WO2017098969A1 - 積層体の製造方法及び樹脂層付金属箔 - Google Patents

積層体の製造方法及び樹脂層付金属箔 Download PDF

Info

Publication number
WO2017098969A1
WO2017098969A1 PCT/JP2016/085443 JP2016085443W WO2017098969A1 WO 2017098969 A1 WO2017098969 A1 WO 2017098969A1 JP 2016085443 W JP2016085443 W JP 2016085443W WO 2017098969 A1 WO2017098969 A1 WO 2017098969A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin layer
metal foil
styrene
resin
mass
Prior art date
Application number
PCT/JP2016/085443
Other languages
English (en)
French (fr)
Inventor
敏文 松島
Original Assignee
三井金属鉱業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三井金属鉱業株式会社 filed Critical 三井金属鉱業株式会社
Priority to CN202110979712.2A priority Critical patent/CN113825316B/zh
Priority to KR1020187010352A priority patent/KR102062210B1/ko
Priority to CN201680060837.2A priority patent/CN108136736B/zh
Priority to JP2017555028A priority patent/JP6832868B2/ja
Publication of WO2017098969A1 publication Critical patent/WO2017098969A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/02Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by a sequence of laminating steps, e.g. by adding new layers at consecutive laminating stations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/14Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the properties of the layers
    • B32B37/26Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the properties of the layers with at least one layer which influences the bonding during the lamination process, e.g. release layers or pressure equalising layers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L25/00Compositions of, homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Compositions of derivatives of such polymers
    • C08L25/02Homopolymers or copolymers of hydrocarbons
    • C08L25/04Homopolymers or copolymers of styrene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L25/00Compositions of, homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Compositions of derivatives of such polymers
    • C08L25/02Homopolymers or copolymers of hydrocarbons
    • C08L25/04Homopolymers or copolymers of styrene
    • C08L25/08Copolymers of styrene
    • C08L25/10Copolymers of styrene with conjugated dienes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L47/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds; Compositions of derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L71/00Compositions of polyethers obtained by reactions forming an ether link in the main chain; Compositions of derivatives of such polymers
    • C08L71/08Polyethers derived from hydroxy compounds or from their metallic derivatives
    • C08L71/10Polyethers derived from hydroxy compounds or from their metallic derivatives from phenols
    • C08L71/12Polyphenylene oxides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L9/00Compositions of homopolymers or copolymers of conjugated diene hydrocarbons
    • C08L9/06Copolymers with styrene
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/09Use of materials for the conductive, e.g. metallic pattern
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/11Printed elements for providing electric connections to or between printed circuits
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/02Apparatus or processes for manufacturing printed circuits in which the conductive material is applied to the surface of the insulating support and is thereafter removed from such areas of the surface which are not intended for current conducting or shielding
    • H05K3/06Apparatus or processes for manufacturing printed circuits in which the conductive material is applied to the surface of the insulating support and is thereafter removed from such areas of the surface which are not intended for current conducting or shielding the conductive material being removed chemically or electrolytically, e.g. by photo-etch process
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/10Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern
    • H05K3/20Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern by affixing prefabricated conductor pattern
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/14Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the properties of the layers
    • B32B37/26Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the properties of the layers with at least one layer which influences the bonding during the lamination process, e.g. release layers or pressure equalising layers
    • B32B2037/268Release layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • B32B2457/08PCBs, i.e. printed circuit boards

Definitions

  • the present invention relates to a method for producing a laminate in which a conductor circuit pattern on a resin layer is transferred to a substrate, and a metal foil with a resin layer used in this application.
  • a method for transferring a conductor circuit pattern to an insulating substrate has been proposed as a method for manufacturing a printed wiring board used for a package for housing a semiconductor element, wiring for a display panel, or the like.
  • a metal foil is attached to the surface of the resin film, an unnecessary portion of the metal foil is removed by using an etching method or the like to form a conductor circuit pattern, which is then pressure-bonded to an insulating substrate as a transfer sheet, and then resin The conductor circuit pattern is transferred by peeling off the film.
  • the metal foil is laminated on the substrate, and the substrate does not come into contact with various chemicals compared to the method of forming the conductor circuit pattern by removing unnecessary portions of the metal foil by an etching method or the like.
  • There are advantages such as prevention of deterioration of the characteristics of the substrate due to the chemical solution.
  • Patent Document 1 an adhesive layer made of an ultraviolet curable acrylic resin is formed on a film surface of a resin made of polyethylene terephthalate to form an adhesive layer, and a copper foil is adhered on the adhesive layer and then etched. Describes a transfer sheet in which a conductor circuit pattern is formed, and a method of manufacturing a laminate that transfers the transfer sheet. In patent document 1, it is supposed that it can prevent that an adhesion layer adhere
  • the pressure-sensitive adhesive layer is formed using a pressure-sensitive adhesive obtained by crosslinking an acrylic polymer with a polyfunctional compound having reactivity with a carboxyl group.
  • the acrylic polymer is obtained by copolymerizing (meth) acrylic acid ester and a carboxyl group-containing radical polymerizable monomer.
  • the resin film can be peeled off from the metal foil by the adhesive layer having this configuration.
  • An object of the present invention is to provide a method for manufacturing a laminate and a metal foil with a resin layer that can eliminate the various disadvantages of the above-described conventional technology.
  • the present invention includes a step of forming a predetermined pattern by etching the metal foil in a metal foil with a resin layer having a metal foil and a resin layer; A step of laminating a base material on the side of the metal foil with resin layer on which the pattern is formed; Removing the resin layer, and
  • the resin layer mainly includes a styrene butadiene copolymer, and further includes a styrene compound.
  • the styrenic compound is at least one selected from a styrenic monomer, an oligomer and a polymer having the styrenic monomer as a constituent unit, and a derivative of the oligomer or the polymer,
  • the styrene compound is contained in an amount of 10 to 70 parts by mass with respect to 100 parts by mass of the styrene butadiene copolymer.
  • this invention has a peelable resin layer, a metal foil, a second release layer, and a carrier in this order,
  • the metal foil and the resin layer are laminated in direct contact with each other, Preparing a laminated sheet having a larger peel strength Pr between the metal foil and the resin layer than a peel strength Pc between the carrier and the metal foil; Peeling the carrier of the laminated sheet in a release layer, Forming a predetermined pattern by etching the metal foil; A step of laminating a substrate on the side of the laminated sheet on which the pattern is formed; and
  • the present invention provides a method for producing a laminate having a metal pattern (hereinafter, also referred to as a second laminate production method of the present invention) comprising the steps of peeling the resin layer in this order.
  • the present invention provides a metal foil with a resin layer having a metal foil and a peeling resin layer,
  • the metal foil and the resin layer are laminated in direct contact with each other,
  • the resin layer mainly includes a styrene butadiene copolymer, and further includes a styrene compound.
  • the styrenic compound is at least one selected from a styrenic monomer, an oligomer and a polymer having the styrenic monomer as a constituent unit, and a derivative of the oligomer or the polymer,
  • the resin layer provides a metal foil with a resin layer, wherein the styrene compound is contained in an amount of 10 parts by mass or more and 70 parts by mass or less with respect to 100 parts by mass of a styrene butadiene copolymer.
  • this invention is use as a peeling layer of this resin layer in metal foil with a resin layer laminated
  • the resin layer has the said resin composition It is intended to provide use.
  • the present invention also relates to a method of using the resin layer as a release layer in a metal foil with a resin layer in which the metal foil and the resin layer are directly in contact with each other and having the resin composition described above in the resin layer. It is intended to provide a usage method.
  • the present invention relates to a metal foil with a resin layer used in a transfer method.
  • the metal foil with a resin layer of this embodiment will be described first.
  • the metal foil with a resin layer has a peeling resin layer (A) having a specific resin configuration, and a metal foil (B) laminated on one surface of the resin layer (A).
  • This embodiment is characterized in that the resin layer (A) mainly contains a styrene butadiene copolymer and further contains a styrene compound in a specific ratio with respect to the styrene butadiene copolymer.
  • This inventor earnestly examined about the structure of the metal foil with a resin layer used for a transfer method, and the ease of peeling with respect to the metal foil (B) of a resin layer (A).
  • the resin layer (A) having a specific resin configuration is used instead of the conventionally used acrylic resin-based adhesive layer and polyethylene terephthalate support, the resin layer (A ) Can be easily peeled from the interface of the metal foil (B), and the resin residue can be effectively prevented. Therefore, on the wiring pattern transferred using the metal foil with a resin layer of the present embodiment, unevenness of surface treatment such as cleaning and roughening is unlikely to occur, excellent surface cleanliness and surface treatment homogeneity, and reliable. A laminate with a high circuit can be obtained.
  • the resin layer (A) in the metal foil with a resin layer is not only peelable from the metal foil (B) but also rigid enough to withstand deformation during pattern formation, and the resin layer (A). It has a toughness that does not deform even when peeled. For this reason, in this embodiment, it is not necessary to use a support such as polyethylene terephthalate. Therefore, in this embodiment, it is not necessary to apply an adhesive to the release resin layer, and the manufacturing cost can be reduced.
  • the conventional acrylic resin adhesive layer tends to cause a resin residue on the wiring pattern as described above.
  • This resin residue causes surface treatment unevenness when the surface of the metal foil after transfer is subjected to surface treatment, and the laminate with such copper foil as the inner layer has an uneven pattern and appearance.
  • the heat resistance reliability may be impaired when the laminate is used at high temperatures.
  • the acrylic resin is inferior in resistance to the thermocompression treatment. For this reason, when the same component as the acrylic adhesive layer is formed into a film shape and the obtained molded product is laminated with a metal foil by thermocompression bonding, the resin layer does not peel off even if the molded product is peeled off after circuit formation. It will break internally and will be very difficult or impossible to remove.
  • peelability refers to a laminate obtained by laminating a substrate made of any of the resin types described later under the pressure bonding conditions described later on the surface side of the metal foil with resin layer on which the pattern is formed.
  • A) means the property of peeling from the metal foil (B) or, if necessary, from the metal foil (B) and the substrate.
  • the peelability may be shown in any one laminate including the resin layer (A), and in that case, it may not be shown in the other laminate.
  • the “metal foil (B)” here covers the entire surface of the resin layer (A), before pattern formation. Both the metal foil (B) and the metal pattern formed from the metal foil (B) can be included.
  • the metal foil with a resin layer used in the present embodiment will be further described.
  • ⁇ Styrene butadiene copolymer> This embodiment is characterized in that the resin layer (A) contains a styrene-butadiene copolymer as a main component.
  • the metal foil with a resin layer of this embodiment will have the favorable adhesiveness and peelability with respect to metal foil, and the resin layer (A) itself will have the outstanding elasticity and a softness
  • Styrene butadiene copolymers include random copolymers, alternating copolymers, block copolymers, graft copolymers, etc., but block copolymers are advantageous in that they maintain the strength when the resin layer (A) is peeled off. Polymers are preferred.
  • the block copolymer include a styrene-butadiene block copolymer, a styrene-butadiene-styrene block copolymer, and a styrene- (styrene-butadiene) -styrene block copolymer. These are used alone or in combination of two or more.
  • the content of styrene units in the styrene-butadiene copolymer is preferably 20% by weight or more from the viewpoint of more reliably reducing the resin residue after the resin layer (A) is peeled off. On the other hand, 80% by weight or less is preferable from the viewpoint of maintaining flexibility. From these points, the weight ratio of the styrene unit in the styrene-butadiene copolymer is 30% by weight or more and 70% by weight or less, more preferably 45% by weight or more and 65% by weight or less.
  • the number average molecular weight (Mn) according to the GPC (gel permeation chromatography) analysis method of the styrene-butadiene copolymer is obtained from the point that the flexibility and the fracture system are more predominate when the peeling resin layer (A) is peeled. 50,000 to 500,000 is preferable.
  • modification may be added to the styrene butadiene copolymer for the purpose of imparting functions such as thermosetting.
  • modification include glycidyl ether modification, oxirane introduction, hydroxyl group modification, carboxyl group modification, and the like.
  • the resin layer (A) preferably contains a styrene butadiene copolymer as a main component (main component), and the styrene butadiene copolymer is preferably contained in an amount of 45% by mass or more in the resin component of the resin layer (A). Means that. By containing 45% by mass or more of the styrene-butadiene copolymer with respect to the resin component in the resin layer (A), the resin layer (A) can be easily removed from the metal foil while preventing breakage inside the resin layer ( Separation from B) is possible.
  • the amount of the styrene butadiene copolymer is 80% by mass or less in the resin component of the resin layer (A), so that a styrene compound other than the styrene butadiene copolymer and a polyphenylene described later contained as necessary.
  • the amount of the ether resin can be set to a certain level or more, and rigidity, heat resistance, chemical resistance and the like can be imparted to the resin layer. From these viewpoints, the styrene butadiene copolymer is more preferably contained in the resin component of the resin layer (A) in an amount of 47% by mass to 77% by mass, and 49% by mass to 75% by mass. It is particularly preferable.
  • the styrene-based compound is used for imparting rigidity, toughness, and ease of peeling to the resin layer (A) in the metal foil with a resin layer of the present embodiment.
  • the styrene compound is one or more compounds selected from a styrene monomer, an oligomer and a polymer having the styrene monomer as a constituent unit, and a derivative of the oligomer or the polymer.
  • the styrenic compound does not include a block copolymer of styrene and other unsaturated hydrocarbons.
  • the styrene compound which is a polymer usually has a styrene chain as a main chain.
  • Examples of the styrenic monomer as the constituent unit include styrene and substituted styrene.
  • the substituted styrene one or two or more hydrogen atoms bonded to the benzene ring constituting the styrene are alkyl groups having 1 to 5 carbon atoms. , An alkoxy group having 1 to 5 carbon atoms, and a halogen atom substituted with a substituent such as chlorine, bromine and fluorine.
  • styrene monomer examples include styrene, methyl styrene, ⁇ -methyl styrene, ⁇ -methyl styrene, t-butyl styrene, chlorostyrene, chloromethyl styrene, methoxy styrene, fluorostyrene, bromostyrene, and the like.
  • oligomers having a styrenic monomer as a unit unit include oligomers obtained by polymerizing the styrenic monomers listed above, for example, 2,4-diphenyl-4-methyl-1-pentene, 2,4- Diphenyl-1-butene, 1,2-diphenylcyclobutane, 1-phenyltetralin, 2,4,6-triphenyl-1-hexene, 1-phenyl-4- (1′-phenylethyl) tetralin, 1,3, Examples include 5-triphenylcyclohexane.
  • the oligomer includes a dimer and a trimer. The oligomer usually refers to those having about 2 to 20 constituent monomers.
  • Examples of the polymer having a styrene monomer as a unit unit include a polymer obtained by polymerizing the above styrene monomer and / or the above oligomer.
  • styrene oligomer or polymer derivative examples include those obtained by subjecting the styrene oligomer or polymer to various modifications such as terminal modification and introduction of substituents.
  • modifications include glycidyl ether modification, oxirane introduction, hydroxyl group modification, carboxyl group modification, and the like.
  • the styrene-based compound has a number average molecular weight (Mn) of 15,000 or more and 350,000 or less by a GPC (gel permeation chromatography) analysis method from the viewpoint of more stably maintaining peeling performance. It is preferable that
  • the styrene compound is a styrene-butadiene copolymer in the resin layer (A) in the metal foil with a resin layer of the present embodiment as a total amount of the above styrene monomer, oligomer and polymer having styrene monomer as a unit unit, and derivatives thereof. 10 parts by mass or more and 70 parts by mass or less are included with respect to 100 parts by mass of the polymer. When the amount of the styrene compound is 10 parts by mass or more, the resin layer (A) has sufficient rigidity and ease of peeling from the metal foil (B), and does not have a support such as polyethylene terephthalate. It becomes possible to function as a peeling resin layer.
  • the resin layer (A) can hold
  • the amount of the styrene compound in the resin layer (A) is more preferably 15 parts by mass or more and 67 parts by mass or less with respect to 100 parts by mass of the styrene butadiene copolymer, and 20 masses. It is particularly preferred that the content is not less than 65 parts by mass.
  • the ratio of the styrenic monomer, the oligomer having it as a constituent unit and its derivative is not limited.
  • the resin layer (A) of the present embodiment contains the styrene-based compound in the above amount, and thus the resin layer (A) can be stably peeled without breakage, and the effects of the present invention can be achieved to reduce the resin residue. Can do.
  • polyphenylene ether resin contained as a preferred material is a suitable component that imparts heat resistance more preferentially due to its structure.
  • the metal foil with a resin layer of the present embodiment breaks the resin layer (A) even when the metal foil with a resin layer is laminated with a base material under high temperature conditions. Therefore, the resin foil can be peeled off more stably and the resin residue can be further effectively reduced.
  • polyphenylene ether resin for example, one having a structure represented by the following general formula (1) is used.
  • polyphenylene ether resin may have a structure represented by the general formula (2), for example.
  • R1, R2, R3 and R4 each represent the same or different hydrogen atom or a hydrocarbon group having 1 to 3 carbon atoms.
  • N represents an integer of 1 or more.
  • R1, R2, R3 and R4 are the same as those in the general formula (1). Moreover, a and b each represent an integer of 1 to 100. A is a direct bond or 20 or less carbon atoms. A linear, branched or cyclic divalent hydrocarbon group, wherein a plurality of R1 may be the same or different from each other, and R2, R3 and R4 are the same.)
  • Examples of the hydrocarbon group having 1 to 3 carbon atoms represented by R1, R2, R3 and R4 include a methyl group, an ethyl group and a propyl group.
  • Examples of the linear, branched or cyclic divalent hydrocarbon group having 20 or less carbon atoms represented by A include a linear or branched alkylene group, a phenylene group which may be substituted with an alkyl group, and an alkyl group. And a biphenylene group which may be substituted with, and combinations thereof.
  • polyphenylene ether resin examples include poly (2,6-dimethyl-1,4-phenylene) ether, poly (2,6-diethyl-1,4-phenylene) ether, poly (2,6-dipropyl-1,4).
  • -Phenylene) ether or the like can be used.
  • the end of the polyphenylene ether resin is preferably modified with a thermosetting functional group.
  • the thermosetting functional group include a hydroxyl group, an acryl group, a methacryl group, an acryloyloxy group, a methacryloyloxy group, a glycidyl ether group, a vinylbenzyl group, and an allyl group. While maintaining the excellent dielectric properties of polyphenylene ether, it is a functional group that imparts highly reactive thermosetting properties, and among these, polyphenylene ether resins modified with vinylbenzyl, acrylic, methacrylic groups, etc. preferable.
  • the number average molecular weight (Mn) of the polyphenylene ether resin by GPC (gel permeation chromatography) analysis is preferably 500 or more and 4,000 or less, and more preferably 600 or more and 3,500 or less. By setting it within this range, the polyphenylene ether resin can be easily dissolved in a solvent and easily varnished, and the toughness of the resin layer can be maintained.
  • the content of the polyphenylene ether resin in the resin layer is preferably 1 part by mass or more and 60 parts by mass or less with respect to 100 parts by mass of the styrene butadiene copolymer. It is more preferably 2 parts by mass or more and 55 parts by mass or less, still more preferably 4 parts by mass or more and 50 parts by mass or less, and particularly preferably 5 parts by mass or more and 20 parts by mass or less.
  • the resin layer (A) may contain components other than the styrene butadiene copolymer, the styrene compound, and the polyphenylene ether resin as long as the ease of peeling is not impaired.
  • examples of such components include inorganic fillers and dispersants, thermal polymerization inhibitors, antioxidants, ultraviolet absorbers, colorants, leveling agents, plasticizers, and surfactants.
  • the resin component in the resin layer (A) is preferably 50% by mass or more, and more preferably 80% by mass or more.
  • the content of components other than the styrene-butadiene copolymer, styrene-based compound and polyphenylene ether resin in the resin layer (A) is preferably 50% by mass or less, more preferably 20% by mass. It is as follows.
  • the resin layer (A) preferably has a storage elastic modulus at 30 ° C. in a specific range in addition to containing the specific component in the specific amount.
  • the resin layer (A) in the present embodiment has a storage elastic modulus at 30 ° C. of 0.1 GPa or more to improve the rigidity and toughness of the resin, and the resin layer at the time of peeling. This is preferable because it is easier to prevent the deformation. If the resin layer is easily deformed at the time of peeling, there are problems that the resin layer is stretched and easily torn at the time of peeling, and it is difficult to stably peel off from the metal foil interface, and a resin residue is likely to occur.
  • the storage elastic modulus of the resin layer (A) is more preferably 0.12 GPa or more and 0.40 GPa or less, and further preferably 0.15 GPa or more and 0.32 GPa or less.
  • the storage elastic modulus can be measured by the method described in Examples described later.
  • Examples of the molding method of the resin layer (A) include an extrusion molding method, an injection molding method, and a coating method.
  • the coating method is most preferable from the viewpoint of wettability to the metal foil (B), simplification of the process, and the like.
  • As the solvent used in the coating method an organic solvent capable of dissolving or dispersing the resin composition can be appropriately selected and used according to the solubility parameter of the resin. Further, after coating, the resin film or sheet obtained by coating may be heated or not heated for the purpose of volatilizing the solvent, and in the case of heating, the temperature and time corresponding to the solvent can be appropriately selected.
  • the resin layer (A) may be directly formed on the metal foil (B) by using a coating method or the like, or by using the above various methods (if the coating method is used, a substrate different from the metal foil (B)).
  • the coating liquid may be applied to produce a film-like or sheet-like resin layer (A), which may be laminated on the metal foil (B) by a known laminating method such as thermocompression bonding or vacuum laminating.
  • the thickness of the resin layer (A) is preferably 12 ⁇ m or more and 1000 ⁇ m or less, and more preferably 18 ⁇ m or more and 300 ⁇ m or less from the viewpoint of ease of peeling from the metal foil (B) and handling properties.
  • the resin layer (A) may be laminated so as to be in direct contact with the metal foil (B), or may be laminated via another layer as long as the effects of the present invention are not impaired. Even in the case of lamination through other layers, the resin layer (A) easily peels (separates) from the metal foil (B), so the surface cleanliness and surface treatment uniformity in the metal pattern It can give sex.
  • the resin layer (A) is in direct contact with the metal foil (B) from the viewpoint of enhancing the effect of the ease of peeling of the resin layer (A) by using the specific component at a specific ratio, and from the viewpoint of production cost. It is preferable that they are laminated.
  • a constituent layer of the other layer includes a release layer such as a silicone resin or a fluororesin.
  • the peel strength Pr between the resin layer (A) and the metal foil (B) is preferably 100 gf / cm or less from the viewpoint of easy peeling of the resin layer (A) from the metal foil (B). Further, the peel strength Pr between the resin layer (A) and the metal foil (B) is 2 gf / cm or more, so that the adhesion of the resin layer (A) to the metal foil (B) is kept to a certain level. From the viewpoint of improving the handleability of the metal foil with a resin layer, it is preferable.
  • the peel strength Pr between the resin layer (A) and the metal foil (B) is more preferably 3 gf / cm or more and 80 gf / cm or less, and 4 gf / cm or more and 75 gf / cm or less. Is even more preferable.
  • the resin layer (A) is manufactured with the above specific composition, and the surface roughness of the surface on the resin layer (A) side of the metal foil (B) is set within the following range. Or the conditions for laminating the resin layer (A) and the metal foil (B) may be appropriately adjusted.
  • the resin layer (A) and the metal foil (B) so that the glossy surface when the metal foil (B) is electrolytic copper is in contact with the resin layer (A), the peel strength Pr is within the above range. It is preferable because it is easy to.
  • the peel strength can be measured by the method described in Examples described later.
  • the glossy surface referred to here is a surface that faces the drum side at the time of manufacture in a copper foil obtained by an electrolytic method using a cathode drum.
  • the metal foil of the resin-attached metal foil is a metal foil with a carrier by an electrolytic method
  • a release layer (C) and a metal foil (B) are provided on the side, and the metal foil (B) is attached to the resin layer (A) in a state where the electrolytic solution surface side of the metal foil (B) is in contact with the resin layer (A). You may make it laminate
  • the metal in the metal foil (B) is for forming a so-called conductor circuit pattern, and is preferably a low-resistance metal such as gold, silver, copper, or aluminum, or an alloy thereof, and particularly copper. It is preferable from the viewpoints of conductivity and workability.
  • the metal foil is pure copper or a copper alloy, and it is typically preferable from the viewpoint of conductivity, etching workability, and the like that the ratio of copper is 95% by mass or more.
  • the thickness of the metal foil (B) is preferably 3 ⁇ m or more and 70 ⁇ m or less, for example, from the viewpoint of handling properties of the metal foil with a resin layer and ease of etching, for example, 5 ⁇ m or more and 35 ⁇ m or less. It is more preferable that The metal foil (B) is not particularly limited in the production method, and may be formed by any method such as an electrolytic method, a rolling method, and a vapor phase method.
  • the surface of the metal foil (B) on the resin layer (A) side preferably has a surface roughness (Rzjis) of 4.0 ⁇ m or less, more preferably 3.0 ⁇ m or less, and even more preferably 2.0 ⁇ m or less. It is. By setting the surface roughness (Rzjis) within this range, it is possible to improve the ease of peeling of the resin layer (A) when directly laminated with the metal foil (B). Further, from the viewpoint of maintaining the adhesion between the resin layer (A) and the metal foil (B), the surface roughness (Rzjis) of the surface on the resin layer (A) side of the metal foil is preferably 0.01 ⁇ m or more, more preferably. Is 0.02 ⁇ m or more, more preferably 0.05 ⁇ m or more. The surface roughness (Rzjis) is measured according to JIS B0601-1994.
  • the metal foil with a resin layer has a release layer on the surface opposite to the resin layer (A) in the metal foil (B) in order to improve handling properties. It is preferable to have (C) (second release layer) and carrier (D) in this order.
  • Examples of the carrier (D) include metals such as copper, iron and aluminum, alloys having these metals as main components, heat-resistant resins such as polyester and engineering plastics, and stable peel strength from the metal foil. From the standpoint of securing it, copper foil is preferred.
  • the thickness of the carrier is preferably 12 ⁇ m or more and 100 ⁇ m or less, and more preferably 15 ⁇ m or more and 40 ⁇ m or less from the viewpoint of transportability and peelability.
  • the release layer (C) is used for the purpose of facilitating peeling between the metal foil (B) and the carrier (D), and may be any of a known organic release layer and inorganic release layer.
  • organic components used in the organic release layer include nitrogen-containing organic compounds, sulfur-containing organic compounds, carboxylic acids and the like.
  • nitrogen-containing organic compounds include triazole compounds, imidazole compounds, and the like. Among these, triazole compounds are preferable in terms of easy release properties.
  • Examples of triazole compounds include 1,2,3-benzotriazole, carboxybenzotriazole, N ′, N′-bis (benzotriazolylmethyl) urea, 1H-1,2,4-triazole and 3-amino-1H.
  • examples of the sulfur-containing organic compound include mercaptobenzothiazole, thiocyanuric acid, 2-benzimidazolethiol and the like.
  • examples of the carboxylic acid include monocarboxylic acid and dicarboxylic acid.
  • examples of inorganic components used in the inorganic release layer include metals or alloys of at least one of Ni, Mo, Co, Cr, Fe, Ti, W, P, Zn, and / or oxides thereof. Is mentioned.
  • the thickness of the release layer (C) is typically 1 nm or more and 1 ⁇ m or less, preferably 5 nm or more and 500 nm or less.
  • the peel strength Pc between the carrier (D) and the metal foil (B) (the peel strength of the peel in the release layer (C)) is It is usually smaller than the peel strength Pr between the resin layer (A) and the metal foil (B).
  • the metal foil with a resin layer is easy to use for applications that require two-step peeling, in which the carrier (D) is peeled off before pattern formation and the resin layer (A) is peeled off after transfer.
  • the peel strength Pc between the carrier (D) and the metal foil (B) is typically 100 gf / cm or less, from the viewpoint of ease of peeling of the carrier (D) from the metal foil (B). To preferred. In addition, the peel strength Pc between the carrier (D) and the metal foil (B) is 1 gf / cm or more, and the adhesion of the carrier (D) to the metal foil (B) is set to a certain level. It is preferable from a viewpoint of improving the handleability of the metal foil with a resin layer.
  • the peel strength Pc between the carrier (D) and the metal foil (B) is more preferably 2 gf / cm or more and 50 gf / cm or less, and preferably 3 gf / cm or more and 30 gf / cm or less. Even more preferred.
  • the peel strength can be measured by the method described in Examples described later.
  • the peeling strength is more effectively prevented from peeling the resin layer (A) from the metal foil (B) when the carrier (D) is peeled from the metal foil (B).
  • the difference Pr-Pc between Pc and peel strength Pr is preferably 2 gf / cm or more and 30 gf / cm or less, more preferably 3 gf / cm or more and 20 gf / cm or less.
  • the metal foil (B), the peeling layer (C), and the carrier (D) are laminated in this order.
  • a method of preparing a metal foil with a carrier and laminating the metal foil with a carrier so that the metal foil (B) faces the resin layer (A) can be adopted.
  • various methods such as the coating method described above and preferred conditions thereof can be adopted.
  • the metal foil with a carrier by laminating the metal foil (B), the release layer (C) and the carrier (D) for example, when the carrier (D) is a copper foil, a rolling method is used. It can be formed by a method such as an electrolytic method.
  • the manufacturing method of the laminated body of this embodiment using said metal foil with a resin layer is demonstrated still in detail.
  • this manufacturing method (1) a step of etching the metal foil (B) in the metal foil with a resin layer to form a predetermined pattern; (2) Laminating a base material on the surface side on which the pattern is formed in the metal foil with a resin layer; (3) mechanically peeling the resin layer (A).
  • the step (1) is performed after mechanically peeling the carrier (D) from the metal foil with a resin layer.
  • the process of (1) can be normally performed by a subtractive method.
  • a subtractive method by providing a layer made of a photoresist on the entire upper surface of the metal foil (B) in the metal foil with a resin layer, and then exposing the wiring pattern to this layer, and further developing and removing portions other than the portion that becomes the wiring pattern An etching resist layer having an opening through which the copper layer is exposed is obtained.
  • the copper in the opening of the etching resist layer is removed by an etching process to form a predetermined pattern.
  • the etching solution a conventionally known etching solution used in the subtractive method can be used without particular limitation. Thereafter, the etching resist is removed using an aqueous caustic soda solution or the like. In this way, a metal foil with a resin layer, which is a transfer laminate with a circuit wiring layer, is obtained.
  • the base material is laminated on the surface of the metal foil with a resin layer on which the pattern is formed.
  • the substrate has a plate-like or sheet-like shape, and as a constituent material thereof, a composite material of an organic material such as a resin and an inorganic material such as a glass cloth or an inorganic filler can be given.
  • a thermoplastic resin or a semi-cured thermosetting resin can be used.
  • the resins include polyvinyl acetal resin, polytetrafluoroethylene resin, polycycloolefin resin, liquid crystal polymer, polyphenether resin, polyimide resin, polyetheretherketone resin, polyether Examples include imide resins, polyphenylene sulfide resins, polysulfone resins, polyether sulfone resins, polyarylate resins, and polycarbonate resins.
  • thermosetting resin here includes modified polyphenylene ether resin, bismaleimide resin, epoxy resin, thermosetting polyimide resin, fluororesin, phenol resin, triazine resin, cyanate resin, benzoxazine resin, unsaturated polyester resin, bis
  • maleimide triazine resin, polyurethane resin and the like and among these, those capable of forming a B-stage state are preferable.
  • the base material may contain any inorganic or organic filler.
  • the thickness of the substrate is appropriately set according to the intended use of the laminate, but is generally preferably 50 ⁇ m or more and 2000 ⁇ m or less.
  • the metal foil with a resin layer and the substrate are overlapped and pressure-bonded so that the surface on which the pattern in the metal foil with a resin layer described above is formed faces the substrate.
  • the pressure-bonding conditions can be appropriately adjusted according to the melt viscoelasticity and pattern transferability of the substrate.
  • the temperature is 40 ° C. or higher and 280 ° C. or lower. It is preferable to use it under conditions of 0.15 MPa or more and 5 MPa or less.
  • the resin layer (A) is mechanically peeled from the metal foil (B) (and the base material if necessary) to thereby form a wiring laminate in which a pattern is formed on the base material ( In this specification, it may be simply referred to as “laminate”.
  • Mechanical peeling can be performed using, for example, manual peeling or a peeling device using an auto peeler.
  • the substrate is made of a thermosetting resin
  • the wiring laminate is further heated to completely cure the substrate.
  • the laminated body of this embodiment there is no resin residue on the pattern surface in the said laminated body by using the metal foil with a resin layer which has the said specific resin layer (A). For this reason, the laminate has excellent pattern surface cleanliness.
  • this surface treatment can be performed uniformly, and there is an advantage that the state of the obtained pattern surface becomes uniform.
  • Examples of such a surface treatment method include roughening treatment, soft etching, various precious metal plating treatments and the like in addition to washing with water or the like.
  • various methods such as a chemical etching method, a physical etching method, and an electrolytic method can be employed.
  • the laminate obtained by the method of the present embodiment has a high heat resistance reliability because there is almost no resin residue on the surface of the wiring pattern.
  • the laminated body obtained as described above was affixed to a printed wiring board such as a rigid multilayer wiring board and a flexible printed wiring board, a display panel wiring, and an intermediate layer of a window glass. It can be suitably used as wiring, defroster, defogger, wiring for solar cell panel, and the like.
  • the manufacturing method of the metal foil with a resin layer and laminated body of this invention was demonstrated, this invention is not limited to the said embodiment.
  • the metal foil with a resin layer of the present invention may be applied to a laminate manufacturing method in which the step (1) is performed by, for example, an additive method.
  • the metal foil with a resin layer does not require a support body, such as a polyethylene terephthalate, to laminate
  • the method of providing such a support and peeling the support together with the resin layer (A) at the time of transfer is also included in the method for producing the metal foil with a resin layer and the laminate of the present invention.
  • the adhesive layer breaks at the time of peeling from the metal foil or the like in Patent Documents 1 and 2 above. And the problem that a resin film as a support is required in addition to the adhesive layer on the metal foil can be solved.
  • Styrene compounds (Examples and Comparative Examples) (1) ST1 Polystyrene (DIC Corporation CR2500) Number average molecular weight Mn: 230,000 (2) ST2 2,4-diphenyl-4-methyl-1-pentene: 67% by mass Polystyrene (DIC Corporation CR2500): 33% by mass Number average molecular weight Mn of the mixture obtained by mixing the above two components at the above ratio: 76,000 3.
  • Polyphenylene ether resin (Examples and Comparative Examples) Mitsubishi Gas Chemical Co., Ltd. OPE-2St (1200) Number average molecular weight Mn: 1,150 4).
  • Acrylic resin composition (comparative example only) Butyl-2-methyl-acrylate: To 100 parts by mass Acrylic acid: 10 parts by mass Isocyanate-based crosslinking agent (Nippon Polyurethane Industry Co., Ltd. L-45): 3 parts by mass Benzotriazole: 3 parts by mass
  • Example 1 A resin layer-attached metal foil in which a resin layer (A) and a copper foil as a metal foil (B) were laminated in this order was prepared by the following procedure. First, the copper foil is formed by electrolytic method, the surface roughness (Rzjis) on the resin layer (A) side is 0.8 ⁇ m, the surface roughness (Rzjis) on the opposite side is 1.5 ⁇ m, and the thickness is 18 ⁇ m. It was a thing.
  • the resin composition having the composition shown in Table 1 below is dissolved in toluene as a solvent to prepare a resin varnish having a resin solid content of 25%, applied onto the copper foil, air-dried, 150 ° C., 3 ° C.
  • the resin layer (A) having a thickness of 50 ⁇ m was obtained.
  • a resist mask was formed on the exposed surface of the metal foil (B) using a photoresist (thickness 20 ⁇ m).
  • a piece 150 mm sq.
  • a wiring pattern line / space (L / S) of the wiring forming portion: 100 ⁇ m / 100 ⁇ m
  • development was performed using a 5% solution of sodium carbonate as a developing solution to remove portions other than the wiring pattern portion to form an etching resist layer.
  • Etching was performed by immersing the metal foil with a resin layer in an etching solution (aqueous solution having a cupric chloride concentration of about 135 g / L and a hydrochloric acid concentration of 105 g / L). After etching, the circuit is washed with water, the resist is removed using a 10% aqueous sodium hydroxide solution, washed again with water and dried to obtain a metal foil with a resin layer for transfer on which a wiring pattern is formed. It was.
  • etching solution aqueous solution having a cupric chloride concentration of about 135 g / L and a hydrochloric acid concentration of 105 g / L.
  • peeling speed 1 50 mm / min
  • Peeling speed 2 300 mm / min
  • the resin layer (A) of the wiring laminate precursor was mechanically peeled off using a peeler to obtain a wiring laminate on which the wiring pattern was transferred.
  • the wiring pattern was almost completely embedded in the surface of the insulating sheet made of the cured resin, and the insulating sheet surface and the wiring pattern surface were positioned on substantially the same plane.
  • the prepreg resin of the wiring laminate was further cured under conditions of pressure 3.0 MPa, 220 ° C. and 90 minutes to obtain a wiring laminate.
  • the surface of the wiring pattern after peeling off the resin layer (A) is blackened using a mixed solution of sodium chlorite and sodium hydroxide, and reduced using a mixed solution of dimethylamine borane and sodium hydroxide. Roughening treatment was performed. At the time of peeling, the breaking durability of the resin layer (A) was visually confirmed. In addition, after the blackening treatment, the piece in which the blackening treatment failure of the wiring pattern due to the microscopic residue of the resin layer (A) occurred was confirmed visually and with a 50-fold stereomicroscope, and the following evaluation criteria were satisfied. Judgment was made based on this. (The numerical value of% indicates the defect rate (the ratio of pieces in which the processing defects occur in the observed 20 pieces)).
  • the storage elastic modulus is measured according to the tensile vibration-non-resonance method described in JIS K7244 (1999) with a dynamic viscoelasticity measuring device (DMA) for the resin layer (A) after peeling from the wiring pattern. Measured the storage elastic modulus performed at an atmospheric condition, a frequency of 1 Hz, and a heating rate of 5 ° C./min to obtain a storage elastic modulus E ′ at 30 ° C.
  • DMA dynamic viscoelasticity measuring device
  • Examples 2, 4 to 8, Comparative Examples 1 to 5 The resin composition in the resin layer (A) was the same as that in Example 1 except that the resin composition was the same as in Table 1.
  • the comparative example 5 is an example which used the component similar to the adhesion layer of the said patent document 2 for formation of the resin layer.
  • Example 3 In this example, a copper foil with a carrier produced by the procedure shown in the following (1) to (3) was used as the metal foil, the composition of the resin in the resin layer was as shown in Table 1, and with the carrier Example 1 except that after the resin layer (A) was formed on the surface of the copper foil opposite to the carrier of the ultrathin copper foil, the carrier was manually and mechanically peeled to obtain a copper foil with a resin layer. And so on.
  • the peel strength Pc between the carrier and the copper foil in the copper foil with carrier was measured as follows.
  • electrolytic copper foil for carrier A sulfuric acid copper sulfate solution is used as a copper electrolyte, a titanium rotating electrode drum having a surface roughness Ra of 0.20 ⁇ m is used as a cathode, and a DSA (dimensional stability) is used as an anode.
  • the anode was used for electrolysis at a solution temperature of 45 ° C. and a current density of 55 A / dm 2 to obtain an electrolytic copper foil for carriers (hereinafter referred to as “copper foil A”) having a thickness of 12 ⁇ m.
  • the resin layer is stable without breaking when the resin layer is mechanically peeled after transferring the pattern without using a support such as polyethylene terephthalate. It is possible to peel off. Moreover, according to the manufacturing method of the laminated body and metal foil with a resin layer of this invention, the resin residue in the metal foil surface after peeling a resin layer mechanically can be reduced extremely. For this reason, according to the manufacturing method of the laminated body and metal foil with a resin layer of this invention, the laminated body in which the metal wiring pattern excellent in the uniformity of the surface state of a wiring pattern was formed can be formed easily by a transfer method.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Laminated Bodies (AREA)
  • Manufacturing Of Printed Wiring (AREA)

Abstract

本発明の積層体の製造方法は、金属箔と樹脂層とを有する樹脂層付金属箔における該金属箔をエッチングすることにより所定のパターンを形成する工程と、 前記樹脂層付金属箔における前記パターンが形成された面側に、基材を積層する工程と、 前記樹脂層を剥離する工程と、を備え、 前記樹脂層が、主としてスチレンブタジエン共重合体を含み、更に、スチレン系化合物を含み、 スチレン系化合物は、スチレン系モノマー、該スチレン系モノマーを構成ユニットとするオリゴマー及びポリマー並びに該オリゴマー又は該ポリマーの誘導体から選ばれる少なくとも一種であり、 前記樹脂層において、前記スチレン系化合物が、100質量部のスチレンブタジエン共重合体に対して10質量部以上70質量部以下含まれている、金属のパターンを有する積層体の製造方法である。

Description

積層体の製造方法及び樹脂層付金属箔
 本発明は、樹脂層上の導体回路パターンを基材に転写する積層体の製造方法及び、この用途に用いられる樹脂層付金属箔に関する。
 従来、半導体素子を収納するパッケージに使用されるプリント配線板やディスプレイパネル用の配線等の製造方法として、導体回路パターンを絶縁性基板に転写する方法が提案されている。この方法では、まず樹脂フィルム表面に金属箔を貼付し、エッチング法等を用いて金属箔の不要な部分を除去して導体回路パターンとし、これを転写シートとして絶縁性基板と圧着させ、次いで樹脂フィルムを引き剥がすことにより導体回路パターンの転写を行う。この方法によれば、金属箔を基板に積層し、エッチング法等により金属箔の不要部分を除去して導体回路パターンを形成する方法に比べ、基板が各種の薬液に接触することがないので、薬液による基板の特性低下を防止できる等の利点を有している。
 例えば特許文献1には、ポリエチレンテレフタレートから成る樹脂のフィルム表面に、紫外線硬化型のアクリル系樹脂から成る粘着剤を塗布して粘着層を形成し、この粘着層上に銅箔を接着した後エッチングにより導体回路パターンを形成してなる転写シート、及びこれを転写する積層体の製造方法が記載されている。
 特許文献1では、粘着剤として、紫外線硬化型のアクリル系樹脂を用いることで、粘着層が基板上の回路非形成部分に接着することを防止できるとしている。
 特許文献2にも同様の転写シート、及びこれを転写する積層体の製造方法が記載されている。同文献では粘着層を、アクリルポリマーをカルボキシル基との反応性を有する多官能性化合物により架橋して得られる粘着剤を用いて形成する。前記アクリルポリマーは(メタ)アクリル酸エステルとカルボキシル基含有ラジカル重合性単量体とを共重合して得られる。同文献では、この構成の粘着層により、樹脂フィルムを金属箔から引き剥がすことができるとしている。
特開平10-178255号公報 特開2002-134881号公報
 しかしながら、特許文献1及び2に記載されたような、アクリル系樹脂の粘着層を用いると、樹脂フィルム剥離後、転写された金属箔表面への樹脂残りが存在し、転写後に形成する最終製品への耐熱信頼性等に影響を及ぼす恐れがあった。また、特許文献1及び2に記載されたアクリル系樹脂の粘着層は樹脂フィルムを剥離する際に破断しやすく、またポリエチレンテレフタレート等の支持体なしでは使用し難いため、コスト削減の観点からも課題があった。
 本発明の課題は、前述した従来技術が有する種々の欠点を解消し得る積層体の製造方法及び樹脂層付金属箔を提供することにある。
 本発明は、金属箔と樹脂層とを有する樹脂層付金属箔における該金属箔をエッチングすることにより所定のパターンを形成する工程と、
 前記樹脂層付金属箔における前記パターンが形成された面側に、基材を積層する工程と、
 前記樹脂層を剥離する工程と、を備え、
 前記樹脂層が、主としてスチレンブタジエン共重合体を含み、更に、スチレン系化合物を含み、
 スチレン系化合物は、スチレン系モノマー、該スチレン系モノマーを構成ユニットとするオリゴマー及びポリマー並びに該オリゴマー又は該ポリマーの誘導体から選ばれる少なくとも一種であり、
 前記樹脂層において、前記スチレン系化合物が、100質量部のスチレンブタジエン共重合体に対して10質量部以上70質量部以下含まれている、
金属のパターンを有する積層体の製造方法(以下本発明の第1の積層体の製造方法ともいう)を提供するものである。
 また本発明は、剥離性樹脂層と、金属箔と、第二剥離層と、キャリアとをこの順に有し、
 前記金属箔と前記樹脂層とは直接に接して積層されており、
 前記キャリアと前記金属箔との間の剥離強度Pcよりも、前記金属箔と前記樹脂層との間の剥離強度Prの方が大きい積層シートを準備する工程、
 前記積層シートのキャリアを剥離層において剥離する工程、
 前記金属箔をエッチングすることにより所定のパターンを形成する工程、
 前記積層シートにおける前記パターンが形成された面側に、基材を積層する工程、及び、
 前記樹脂層を剥離する工程、をこの順に備えた、金属のパターンを有する積層体の製造方法(以下本発明の第2の積層体の製造方法ともいう)を提供するものである。
 また本発明は、金属箔と剥離用樹脂層とを有する樹脂層付金属箔において、
 前記金属箔と前記樹脂層とが直接に接して積層されており、
 前記樹脂層が、主としてスチレンブタジエン共重合体を含み、更に、スチレン系化合物を含み、
 スチレン系化合物は、スチレン系モノマー、該スチレン系モノマーを構成ユニットとするオリゴマー及びポリマー並びに該オリゴマー又は該ポリマーの誘導体から選ばれる少なくとも一種であり、
 前記樹脂層において、前記スチレン系化合物が、100質量部のスチレンブタジエン共重合体に対して10質量部以上70質量部以下含まれる、樹脂層付金属箔を提供するものである。
 また、本発明は、金属箔と樹脂層とが直接に接して積層させた樹脂層付金属箔における該樹脂層の剥離層としての使用であって、該樹脂層に前記の樹脂組成を有させる使用を提供するものである。
 また、本発明は、金属箔と樹脂層とが直接に接して積層させた樹脂層付金属箔における該樹脂層を剥離層として使用する方法であって、該樹脂層に前記の樹脂組成を有させる使用方法を提供するものである。
 以下本発明を、その好ましい実施形態に基づき説明する。本実施形態は転写法に用いる樹脂層付金属箔に係るものである。以下本実施形態の樹脂層付金属箔についてまず説明する。樹脂層付金属箔は、特定の樹脂構成を有する剥離用樹脂層(A)、及びこの樹脂層(A)の一面に積層された金属箔(B)を有する。
 本実施形態は、樹脂層(A)がスチレンブタジエン共重合体を主として含有し、更にスチレン系化合物をスチレンブタジエン共重合体に対して特定比で含有している点に特徴の一つを有する。
 本発明者は、転写法に用いる樹脂層付金属箔の構成と、樹脂層(A)の金属箔(B)に対する剥離容易性について鋭意検討した。その結果、従来用いられてきたアクリル樹脂系の粘着層及びポリエチレンテレフタレートの支持体という構成に代えて、特定の樹脂構成の樹脂層(A)を用いた場合、回路転写後、該樹脂層(A)を金属箔(B)界面から容易に剥離することができ、樹脂残りを効果的に防止できることを知見した。このため、本実施形態の樹脂層付金属箔を用いて転写した配線パターン上には、洗浄や粗化といった表面処理のムラが生じにくく、表面清浄性や表面処理均質性に優れ、信頼性の高い回路付き積層体を得ることができる。
 更に、本実施形態では、樹脂層付金属箔における樹脂層(A)は、金属箔(B)からの剥離性のみならず、パターン形成時の変形に耐えうる剛直性及び、樹脂層(A)単体で、剥離においても変形しない強靭性を兼ね備えている。このため、本実施形態ではポリエチレンテレフタレート等の支持体を用いる必要がない。従って、本実施形態では、剥離用樹脂層に粘着剤を塗工する必要がなく、製造コストを低減することができる。
 これに対して、従来のアクリル樹脂系の粘着層は、上述したように配線パターン上に樹脂残りを生じやすい。この樹脂残りは、転写後の金属箔表面に対して表面処理を施した時に、表面処理ムラの原因となっており、このような銅箔を内層とする積層体は、パターンが光沢ムラとなり外観的に異常となるためディスプレイ用途として不向きである他、積層体を高温で使用した時の耐熱信頼性を損なう恐れがある。更に、アクリル樹脂は加熱圧着処理に対する耐性に劣っている。このため、アクリル系粘着層と同様の成分をフィルム状に成形して、得られた成形体を加熱圧着処理により金属箔と積層した場合、回路形成後にこの成形体を剥離しようとしても樹脂層が内部破断してしまい、剥がすことが非常に困難となるか、又は不可能となる。
 本明細書中、「剥離用樹脂層」及び「剥離層」とは金属箔から剥離させて用いる層をいう。
 また、前記の理由から、本実施形態の樹脂層(A)を剥離性樹脂層とも呼ぶことができる。本明細書中、剥離性とは、樹脂層付金属箔における前記パターンが形成された面側に、後述する圧着条件にて後述する樹脂種類のいずれかからなる基材を積層してなる積層体において、樹脂層(A)を金属箔(B)から剥離しようとしたときに、樹脂層(A)内の破断及び金属箔(B)の基材からの剥離を生じさせずに、樹脂層(A)が金属箔(B)から、或いは必要に応じて金属箔(B)及び基材から剥離する性質を意味する。剥離性は、樹脂層(A)を含むいずれか一の積層体において示されればよく、その場合は他の積層体において示されなくてもよい。
 本明細書中、樹脂層(A)を金属箔(B)から剥離するという場合、ここでいう「金属箔(B)」には、樹脂層(A)一面全体を被覆する、パターン形成前の金属箔(B)、及び、金属箔(B)から形成された金属パターンの両方を含みうる。
 以下、本実施形態で用いる樹脂層付金属箔について更に説明する。
<スチレンブタジエン共重合体>
 本実施形態では、樹脂層(A)が、スチレンブタジエン共重合体を主成分として含むことを特徴の一つとしている。これにより、本実施形態の樹脂層付金属箔は、金属箔に対する良好な密着性及び剥離性を兼ね備えるものとなり、且つ、樹脂層(A)自身が優れた弾性及び柔軟性を有するものとなる。スチレンブタジエン共重合体には、ランダム共重合体、交互共重合体、ブロック共重合体、グラフト共重合体等があるが、樹脂層(A)剥離時の強度を有利に保持する点からブロック共重合体が好ましい。ブロック共重合体としては、スチレン-ブタジエンブロック共重合体、スチレン-ブタジエン-スチレンブロック共重合体、スチレン-(スチレン-ブタジエン)-スチレンブロック共重合体等が挙げられる。これらは1種又は2種以上を混合して用いられる。
 スチレンブタジエン共重合体におけるスチレンユニットの含有率(対共重合体全量)は、樹脂層(A)を剥離させた後、より確実に樹脂残渣を低減させる点から、20重量%以上が好ましい。一方、柔軟性保持の点からは80重量%以下が好ましい。これらの点からスチレンブタジエン共重合体におけるスチレンユニットの前記の重量比は30重量%以上かつ70重量%以下、更に好ましくは45重量%以上かつ65重量%以下がより好ましい。
 また、剥離用樹脂層(A)の剥離の際に可撓性と破断体制をより優位に保つ点からスチレンブタジエン共重合体のGPC(ゲル浸透クロマトグラフィー)分析法による数平均分子量(Mn)は、50,000以上500,000以下であることが好ましい。
 熱硬化性等の機能を付与させる目的で、スチレンブタジエン共重合体には、各種の変性が加えられていてもよい。変性の例としては、例えば、グリシジルエーテル変性、オキシラン導入、水酸基変性、カルボキシル基変性などが挙げられる。
 樹脂層(A)が、スチレンブタジエン共重合体を主(主成分)として含有するとは、好ましくは、スチレンブタジエン共重合体が樹脂層(A)の樹脂成分中、45質量%以上含まれていることを意味する。スチレンブタジエン共重合体が樹脂層(A)中の樹脂成分に対して45質量%以上含まれていることで、樹脂層(A)は樹脂層内部での破断を防止しながら容易に金属箔(B)からの剥離が可能なものとなる。また、スチレンブタジエン共重合体の量は樹脂層(A)の樹脂成分中、80質量%以下とすることで、スチレンブタジエン共重合体以外のスチレン系化合物及び必要に応じて含有される後述するポリフェニレンエーテル樹脂の量を一定以上とすることができ、樹脂層に剛直性、耐熱性、耐薬品性等を付与することができる。これらの観点から、樹脂層(A)の樹脂成分中に、スチレンブタジエン共重合体は、47質量%以上77質量%以下含まれていることがより好ましく、49質量%以上75質量%以下含まれていることが特に好ましい。
<スチレン系化合物>
 スチレン系化合物は、本実施形態の樹脂層付金属箔における樹脂層(A)に、剛直性及び強靭性、剥離容易性を付与するために用いられる。樹脂層(A)において、スチレン系化合物は、スチレン系モノマー、及び該スチレン系モノマーを構成ユニットとするオリゴマー及びポリマー並びに該オリゴマー又は該ポリマーの誘導体から選ばれる1種又は2種以上の化合物である。
 従ってスチレン系化合物は、スチレンと他の不飽和炭化水素とのブロック共重合体は含まない。重合体であるスチレン系化合物は通常、スチレン鎖を主鎖とする。
 構成ユニットとしてのスチレン系モノマーとしては、スチレン及び置換スチレンが挙げられ、置換スチレンとしては、スチレンを構成するベンゼン環に結合する1又は2以上の水素原子が、炭素原子数1~5のアルキル基、炭素原子数1~5のアルコキシ基、ハロゲン原子である塩素、臭素、フッ素等の置換基に置換されたものが挙げられる。スチレン系モノマーの具体例としては、スチレン、メチルスチレン、α-メチルスチレン、β-メチルスチレン、t-ブチルスチレン、クロロスチレン、クロロメチルスチレン、メトキシスチレン、フルオロスチレン、ブロモスチレン等が挙げられる。
 スチレン系モノマーを単位ユニットとしたオリゴマーとしては、上記で挙げたスチレン系モノマーを重合させて得られるオリゴマーが挙げられ、例えば、2,4-ジフェニル-4-メチル-1-ペンテン、2,4-ジフェニル-1-ブテン、1,2-ジフェニルシクロブタン、1-フェニルテトラリン、2,4,6-トリフェニル-1-ヘキセン、1-フェニル-4-(1’-フェニルエチル)テトラリン、1,3,5-トリフェニルシクロヘキサン等が挙げられる。なおオリゴマーには、ダイマー、トリマーが含まれる。オリゴマーは通常構成モノマー数2~20程度のものをいう。
 スチレン系モノマーを単位ユニットとしたポリマーとしては、上記のスチレン系モノマー、及び/又は上記のオリゴマーを重合させて得られるポリマーが挙げられる。
 上記のスチレン系オリゴマー又はポリマーの誘導体としては、例えばスチレン系オリゴマー又はポリマーに末端修飾や置換基導入などの、各種の変性がなされたものが挙げられる。変性の例としては、例えば、グリシジルエーテル変性、オキシラン導入、水酸基変性、カルボキシル基変性などが挙げられる。
 ここで、樹脂層(A)を剥離する際、剥離を急速に行った場合には、樹脂層(A)には強い応力がかかる。そのような場合においてもより安定して剥離性能を保持する点から、上記のスチレン系化合物は、GPC(ゲル浸透クロマトグラフィー)分析法による数平均分子量(Mn)が15,000以上350,000以下であることが好ましい。
 スチレン系化合物は、上記スチレン系モノマー並びにスチレン系モノマーを単位ユニットとしたオリゴマー及びポリマー並びにそれらの誘導体の合計量として、本実施形態の樹脂層付金属箔における樹脂層(A)に、スチレンブタジエン共重合体100質量部に対して10質量部以上70質量部以下含まれている。スチレン系化合物の量が10質量部以上であることで、樹脂層(A)は十分な剛直性及び金属箔(B)からの剥離容易性が得られ、ポリエチレンテレフタレート等の支持体を有さずに剥離用樹脂層として機能可能となる。またスチレン系化合物の量が70質量部以下であることで、樹脂層(A)は強靭性を保持でき、これにより金属箔(B)からの剥離容易性が得られる。これらの観点から、樹脂層(A)中に、スチレン系化合物の量は、スチレンブタジエン共重合体100質量部に対して15質量部以上67質量部以下含まれていることがより好ましく、20質量部以上65質量部以下含まれていることが特に好ましい。スチレン系化合物中、スチレン系モノマー並びにそれを構成ユニットとしたオリゴマー及びその誘導体の比率は限定されない。本実施形態の樹脂層(A)は以上の量でスチレン系化合物を含有することにより、樹脂層(A)を破断なく安定的に剥離でき、樹脂残りを低減するという本発明の効果を奏することができる。
<好適材料:ポリフェニレンエーテル樹脂>
 樹脂層(A)に含まれる各成分のうち、好ましい材料として含有されるポリフェニレンエーテル樹脂は、その構造に起因して耐熱性をより優位に付与する好適な成分である。本実施形態の樹脂層付金属箔は、樹脂層(A)がポリフェニレンエーテル樹脂を含むと、樹脂層付金属箔を基材と高温条件下で積層した場合においても、樹脂層(A)を破断なく、より一層安定的に金属箔から剥離でき、樹脂残りを更に効果的に低減できる。
 ポリフェニレンエーテル樹脂としては、例えば、以下に示す一般式(1)で表される構造を有するものが用いられる。例えばポリフェニレンエーテル樹脂は、例えば、一般式(2)で表される構造を有していてもよい。
Figure JPOXMLDOC01-appb-C000001
(式中、R1、R2、R3及びR4はそれぞれ、同一の又は異なる水素原子又は炭素数1以上3以下の炭化水素基を表す。nは1以上の整数を表す。)
Figure JPOXMLDOC01-appb-C000002
(式中、R1、R2、R3及びR4は一般式(1)と同じである。また、a及びbはそれぞれ1以上100以下の整数を表す。Aは直接結合、又は、炭素数20以下の直鎖状、分岐状若しくは環状の2価の炭化水素基である。なお、複数存在するR1は互いに同一であっても異なってもよく、R2、R3及びR4も同様である。)
 R1、R2、R3及びR4で表される炭素原子数1~3の炭化水素基としてはメチル基、エチル基、プロピル基が挙げられる。Aで表される炭素数20以下の直鎖状、分岐状若しくは環状の2価の炭化水素基としては、直鎖又は分岐状アルキレン基、アルキル基で置換されていてもよいフェニレン基、アルキル基で置換されていてもよいビフェニレン基、及びそれらの組み合わせ等が挙げられる。ポリフェニレンエーテル樹脂としては、例えばポリ(2,6-ジメチル-1,4-フェニレン)エーテル、ポリ(2,6-ジエチル-1,4-フェニレン)エーテル、ポリ(2,6-ジプロピル-1,4-フェニレン)エーテル等を用いることができる。
 樹脂層の耐熱性をより高めるために、ポリフェニレンエーテル樹脂の末端は、熱硬化性官能基で変性されていることが好ましい。熱硬化性官能基としては、例えば水酸基、アクリル基、メタクリル基、アクリロイルオキシ基、メタアクリロイルオキシ基、グリシジルエーテル基、ビニルベンジル基及びアリル基などが挙げられる。ポリフェニレンエーテルの優れた誘電特性を保持したまま、反応性の高い熱硬化性を付与する官能基である点から、これらの中でもビニルベンジル基、アクリル基、メタクリル基等で変性されたポリフェニレンエーテル樹脂が好ましい。
 ポリフェニレンエーテル樹脂のGPC(ゲル浸透クロマトグラフィー)分析法による数平均分子量(Mn)は、500以上4,000以下であることが好ましく、600以上3,500以下であることがより好ましい。この範囲とすることで、ポリフェニレンエーテル樹脂が溶剤に溶解しやすくワニス化加工しやすいと共に、樹脂層の強靭性を保持することが可能となる。
 上述したポリフェニレンエーテル樹脂の利点を有意に作用させるため、樹脂層におけるポリフェニレンエーテル樹脂の含有率は、スチレンブタジエン共重合体100質量部に対し、1質量部以上60質量部以下であることが好ましく、2質量部以上55質量部以下であることがより好ましく、4質量部以上50質量部以下であることが更に一層好ましく、5質量部以上20質量部以下であることが特に好ましい。
 樹脂層(A)には、剥離容易性を損なわない範囲で、スチレンブタジエン共重合体、スチレン系化合物及びポリフェニレンエーテル樹脂以外の成分が含まれていてもよい。そのような成分としては、無機フィラーや分散剤、熱重合抑制剤、酸化防止剤、紫外線吸収剤、着色剤、レべリング剤、可塑剤、界面活性剤等が挙げられる。樹脂層(A)の上述した特性をより一層高いものとする観点から、樹脂層(A)中の樹脂成分は、好ましくは50質量%以上であり、更に好ましくは、80質量%以上である。また同様の観点から、樹脂層(A)におけるスチレンブタジエン共重合体、スチレン系化合物及びポリフェニレンエーテル樹脂以外の成分の含有量は、好ましくは、50質量%以下であり、より好ましくは、20質量%以下である。
 樹脂層(A)は、上記特定成分を上記特定量で含有することに加えて、30℃での貯蔵弾性率が特定範囲のものとなることが好ましい。具体的には、本実施形態における樹脂層(A)は30℃での貯蔵弾性率が、0.1GPa以上であることが、樹脂の剛直性及び強靭性を高めて、剥離の際の樹脂層の変形をより一層防止しやすいため好ましい。剥離の際に樹脂層が変形しやすいと、剥離時に樹脂層が伸びて引き千切れやすく、安定的に金属箔界面から引き剥がしにくい事及び、樹脂残りが生じやすいという問題がある。また30℃での貯蔵弾性率は0.50GPa以下であることが、樹脂層の柔軟性を確保し、剥離の際の樹脂層の脆性をより一層低減できるため好ましい。剥離の際に樹脂層が脆いと樹脂破壊を起こしやすく安定的に金属箔界面から引き剥がしにくい事及び、樹脂残りが生じやすいという問題がある。これらの観点より、樹脂層(A)の前記貯蔵弾性率は、0.12GPa以上0.40GPa以下であることがより好ましく、0.15GPa以上0.32GPa以下であることがより一層好ましい。貯蔵弾性率は後述の実施例に記載の方法で測定できる。
 樹脂層(A)の成形方法としては、押出成形法、射出成型法、コーティング法などが挙げられるが、金属箔(B)への濡れ性、工程の簡略化等の観点からコーティング法が最も好ましい。コーティング法において用いる溶剤としては、樹脂組成物を溶解又は分散しうる有機溶媒を樹脂の溶解度パラメータ等に応じて適宜選択し用いることができる。また、コーティング後、塗布により得られる樹脂フィルム又はシートは溶剤を揮発する目的などから加熱しても加熱しなくてもよく、加熱する場合は、適宜溶剤に対応した温度及び時間を選択できる。樹脂層(A)は、コーティング法などを用いて金属箔(B)に直接形成してもよく、或いは、上記各種方法を用いて(コーティング法であれば金属箔(B)とは別の基板にコーティング液を塗工して)フィルム状又はシート状の樹脂層(A)を製造し、これを金属箔(B)に加熱圧着や真空ラミネート等の公知の積層方法で積層してもよい。
 樹脂層(A)の厚さは、金属箔(B)からの剥離容易性及びハンドリング性の点から12μm以上1000μm以下が好ましく、18μm以上、300μm以下であることがより好ましい。
 樹脂層(A)は、金属箔(B)と直接接するように積層されていてもよく、本発明の効果を損なわない範囲で他の層を介して積層されていてもよい。他の層を介して積層している場合であっても、樹脂層(A)は、金属箔(B)に対して容易に剥離(分離)するので、金属パターンにおける表面清浄性や表面処理均質性を与えうるものである。上記特定成分を特定比で用いたことによる樹脂層(A)の剥離容易性の効果をより高める観点、及び、製造コストの観点から樹脂層(A)は金属箔(B)と直接接するように積層されていることが好ましい。樹脂層(A)と金属箔(B)との間に他の層を形成する場合、他の層の構成成分としては、シリコーン樹脂、フッ素樹脂等の離型層を介在させることが挙げられる。
 樹脂層(A)と金属箔(B)との間の剥離強度Prは、100gf/cm以下であることが、樹脂層(A)の金属箔(B)からの剥離容易性の観点から好ましい。また樹脂層(A)と金属箔(B)との間の剥離強度Prは、2gf/cm以上であることが、樹脂層(A)の金属箔(B)への密着性を一定程度とさせて、樹脂層付金属箔のハンドリング性を向上させる観点から好ましい。これらの観点から、樹脂層(A)と金属箔(B)との間の剥離強度Prは3gf/cm以上80gf/cm以下であることがより好ましく、4gf/cm以上75gf/cm以下であることがより一層好ましい。剥離強度Prを上記の範囲とするためには、樹脂層(A)を上記の特定組成で製造し且つ金属箔(B)における樹脂層(A)側の面の表面粗さを下記の範囲としたり、樹脂層(A)と金属箔(B)とを積層する際の条件を適宜調整すればよい。例えば、金属箔(B)を電解銅としたときの光沢面を樹脂層(A)と接するように樹脂層(A)と金属箔(B)とを積層することも、剥離強度Prを上記範囲とし易いため好ましい。剥離強度は、後述する実施例に記載の方法で測定できる。ここでいう光沢面とは、陰極ドラムを用いた電解法で得られる銅箔において、製造時にドラム側と面していた面である。しかしながら、この方法には限定されず、後述するように、樹脂付金属箔の金属箔が電解法によるキャリア付金属箔である場合、電解法で製造したキャリア(D)のドラム面(光沢面)側に剥離層(C)及び金属箔(B)を設け、且つ該金属箔(B)における電解液面側を樹脂層(A)と接させた状態で該金属箔(B)を樹脂層(A)と積層させるようにしてもよい。
 次に、金属箔(B)について説明する。金属箔(B)における金属は、所謂導体回路パターンを形成するためのものであり、金、銀、銅、アルミニウム等の低抵抗金属、或いはその合金等が好適であり、とりわけ銅を用いることが導電性及び加工性等の観点から好ましい。銅を用いる場合、金属箔が純銅又は銅合金であり、典型的には銅の割合が95質量%以上であることが導電性、エッチング加工性等の点から好ましい。金属箔(B)の厚さは、樹脂層付金属箔のハンドリング性の点、及び、エッチングのしやすさの点から、例えば、3μm以上、70μm以下であることが好ましく、5μm以上、35μm以下であることがより好ましい。金属箔(B)は製造方法に特に限定はなく、例えば電解法及び圧延法、気相法等のいずれで形成されてもよい。
 金属箔(B)における樹脂層(A)側の面は、表面粗さ(Rzjis)が4.0μm以下であることが好ましく、より好ましくは3.0μm以下であり、更に好ましくは2.0μm以下である。表面粗さ(Rzjis)をこの範囲とすることで、金属箔(B)と直接積層した場合の樹脂層(A)の剥離容易性を向上させることができる。また、樹脂層(A)と金属箔(B)との密着性保持の観点から、金属箔における樹脂層(A)側の面の表面粗さ(Rzjis)は0.01μm以上が好ましく、より好ましくは0.02μm以上であり、更に好ましくは0.05μm以上である。表面粗さ(Rzjis)はJIS B0601-1994に準拠して測定される。
 樹脂層付金属箔は、金属箔(B)の厚さが9μm以下と薄い場合、ハンドリング性の向上のために、金属箔(B)における樹脂層(A)と反対側の面に、剥離層(C)(第二剥離層)及びキャリア(D)をこの順で有することが好ましい。
 キャリア(D)としては、銅、鉄、アルミニウム等の金属、それらの金属を主成分とする合金、ポリエステル、エンジニアリングプラスチックス等の耐熱性樹脂を挙げることができ、金属箔との剥離強度を安定的に確保する点から、好ましくは銅箔である。キャリアの厚さは、搬送性や剥離性の観点から12μm以上100μm以下が好ましく、15μm以上40μm以下がより好ましい。
 剥離層(C)は金属箔(B)とキャリア(D)との剥離を容易にする目的で使用され、公知の有機剥離層及び無機剥離層のいずれであってもよい。有機剥離層に用いられる有機成分の例としては、窒素含有有機化合物、硫黄含有有機化合物、カルボン酸等が挙げられる。窒素含有有機化合物の例としては、トリアゾール化合物、イミダゾール化合物等が挙げられ、中でもトリアゾール化合物は剥離性が安定しやすい点で好ましい。トリアゾール化合物の例としては、1,2,3-ベンゾトリアゾール、カルボキシベンゾトリアゾール、N’,N’-ビス(ベンゾトリアゾリルメチル)ユリア、1H-1,2,4-トリアゾール及び3-アミノー1H-1,2,4-トリアゾール等が挙げられる。硫黄含有有機化合物の例としては、メルカプトベンゾチアゾール、チオシアヌル酸、2-ベンズイミダゾールチオール等が挙げられる。カルボン酸の例としては、モノカルボン酸、ジカルボン酸等が挙げられる。一方、無機剥離層に用いられる無機成分の例としては、Ni、Mo、Co、Cr、Fe、Ti、W、P、Zn等のうち少なくとも一種からなる金属若しくは合金、又は/及びこれらの酸化物が挙げられる。剥離層(C)の厚さは、典型的には1nm以上1μm以下であり、好ましくは5nm以上500nm以下である。
 樹脂層付金属箔が剥離層(C)及びキャリア(D)を有する場合、キャリア(D)と金属箔(B)との間の剥離強度Pc(剥離層(C)における剥離の剥離強度)は、樹脂層(A)と金属箔(B)との間の剥離強度Prに比べて、通常小さいものとなる。これにより樹脂層付金属箔は、キャリア(D)をパターン形成前に剥離し、転写後に樹脂層(A)を剥離するという2段階剥離を要する用途に使用しやすいものとなる。
 キャリア(D)と金属箔(B)との間の剥離強度Pcは、典型的には、100gf/cm以下であることが、キャリア(D)の金属箔(B)からの剥離容易性の観点から好ましい。またキャリア(D)と金属箔(B)との間の剥離強度Pcは、1gf/cm以上であることが、キャリア(D)の金属箔(B)への密着性を一定程度とさせて、樹脂層付金属箔のハンドリング性を向上させる観点から好ましい。これらの観点から、キャリア(D)と金属箔(B)との間の剥離強度Pcは2gf/cm以上50gf/cm以下であることがより好ましく、3gf/cm以上30gf/cm以下であることがより一層好ましい。剥離強度Pcを上記の範囲とするためには、剥離層(C)の厚さやキャリア(D)の厚さや剥離層側の表面粗さ等を適宜調整することで制御が可能である。剥離強度は、後述する実施例に記載の方法で測定できる。また積層体の製造過程中で、キャリア(D)を金属箔(B)から剥離する際における樹脂層(A)の金属箔(B)からの剥離を一層効果的に防止する点から、剥離強度Pcと剥離強度Prとの差Pr-Pcは、好ましくは2gf/cm以上30gf/cm以下であり、より好ましくは3gf/cm以上20gf/cm以下である。
 剥離層(C)及びキャリア(D)を備えた樹脂層付金属箔を製造する際には、例えば、金属箔(B)、剥離層(C)及びキャリア(D)がこの順に積層されてなるキャリア付き金属箔を用意し、このキャリア付き金属箔を、金属箔(B)が樹脂層(A)と対面するように積層する方法を採用できる。この場合のキャリア付き金属箔と樹脂層(A)との積層方法は、上記で述べたコーティング法等の各種の方法及びその好ましい条件を採用できる。また、金属箔(B)、剥離層(C)及びキャリア(D)を積層して前記のキャリア付き金属箔を得る方法としては、例えば、キャリア(D)が銅箔の場合には、圧延法、電解法などの方法で形成することが可能である。
 上記の樹脂層付金属箔を用いた本実施形態の積層体の製造方法を更に詳細に説明する。本製造方法では、
(1)樹脂層付金属箔における該金属箔(B)をエッチングして所定のパターンを形成する工程と、
(2)前記樹脂層付金属箔における前記パターンが形成された面側に、基材を積層する工程と、
(3)樹脂層(A)を機械的に剥離する工程と、を備える。
 樹脂層付金属箔が剥離層(C)及びキャリア(D)を備えている場合には、この樹脂層付金属箔からキャリア(D)を機械的に剥離した後に(1)の工程を行う。
 (1)の工程は通常、サブトラクティブ法により行うことができる。この場合、樹脂層付金属箔における金属箔(B)の上面の全面にフォトレジストからなる層を設け、次いでこの層に配線パターンを露光し、更に配線パターンとなる部位以外を現像除去することにより銅層が露出する開口部が形成されたエッチングレジスト層を得る。次いでエッチング処理により、エッチングレジスト層の開口部における銅を除去して、所定のパターンを形成する。エッチング液は、サブトラクティブ法で用いられる従来公知のものが特に制限なく使用できる。その後、苛性ソーダ水溶液等を用いて、エッチングレジストを除去する。このようにして、回路配線層付き転写用積層体である樹脂層付金属箔が得られる。
 上記の通り、(2)の工程では、樹脂層付金属箔における前記パターンが形成された面側に基材を積層する。基材は板状又はシート状の形状を有しており、その構成材料としては、樹脂等の有機系材料と、ガラスクロス、無機フィラー等の無機系材料との複合材料が挙げられる。例えば、基材を樹脂で構成する場合、熱可塑性樹脂や半硬化状態の熱硬化性樹脂が挙げられる。基材構成材料が熱可塑性樹脂である場合、樹脂としては、ポリビニルアセタール樹脂、ポリテトラフルオロエチレン樹脂、ポリシクロオレフィン樹脂、液晶ポリマー、ポリフェンエーテル樹脂、ポリイミド樹脂、ポリエーテルエーテルケトン樹脂、ポリエーテルイミド樹脂、ポリフェニレンスルフィド樹脂、ポリスルホン樹脂、ポリエーテルスルホン樹脂、ポリアリレート樹脂、ポリカーボネート樹脂などが挙げられる。ここでいう熱硬化性樹脂としては、変性ポリフェニレンエーテル樹脂、ビスマレイミド樹脂、エポキシ樹脂、熱硬化型ポリイミド樹脂、フッ素樹脂、フェノール樹脂、トリアジン樹脂、シアネート樹脂、ベンゾオキサジン樹脂、不飽和ポリエステル樹脂、ビスマレイミドトリアジン樹脂、ポリウレタン樹脂等があり、この中でもBステージ状態が形成できるものが好ましい。この場合基材には、任意の無機又は有機質のフィラーが含有されていてもよい。
 基材の厚みは、最終目的の積層体の用途に応じて適宜設定されるが、一般に50μm以上2000μm以下が好ましい。
 (2)の工程では、先に述べた樹脂層付金属箔におけるパターンが形成された面が基材と対面するように、樹脂層付金属箔と基材とを重ね合わせて圧着する。
 この圧着条件は、基材の溶融粘弾性とパターン転写性に応じ適宜調整され得るものであるが、転写されるパターンの密着強度保持や樹脂層の熱分解を鑑み、40℃以上280℃以下、0.15MPa以上5MPa以下の条件で使うことが好ましい。
 次いで(3)の工程で、樹脂層(A)を金属箔(B)(及び必要に応じて基材)から機械的に剥離することにより、基材上にパターンが形成された配線積層体(本明細書では単に「積層体」という場合がある)を形成することができる。機械的な剥離は、例えば手動による剥離や、オートピーラーによる剥離装置等を用いて行うことができる。基材を熱硬化性樹脂から構成する場合、この配線積層体を更に加熱して基材を完全に硬化させる。
 本実施形態の積層体の製造方法では、上記特定の樹脂層(A)を有する樹脂層付金属箔を用いていることにより、上記積層体におけるパターン表面に樹脂残りがない。このため、上記積層体はパターン表面の清浄性が優れている。また、例えば、積層体はパターン表面に表面処理を施した場合、この表面処理を均質に行え、得られるパターン表面の状態が均質になるというメリットがある。このような表面処理方法としては、水等での洗浄以外に粗化処理やソフトエッチング、各種の貴金属めっき処理等が挙げられる。粗化処理は、例えば化学エッチング法、物理エッチング法、電解法等、様々な工法が採用可能である。本実施形態の方法で得られる積層体は、配線パターン表面に樹脂残りがほとんど存在しないため、耐熱信頼性の高いものとなる。
 以上のようにして得られた積層体は、その信頼性の高さをリジッド多層配線板、フレキシブルプリント配線板等のプリント配線板や、ディスプレイパネル用配線、窓ガラスの中間層に貼り付けられた配線やデフロスタ、デフォッガ、太陽電池パネル用配線等として好適に用いることができる。
 以上の通り、好ましい実施形態に基づき本発明の樹脂層付金属箔及び積層体の製造方法について説明したが、本発明は上記実施形態に限定されるものではない。例えば、本発明の樹脂層付金属箔は、(1)の工程を、例えばアディティブ法により行う積層体の製造方法に適用してもよい。また、本発明において、樹脂層付金属箔は、上述したように、樹脂層(A)における金属箔(B)の反対側の面にポリエチレンテレフタレート等の支持体が積層することを要しない。しかしながら、そのような支持体を設けて、転写時において、樹脂層(A)とともに支持体を剥離する形態も、本発明の樹脂層付金属箔及び積層体の製造方法に含まれることはいうまでもない。また本発明の第1の積層体の製造方法のみならず、本発明の第2の積層体の製造方法においても、特許文献1及び2における、上述した金属箔等からの剥離時に粘着層が破断する、及び、金属箔上における粘着層に加えて支持体としての樹脂フィルムが必要であるという課題を解決することができる。
 以下、実施例により本発明を更に詳細に説明する。しかしながら本発明の範囲は、かかる実施例に制限されない。特に断らない限り、「%」は「質量%」を意味する。
 なお、実施例及び比較例にて樹脂組成物の調製に採用した成分は、それぞれ下記の通りである。
1.スチレンブタジエン共重合体(実施例及び比較例)
(1)SB1
   試料:JSR株式会社 TR2250
   数平均分子量Mn:100,000
   スチレンユニット含有率:52重量%
(2)SB2
   試料:JSR株式会社 TR2003
   数平均分子量Mn:100,000
   スチレンユニット含有率:43重量%
 
2.スチレン系化合物(実施例及び比較例)
(1)ST1
   ポリスチレン(DIC株式会社 CR2500)
   数平均分子量Mn:230,000
(2)ST2
   2,4-ジフェニルー4-メチル-1-ペンテン:67質量%
   ポリスチレン(DIC株式会社 CR2500):33質量%
   上記2成分を上記の割合で混合した混合物の数平均分子量Mn:76,000
 
3.ポリフェニレンエーテル樹脂(実施例及び比較例)
  三菱ガス化学株式会社 OPE-2St(1200)
   数平均分子量Mn:1,150
 
4.アクリル樹脂系組成物(比較例のみ)
   ブチル-2-メチル-アクリレート:100質量部に対し、
   アクリル酸:10質量部
   イソシアネート系架橋剤(日本ポリウレタン工業株式会社 L-45):3質量部
   ベンゾトリアゾール:3質量部
   の割合で配合したもの
 
  〔実施例1〕
 樹脂層(A)及び、金属箔(B)としての銅箔をこの順で積層した樹脂層付金属箔を以下の手順で用意した。
 まず、銅箔は、電解法によって形成され且つ樹脂層(A)側の表面粗さ(Rzjis)が0.8μm、反対側の表面粗さ(Rzjis)が1.5μmであり、厚さが18μmのものであった。
 一方、下記表1に記載の組成の樹脂組成物を、溶剤であるトルエンに溶解し、樹脂固形分25%の樹脂ワニスを調製し、上記銅箔上に塗布し、風乾後、150℃、3分の加熱処理を行って、樹脂層(A)の厚さが50μmの樹脂層付金属箔を得た。
 露出した金属箔(B)の表面に、フォトレジスト(厚さ20μm)を用いて、レジストマスクを形成した。次いで、パターンを形成する部分をマスクしたフォトマスクを用いて、紫外線照射を行って配線パターン(配線形成部のライン/スペース(L/S):100μm/100μm)が形成されたピース(150mm sq.)を20ピース形成した後、現像液として炭酸ナトリウムの5%溶液を用いて現像を行い、配線パターン部分以外を除去して、エッチングレジスト層を形成した。エッチング液(塩化第二銅の濃度約135g/L、塩酸濃度105g/Lの水溶液)に、樹脂層付金属箔を浸漬させてエッチングを行った。エッチング後、水で回路を洗浄した後、10%水酸化ナトリウム水溶液を用いてレジストを除去し、再度水で洗浄し、乾燥させ、配線パターンが形成された転写用の樹脂層付金属箔を得た。
 次いで、プリプレグ(三菱ガス化学株式会社製:GHPL-830NS、厚さ100μm)に、転写用の樹脂層付金属箔における金属箔(B)の、樹脂層と反対側の表面を重ね合わせ、0.2MPaの圧力で、60秒加圧して、前記転写用積層体の配線パターンをプリプレグに埋め込んだ配線積層体前駆体を得た。
 積層温度は下記の2種類とした。
 (1)積層温度1:90℃
 (2)積層温度2:130℃
 得られた配線積層体前駆体に対して、下記の評価を行った。
〔評価〕
<剥離強度の測定>
 樹脂層(A)と金属箔(B)との剥離強度Prについて、90℃で積層された配線積層体前駆体における金属箔がベタパターンの領域を用い、JIS C6481(引張速度:50mm/min)に準拠して測定した。測定結果を表1に示す。
 比較例1~比較例5では、引き剥がしに伴い樹脂層(A)の内部で破壊が発生したため、剥離強度Prを測定できなかった。
<樹脂層の剥離耐久性及び剥離残渣の評価>
 更に、樹脂層について下記の2通りの剥離速度にて評価を行った。
  (1)剥離速度1:50mm/min
  (2)剥離速度2:300mm/min
 前記配線積層体前駆体の樹脂層(A)をピーラーを用いて機械的に引き剥がし、配線パターンが転写された配線積層体を得た。
 この積層体においては、配線パターンが硬化後の樹脂からなる絶縁シート表面にほぼ完全に埋め込まれており、絶縁シート表面と配線パターン表面とが略同一平面上に位置していることを確認した。
 この後、圧力3.0MPa、220℃、90分の条件で更に配線積層体のプリプレグ樹脂を硬化して配線積層板を得た。
 更に、樹脂層(A)剥離後の配線パターンの表面を亜塩素酸ナトリウム及び水酸化ナトリウムの混合溶液を用いた黒化処理と、ジメチルアミンボランと水酸化ナトリウムの混合溶液を用いた還元処理により粗化処理した。
 剥離時においては、樹脂層(A)の破断耐久性を目視で確認した。また、黒化処理後においては、樹脂層(A)の微視的な残渣による配線パターンの黒化処理不良が発生したピースを目視及び50倍の実体顕微鏡にて確認し、以下の評価基準に基づき判定を行った。(%の数値は不良率(観察した20ピースのうちの処理不良が発生したピースの割合)を指す)。
(評価基準)
 AA:樹脂破断なし、且つ黒化処理不良率 0%(最良)
 A :樹脂破断なし、且つ黒化処理不良率 0%超10%以下(良)
 B :樹脂破断なし、且つ黒化処理不良率 10%超20%以下(可)
 C :樹脂破断又は/及び引剥し不可且つ
    配線パターン上残渣不良率 20%超(不可)
<貯蔵弾性率>
 貯蔵弾性率の測定は、配線パターンから剥離した後の樹脂層(A)について、動的粘弾性測定装置(DMA)にてJIS K7244(1999)記載の引張振動-非共振法に準拠し、測定は、大気雰囲気、周波数1Hz、昇温速度5℃/minにて行った貯蔵弾性率を測定し、30℃における貯蔵弾性率E’を得た。
  〔実施例2、4~8、比較例1~5〕
 樹脂層(A)における樹脂の組成を、表1と同様にした以外は、実施例1と同様にした。なお、比較例5は、上記特許文献2の粘着層と同様の成分を樹脂層の形成に用いた例である。
 〔実施例3〕
 本実施例では、金属箔として下記(1)~(3)に示す手順で製造したキャリア付銅箔を用いた点、樹脂層における樹脂の組成を表1に記載の通りとした点、キャリア付銅箔における極薄銅箔のキャリアと反対側の面上に樹脂層(A)を形成した後にキャリアを手動で機械的に剥離して、樹脂層付き銅箔を得た点以外は実施例1と同様にした。なお、キャリア付銅箔におけるキャリアと銅箔との剥離強度Pcは以下のようにして測定した。
(1)キャリア用電解銅箔の製造
 銅電解液として硫酸酸性硫酸銅溶液を用い、陰極に表面粗さRaが0.20μmのチタン製の回転電極ドラムを用い、陽極にはDSA(寸法安定性陽極)を用いて、溶液温度45℃、電流密度55A/dmで電解し、厚さ12μmのキャリア用電解銅箔(以下、銅箔Aという)を得た。
(2)有機剥離層(第二剥離層)の形成
 酸洗処理された銅箔Aのドラム面側を、CBTA(カルボキシベンゾトリアゾール)1000重量ppm、硫酸150g/L及び銅10g/Lを含むCBTA水溶液に、液温30℃で30秒間浸漬して引き上げた。こうしてCBTA成分を銅箔のドラム面側に吸着させて、CBTA層を有機剥離層として形成させた。
(3)銅箔の形成
 有機剥離層を形成した銅箔Aのドラム面側に対して酸性硫酸銅溶液中で、電流密度8A/dmで厚さ7μmの極薄銅箔を有機剥離層上に形成した。この極薄銅箔の表面(有機剥離層と反対側の表面)は、表面粗さ(Rzjis)が0.8μmであった。
<キャリアと金属箔の剥離強度Pc>
 キャリアと金属箔の剥離強度Pcは、上記のキャリア付銅箔の銅箔と、ガラス基板とを両面テープで張り付けた積層体についてJIS C6481に準拠して測定した(引張速度:50mm/min)。剥離強度Pcは15gf/cmであった。
Figure JPOXMLDOC01-appb-T000003
 表1に示すように、各実施例では、配線パターンから樹脂層(A)を剥離したときに樹脂層内部で破断することがなく、また、樹脂層(A)を金属箔(B)との界面で安定的に剥離することが可能であり、表面処理ムラも観察されなかった。これに対し、比較例1~5では、剥離の際に樹脂層内部で破断してしまい、表面処理ムラが観察された。
 従って本発明の積層体の製造方法では、特定の樹脂構成の樹脂層(A)を用いることにより、樹脂層(A)を破断なく安定的に剥離でき、かつ、配線パターン表面への樹脂残りが少ないことが明らかである。
 本発明の積層体の製造方法及び樹脂層付金属箔によれば、ポリエチレンテレフタレート等の支持体を用いずとも、パターンを転写した後に樹脂層を機械的に剥離する際、樹脂層の破断なく安定に剥離することが可能である。
 また、本発明の積層体の製造方法及び樹脂層付金属箔によれば、樹脂層を機械的に剥離した後の金属箔表面における樹脂残りを極度に低減することができる。このため、本発明の積層体の製造方法及び樹脂層付金属箔によれば、配線パターン表面状態の均一性に優れた金属の配線パターンが形成された積層体を転写法により容易に形成できる。

Claims (14)

  1.  金属箔と樹脂層とを有する樹脂層付金属箔における該金属箔をエッチングすることにより所定のパターンを形成する工程と、
     前記樹脂層付金属箔における前記パターンが形成された面側に、基材を積層する工程と、
     前記樹脂層を剥離する工程と、を備え、
     前記樹脂層が、主としてスチレンブタジエン共重合体を含み、更に、スチレン系化合物を含み、
     スチレン系化合物は、スチレン系モノマー、該スチレン系モノマーを構成ユニットとするオリゴマー及びポリマー並びに該オリゴマー又は該ポリマーの誘導体から選ばれる少なくとも一種であり、
     前記樹脂層において、前記スチレン系化合物が、100質量部のスチレンブタジエン共重合体に対して10質量部以上70質量部以下含まれている、金属のパターンを有する積層体の製造方法。
  2.  前記樹脂層において、ポリフェニレンエーテル樹脂が、100質量部のスチレンブタジエン共重合体に対して1質量部以上60質量部以下含まれている、請求項1に記載の製造方法。
  3.  前記樹脂層において、スチレンブタジエン共重合体が該樹脂層中の樹脂成分に対して45質量%以上80質量%以下含まれている、請求項1又は2に記載の製造方法。
  4.  前記樹脂層は、30℃での貯蔵弾性率が0.1GPa以上0.5GPa以下である、請求項1ないし3のいずれか一項に記載の製造方法。
  5.  前記樹脂層付金属箔は、前記金属箔を挟んで前記樹脂層と反対側の面に、剥離層及びキャリアをこの順で有する請求項1ないし4のいずれか一項に記載の製造方法。
  6.  前記金属箔と前記樹脂層とが直接に接している請求項1ないし5のいずれか一項に記載の製造方法。
  7.  前記キャリアと前記金属箔との間の剥離強度Pcよりも、前記金属箔と前記樹脂層との間の剥離強度Prの方が大きい、請求項5に記載の製造方法。
  8.  剥離強度Pcが1gf/cm以上50gf/cm以下であり、
     剥離強度Prが2gf/cm以上100gf/cm以下である請求項7に記載の製造方法。
  9.  剥離性樹脂層と、金属箔と、第二剥離層と、キャリアとをこの順に有し、
     前記金属箔と前記樹脂層とは直接に接して積層されており、
     前記キャリアと前記金属箔との間の剥離強度Pcよりも、前記金属箔と前記樹脂層との間の剥離強度Prの方が大きい積層シートを準備する工程、
     前記積層シートのキャリアを剥離層において剥離する工程、
     前記金属箔をエッチングすることにより所定のパターンを形成する工程、
     前記積層シートにおける前記パターンが形成された面側に、基材を積層する工程、及び、
     前記樹脂層を剥離する工程、をこの順に備えた、金属のパターンを有する積層体の製造方法。
  10.  金属箔と剥離用樹脂層とを有する樹脂層付金属箔において、
     前記金属箔と前記樹脂層とが直接に接して積層されており、
     前記樹脂層が、主としてスチレンブタジエン共重合体を含み、更に、スチレン系化合物を含み、
     スチレン系化合物は、スチレン系モノマー、該スチレン系モノマーを構成ユニットとするオリゴマー及びポリマー並びに該オリゴマー又は該ポリマーの誘導体から選ばれる少なくとも一種であり、
     前記樹脂層において、前記スチレン系化合物が、100質量部のスチレンブタジエン共重合体に対して10質量部以上70質量部以下含まれる、樹脂層付金属箔。
  11.  前記樹脂層において、ポリフェニレンエーテル樹脂が、100質量部のスチレンブタジエン共重合体に対して1質量部以上60質量部以下含まれている、請求項10に記載の樹脂層付金属箔。
  12.  前記樹脂層において、スチレンブタジエン共重合体が該樹脂層中の樹脂成分に対して45質量%以上80質量%以下含まれている、請求項10又は11に記載の樹脂層付金属箔。
  13.  金属箔と樹脂層とが直接に接して積層させた樹脂層付金属箔における樹脂層の剥離層としての使用であって、該樹脂層に、主としてスチレンブタジエン共重合体を含有させ、更にスチレン系化合物とを含有させ、スチレン系化合物は、スチレン系モノマー、該スチレン系モノマーを構成ユニットとするオリゴマー及びポリマー並びに該オリゴマー又は該ポリマーの誘導体から選ばれる少なくとも一種であり、
     前記スチレン系化合物を、100質量部のスチレンブタジエン共重合体に対して10質量部以上70質量部以下含有させる、剥離層としての使用。
  14.  金属箔と樹脂層とが直接に接して積層させた樹脂層付金属箔における樹脂層を剥離層として使用する方法であって、該樹脂層に、主としてスチレンブタジエン共重合体を含有させ、更にスチレン系化合物を含有させ、スチレン系化合物は、スチレン系モノマー、該スチレン系モノマーを構成ユニットとするオリゴマー及びポリマー並びに該オリゴマー又は該ポリマーの誘導体から選ばれる少なくとも一種であり、
    前記スチレン系化合物を、100質量部のスチレンブタジエン共重合体に対して10質量部以上70質量部以下含有させる、使用方法。
     
     
PCT/JP2016/085443 2015-12-07 2016-11-29 積層体の製造方法及び樹脂層付金属箔 WO2017098969A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN202110979712.2A CN113825316B (zh) 2015-12-07 2016-11-29 层叠体的制造方法和带树脂层的金属箔
KR1020187010352A KR102062210B1 (ko) 2015-12-07 2016-11-29 적층체의 제조 방법 및 수지층 부착 금속박
CN201680060837.2A CN108136736B (zh) 2015-12-07 2016-11-29 层叠体的制造方法和带树脂层的金属箔
JP2017555028A JP6832868B2 (ja) 2015-12-07 2016-11-29 積層体の製造方法及び樹脂層付金属箔

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015238793 2015-12-07
JP2015-238793 2015-12-07

Publications (1)

Publication Number Publication Date
WO2017098969A1 true WO2017098969A1 (ja) 2017-06-15

Family

ID=59013130

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/085443 WO2017098969A1 (ja) 2015-12-07 2016-11-29 積層体の製造方法及び樹脂層付金属箔

Country Status (5)

Country Link
JP (2) JP6832868B2 (ja)
KR (1) KR102062210B1 (ja)
CN (2) CN108136736B (ja)
TW (1) TWI716507B (ja)
WO (1) WO2017098969A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2019021862A1 (ja) * 2017-07-27 2020-05-28 三井金属鉱業株式会社 樹脂組成物、配線板用絶縁層及び積層体

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210040369A (ko) 2018-07-31 2021-04-13 닛토덴코 가부시키가이샤 판상 복합 재료
CN112512791A (zh) * 2018-08-03 2021-03-16 三菱化学株式会社 层叠体和环氧树脂片的制造方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008001034A (ja) * 2006-06-23 2008-01-10 Panac Co Ltd 金属蒸着層転写フィルム
WO2013105650A1 (ja) * 2012-01-11 2013-07-18 三井金属鉱業株式会社 接着剤層付銅箔、銅張積層板及びプリント配線板
WO2014046256A1 (ja) * 2012-09-20 2014-03-27 Jx日鉱日石金属株式会社 キャリア付金属箔
WO2015186589A1 (ja) * 2014-06-03 2015-12-10 三井金属鉱業株式会社 剥離樹脂層付金属箔及びプリント配線板

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06143492A (ja) * 1992-11-12 1994-05-24 Mitsui Toatsu Chem Inc フレキシブル金属ポリイミド積層板の製造方法
JP3362209B2 (ja) * 1994-06-03 2003-01-07 住友化学工業株式会社 スチレン系樹脂組成物、シール層フィルム、シーラントフィルムおよび容器
JPH10173316A (ja) * 1996-12-12 1998-06-26 Kyocera Corp 配線基板形成用転写シート及びそれを用いた配線基板の製造方法
JP3495211B2 (ja) 1996-12-16 2004-02-09 京セラ株式会社 配線基板形成用転写シート及びその製造方法並びに配線基板の製造方法
US6274670B1 (en) * 1998-12-21 2001-08-14 General Electric Company Semi-transparent blends of polyphenylene ether, styrenic resins, and elastomeric block copolymers
JP3844954B2 (ja) 2000-10-27 2006-11-15 積水化学工業株式会社 金属箔付フィルムの製造方法
JP4570070B2 (ja) * 2004-03-16 2010-10-27 三井金属鉱業株式会社 絶縁層形成用の樹脂層を備えたキャリア箔付電解銅箔、銅張積層板、プリント配線板、多層銅張積層板の製造方法及びプリント配線板の製造方法
JP2007335700A (ja) * 2006-06-16 2007-12-27 Fujitsu Ltd 配線基板の製造方法
JP5138267B2 (ja) * 2007-04-18 2013-02-06 日立化成工業株式会社 プリプレグ、それを用いた多層基配線板及び電子部品
JP5868748B2 (ja) * 2012-03-19 2016-02-24 日東電工株式会社 表面保護シート
TWI470049B (zh) * 2012-12-06 2015-01-21 Chi Mei Corp 可剝離型黏著劑組成物及其應用
WO2015125873A1 (ja) * 2014-02-21 2015-08-27 三井金属鉱業株式会社 保護層付銅張積層板及び多層プリント配線板
CN104617002A (zh) * 2014-12-31 2015-05-13 杰群电子科技(东莞)有限公司 一种半导体封装方法及结构

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008001034A (ja) * 2006-06-23 2008-01-10 Panac Co Ltd 金属蒸着層転写フィルム
WO2013105650A1 (ja) * 2012-01-11 2013-07-18 三井金属鉱業株式会社 接着剤層付銅箔、銅張積層板及びプリント配線板
WO2014046256A1 (ja) * 2012-09-20 2014-03-27 Jx日鉱日石金属株式会社 キャリア付金属箔
WO2015186589A1 (ja) * 2014-06-03 2015-12-10 三井金属鉱業株式会社 剥離樹脂層付金属箔及びプリント配線板

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2019021862A1 (ja) * 2017-07-27 2020-05-28 三井金属鉱業株式会社 樹脂組成物、配線板用絶縁層及び積層体
JP7219216B2 (ja) 2017-07-27 2023-02-07 三井金属鉱業株式会社 樹脂組成物、配線板用絶縁層及び積層体

Also Published As

Publication number Publication date
TWI716507B (zh) 2021-01-21
TW201730015A (zh) 2017-09-01
KR102062210B1 (ko) 2020-01-03
KR20180085713A (ko) 2018-07-27
CN113825316A (zh) 2021-12-21
JP6832868B2 (ja) 2021-02-24
JP7045500B2 (ja) 2022-03-31
JPWO2017098969A1 (ja) 2018-09-27
JP2021079702A (ja) 2021-05-27
CN108136736A (zh) 2018-06-08
CN108136736B (zh) 2021-09-14
CN113825316B (zh) 2024-06-11

Similar Documents

Publication Publication Date Title
JP7045500B2 (ja) 積層体の製造方法及び樹脂層付金属箔
JP5751368B2 (ja) 金属張積層板
JP6590113B2 (ja) 金属張積層板、回路基板、および多層回路基板
US20080004367A1 (en) Curable resin composition
KR102376003B1 (ko) 수지 조성물
KR20140121783A (ko) 경화성 수지 조성물
TWI639371B (zh) 層合板的製造方法
KR20170033781A (ko) 배선판의 제조 방법
JP6770789B2 (ja) 保護フィルム付き接着シートの製造方法
JPWO2006118230A1 (ja) めっき用材料及びその利用
JP2010194807A (ja) 金属膜付きシート及び金属膜付き樹脂シート
TWI793906B (zh) 電路基板
JP6221846B2 (ja) 硬化性樹脂組成物、フィルム、プリプレグ、積層体、硬化物、及び複合体
JP2007051226A (ja) 低誘電率樹脂組成物
US11877396B2 (en) Laminate, metal foil-clad laminate, laminate having patterned metal foil, laminate having buildup structure, printed wiring board, multilayer coreless substrate, and method for producing same
JP2011051247A (ja) 熱硬化性樹脂組成物層付き金属箔、金属張積層板及びプリント配線板
KR20160130998A (ko) 다층 경화성 수지 필름, 프리프레그, 적층체, 경화물, 복합체 및 다층 회로 기판
JP2007051225A (ja) 高誘電率樹脂組成物
JP2003321656A (ja) 高接着性液晶ポリマーフィルム
JPWO2010024368A1 (ja) 金属膜付きフィルム
JP2005219463A (ja) ポリイミド/金属積層体およびその製造方法、並びにその利用
TW201436661A (zh) 硬化體、硬化體之製造方法、積層體、印刷配線板及半導體裝置
JP2005298670A (ja) 絶縁接着フィルム、プリント配線板
JP2007152799A (ja) 積層体
JP2020029562A (ja) 保護フィルム付き接着シートの製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16872868

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017555028

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20187010352

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16872868

Country of ref document: EP

Kind code of ref document: A1