated steel sheet according to another embodiment of the present invention.
  • a plated steel sheet surface-treated according to another embodiment of the present invention can be obtained.
  • composition to be treated on the plating layer may be largely selected from a semi-ungpung or coating type, it is possible to select an excellent coating type composition in terms of corrosion resistance.
  • a coating composition that does not contain a heavy metal material, and has a low corrosion resistance even with a small amount of adhesion, requires a composition for surface treatment that can ensure excellent quality as a whole, which is one embodiment of the present invention
  • the surface treatment composition such as lead (Pb), tin (Sn), crumb (Cr) It does not contain the thick metal material, which is an environmentally friendly advantage, and includes various organic and inorganic materials such as metal nanoparticles, binder resins, amine-based curing agents, colloidal silica, adhesion promoters, and waxes as main components, and thus corrosion resistance, processability, and weldability. It is possible to form a surface treatment layer having excellent quality of fuel resistance and adhesion.
  • the quality control of the surface treatment layer 1) it is most important to control the main component and the content of each component of the surface treatment composition, and 2) the addition of metal nanoparticles in the surface treatment composition Size, and the volume fraction of the metal nanoparticles in the surface treatment layer formed according to this ⁇ 3) the coating layer adhesion amount of the coated steel sheet to which the surface treatment composition is applied, 4) the surface treatment layer adhesion amount according to the application of the surface treatment composition and The baking temperature can also be affected.
  • Binder Resin and Colloidal Silica First, the binder resin and the colloidal silica increase the hydrophobicity of the surface treatment composition and are formed using the same. It serves to prevent the penetration of corrosion factors inside the treatment layer.
  • the binder resin may be included in more than 5% ⁇ 3 ⁇ 4 less than 60% by weight, the colloidal silica is more than 1% by weight 40% ⁇ less than 3 ⁇ 4. .
  • the content of the binding resin is 60% by weight or more, there is a problem that not only the hydrophobicity of the surface treatment composition is lowered, but also the corrosion resistance is lowered.
  • the binder resin, the number average molecular weight is more than 300 less than 2000, the weight average molecular weight may be more than 500 less than 3000.
  • the binder resin may be a modified epoxy resin, an epoxy resin, or a mixture thereof.
  • the modified epoxy resin may be an amine-modified epoxy resin.
  • the colloidal silica, the silica having a particle diameter of more than 5 nm and less than 50 nm may be dispersed in 5 to 20 parts by weight in 100 parts by weight of water or ethanol.
  • the binder resin may be included in more than 10% by weight to 50% by weight, the colloidal silica may be included in more than 2% by weight to 30% by weight , The effect of satisfying each of these ranges is more excellent.
  • Metal Nanoparticles Furthermore, the metal nanoparticles function to improve spots, seam welding speeds, and appropriate welding current ranges during the fuel tank fabrication process by their excellent conductivity.
  • the metal nanoparticles in the surface treatment composition function as a conductivity enhancer, and are at least one metal nanoparticle selected from the group consisting of Ni, Zn, Al, Cu, Ag, W, Mo, Co, Pd and Au. It may be used in the form of a mixed mixture of two or more metal nanoparticles.
  • the metal nanoparticles as the conductivity enhancer may be included in an amount of more than 0.1% by weight and less than 15% by weight.
  • the content of the metal nanoparticles is increased by 0.1% by weight or less, the effect of improving conductivity is insufficient, and at 15% by weight or more, corrosion resistance and adhesion are inferior.
  • the metal nanoparticles may be included in the amount of 0.2% by weight or more and 10% by weight or less, the effect is more excellent when satisfying this range.
  • Amine-based curing agent On the other hand, as the curing agent to cure the binder resin to achieve a strong crosslinking, di-amine (tri-amine) or tri amine
  • the amine-based curing agent may be included in less than 15% by weight more than 0.5% ⁇ 3 ⁇ 4.
  • the content of the amine-based curing agent is 0.5% by weight or less, the crosslinking of the binder resin is not formed sufficiently, rather, the stability of the final surface treatment layer may be lowered at 15% by weight or more. More specifically, the amine-based curing agent based on the total weight (100% by weight) of the surface treatment composition may be included in more than 1% by weight and 10% by weight or less, which is 5 to 100 parts by weight of the total solid content of the binder resin 30 parts by weight, the effect is more excellent when satisfying each of these ranges.
  • the adhesion promoter improves the adhesion between the binder resin and the steel sheet and provides excellent processing adhesion without causing peeling of the surface treatment layer under deep processing conditions in a fuel tank manufacturing process.
  • phosphate ester Ester phosphate
  • ammonium phosphate Ammonium phosphate
  • a combination thereof may be used.
  • the adhesion promoter may be included in more than 1% by weight less than 30% by weight.
  • the content of the adhesion promoter is 1% by weight or less, the effect of improving the processing adhesion and corrosion resistance by the surface treatment composition is insufficient, and when the amount is 30% by weight or more, the stability of the surface treatment composition is deteriorated.
  • the adhesion promoter may be included in more than 2% by weight to 20% by weight. The effect when the range is satisfied is more excellent.
  • Wax The wax also provides lubricity during processing of the surface treatment layer.
  • the wax may be included in an amount of more than 0.1% by weight and less than 7% by weight, and more specifically, 0.2% by weight or more and 5% by weight or less.
  • the metal nanoparticles in the surface treatment composition can be used that the size of more than 0.1 nm and less than 600 nm. In the case of 0.1 nm or less, the effect of improving the conductivity is insufficient,
  • the metal nanoparticles may have a size of 5 ran or more and 500 nm or less, and the effect is more excellent when satisfying such a range.
  • the volume fraction (A / B) of the metal nanoparticles (A) in the surface treatment layer (B) is more than 5 and less than 60, the weldability is better Can be done.
  • the volume fraction of the metal nanoparticles may be calculated as a relative ratio of the volume of the metal nanoparticles per unit volume of the surface treatment layer.
  • the volume fraction when the volume fraction is 5 or less, weldability may be reduced.
  • the volume fraction when the volume fraction is 60 or more, the surface treatment layer may be peeled off during the machining process to reduce corrosion resistance.
  • volume fraction may be 10 or more and 50 or less, and the effect is more excellent when satisfying this range.
  • the volume fraction in the surface treatment layer has a critical significance according to Evaluation Example 2 described later.
  • the metal nanoparticles may be uniformly distributed throughout the surface treatment layer. This means that the metal nanoparticles are not in a state in which any part of the inside of the surface treatment layer is agglomerated.
  • 3) Coating layer adhesion amount of the plated steel sheet to which the composition for surface treatment is applied As the plated steel sheet to which the composition for surface treatment is applied, one or both surfaces of the natural steel plate may be used with a zinc or zinc-based alloy. If the steel plate is plated on both sides, each surface may be plated with a different material, and the coating amount on both sides may also be different.
  • both sides of a steel plate may be plated with zinc only, or zinc-based
  • One plated with an alloy may be used as the plated steel sheet, but one surface of the cold rolled steel sheet may be plated with zinc and the other side may be plated with a zinc-based alloy as the plated steel sheet. Of course, only one surface may be plated with zinc, a zinc-based alloy, or a combination thereof, and the other surface may be used as the plated steel sheet. However, to form a galvanized layer, and the composition for the surface treatment thereon
  • Coating weight (mg) is required to be limited to less than 10 g / m 2 greater than 120 g / m 2.
  • the adhesion amount ( mg ) of the zinc plated layer per one side ( m 2 ) of the cold rolled steel sheet is 10 g / m 2 or less, a surface treatment layer lacking the corrosion resistance and fuel resistance is formed, the zinc plating layer of more than 120 g / m 2 Forming causes powdering and increases the material cost, making it uneconomical.
  • the deposition amount (mg) may be limited to 30 g / m 2 or more and 100 g / m 2 .
  • the adhesion amount (mg) of the zinc-based alloy plating layer per one side (m 2 ) of the cold rolled steel sheet is 5 g / m has a greater than 2 need to be limited to less than 60 g / m 2.
  • adhesion amount (mg) is 5 g / m 2 or less, a surface treatment layer lacking corrosion resistance and fuel resistance is formed, and when forming a zinc-based alloy plating layer exceeding 60 g / m 2 , cracks occur and the material cost increases, which is not economical. .
  • the adhesion amount (mg) of the zinc-based alloy dopant layer on one side (m 2 ) of the cold rolled steel sheet may be limited to 20 g / m 2 or more and 50 g / m 2 .
  • the adhesion amount of each said plating layer is supported by the critical meaning according to the evaluation example 3 mentioned later.
  • the plated steel sheet may be a one-side plated steel sheet. That is, the above
  • the first plating layer 120 is present on any one surface of the steel plate 110, and the other surface has no plating layer at all, or inevitably, at an adhesion amount of 10 mg / m 2 or less (except O mg / m 2 ). 2 plating layer (not shown) may be present.
  • the one-side plating may be made by using a plating bath in which a current masking device is located at one side.
  • a current masking device In the plating bath, one side where the edge mask is positioned does not flow current, and the current may flow only to the other side.
  • electroplating When the natural sign is put into the plating bath and operated, electroplating may be induced only on one side of the current flowing.
  • a material steel sheet to be plated by the current shielding device ie, the cold rolled steel sheet
  • the second plated layer (not shown) on the other one side to form a series 1-plated layer 120 on one surface of the nyaengyeon steel sheet may be unavoidably formed but Or not intentionally formed.
  • the composition for the surface treatment is as described above is a so-called coating composition.
  • a final surface treatment layer may be formed.
  • the composition for the surface treatment, the production method is not particularly limited, _ including the above-mentioned main components, as long as the content of each component as long as described above.
  • _ including the above-mentioned main components, as long as the content of each component as long as described above.
  • metal nanoparticles, binder resin, amine-based curing agent, colloidal silica, adhesion promoter, and wax are added in accordance with each of the above content range, and the mixture is stirred gently to the surface treatment composition Can be used as
  • the total solids in the surface treatment composition may be controlled to be 10% by weight or more and less than 50% by weight based on the total weight (100 weight ⁇ 3 ⁇ 4) of the surface treatment composition. This, when the total solid content is less than 10% by weight, it is difficult to ensure a layered adhesion amount, when the 50% by weight or more, the stability of the composition is deteriorated and it is difficult to secure the uniformity of the surface treatment layer surface.
  • the surface treatment layer can be controlled such that one side (m 2) per coating weight (mg) is 200 mg / m 2 greater than 3000 mg / m 2 less than in the plated steel sheet. If the adhesion amount of the surface treatment layer is 200 mg / m 2 or less per side of the coated steel sheet, it is difficult to secure desired corrosion resistance and fuel resistance, and conversely, if it is 3000 mg / m 2 or more, adhesion and weldability are deteriorated. there is a problem.
  • the surface treatment layer can be controlled so that the adhesion amount (mg) per one side (m 2 ) of the plated steel sheet is 300 mg / m 2 or more and 2500 mg / m 2 or less, and the quality in this case is more Can be excellent.
  • the method of applying the surface treatment composition is not particularly limited, but a coating method such as a roll coating method, a spray method, or a deposition method can be used. Among these, the coating method may form the surface treatment layer only on one surface of the plated steel sheet, and may form the surface treatment layer on both surfaces.
  • the surface treatment composition may be treated without distinguishing between both surfaces of the plated steel sheet.
  • one side becomes a surface in contact with the fuel, and the other side is only a surface facing outward.
  • the outer surface may cause grooves due to the chipping which is inevitably caused when the fuel tank is operated.
  • a thick top coat of about 100 // m may be coated.
  • the temperature at which the coated surface treatment composition is cured to form the surface treatment layer is required to be limited to a temperature range of more than 100 and not more than 230 based on the steel plate temperature (MT _ Metal Temperature).
  • the reaction of the binder resin and the inorganic material in the coated surface treatment composition may not occur well, and some components may be removed during washing with water, thereby making it difficult to secure corrosion resistance. On the contrary, if it exceeds 230, the curing reaction does not occur any more and the calorie loss becomes large and economic efficiency may be reduced.
  • the temperature for forming the surface treatment layer the steel sheet silver (MT-Metal
  • Temperature may be in the range of 180 or more and 230 or less, and in this case, the quality may be more excellent.
  • the adhesion amount of the surface treatment layer and the temperature range of the steel sheet during the surface treatment is supported by the critical significance according to Evaluation Example 4 described later.
  • Figure 3 collectively shows the plating of (2), and the surface treatment of (3) using the composition prepared in (1).
  • the cold rolled steel sheet 110 is passed through a welder and a leveler, and then washed with pickling and pickling, and then moved to a plating cell in the form of a horizontal cell.
  • the plating of (2) is performed.
  • the strip reversal is changed, and then, is moved to a coater to perform the surface treatment process of (3).
  • a coater to perform the surface treatment process of (3).
  • the surface of the plating layer 120 can be processed.
  • the composition prepared in the above (1) can be applied by closing the surface of the surface on which the first plating layer 12 0 is located. At the same time, the surface of the surface where the second plating layer (not shown) is located can be opened to prevent the composition prepared in (1) from being applied.
  • the composition applied on the plating layer 120 may be cured to form the surface treatment layer 130. Finally, the surface quality can be inspected and obtained as a product.
  • metal nanoparticles Using water as a solvent, metal nanoparticles, binder resins, amine-based curing agents, colloidal silica, adhesion promoters, and waxes were added in accordance with the respective content ranges, and the mixture was stirred gently to prepare the surface according to each evaluation example. Used as a composition.
  • the particle size was different for each evaluation example.
  • the binder resin an amine-modified epoxy resin having a substituent substituted with an amine was used, and the weight average molecular weight is 1500 and the number average molecular weight is 1050.
  • colloidal silica silica having a particle diameter of more than 5 nm and less than 50 nmn 5 to 20 parts by weight of 100 parts by weight of water or ethanol was used.
  • Phosphoric acid ester was used as the adhesion promoter, and polyethylene wax was used as the wax.
  • Each raw material used at this time is to purchase and use each commercialized product.
  • a plating solution of pure zinc or zinc-based alloy plating composition was used. More specifically, a zinc or zinc-based alloy plating ingot is melted at a concentration of 40 to 120 g / L in a sulfuric acid bath whose temperature is controlled to 40 to 90 and controlled to pH 0.5 to 2.
  • the composition for surface treatment of (1) was applied to the fuel contact surface of the plated steel sheet of (2), followed by baking to obtain a final coated surface steel sheet.
  • the evaluation conditions of each physical property are as follows.
  • Solution stability For the composition for surface treatment of (1), 60 days at room temperature and
  • Corrosion resistance With respect to the surface-treated plated steel sheet of the above (3), at 35 ° C. After 500 hours in brine (concentration 5%) and lkg / cm 2 spray pressure, the corrosion area (% surface area rust generated relative to the total surface area%) was evaluated based on the following criteria:
  • Fuel resistance The fuel resistance for each of deteriorated gasoline and biodiesel was evaluated at high temperature using the fuel resistance evaluation apparatus of FIG. 2.
  • the corrosion state of each steel plate was evaluated as follows based on the corrosion area (% of rust generated relative to the total surface area).
  • Corrosion area of more than 50-Machinability The presence or absence of powdering or cracking at the time of cup processing for evaluating fuel resistance was observed and evaluated based on two criteria of good (O) and bad (X).
  • -Weldability Using a pneumatic arc spot welder, welding at a pressure of 250 kg for 15 cycles at a current of 7.5 kA and observing that constant strength is maintained without spatter is possible. ) was evaluated based on the impossibility of welding (X) and poor welding quality (r).
  • nickel nanoparticles were commonly used having a size of 50 nm.
  • each value is the composition for the surface treatment (composition 100 total With respect to the content of each component in the weight ⁇ 3 ⁇ 4 basis), the weight percent in the unit is considered.
  • the weight percent in the unit is considered.
  • the composition based on the total weight of the composition (100% by weight), more than 0.1% by weight of less than 15% by weight of metal nanoparticles, more than 5% by weight of less than 60% by weight of binder resin, more than 0.5% by weight and less than 15% by weight
  • Amine-based curing agent greater than 1% by weight of less than 40% by weight of colloidal silica, greater than 1% by weight of less than 30% by weight of adhesion promoter, greater than 0.1% by weight of less than 7% by weight of wax, and the remainder of the total solvent It can be seen that the quality can be improved.
  • the binder resin is 10% by weight or more and 50% by weight or less
  • the colloidal silica is 2% by weight or more and 30% by weight or less
  • the metal nanoparticles are 0.2% by weight %
  • the amine-based curing agent in an amount of 1 wt% ⁇ 3 ⁇ 4 to 10% by weight
  • the adhesion promoter is 2% by weight ⁇ 3 ⁇ 4 to 20% by weight ⁇
  • the wax is 0.2% to 5% by weight
  • B means the unit volume of the surface treatment layer (lmm 3 )
  • A means the total volume (mm 3 ) of nickel nanoparticles contained in the unit volume.
  • composition for each surface treatment used the composition according to Example 2 of Table 1 in common.
  • the coating weight is 10 g / m 2 greater than 120 g / m 2 or less, the coating weight specifically 20 g / m 2 more than 100 g / m 2 or less, O for connection alloy plating layer Greater than 5 g / m 2 and less than 60 g / m 2 , specifically 20 g / m 2 and greater than 50 g / m 2 , It can be seen that all the physical property evaluation results are excellent. Evaluation Example 4 Evaluation of Surface Treatment Layer Deposition and Annealing Degree According to Application of Surface Treatment Composition
  • the surface treatment composition is 1000mg / m 2 It is applied, and the steel sheet was baked silver is cured under the condition that 210 ° C.
  • composition according to Example 2 of Table 1 was used for each composition for surface treatments.
  • the surface treatment layer coating weight is 200 mg / m 2 greater than 3000 mg / m is less than 2, in particular 800 mg / m 2 than when 1000 mg / m 2 or less can be seen that all of the physical properties and when the result is excellent.
  • the steel sheet temperature during the surface treatment is more than 100 ° C and 230 ° C or less, specifically 180 ° C or more and 230 ° C or less, all the properties evaluation results are excellent.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Wood Science & Technology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Nanotechnology (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)
  • Laminated Bodies (AREA)
  • Paints Or Removers (AREA)

Abstract

도금 강판의 표면처리용 조성물, 이를 이용하여 표면처리된 강판, 및 이를 이용한 표면처리 방법에 관한 것이다. 구체적으로, 상기 표면처리용 조성물은, 총 중량 (100 중량 %)에 대해, 0.1 중량 % 초과 15 중량 % 미만의 금속 나노 입자, 5 중량 % 초과 60 중량 % 미만의 바인더 수지, 0.5 중량 % 초과 15 중량 % 미만의 아민계 경화제, 1 중량 % 초과 40 중량 % 미만의 콜로이달 실리카, 1 중량 % 초과 30 중량 % 미만의 밀착 증진제, 0.1 중량 % 초과 7 중량 % 미만의 왁스, 및 잔부의 용매를 포함하는 것이다.

Description

【명세서】
【발명의 명칭】
도금 강판의 표면처리용 조성물, 이를 아용하여 표면처리된 강판, 및 이를 이용한 표면처리 방법
【기술분야】
도금 강판의 표면처리용 조성물, 이를 이용하여 표면처리된 강판, 및 이를 이용한 표면처리 방법에 관한 것이다. 【배경기술】
자동차, 모터 사이클 등 차량의 연료 탱크에 이용되는 강판은, 차량의 안전에 직결되는 주요 부품으로, 기본적으로 일정한 강도 및 내구성을 가지면서도, 연료에 대한 내식성과, 연료 탱크와 다른 부자재가 연결되는 이음매 부분에서 연료가 새는 현상 (leak)을 방지하기 위한 용접성 둥의 품질이 일정 수준 이상으로 확보될 필요가 있다.
일찍이, 강판의 품질을 개선하는 방법 중 하나로, 납 (Pb), 주석 (Sii), 크롬 (Cr) 등 중금속 물질의 도금 방법이 활발히 연구된 바 있다. 그러나, 이들 중금속 물질이 환경 오염 물질로 규제되는 최근 실정에서, 더 이상 연구되기에 부적절하다.
한편, 강판의 품질을 개선하는 다른 방법으로, 납 (Pb), 주석 (Sn), 크름 (Cr) 등 증금속 물질을 포함하지 않고, 유기 수지 또한 포함하지 않는 조성물에 의한 표면처리가 알려져 있다. 그러나, 이에 따르면 용접성이 저하되는 문제가 있다.
【발명의 상세한 설명】
【기술적 과제】
본 발명의 구현예들에서 제공되는, 도금 강판의 표면처리용 조성물, 이를 이용하여 표면처리된 강판, 및 이를 이용한 표면처리 방법을 통해, 앞서 지적된 문제들을 해소하고자 한다.
[기술적 해결방법】
도금 강판의 표면처리용조성물
본 발명의 일 구현예에서는, 총 중량 (100 중량 %)에 대해, 0.1 중량 % 초과 15 중량 % 미만의 금속 나노 입자,
5 중량 % 초과 60 중량 % 미만의 바인더 수지,
0.5 중량 % 초과 15 중량 % 미만의 아민계 경화제,
1 증량 <¾ 초과 40 중량 % 미만의 콜로이달 실리카,
1 중량 % 초과 30 중량 <¾ 미만의 밀착 증진제,
0.1 증량 % 초과 7 중량 <¾ 미만의 왁스, 및
잔부의 용매를 포함하는,
도금 강판의 표면처리용 조성물을 제공하며, 이하에서 그 구성 요소를 간략히 설명한다.
우선, 상기 금속 나노 입자는, Ni, Zn, Al, Cu, Ag, W, Mo, Co, Pd 및 Au 을 포함하는 군에서 선택되는 1종의 금속 나노 입자, 또는 이들의 흔합물인 것일 수 있다.
또한, 상기 금속 나노 입자의 크기는, 0.1 nm 초과 600 nm 미만인 것일 수 있다.
상기 바인더 수지는, 수평균분자량이 300 초과 2000 미만이고,
중량평균분자량이 500 초과 3000 미만인 것일 수 있다.
구체적으로, 상기 바인더 수지는, 변성 에폭시 수지, 에폭시 수지, 또는 이들의 흔합물일 수 있다. 이때, 상기 변성 에폭시 수지는, 아민 변성 에폭시 수지일 수 있다.
상기 콜로이달 실리카는, 입경이 5 ran 초과 50 nm 미만인 실리카가, 100 증량부의 물 또는 에탄올 에 5 내지 20 중량부 분산된 것일 수 있다.
상기 밀착 증진제는, 인산 에스테르 (Ester phosphate), 인산
암모늄 (Ammmonium phosphate), 또는 이들의 혼합물일 수 있다.
상기 왁스는, 폴리에틸렌계 왁스, 폴리테트라플루오르에틸렌 (FTFE)계 왁스, 또는 이들의 흔합물일 수 있다. 표면처리된도금강판
본 발명의 다른 일 구현예에서는,
도금 강판; 및 표면처리층;을 포함하고,
상기 도금 강판은, 냉연 강판 및 상기 넁연 강판의 일면 또는 양면 상에 위치하는 도금층을 포함하고, 상기 표면처리층은, 상기 도금 강판의 도금층 상에 위치하고,
상기 표면처리층의 총 중량 (loo 중량%)에 대해, αι 중량 % 초과 15 중량 <¾ 미만의 금속 나노 입자, 5 증량 % 초과 60 중량 % 미만의 바인더 수지,으5 중량 % 초과 15 중량" ¾ 미만의 아민계 경화제, 1 중량 % 초과 40 중량 % 미만의 콜로이달 실리카, 1 증량 % 초과 30 중량 % 미만의 밀착 증진제, 및 0.1 중량 % 초과 7 중량 % 미만의 왁스를 포함하는, ^
표면처리된 도금 강판을 제공하며, 이하에서는 그 구성 요소를 간략히 설명한다.
우선, 상기 표면처리층 (Β) 내 상기 금속 나노 입자 (Α)의 부피 분율 (Α/Β)은, 5 초과 60 미만일 수 있다.
상기 도금 강판의 편면 (m2) 당 상기 표면처리층의 부착량 (mg )은, 200 mg/m2 초과 3000 mg/m2 미만일 수 있다.
상기 도금층은, 상기 냉연 강판의 양면에 위치하고, 상기 넁연 강판의 양면에서 동일하거나 상이하고, 서로 독립적으로, 아연 도금층, 또는 아연계 합금 도금층일 수 있다.
예를 들어, 상기 도금층은 아연 도금층이고, 상기 넁연 강판의 편면 (m2) 당 상기 아연 도금층의 부착량 (mg)은, 10 g/m2 초과 120 g/m2 미만인 것일 수 있다. 이와 독립적으로, 상기 도금층은 아연계 합금 도금층이고, 상기 넁연 강판의 편면 (m2) 당 상기 아연계 합금 도금층의 질량 (mg)은, 5 g/m2 초과 60 g/m2 미만인 것일 수 있다. 도금강판의 표면처리 방법
본 발명의 또 다른 일 구현예에서는,
넁연 강판 및 상기 냉연 강판의 일면 또는 양면 상에 위치하는 도금층을 포함하는, 도금 강판을 준비하는 단계;
상기 도금 강판의 도금층 상에, 표면처리용 조성물을 도포하는 단계; 및 상기 도포된 표면처리용 조성물을 경화시켜, 표면처리층을 형성하는 단계;를 포함하고,
상기 표면처리용 조성물은, 총 중량 (100 중량%)에 대해, 0.1 중량 % 초과 15 중량" ¾ 미만의 금속 나노 입자, 5 중량 % 초과 60 중량 % 미만의 바인더 수지, 0.5 중량 % 초과 15 중량 % 미만의 아민계 경화제, 1 중량 % 초과 40 중량 % 미만의 콜로이달 실리카, 1 중량 % 초과 30 중량 % 미만의 밀착 증진제 , 0.1 중량 <¾ 초과 7 증량 <¾ 미만의 왁스, 및 잔부의 용매를 포함하는 것인,
도금 강판의 표면처리 방법을 제공하며, 이하에서는 그 각 단계를 간략히 설명한다.
상기 도금 강판의 도금층 위에, 표면처리용 조성물을 도포하는 단계;는, 를코팅법, 스프레이법, 또는 침적법으로 수행되는 것일 수 있다.
상기 도포된 표면처리용 조성물을 경화시켜, 표면처리층을 형성하는 단계;는, 강판 온도 (MT— Metal Temperature) 기준으로 100 초과 230 이하의 온도 범위에서 수행되는 것일 수 있다,
상기 도금 강판을 준비하는 단계;는, 일 측면에 전류 차폐 장치 (edge mask)가 위치하는 도금조를 이용하여 수행되는 것일 수 있다.
【발명의 효과】
본 발명의 구현예들에 따라, 도금 강판의 표면처리용 조성물을 이용하여 표면처리된 강판은, 중금속을 포함하지 않아 친환경적이면서도, 내식성 및 용접성이 우수하다.
【도면의 간단한 설명】
도 1은, 본 발명의 일 구현예에 따른, 표면처리된 편면 도금 강판을
개략적으로 도시한 것이다.
도 2는, 본 발명의 평가예에서 사용되는, 내연료성 평가장치를 개략적으로 나타낸 것이다.
도 3은, 본 발명의 실시예에서 사용되는, 편면도금 및 표면처리의 전체 공정을 개략적으로 나타낸 것이다.
【발명의 실시를 위한 최선의 형태】
본 발명의 이점 및 특징, 그리고 그것들을 달성하는 방법은 상세하게 후술되어 있는 구현예들을 참조하면 명확해질 것이다. 그러나, 본 발명은 이하에서 개시되는 구현예들에 한정되는 것이 아니라 서로 다른 다양한 형태로 이루어질 수 있으며, 단지 본 구현예들은 본 발명의 개시가 완전하도록 하고, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 발명의 범주를 완전하게 알려주기 위해 제공되는 것이며, 본 발명은 청구항의 범주에 의해 정의될 뿐이다.
명세서 전체에서, 어떤 부분이 어떤 구성요소를 "포함"한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라 다른 구성요소를 더 포함할 수 있는 것을 의미한다. 도금강판의 표면처리용조성물
본 발명의 일 구현예에서는,
본 발명의 일 구현예에서는, 총 중량 (100 중량 %)에 대해,
0.1 중량 % 초과 15 중량 <¾ 미만의 금속 나노 입자,
5 중량 % 초과 60 중량 <¾ 미만의 바인더 수지,
0.5 중량 % 초과 15 중량 % 미만의 아민계 경화제,
1 중량 % 초과 40 중량 % 미만의 콜로이달 실리카,
1 중량 % 초과 30 중량 % 미만의 밀착 증진제,
0.1 중량 % 초과 7 중량 <¾ 미만의 왁스, 및
잔부의 용매를 포함하는,
도금 강판의 표면처리용 조성물을 제공한다. 표면처리된도금강판
본 발명의 다른 일 구현예에서는,
도금 강판; 및 표면처리층 (130);을 포함하고,
상기 도금 강판은, 냉연 강판 (110) 및 상기 냉연 강판의 일면 또는 양면 상에 위치하는 도금층 (120)을 포함하고,
상기 표면처리층 (130)은, 상기 도금 강판의 도금층 (120) 상에 위치하고, 상기 표면처리층의 총 중량 (loo 중량 %)에 대해, αι 중량 % 초과 15 중량 % 미만의 금속 나노 입자, 5 증량 % 초과 60 중량1 ¾ 미만의 바인더 수지, 0.5 중량 % 초과 15 중량 % 미만의 아민계 경화제, 1 중량 % 초과 40 증량 % 미만의 콜로이달 실리카, 1 중량 % 초과 30 중량 % 미만의 밀착 증진제, 및 0.1 증량 % 초과 7 중량 % 미만의 왁스를 포함하는,
표면처리된 도금 강판을 제공한다. 도금강판의 표면처리 방법
본 발명의 또 다른 일 구현예에서는,
넁연 강판 및 상기 넁연 강판의 일면 또는 양면 상에 위치하는 도금층을 포함하는, 도금 강판을 준비하는 단계;
상기 도금 강판의 도금층 상에, 표면처리용 조성물을 도포하는 단계; 및 상기 도포된 표면처리용 조성물을 경화시켜, 표면처리층을 형성하는 단계 ;를 포함하고,
상기 표면처리용 조성물은, 총 중량 (100 중량%)에 대해, 0.1 중량 % 초과 15 중량 % 미만의 금속 나노 입자, 5 중량 % 초과 60 중량 % 미만의 바인더 수지, 0.5 중량 % 초과 15 중량 % 미만의 아민계 경화제, 1 증량 % 초과 40 증량 % 미만의 콜로이달 실리카, 1 중량% 초과 30 중량 % 미만의 밀착 증진제, 0.1 중량 % 초과 7 중량 % 미만의 왁스, 및 잔부의 용매를 포함하는 것인,
도금 강판의 표면처리 방법을 제공한다. 구체적으로, 본 발명의 일 구현예에 따른 표면처리용 조성물은, 본 발명의 또 다른 일 구현예에 따라 도금 강판의 표면처리에 이용될 수 있다. 또한, 그러한 표면처리 결과, 본 발명의 다른 일 구현예에 따라 표면처리된 도금 강판이 수득될 수 있다.
상기 도금층 위에 처리되는 조성물은, 크게 반웅형 또는 도포형 중에 선택될 수 있는데, 내식성 측면에서 우수한 도포형 조성물을 선택할 수 있다.
다만, 환경 문제를 고려하여, 납 (Pb), 주석 (Sn), 크름 (Cr) 등의 중금속 물질을 포함하지 않는 도포형 조성물을 제공할 필요가 있는데, 이 경우, 중금속 물질을 포함하는 도포형 조성물에 비해 부착량이 높아야만 그에 상웅하는 내식성을 확보할 수 있는, 또 다른 문제가 야기된다. 이와 더불어, 부착량이 높아질수록, 그 하부의 도금층과의 밀착성이 낮아지거나, 전도성, 용접성, 내연료성, 가공성 등이 낮아지는 둥, 전체적으로 품질이 낮아지는 것 또한 문제된다.
따라서, 중금속 물질을 포함하지 않는 도포형 조성물이면서도, 적은 부착량으로도 층분한 내식성이 확보되며, 전체적으로 우수한 품질을 확보할 수 있는 표면처리용 조성물이 요구되는데, 이에 해당되는 것이 본 발명의 일 구현예에 따른 표면처리용 조성물이다.
구체적으로, 상기 표면처리용 조성물은, 납 (Pb), 주석 (Sn), 크름 (Cr) 등의 증금속 물질은 포함되지 않아 친환경적인 이점이 있고, 금속 나노 입자, 바인더 수지, 아민계 경화제, 콜로이달 실리카, 밀착증진제, 왁스 등의 다양한 유무기 물질들을 주요 성분으로 포함함에 따라 내식성, 가공성, 용접성, 내연료성, 밀착성 둥의 품질이 우수한 표면처리층을 형성할 수 있는 것이다.
구체적으로, 표면처리층의 품질 제어에 있어서 , 1) 상기 표면처리용 조성물의 주요 성분 및 각 성분의 함량을 제어하는 것이 가장 중요하며, 이 외, 2) 상기 표면처리용 조성물 내 금속 나노 입자의 크기, 및 이에 따라 형성되는 표면처리층 내 금속 나노 입자의 부피 분율ᅳ 3) 상기 표면처리용 조성물이 적용되는 도금 강판의 도금층 부착량, 4) 상기 표면처리용 조성물의 적용에 따른 표면처리층 부착량 및 소부 온도 등 또한 영향을 줄 수 있다.
이하, 상기 1) 내지 4) 항목에 대해 설명하기로 한다. 이후, 이러한 설명의 구체적 근거를, 본 발명의 평가예들로 제시하기로 한다.
1) 상기 표면처리용 조성물의 주요 성분 및 각 성분의 함량 바인더 수지 및 콜로이달 실리카: 우선, 상기 바인더 수지 및 상기 콜로이달 실리카는, 상기 표면처리용 조성물의 소수성을 높여, 이를 사용하여 형성되는 표면처리층 내부에 부식 인자가 침투되는 것을 막는 기능을 한다.
구체적으로 상기 표면처리용 조성물의 총 중량 (100중량%)에 대해, 상기 바인더 수지는 5 중량 <¾ 초과 60 중량 % 미만, 상기 콜로이달 실리카는 1 중량 % 초과 40 중량 <¾ 미만으로 포함될 수 있다.
이와'달리, 상기 바인더 수지의 함량이 5 중량 % 이하가 되면 바인딩 (binding) 기능을 수행하는 구성 요소의 함량이 적어, 수세 시 강판 표면에 얼룩이 생겨 표면불균일이 일어날 수 있다. 이와 달리, 상기 바인딩 수지의 함량이 60 중량 % 이상일 경우, 상기 표면처리용 조성물의 소수성이 저하될 뿐만 아니라, 내식성 또한 저하되는 문제가 있다.
이때, 상기 바인더 수지는, 수평균분자량이 300 초과 2000 미만이고, 중량평균분자량이 500 초과 3000 미만인 것일 수 있다.
구체적으로, 상기 바인더 수지는, 변성 에폭시 수지, 에폭시 수지, 또는 이들의 흔합물일 수 있다. 이때, 상기 변성 에폭시 수지는, 아민 변성 에폭시 수지일 수 있다. 한편, 상기 콜로이달 실리카는, 입경이 5 nm 초과 50 nm 미만인 실리카가, 100 중량부의 물 또는 에탄올 에 5 내지 20 중량부로 분산된 것일 수 있다.
또한, 상기 표면처리용 조성물의 총 중량 (100중량%)에 대해, 상기 콜로이달 실리카의 함량이 1 중량 % 이하일 경우 층분한 내식성을 발휘할 수 없고, 40 중량 % 이상에서는 가공성 열화 및 용액 안정성이 나빠지게 된다.
보다 구체적으로, 상기 표면처리용 조성물의 총 중량 (100중량 %)에 대해, 상기 바인더 수지는 10 중량 % 이상 50 중량 % 이하, 상기 콜로이달 실리카는 2 중량 % 이상 30 중량 % 이하로 포함될 수 있고, 이러한 각 범위를 만족할 경우의 효과가 보다 우수하다.
금속 나노 입자: 나아가, 상기 금속 나노 입자는 그 우수한 전도성에 의해, 연료탱크 제작 공정 중의 스폿, 심 용접 속도 및 적정 용접 전류 범위를 향상시키는 기능을 한다.
즉, 상기 표면처리용 조성물 내 금속 나노 입자는 전도성 향상제로써 기능하며,Ni,Zn,Al, Cu,Ag,W, Mo, Co,Pd 및 Au 로 이루어진 군으로부터 선택되는 1종의 금속 나노 입자이거나, 2종 이상의 금속 나노 입자가 흔합된 흔합물 형태로 사용할 수 있다. ,
구체적으로, 상기 표면처리용 조성물의 총 중량 (100중량 %)에 대해, 상기 전도성 향상제인 금속 나노 입자는 0.1 중량 % 초과 15 중량 % 미만으로 포함될 수 있다. 이때, 상기 금속 나노 입자의 함량이 0.1 증량 % 이하일 경우 전도성 향상 효과가 미흡하며, 15 중량 % 이상에서는 내식성 및 밀착성이 떨어지게 된다.
보다 구체적으로, 상기 표면처리용 조성물의 총 중량 (100중량 %)에 대해, 상기 금속 나노 입자는 0.2 중량 % 이상 10 증량 % 이하로 포함될 수 있고, 이러한 범위를 만족할 경우의 효과가 보다 우수하다.
아민계 경화제: 한편, 상기 바인더 수지를 경화시켜 견고한 가교결합을 이루도록 해주는 경화제로는, 다이 아민 (di-amine) 또는 트라이 아민
(tri-amine)을 포함하는 아민계 경화제를 선택하였다.
구체적으로, 상기 표면처리용 조성물의 총 중량 (100중량 %)에 대해, 상기 아민계 경화제는 0.5 중량 <¾ 초과 15 중량 % 미만으로 포함될 수 있다.
- 만약 상기 아민계 경화제의 함량이 0.5 중량 % 이하가 되면 상기 바인더 수지의 가교 결합이 층분히 형성되지 않으며, 오히려 15 중량 % 이상에서는 최종 표면처리층의 안정성이 저하될 수 있다. 보다 구체적으로, 상기 표면처리용 조성물의 총 중량 (100중량 %)에 대해 상기 아민계 경화제는 1 중량 % 이상 10 중량 % 이하로 포함될 수 있고, 이는 상기 바인더 수지의 전체 고형분 100 중량부 대비 5 내지 30 중량부인 바, 이러한 각 범위를 만족할 경우의 효과가 보다 우수하다.
밀착 증진제: 상기 밀착 증진제는, 상기 바인더 수지와 강판의 밀착성을 향상시켜, 연료탱크 제작공정 중의 심가공 조건에서 표면처리층의 박리가 발생하지 않고 우수한 가공 밀착성을 부여하는 기능을 한다. 이러한 밀착 증진제로는 인산 에스테르 (Ester phosphate), 인산 암모늄 (Ammmonium phosphate), 또는 이들의 흔합물을 사용할 수 있다.
구체적으로, 상기 표면처리용 조성물의 총 증량 (100중량 %)에 대해, 상기 밀착 증진제는 1 증량 % 초과 30 중량 % 미만으로 포함될 수 있다. 이때, 상기 밀착 증진제의 함량이 1 중량 % 이하가 되면 상기 표면처리용 조성물에 의한 가공 밀착성 및 내식성 향상 효과가 미흡하며, 30 증량 % 이상이 되면 상기 표면처리용 조성물의 안정성이 떨어지게된다.
보다 구체적으로, 상기 표면처리용 조성물의 총 증량 (100중량%)에 대해, 상기 밀착 증진제는 2 중량 % 이상 20 중량 % 이하로 포함될 수 있고, 이러한 . 범위를 만족할 경우의 효과가 보다 우수하다.
왁스: 또한, 상기 왁스는, 표면처리층의 가공 시 윤활성을 부여하는
기능을하는 것이다,
상기 표면처리용 조성물의 총 중량 (100중량 %)에 대해, 상기 왁스는 0.1 중량 % 초과 7 중량 % 미만으로 포함될 수 있고, 보다 구체적으로 0.2 중량 % 이상 5 중량 % 이하로 포함될 수 있다.
상기 표면처리용 조성물 내 주요 성분과 관련하여, 각 성분의 임계적 의의는 후술되는 평가예 1에 의해 뒷받침된다.
2) 상기 표면처리용 조성물 내 금속 나노 입자의 크기, 및 이에 따라 형성되는 표면처리층 내 금속 나노 입자의 부피 분율 아을러, 상기 금속 나노 입자로는 그 크기가 0.1 nm 초과 600 nm 미만인 것을 사용할 수 있는데, 0.1 nm 이하의 크기에서는 전도성 향상 효과가 미흡하고,
600 nm 이상일 경우 상기 표면처리용 조성물 내 침전되어 안정성을 저하시키는 요인디 된다.
보다 구체적으로, 상기 금속 나노 입자의 크기가 으 5 ran 이상 500 nm 이하인 것을 사용할 수 있고, 이러한 범위를 만족할 경우의 효과가 보다 우수하다.
한편, 상기 표면처리용 조성물에 의해 형성되는 표면처리층에서, 상기 표면처리층 (B) 내 상기 금속 나노 입자 (A)의 부피 분율 (A/B)이 5 초과 60 미만일 경우, 용접성이 보다 우수해질 수 있다. 여기서, 상기 금속 나노 입자의 부피 분율은, 상기 표면처리층의 단위 부피 당, 상기 금속 나노 입자가 차지하는 부피의 상대적인 비율로 계산될 수 있다.
이때 상기 부피 분율이 5 이하가 되면 용접성이 저하될 수 있고, 60 이상이 되면 가공 공정에서 표면처리층이 박리되어 내식성 둥이 저하될 수 있다.
보다 구체적으로, 상기 부피 분율은 10 이상 50 이하일 수 있고, 이러한 범위를 만족할 경우의 효과가 보다 우수하다.
상기 표면처리용 조성물 내 금속 나노 입자와 관련하여, 그 크기, 및
표면처리층 내 부피 분율은, 후술되는 평가예 2에 의해 그 임계적 의의가
뒷받침된다.
또한 이때, 상기 금속 나노 입자는, 상기 표면처리층 내부에, 전체적으로 균일하게 분포된 것일 수 있다. 이는, 상기 표면처리층 내부의 어느 한 부분에 상기 금속 나노 입자가 뭉쳐 있는 상태가 아닌 것을 의미하는 것이다. 3) 상기 표면처리용 조성물이 적용되는 도금 강판의 도금층 부착량 상기 표면처리용 조성물이 적용되는 도금 강판으로는, 넁연 강판의 일면 또는 양면이 아연 또는 아연계 합금으로 도금된 강판을 사용할 수 있다. 만약 양면이 도금된 강판일 경우, 각각의 면이 서로 다른 물질로 도금된 것일 수 있고, 양면에서의 도금 부착량 또한 서로 다를 수 있다.
예를 들어, 넁연 강판의 양면 모두 아연으로만 도금되거나, 아연계
합금으로만 도금된 것을 상기 도금 강판으로 사용할 수 있지만, 냉연 강판의 어느 일면은 아연으로 도금되고 다른 일면은 아연계 합금으로 도금된 것을 상기 도금 강판으로 사용할 수 있다. 물론, 어느 일면만 아연, 아연계 합금, 또는 이들의 조합으로 도금되고, 다른 일면은 도금되지 않은 것 또한 상기 도금 강판으로 사용할 수 있다. 다만, 아연 도금층을 형성하고, 그 위에 상기 표면처리용 조성물로
표면처리층을 형성할 경우, 냉연 강판의 편면 (m2) 당 상기 아연 도금층의
부착량 (mg)은 10 g/m2 초과 120 g/m2 미만으로 제한될 필요가 있다.
만약 상기 냉연 강판의 편면 (m 2) 당 상기 아연 도금층의 부착량 (mg)이 10 g/m2 이하일 경우 내식성 및 내연료성이 부족한 표면처리층이 형성되며, 120 g/m2 초과하는 아연 도금층 형성 시 파우더링 현상이 유발되며 재료비가 증가하여 경제적이지 않다.
보다 구체적으로, 넁연 강판의 편면 (m2) 당 상기 아연 도금층의
부착량 (mg)은 30 g/m2 이상 100 g/m2으로 제한될 수 있다.
이와 달리, 아연계 합금 도금층을 형성하고, 그 위에 상기 표면처리용 조성물로 표면처리층을 형성할 경우, 냉연 강판의 편면 (m2) 당 상기 아연계 합금 도금층의 부착량 (mg)은 5 g/m2 초과 60 g/m2 미만으로 제한될 필요가 있다.
만약 상기 냉연 강판의 편면 (m2) 당 상기 아연계 합금 도금층의
부착량 (mg)이 5 g/m2 이하일 경우 내식성 및 내연료성이 부족한 표면처리층이 형성되며, 60 g/m2 초과하는 아연계 합금 도금층 형성 시 크랙이 발생하며 재료비가 증가하여 경제적이지 않다.
보다 구체적으로, 냉연 강판의 편면 (m2) 당상기 아연계 합금 도츰층의 부착량 (mg)은 20 g/m2 이상 50 g/m2으로 제한될 수 있다.
상기 각 도금층의, 부착량은, 후술되는 평가예 3에 따라 그 임계적 의의가 뒷받침 된다.
한편, 상기 도금 강판은, 편면도금 강판일 수 있다. 즉, 상기 넁연
강판 (110)의 어느 일면 상에 제 1 도금층 (120)이 존재하고, 다른 일면은 도금층이 아예 존재하지 않거나 불가피하게 10 mg/m2 이하 (단, O mg/m2 제외)의 부착량으로 제 2 도금층 (미도시)이 존재하는 것일 수 있다.
상기 편면도금은, 일 측면에 전류 차폐 장치 (edge mask)가 위치하는 도금조를 이용하여 이루어진 것일 수 있다. 상기 도금조에서, 상기 전류 차폐 장치 (edge mask)가 위치하는 일 측면은 전류가 흐르지 않고, 다른 일 측면으로만 전류가 흐를 수 있다. 상기 넁연 간판을 상기 도금조에 투입하고 작동시키면, 전류가 흐르는 일 측면에서만 전기 도금이 유도될 수 있다.
이때, 상기 전류 차폐 장치가 도금하고자 하는 소재 강판 (즉, 상기 냉연 강판
110)과 지나치게 근접하게 되면, 상기 소재 강판 및 상기 전류 차폐 장치를 손상시킬 수 있다. 그 반대로, 지나치게 멀어질 경우, 도금을 목적하지 않는 측면의 모서리 (edge)에 전류가 흘러, 도금이 이루어질 수 있어, 용접 품질이 열화하게 된다ᅳ 따라서, 상기 전류 차폐 장치 내 도금하고자 하는 소재 강판 (110)의 위치를 적절히 조절할 필요가 있다.
앞서 언급한 바와 같'이, 편면 도금 강판으로 제조할 경우, 상기 넁연 강판의 편면에 계 1 도금층 (120)을 형성할 때 다른 편면에 상기 제 2 도금층 (미도시)이 불가피하게 형성될 수 있지만, 의도적으로 형성된 것은 아니다.
4) 상기 표면처리용 조성물의 적용에 따른 표면처리층 부착량 및 소부 온도 상기 표면처리용 조성물은, 이른바 도포형 조성물임은 앞서 설명한 바와 같다. 이에, 상기 도금 강판의 도금층 상에 상기 표면처리용 조성물을 도포하고 경화시키면, 최종 표면처리층이 형성될 수 있다.
이때, 상기 표면처리용 조성물은, 그 제조 방법이 특별히 한정되지 않으며, _ 전술한 주요 성분을 포함하되, 전술한 바에 따라 각 성분의 함량을 만족하기만 하면 된다. 예를 들어, 물을 용매로 사용하여, 금속 나노 입자, 바인더 수지, 아민계 경화제, 콜로이달 실리카, 밀착 증진제, 및 왁스를 상기 각 함량 범위에 맞추어 투입하고, 층분하게 교반하여 상기 표면처리용 조성물로 사용할 수 있다.
이때, 상기 표면처리용 조성물 내 전체 고형분은, 상기 표면처리용 조성물의 총 중량 (100 중량 <¾)에 대해 10 중량 % 이상 50 증량 % 미만이 되도록 제어할 수 있다. 이는, 전체 고형분 함량이 10 중량 % 미만인 경우 층분한 부착량을 확보하기 어렵고, 50 중량 % 이상일 경우 조성물의 안정성이 저하되며 표면처리층 표면의 균일성을 확보하기 어려운 문제를 고려한 것이다.
한편, 상기 표면처리층은, 상기 도금 강판의 편면 (m2) 당 부착량 (mg)이 200 mg/m2 초과 3000 mg/m2 미만이 되도록 제어할 수 있다. 만약 상기 표면처리층의 부착량아상기 도금 강판의 편면 당 200 mg/m2 이하가 되면 원하는 내식성과 내연료성을 확보하기 어렵고, 그와반대로 3000 mg/m2 이상이 되면 밀착성과 용접성이 저하되는 문제가 있다.
보다 구체적으로, 상기 표면처리층은, 상기 도금 강판의 편면 (m2) 당 부착량 (mg)이 300 mg/m2 이상 2500 mg/m2 이하가 되도록 제어할 수 있고, 이 경우의 품질이 보다 우수할 수 있다. 이러한 표면처리층을 형성하기 위해, 상기 표면처리용 조성물을 도포하는 방법은 특별히 제한되지 않지만, 롤코팅법, 스프레이법, 또는 침적법 등의 도포 방법을 이용할 수 있다. 이 중 를코팅법은, 상기 도금 강판의 일면에만 상기 표면처리층을 형성할수도 있고, 양면에도 상기 표면처리층을 형성할 수 있는 방법이다.
한편, 상기 표면처리층이 형성된 강판을 연료탱크용으로 사용하기 위해, 상기 도금 강판 양면에 대해 구별하지 않고 상기 표면처리용 조성물을 처리할 수 있다. 이 경우, 어느 일면은 연료와 접하는 면이 되고, 다른 일면은 외부로 향하는 면이 되는 것일 뿐이다.
이때, 외부로 향하는 면은 실제 연료탱크의 운행 시 불가피하게 야기되는 칩핑 (Chipping)으로 인하여 홈집이 유발될 수 있어, 연료와 접하는 면과 달리 약 100 //m 내외의 두꺼운 상도 도장을 할 수 있지만, 이에 제한되는 것은 아니다. 다만, 상기 도포된 표면처리용 조성물을 경화시켜, 표면처리층을 형성하는 온도는, 강판 온도 (MT _ Metal Temperature) 기준으로 100 초과 230 이하의 온도 범위로 제한될 필요가 있다.
만약 100 이하가되면 상기 도포된 표면처리용 조성물 내 바인더 수지와 무기물의 반응이 잘 일어나지 않을 수 있고, 수세 처리 시 일부 성분이 탈락되어 내식성 확보가 곤란해질 수 있다. 그와 반대로, 230 초과가 되면, 경화 반웅은 더 이상 일어나지 않고 열량 손실이 커져 경제성이 떨어질 수 있다.
구체적으로, 상기 표면처리층을 형성하는 온도는, 강판 은도 (MT - Metal
Temperature) 기준으로 180 이상 230 이하의 범위일 수 있고, 이 경우의 품질이 더욱 우수할 수 있다.
특히, 상기 표면처리층의 부착량 및 표면처리 시 강판의 온도 범위는, 후술되는 평가예 4에 따라 그 임계적 의의가 뒷받침 된다.
【발명의 실시를 위한 형태】
이하, 본 발명의 구현예들에 관한 실시예, 이에 대비되는 비교예, 및 이들의 평가예를 통해 상세히 설명한다. 단 하기의 실시예는 본 발명을 예시하는 것일 뿐, 본 발명의 내용이 하기의 실시예에 의하여 한정되는 것은 아니다. 구체적으로, 이하의 실시예 및 비교예는 공통적으로, 다음과 같은 과정에 따라 (1) 표면처리용 조성물을 제조하고, (2) 도금 강판을 제조하고, (3) 표면처리하여, (4) 최종 표면처리된 도금 강판을 평가하였다.
이와 관련하여, 도 3은 상기 (2)의 도금, 및 상기 (1)에서 제조된 조성물을 사용한 상기 (3)의 표면처리 공정을 총괄적으로 나타낸 것이다.
도 3을 참고하면, 냉연 강판 (110)을 용접기 (Welder) 및 레벨러 (Leveller)를 통과시킨 뒤ᅳ 수세 (Cleaning) 및 산세 (Pickling) 처리한 뒤, 수평 셀 (Horizontal Cell) 형태의 도금조로 이동시켜 상기 (2)의 도금을 수행한다.
이때, 상기 도금조의 양 측면에는 전류가 흐르며 (On-current), 이에 따라 상기 냉연 강판 (110)의 양면에 도금층 (120)이 각각 형성될 수 있다.
이처럼 도금된 강판은, 후처리 (Post Treatment) 공정을 거친 뒤, 스트립 방향을 바꾼 (Strip reversal) 다음, 를 코터 (Coater)로 이동시켜 상기 (3)의 표면처리 공정을 수행한다. 이때, 상기 (1)에서 제조한 조성물을 사용하여, 상기
도금층 (120)의 표면을 처리할 수 있다.
만약 한쪽 면만 처리하고라 할 경우, 상기 제 1 도금층 (120)이 위치하는 면의 를을 닫아 (Close), 상기 (1)에서 제조한 조성물을 도포할 수 있다. 이와 동시에, 상기 제 2 도금층 (미도시)이 위치하는 면의 를은 열어 (Open), 상기 (1)에서 제조한 조성물이 도포되지 않도록 할 수 있다.
이후, 오본 (Oven)에서, 상기 도금층 (120) 위에 도포된 조성물을 경화시켜 표면처리층 (130)을 형성할 수 있다. 최종적으로, 표면 품질을 검사 (Inspection)하고, 제품으로 수득할 수 있다.
이하, 도 3을 참고하여 상기 (1) 내지 (4)를 설명하기로 한다.
(1) 표면처리용조성물의 제조
물을 용매로 사용하여, 금속 나노 입자, 바인더 수지, 아민계 경화제, 콜로이달 실리카, 밀착 증진제, 및 왁스를 상기 각 함량 범위에 맞추어 투입하고, 층분하게 교반하여 각각의 평가예에 따른 표면처리용 조성물로 사용하였다.
이때, 상기 금속 나노 입자로는 니켈 나노 입자를 사용하면서, 입자 크기는 평가예 별로 달리 하였다. 또한, 상기 바인더 수지로는 치환기가 아민으로 치환된 형태의, 아민 변성 에폭시 수지를 사용하였고, 중량평균 분자량은 1500이고 수평균 분자량은 1050인 것이다.
또한, 상기 콜로이달 실리카로는, 입경이 5 nm 초과 50 nmn 미만인 실리카가 100 중량부의 물 또는 에탄올 에 5 내지 20 중량부 분산된 것을 사용하였다. 그리고, 상기 밀착 증진제로는 인산 에스테르를 사용하였고, 상기 왁스로는 폴리에틸렌 왁스를 사용하였다.
이때 사용된 각 원료 물질은, 이미 상업화된 각 제품을 구입하여 사용한 것이다.
(2)도금강판의 제조
아연 또는 아연계 합금으로 도금된 강판을 제조하였다.
아연 또는 아연계 합금 도금을 위하여, 순수 아연 또는 아연계 합금도금 조성의 도금 용액을 이용하였다. 보다 구체적으로, 온도가 40 내지 90로 제어되고, pH O.5 내지 2로 제어되는 황산 욕에, 아연 또는 아연계 합금도금 잉곳 (ingot)을 농도 40 내지 120g/L로 용융시켜 사용한 것이다.
상기 도금조에 넁연 강판 (상온에서 두께 0.4 내지 2.3 國로 압연된 강판)을 투입하고 상기 도금 용액을 사용하는 도금조에서 10 내지 100 A/dm2의 전류 밀도 조건으로 작동시키면, 상기 넁연 강판의 양면에 도금이 이루어진다.
(3)도금강판의 표면처리
를코팅법을 이용하여, 상기 (1)의 표면처리용 조성물을 상기 (2)의 도금 강판의 연료 접촉면에 도포한 후, 소부 경화시켜, 각각의 표면처리된 도금 강판을 최종 수득하였다.
(4)표면처리된 도금강판의 평가
상기 (1)의 표면처리용 조성물 또는 상기 (3)의 표면처리된 도금 강판에 대해, 용액안정성, 내식성, 내연료성, 용접성 등 연료탱크강판에 필요한 물성을 평가하였다. 구체적으로, 각 물성의 평가 조건은 다음과 같다.
- 용액 안정성: 상기 (1)의 표면처리용 조성물에 대해, 상온에서 60일간 및
50 °C 온도에서 45 일간 보관한 후, 조성물 내부에 침전 발생 또는 겔화 현상 유무를 관찰하여, 양호 O, 불량 X 기준으로 평가하였다.
- 내식성: 상기 (3)의 표면처리된 도금 강판에 대해, 평판 상태에서 35 °C의 염수 (농도 5 %), lkg/cm2의 분무압에서 500 시간이 경과한 후 다음의 기준으로 부식 면적 (표면 전체 면적%에 대해, 발생한 녹의 면적 %)를 평가하였다
© : 부식 면적이 거의 0에 가까운 경우
O : 부식 면적이 5이하인 경우
ᄆ : 부식 면적이 5 초과 30 이하인 경우
Δ : 부식 면적이 30 초과 50 이하인 경우
X : 부식 면적이 50 초과인 경우
- 내연료성: 도 2의 내연료성 평가 장치를 이용하여, 고온 조건에서 열화 가솔린 및 바이오디젤 각각에 대한 내연료성을 평가하였다.
구체적으로, 열화가솔린에 대한 내연료성 평가는, 78.58 부피 %의 가솔린, 20 부피 %의 에탄올, 및 1.42 부피 %의 순수를 포함하는 열화가솔린 용액 (총 100 부피%)을 제조하고, 상기 열화가솔린 용액의 증량 기준 (lkg)으로 100 ppm(= 100 mg/kg)의 개미산 및 100 ppm(= 100 mg/kg)의 아세트산을 첨가하고, 60 °C에서 3 개월 동안 방치한 다음, 강관의 부식 상태를 점검하였다.
한편, 바이오디젤에 대한 내연료성 평가는, 81 부피 %의 경유, 9 부피 %의 바이오 (BIO) 디젤, 5 부피 %의 순수, 및 5 부피 %의 메탄올을 포함하는 바이오디젤 용액 (총 100 부피 %)을 제조하고, 상기 바이오디젤 용액의 중량 (lkg 또는 100 중량부) 기준으로 20 ppm(= 20 mg/kg)의 개미산 및 0.3 중량부의 퍼옥사이드 (peroxide)를 첨가하고, 85 °C에서 3 개월 동안 방치한 다음, 강판의 부식 상태를 점검하였다.
각 강판의 부식 상태는, 부식 면적 (표면 전체 면적%에 대해, 발생한 녹의 면적 %)을 기준으로, 다음과 같이 평가하였다
© : 부식 면적이 거의 0에 가까운 경우
O : 부식 면적이 5이하인 경우
□ : 부식 면적이 5 초과 30 이하인 경우
Δ : 부식 면적이 30 초과 50 이하인 경우
X : 부식 면적이 50 초과인 경우 -가공성: 상기 내연료성 평가를 위한 컵가공 시 파우더링 또는 크랙 발생 유무를 관찰하여, 양호 (O) 및 불량 (X)의 2가지 기준으로 평가하였다. -용접성: 공압식 아크 스팟 (AC Spot) 용접기를 이용하여, 통전 전류 7.5kA인 조건에서, 15 사이클 (Cycle) 동안 가압력 250kg으로 용접한뒤, Spatter 없이 일정한 강도가 유지되는지 관찰하여, 용접 가능 (©), 용접 불가능 (X) 및 용접품질 불량 (r)기준으로 평가하였다. 평가예 1:상기 표면처리용조성물의 주요성분및 각성분의 함량평가 상기 (1) 내지 (3) 과정에 따라, 냉연 강판의 양면에 각각, 편면 당 30g/m2 의 부착량으로 아연 -니켈 합금 도금층을 형성한 뒤, 그 위에 표 1의 각 표면처리용 조성물을 1000mg/m2 도포하고, 강판 온도가 210 가 되는 조건으로 소부 경화하였다. 이후, 상기 (4)에 따라 품질 평가를 수행하여, 그 결과를 표 1에 기록하였다.
이때, 각 표면처리용 조성물에서, 니켈 나노 입자는 크기가 50 nm인 것을 공통적으로 사용하였다.
【표 1】
Figure imgf000019_0001
Figure imgf000020_0001
주: 표 1에서, 각각의 수치는, 상기 표면처리용 조성물 (조성물 전체 100 중량 <¾ 기준) 내 각 성분의 함량에 대해, 그 단위인 중량 %를 생각한 것이다. 표 1을 참고하면 조성물의 총 중량 (100 중량 %)에 대해, 0.1 증량 % 초과 15 증량 % 미만의 금속 나노 입자, 5 중량 % 초과 60 증량 % 미만의 바인더 수지, 0.5 중량 % 초과 15 중량 % 미만의 아민계 경화제, 1 증량 % 초과 40 중량 % 미만의 콜로이달 실리카, 1 중량 % 초과 30 중량 % 미만의 밀착 증진제, 0.1 증량 % 초과 7 중량 % 미만의 왁스, 및 잔부의 용매를 포함하는 경우 전체적인 품질이 개선될 수 있음을 알 수 있다.
상기 표면처리용 조성물의 총 중량 (100중량 %)에 대해, 상기 바인더 수지는 10 중량 % 이상 50 중량 % 이하, 상기 콜로이달 실리카는 2 증량 % 이상 30 중량 % 이하, 상기 금속 나노 입자는 0.2 중량 % 이상 10 중량 % 이하, 상기 아민계 경화제는 1 증량 <¾ 이상 10 중량 % 이하, 상기 밀착 증진제는 2 중량 <¾ 이상 20 중량 % 이하ᅳ 상기 왁스는 0.2 중량 % 이상 5 중량 % 이하이며, 잔부로 상기 용매가 포함되는 경우, 모든 물성 평가 결과가 더욱 우수해짐을 알 수 있다.
평가예 2: 금속 나노 입자의 크기. 및 표면처리층 내 금속 나노 입자의 부피 분율 평가
상기 (1) 내지 (3) 과정에 따라, 냉연 강판의 양면에 각각, 편면 당 30g/m2 부착량으로 아연 도금층을 형성한 뒤, 그 위에 표 2의 각 표면처리용 조성물을 1000mg/m2 도포하고, 강판 온도가 210 °C 가 되는 조건으로 소부 경화하였다. 이때, 각 표면처리용 조성물은, 표 1의 실시예 2에 따른 조성물을 공통적으로 사용하였다.
【표 2]
Figure imgf000021_0001
실시예 0.5
실시예 50
실시예 100
실시예 300
실시예 500 © © ©
비교예 600 Δ X Δ
비교예 100 5 ο © X
실시예 10 © ©
실시예 20 ©
실시예 30 ©
실시예 50 © o
실시예 60 Δ X
주: 표 2에서, B는 표면처리층의 단위 부피 (lmm3)를 의미하고, A는 상기 단위 부피에 포함된 니켈 나노 입자의 총 부피 (mm3)를 의미한다. 표 2를 참고하면, 니켈 나노 입자의 평균 입자 크기가 0.1 nm 초과 600 nm미만, 특히 0.5 nm 이상 500 nm 이하일 경우의 품질이 우수함을 알 수 있다.
또한, 최종 표면처리층에 있어서도, 표면처리층의 단위 부피 (B) 당 니켈 나노 입자가 차지하는 총 부피 (A)와상대적인 비율 (A/B)이 5 초과 60 미만, 구체적으로 10 이상 50 이하일 경우의 모든 물성 평가 결과가 우수함을 알 수 있다. 평가예 3: 표면처리용조성물이 적용되는도금강판의 도금층부착량평가 상기 (1) 내지 (3) 과정에 따라, 넁연 강판의 양면에 각각, 편면 당 30g/m2 부착량으로 아연 도금층 또는 아연 -니켈 합금 도금층을 형성한 뒤, 그 위에 표면처리용 조성물을 1000mg/m2 도포하고, 강판 온도가 210 °C 가 되는 조건으로 소부 경화하였다.
이때, 각 표면처리용 조성물은, 표 1의 실시예 2에 따른 조성물을 공통적으로 사용하였다.
【표 3]
Figure imgf000023_0001
표 3을 참고하면, 아연 도금층의 경우 그 부착량이 10 g/m2초과 120 g/m2 미만, 구체적으로 20 g/m2 이상 100 g/m2 이하, 아연계 합금 도금층의 경우 그 부착량이 5 g/m2 초과 60 g/m2 미만, 구체적으로 20 g/m2 이상 50 g/m2 이하일 때, 모든 물성 평가 결과가 우수함을 알 수 있다. 평가예 4: 표면처리용조성물의 적용에 따른표면처리층부착량 및 소부은도 평가
상기 (1) 내지 (3) 과정에 따라, 냉연 강판의 양면에각각, 편면 당 30 g/m2의 부착량으로 아연 -니켈 합금 도금층을 형성한 뒤, 그 위에 표면처리용 조성물을 1000mg/m2 도포하고, 강판 은도가 210 °C 가 되는 조건으로 소부 경화하였다.
이때, 각 표면처리용 조성물은, 표 1의 실시예 2에 따른 조성물을 사용하였다.
【표 4]
Figure imgf000024_0001
표 4를 참고하면, 표면처리층 부착량이 200 mg/m2초과 3000 mg/m2미만, 구체적으로 800 mg/m2 초과 1000 mg/m2 이하일 때 모든 물성 평가 결과가 우수함을 알 수 있다.
또한, 표면처리 시 강판 온도는 100 °C 초과 230 °C이하, 구체적으로 180 °C 이상 230 °C 이하로 제어될 때, 모든 물성 평가 결과가 우수함을 알 수 있다. 이상 첨부된 도면을 참조하여 본 발명의 실시예를 설명하였지만, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자는 본 발명이 그 기술적 사상이나 필수적인 특징을 변경하지 않고서 다른 구체적인 형태로 실시될 수 있다는 것을 이해할 수 있을 것이다.
그러므로 이상에서 기술한 실시예들은 모든 면에서 예시적인 것이며 한정적이 아닌 것으로 이해해야만 한다. 본 발명의 범위는 상기 상세한 설명보다는 후술하는 특허청구범위에 의하여 나타내어지며, 특허청구범위의 의미 및 범위 그리고 그 균등 개념으로부터 도출되는 모든 변경 또는 변경된 형태가 본 발명의 범위에 포함되는 것으로 해석되어야 한다.

Claims

【청구의 범위】
【청구항 1】
총 중량 (100 증량 <¾)에 대해,
0.1 중량 % 초과 15 중량 % 미만의 금속 나노 입자,
5 중량 % 초과 60 중량 <¾ 미만의 바인더 수지,
0.5 증량 % 초과 15 증량 % 미만의 아민계 경화제,
1 중량 % 초과 40 중량 % 미만의 콜로이달 실리카,
1 중량 % 초과 30 중량 % 미만의 밀착 증진제,
0.1 중량 % 초과 7 중량 % 미만의 왁스, 및
잔부의 용매를 포함하는,
도금 강판의 표면처리용 조성물.
【청구항 2】
제 1항에 있어서,
상기 금속 나노 입자는,
Ni, Zn, Al, Cu, Ag, W, Mo, Co, Pd 및 Au을 포함하는 군에서 선택되는 1종의 금속 나노 입자, 또는 이들의 흔합물인 것인,
도금 강판의 표면처리용 조성물.
【청구항 3】
제 1항에 있어서,
상기 금속 나노 입자는,
크기가 0.1 nm 초과 600 niri 미만인 것인,
도금 강판의 표면처리용 조성물.
【청구항 4】
제 1항에 있어서,
상기 바인더 수지는,
수평균분자량이 300 초과 2000 미만인 것인,
도금 강판의 표면처리용 조성물.
【청구항 5】
겨 U항에 있어서,
상기 바인더 수지는,
중량평균분자량이 500 초과 3000 미만인 것인,
도금 강판의 표면처리용 조성물.
【청구항 6】
제 1항에 있어서,
상기 바인더 수지는,
변성 에폭시 수지, 에폭시 수지 또는 이들의 흔합물인 것인,
도금 강판의 표면처리용 조성물.
【청구항 7】
제 1항에 있어서,
상기 변성 에폭시 수지는,
아민 변성 에폭시 수지인 것인,
도금 강판의 표면처리용 조성물.
【청구항 8】
제 1항에 있어서,
상기 콜로이달 실리카는
입경이 5 nm 초과 50 nmn 미만인 실리카가, 100 중량부의 물 또는 에탄올 에 5 내지 20 중량부 분산된 것인,
도금 강판의 표면처리용 조성물.
【청구항 9】
거 U항에 있어서,
상기 밀착 증진제는,
인산 에스테르 (Ester phosphate), 인산. 암모늄 (Ammmonium phosphate), 또는 이들의 흔합물인 것인,
도금 강판의 표면처리용 조성물.
【청구항 10]
제 1항에 있어서,
상기 왁스는,
폴리에틸렌계 왁스, 폴리테트라플루오르에틸렌계 왁스, 또는 이들의 흔합물인 것인,
도금 강판의 표면처리용 조성물.
【청구항 11】
도금 강판; 및
표면처리층;을 포함하고,
상기 도금 강판은, 냉연 강판 및 상기 넁연 강판의 일면 또는 양면 상에 위치하는 도금층을 포함하고,
상기 표면처리층은, 상기 도금 강판의 도금층 상에 위치하고,
상기 표면처리층의 총 증량 (100 중량 %)에 대해, 0.1 중량 % 초과 15 증량 % 미만의 금속 나노 입자, 5 중량 % 초과 60 중량 % 미만의 바인더 수지, 0.5 중량 % 초과 15 중량 % 미만의 아민계 경화제, 1 중량 % 초과 40 중량 % 미만의 콜로이달 실리카, 1 증량 % 초과 30 중량 % 미만의 밀착 증진제, 및 0.1 중량 % 초과 7 중량 % 미만의 왁스를 포함하는,
표면처리된 도금 강판.
【청구항 12】
제 11항에 있어서
상기 표면처리층 (B) 내 상기 금속 나노 입자 (A)의 부피 분율 (A/B)은, 5 초과 60 미만인 것인,
표면처리된 도금 강판.
【청구항 13]
제 11항에 있어서,
상기 도금 강판의 편면 (m2) 당 상기 표면처리층의 부착량 (mg )은,
200 mg/m2 초과 3000 mg/m2 미만인 것인, 표면처리된 도금 강판.
【청구항 14]
제 14항에 있어서,
상기 도금층은, 상기 넁연 강판의 양면에 위치하고, 상기 냉연 강판의 양면에서 동일하거나 상이하고, 서로 독립적으로,
아연 도금층, 또는 아연계 합금 도금층인 것인,
표면처리된 도금 강판.
【청구항 15】
제 14항에 있어서,
상기 도금층은 아연 도금층이고,
상기 냉연 강판의 편면 (m2) 당 상기 아연 도금층의 부착량 (mg)은, 10 g/m2 초과 120 g/m2 미만인 것인,
표면처리된 도금 강판.
【청구항 16]
제 14항에 있어서,
상기 도금층은 아연계 합금 도금층이고,
상기 넁연 강판의 편면 (m2) 당 상기 아연계 합금 도금층의 질량 (mg)은, 5 g/m2 초과 60 g/m2 미만인 것인,
표면처리된 도금 강판.
【청구항 17]
넁연 강판 및 상기 냉연 강판의 일면 또는 양면 상에 위치하는 도금층을 포함하는, 도금 강판을 준비하는 단계;
상기 도금 강판의 도금층 상에, 표면처리용 조성물을 도포하는 단계; 및 상기 도포된 표면처리용 조성물을 경화시켜, 표면처리층을 형성하는 단계;를 포함하고, .
상기 표면처리용 조성물은, 총 중량 (100 중량 %)에 대해, 0.1 중량 %> 초과 15 증량 % 미만의 금속 나노 입자, 5 중량 % 초과 60 중량 % 미만의 바인더 수지, 0.5 중량 % 초과 15 중량 «¾ 미만의 아민계 경화제, 1 중량 % 초과 40 중량 <¾ 미만의 콜로이달 실리카, 1 증량 % 초과 30 중량 %> 미만의 밀착 증진제 0.1 중량 "¾ 초과 7 중량 % 미만의 왁스, 및 잔부의 용매를 포함하는 것인,
도금 강판의 표면처리 방법.
【청구항 18】
제 17항에 있어서,
상기 도금 강판의 도금층 위에, 표면처리용 조성물을 도포하는 단계;는, 를코팅법, 스프레이법, 또는 침적법으로 수행되는 것인,
도금 강판의 표면처리 방법.
【청구항 19】
제 17항에 있어서,
상기 도포된 표면처리용 조성물을 경화시켜, 표면처리층을 형성하는 단계;는, 강판 온도 (MT - Metal Temperature) 기준으로 100 °C 초과 230 °C이하의 은도 범위에서 수행되는 것인,
도금 강판의 표면처리 방법.
PCT/KR2016/002655 2015-12-09 2016-03-16 도금 강판의 표면처리용 조성물, 이를 이용하여 표면처리된 강판, 및 이를 이용한 표면처리 방법 WO2017099299A1 (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2018529207A JP6667636B2 (ja) 2015-12-09 2016-03-16 メッキ鋼板の表面処理用組成物、これを用いて表面処理された鋼板、およびこれを用いた表面処理方法
CN201680072189.2A CN108368360B (zh) 2015-12-09 2016-03-16 用于镀覆钢板表面处理的组合物、用此经过表面处理的钢板及其表面处理方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020150175388A KR101842555B1 (ko) 2015-12-09 2015-12-09 도금 강판의 표면처리용 조성물, 이를 이용하여 표면처리된 강판, 및 이를 이용한 표면처리 방법
KR10-2015-0175388 2015-12-09

Publications (1)

Publication Number Publication Date
WO2017099299A1 true WO2017099299A1 (ko) 2017-06-15

Family

ID=59013398

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2016/002655 WO2017099299A1 (ko) 2015-12-09 2016-03-16 도금 강판의 표면처리용 조성물, 이를 이용하여 표면처리된 강판, 및 이를 이용한 표면처리 방법

Country Status (4)

Country Link
JP (1) JP6667636B2 (ko)
KR (1) KR101842555B1 (ko)
CN (1) CN108368360B (ko)
WO (1) WO2017099299A1 (ko)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102329505B1 (ko) * 2019-12-11 2021-11-19 주식회사 포스코 제진강판용 표면처리 조성물 및 제진강판

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040084657A1 (en) * 2002-11-06 2004-05-06 Pawlik Michael J Weldable compositions comprising a conductive pigment and silicon and methods for using the same
KR20050063979A (ko) * 2003-12-23 2005-06-29 주식회사 포스코 고분자-클레이 복합체를 함유한 프리실드 강판용수지조성물 및 이를 프리실드강판에 피복하는 방법
KR100833072B1 (ko) * 2006-12-28 2008-05-27 주식회사 포스코 항균성, 가공성 및 내식성이 우수한 금속 표면 처리 조성물및 이를 이용한 표면처리 강판
JP2014031549A (ja) * 2012-08-03 2014-02-20 Jfe Steel Corp 燃料タンク用鋼板
KR20140081574A (ko) * 2012-12-21 2014-07-01 주식회사 포스코 크롬-프리 표면처리 조성물 및 이를 피복한 용융아연도금강판

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3847926B2 (ja) * 1997-11-21 2006-11-22 Jfeスチール株式会社 高耐食性燃料タンク用鋼板
JP2000248376A (ja) * 1998-12-28 2000-09-12 Sumitomo Metal Ind Ltd 燃料容器用表面処理鋼板
JP2001106967A (ja) * 1999-10-04 2001-04-17 Kansai Paint Co Ltd 水性塗料組成物及びこの組成物を塗装した塗装物品
KR100415679B1 (ko) * 1999-12-28 2004-01-31 주식회사 포스코 프레스 가공성이 개선된 연료탱크용 수지피복강판의제조방법 및 이로부터 제조된 수지피복강판
JP3849398B2 (ja) * 2000-03-27 2006-11-22 住友金属工業株式会社 劣化ガソリン耐食性に優れた燃料容器用表面処理鋼板
JP2002121470A (ja) * 2000-10-11 2002-04-23 Toyota Motor Corp 水性塗料組成物及びこの塗料組成物を塗装した塗装物品
JP4400499B2 (ja) * 2004-04-28 2010-01-20 住友金属工業株式会社 燃料容器用表面処理鋼板
CN100595327C (zh) * 2004-12-23 2010-03-24 Posco公司 用于金属表面处理的无铬组合物和经表面处理的金属板
CN1290940C (zh) * 2005-04-29 2006-12-20 北京永泰和金属防腐技术有限公司 一种耐蚀性能提高了的金属防腐涂料
JP4774442B2 (ja) * 2005-12-27 2011-09-14 ポスコ 燃料タンク用クロムフリー表面処理鋼板及びその製造方法
DE102008006391B4 (de) * 2008-01-28 2016-11-17 Airbus Operations Gmbh Chromatfreie Zusammensetzung, deren Verwendung als Korrosionsschutz und damit hergestellte Korrosionsschutzbeschichtung für Kraftstofftanks
CN101760736B (zh) * 2008-12-26 2013-11-20 汉高(中国)投资有限公司 一种镀锌钢板表面处理剂和一种镀锌钢板及其制备方法
KR101116038B1 (ko) * 2009-12-23 2012-02-22 주식회사 포스코 우수한 용접성, 가공성, 내식성을 갖는 프리코트 강판용 수지 조성물, 이를 이용한 프리코트 강판의 제조방법 및 강판
JP2012166195A (ja) * 2012-03-27 2012-09-06 Asahi Kasei Chemicals Corp 防汚層の形成方法
EP2684627A1 (en) 2012-07-13 2014-01-15 Rovalma, S.A. Method of material forming processes in preheated or melted state to strongly reduce the production cost of the produced parts

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040084657A1 (en) * 2002-11-06 2004-05-06 Pawlik Michael J Weldable compositions comprising a conductive pigment and silicon and methods for using the same
KR20050063979A (ko) * 2003-12-23 2005-06-29 주식회사 포스코 고분자-클레이 복합체를 함유한 프리실드 강판용수지조성물 및 이를 프리실드강판에 피복하는 방법
KR100833072B1 (ko) * 2006-12-28 2008-05-27 주식회사 포스코 항균성, 가공성 및 내식성이 우수한 금속 표면 처리 조성물및 이를 이용한 표면처리 강판
JP2014031549A (ja) * 2012-08-03 2014-02-20 Jfe Steel Corp 燃料タンク用鋼板
KR20140081574A (ko) * 2012-12-21 2014-07-01 주식회사 포스코 크롬-프리 표면처리 조성물 및 이를 피복한 용융아연도금강판

Also Published As

Publication number Publication date
JP6667636B2 (ja) 2020-03-18
CN108368360B (zh) 2022-06-24
JP2019504189A (ja) 2019-02-14
CN108368360A (zh) 2018-08-03
KR101842555B1 (ko) 2018-03-27
KR20170068329A (ko) 2017-06-19

Similar Documents

Publication Publication Date Title
JP4920800B2 (ja) 容器用鋼板の製造方法
JP6605129B2 (ja) 片面メッキ鋼板の表面処理用組成物、これを用いて表面処理された鋼板、およびこれを用いた表面処理方法
JP5640312B2 (ja) 耐食性と溶接性に優れる亜鉛系合金めっき鋼材及び耐食性に優れる塗装鋼材
KR101941806B1 (ko) 연료 탱크용 강판
KR890004045B1 (ko) 내식성이 향상된 피복가공 금속기질 및 그 제조방법
JPS6358228B2 (ko)
US10697067B2 (en) Steel sheet for a fuel tank
KR101696038B1 (ko) 유무기 복합 피막용 수지 조성물, 이를 이용한 자동차용 연료탱크강판 및 이의 제조방법
JPS5930798B2 (ja) 溶接缶容器用鋼板とその製造法
WO2017099299A1 (ko) 도금 강판의 표면처리용 조성물, 이를 이용하여 표면처리된 강판, 및 이를 이용한 표면처리 방법
JPH0380874B2 (ko)
KR101543893B1 (ko) 내식성이 우수한 용융아연합금 도금강판용 피복 조성물 및 용융아연합금 도금강판, 그 제조방법
JP4151228B2 (ja) 高耐食性燃料タンク用鋼板
JP2014031549A (ja) 燃料タンク用鋼板
JP3462869B2 (ja) 自動車燃料タンク用クロメート処理鋼板及びその製造方法
JP6265050B2 (ja) 優れた耐食性と塗料密着性を有する溶融Sn−Znめっき鋼板とその製造方法
JPS6366916B2 (ko)
JP4727840B2 (ja) 加工性及び耐食性に優れた被覆鋼板、並びにその製造方法
CN112877636B (zh) 具有优良耐蚀性的热镀铝钢板及其制造方法
JP3111904B2 (ja) 亜鉛系メッキ鋼板の製造方法
JP2000017450A (ja) 耐食性に優れた自動車用燃料容器
KR101639898B1 (ko) 수지 처리 공정 생략형 크롬프리 표면처리 강판 및 이의 제조 방법
JPH10278172A (ja) 高耐食性燃料タンク用鋼板
JPS61270391A (ja) 燃料容器用鋼板
JPS61270388A (ja) 燃料容器用鋼板

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16873165

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2018529207

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16873165

Country of ref document: EP

Kind code of ref document: A1