WO2017098906A1 - オゾン供給制御装置及びオゾン供給装置 - Google Patents
オゾン供給制御装置及びオゾン供給装置 Download PDFInfo
- Publication number
- WO2017098906A1 WO2017098906A1 PCT/JP2016/084438 JP2016084438W WO2017098906A1 WO 2017098906 A1 WO2017098906 A1 WO 2017098906A1 JP 2016084438 W JP2016084438 W JP 2016084438W WO 2017098906 A1 WO2017098906 A1 WO 2017098906A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- ozone
- passage
- collection
- exhaust
- concentration
- Prior art date
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N3/00—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
- F01N3/02—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
- F01N3/021—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
- F01N3/023—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters using means for regenerating the filters, e.g. by burning trapped particles
- F01N3/029—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters using means for regenerating the filters, e.g. by burning trapped particles by adding non-fuel substances to exhaust
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B13/00—Oxygen; Ozone; Oxides or hydroxides in general
- C01B13/10—Preparation of ozone
- C01B13/11—Preparation of ozone by electric discharge
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N9/00—Electrical control of exhaust gas treating apparatus
- F01N9/002—Electrical control of exhaust gas treating apparatus of filter regeneration, e.g. detection of clogging
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B2201/00—Preparation of ozone by electrical discharge
- C01B2201/10—Dischargers used for production of ozone
- C01B2201/12—Plate-type dischargers
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B2201/00—Preparation of ozone by electrical discharge
- C01B2201/60—Feed streams for electrical dischargers
- C01B2201/62—Air
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B2201/00—Preparation of ozone by electrical discharge
- C01B2201/90—Control of the process
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N2240/00—Combination or association of two or more different exhaust treating devices, or of at least one such device with an auxiliary device, not covered by indexing codes F01N2230/00 or F01N2250/00, one of the devices being
- F01N2240/38—Combination or association of two or more different exhaust treating devices, or of at least one such device with an auxiliary device, not covered by indexing codes F01N2230/00 or F01N2250/00, one of the devices being an ozone (O3) generator, e.g. for adding ozone after generation of ozone from air
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N2900/00—Details of electrical control or of the monitoring of the exhaust gas treating apparatus
- F01N2900/06—Parameters used for exhaust control or diagnosing
- F01N2900/16—Parameters used for exhaust control or diagnosing said parameters being related to the exhaust apparatus, e.g. particulate filter or catalyst
- F01N2900/1602—Temperature of exhaust gas apparatus
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N2900/00—Details of electrical control or of the monitoring of the exhaust gas treating apparatus
- F01N2900/06—Parameters used for exhaust control or diagnosing
- F01N2900/16—Parameters used for exhaust control or diagnosing said parameters being related to the exhaust apparatus, e.g. particulate filter or catalyst
- F01N2900/1606—Particle filter loading or soot amount
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N3/00—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
- F01N3/02—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
- F01N3/021—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N3/00—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
- F01N3/08—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
- F01N3/0807—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents
- F01N3/0828—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents characterised by the absorbed or adsorbed substances
- F01N3/0842—Nitrogen oxides
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/10—Internal combustion engine [ICE] based vehicles
- Y02T10/40—Engine management systems
Definitions
- This disclosure relates to an ozone supply control device and an ozone supply device.
- an ozone supply device that supplies ozone to an internal combustion passage through which exhaust from an internal combustion engine such as an engine passes.
- an internal combustion passage there is an exhaust passage as well as an intake passage when a part of the exhaust is supplied from the exhaust passage to the intake passage by the EGR passage.
- NOx adsorption catalyst is provided in the exhaust passage, by supplying ozone to the exhaust passage, NO is oxidized to NO 2 by ozone and the adsorption reaction at the NOx adsorption catalyst becomes active, and the NOx purification rate. Is increased.
- the ignitability in the internal combustion engine is easily improved.
- an ozone supply device includes an air supply passage connected to an exhaust passage, an air pump that supplies air to the air supply passage, and an ozone generator that generates ozone using air blown by the air pump. have.
- ozone generated by the ozone generator is supplied to the exhaust passage.
- the exhaust gas may flow backward from the internal combustion passage to the ozone passage.
- the ozone supply device is contaminated by particulate matter contained in the exhaust.
- an exhaust passage valve that shuts off the backflow of exhaust gas is provided in the ozone passage, when the exhaust gas enters the ozone passage and particulate matter adheres to the exhaust passage valve, the exhaust passage valve moves to a closed state. There is a concern that it will be impossible. In this case, the exhaust gas passes through the exhaust cutoff valve and is discharged to the outside from the upstream end portion of the ozone passage.
- the present disclosure has been made in view of the above points, and an object of the present disclosure is to contaminate the ozone supply device with particulate matter contained in the exhaust gas in a configuration in which the ozone supply device supplies ozone to a passage through which the exhaust gas passes. It is to suppress this.
- a first aspect related to the above-described problem is an ozone generation unit that generates ozone, an ozone passage that is connected to an internal combustion passage through which exhaust gas from the internal combustion engine passes, and that supplies ozone generated by the ozone generation unit to the internal combustion passage;
- An ozone supply control device that performs operation control of an ozone supply device that is provided in an ozone passage and has an entry collection unit that collects particulate matter contained in exhaust gas that has entered the ozone passage from an internal combustion passage.
- the ozone concentration generated in the generation unit is changed to a first concentration for oxidizing and removing the particulate matter collected in the entry collection unit, and a second concentration smaller than the first concentration.
- a density changing unit is provided.
- the entrance collecting part is provided in the ozone passage, even if the exhaust gas flows into the ozone passage from the internal combustion passage, the particulate matter contained in the exhaust gas is entered into the entrance collecting part. Can be collected. For this reason, it can suppress that an ozone supply apparatus is contaminated with a particulate matter.
- the ozone passes through the entrance collector and is supplied to the internal combustion passage.
- the inventors have obtained the knowledge that a relatively large ozone concentration is required to oxidize and remove the particulate matter collected in the entrance collection part. According to this knowledge, the concentration of ozone generated for exhaust gas aftertreatment and improvement of ignitability in internal combustion engines can hardly remove particulate matter collected in the entrance collection part. Even if it can be removed, it is only a part of PM. For this reason, when the amount of collected particulate matter is excessively increased in the entry and collection part, the ventilation amount of the entry and collection part decreases and the ozone from the ozone passage to the internal combustion passage is reduced. There is concern about the shortage of supply.
- the ozone concentration from the ozone generation unit is changed to the first concentration and the second concentration.
- the first concentration of ozone is used, and when the purpose is to improve the ignitability of exhaust aftertreatment or internal combustion engine. It is possible to use different ozone concentrations, such as using the second concentration of ozone.
- the particulate matter collected by the ingress collecting part can be oxidized and removed because the ozone concentration is sufficiently high. In this case, it is possible to suppress a shortage of the amount of ozone supplied from the ozone passage to the internal combustion passage accompanying a decrease in the air flow rate of the entry collection section.
- the ozone concentration is set to a second concentration that is not excessively high, so that exhaust after-treatment or ignition in internal combustion engine is achieved. It is possible to properly improve the performance.
- the second aspect related to the above-described problem is an ozone generation unit that generates ozone, an ozone passage that is connected to an internal combustion passage through which exhaust gas from the internal combustion engine passes, and supplies ozone generated by the ozone generation unit to the internal combustion passage;
- An ingress collecting section that is provided in the ozone passage and collects particulate matter contained in the exhaust gas that has entered the ozone passage from the internal combustion passage; It has.
- the entrance collecting part is provided in the ozone passage, even if the exhaust gas flows into the ozone passage from the internal combustion passage, the particulate matter contained in the exhaust gas is entered into the entrance collecting part. Can be collected. For this reason, it can suppress that an ozone supply apparatus is contaminated with a particulate matter.
- the figure which shows the structure of the combustion system in 1st Embodiment The figure which shows the structure of an approach collection part periphery. Sectional drawing which shows the structure of an approach collection part. The figure which shows the functional block of ECU. The figure which shows the relationship between ozone concentration and the oxidation rate of PM.
- the flowchart which shows the procedure of an ozone management process The flowchart which shows the procedure of a collection diagnostic process. The figure which shows a collection map. The figure which shows a collection map.
- the flowchart which shows the procedure of the ozone management process in 3rd Embodiment The flowchart which shows the procedure of a collection diagnostic process. The flowchart which shows the procedure of the process during reproduction
- FIG. The figure which shows the structure of the approach collection part periphery in the modification 4.
- FIG. The figure which shows the structure of the approach collection part periphery in the modification 5.
- the combustion system shown in FIG. 1 includes an engine 10, a supercharger 11, a NOx purification catalyst 12, and a DPF 13.
- the combustion system is mounted on a vehicle, and this vehicle runs using the output of the engine 10 as a drive source.
- the engine 10 is a compression self-ignition type diesel engine, and light oil that is a hydrocarbon compound is used as a fuel for combustion.
- An intake passage 15 that supplies air to the engine 10 and an exhaust passage 16 that discharges exhaust from the engine 10 are connected to the engine 10.
- the engine 10 corresponds to an internal combustion engine.
- the supercharger 11 includes an exhaust turbine 11a, a rotating shaft 11b, and a compressor 11c.
- the exhaust turbine 11a is disposed in the exhaust passage 16 of the engine 10 and rotates by the kinetic energy of the exhaust.
- the rotating shaft 11b couples the impellers of the exhaust turbine 11a and the compressor 11c to transmit the rotational force of the exhaust turbine 11a to the compressor 11c.
- the compressor 11 c is disposed in the intake passage 15 and compresses intake air to supercharge the engine 10.
- An intercooler 21 as a cooler for cooling the intake air compressed by the compressor 11c is provided downstream of the compressor 11c in the intake passage 15.
- the intake passage 15 is connected to the intake side of the engine 10 via the intake manifold 22, and the compressed intake air cooled by the cooler is adjusted in flow rate by the throttle valve 23 and distributed to a plurality of combustion chambers of the engine 10. Is done.
- An air cleaner 24 that purifies the air taken into the engine 10 is provided at the upstream end of the intake passage 15.
- the exhaust passage 16 is connected to the exhaust side of the engine 10 via the exhaust manifold 25.
- the NOx purification catalyst 12 is disposed on the downstream side of the exhaust turbine 11 a in the exhaust passage 16.
- the DPF 13 Diesel Particulate Filter
- PM Particulate Matter
- Exhaust gas flowing through the exhaust passage 16 passes through both the NOx purification catalyst 12 and the DPF 13 and is then discharged from the exhaust outlet 16a.
- the NOx purification catalyst 12 and the DPF 13 constitute an exhaust purification device.
- PM is solid or liquid fine particles
- solid fine particles are soot, for example, as soot
- liquid fine particles are unburned HC such as liquefied HC, for example.
- the NOx purification catalyst 12 includes an adsorption catalyst that adsorbs nitrogen oxide NOx in the exhaust, a reduction catalyst that reduces NOx to nitrogen N 2 , and the like.
- the adsorption catalyst has an adsorption power for adsorbing NOx, and in the adsorption catalyst, the adsorption power for nitrogen dioxide NO 2 is much larger than the adsorption power for nitrogen monoxide NO. Note that the NOx purification catalyst 12 corresponds to a NOx catalyst.
- the combustion system includes an ozone supply device 30 that supplies ozone O 3 to the upstream side of the NOx purification catalyst 12 in the exhaust passage 16.
- ozone is supplied from the ozone supply device 30 to the exhaust passage 16
- NO is oxidized to NO 2 by the ozone, so that the ratio of NO 2 in the exhaust increases.
- Adsorption rate is improved.
- the ozone supply device 30 can shift between a supply state in which ozone is supplied to the exhaust passage 16 and a stop state in which ozone is not supplied.
- the ozone supply device 30 includes an ozone passage 31 connected to the exhaust passage 16, an ozone generation section 32 that generates ozone, an air pump 33 that sends air to the ozone generation section 32 through the ozone passage 31, and exhaust gas in the ozone passage 31.
- An exhaust shut-off valve 34 that shuts off the reverse flow, a pressure sensor 35 that detects the internal pressure of the ozone passage 31 as a gas pressure, and a flow rate sensor 36 that detects the flow rate of air sent from the air pump 33 to the ozone passage 31 as a gas flow rate.
- the exhaust passage 16 corresponds to an internal combustion passage through which exhaust flows, and the ozone passage 31 is connected to the internal combustion passage.
- the gas pressure corresponds to the first pressure
- the gas flow rate corresponds to the ventilation amount.
- an air pump 33 is provided at an upstream end thereof, and an ozone generation unit 32 is provided between the air pump 33 and the exhaust passage 16.
- the ozone passage 31 is formed by connecting a plurality of pipes.
- the air pump 33 is a centrifugal air pump, and is configured by housing an impeller driven by an electric motor in a case.
- the air pump 33 has a suction port 33a for sucking air, and the suction port 33a is formed in the case.
- the air pump 33 corresponds to a blowing unit that shifts to a blowing state.
- the suction port 33 a of the air pump 33 forms the upstream end of the ozone passage 31.
- the ozone generating unit 32 includes a housing that forms a flow path therein, and a plurality of electrodes are disposed in the flow path. These electrodes have a flat plate shape arranged so as to face each other in parallel, and electrodes to which a high voltage is applied and electrodes having a ground voltage are alternately arranged. Air blown by the air pump 33 flows into the housing of the ozone generator 32. This air flows into the flow passage in the housing and flows through the interelectrode passage, which is a passage between the electrodes.
- the ozone generator 32 When energized to the electrode of the ozone generator 32, electrons emitted from the electrode collide with oxygen molecules contained in the air in the interelectrode passage. Then, ozone is generated from oxygen molecules. That is, the ozone generator 32 generates ozone by changing oxygen molecules into a plasma state by discharge. Accordingly, when the ozone generator 32 is energized, ozone is contained in the air flowing from the ozone generator 32 toward the exhaust passage 16. In the ozone generation unit 32, the ozone generation rate increases as the amount of current supplied to the electrode increases.
- the ozone generator 32 can also be referred to as an ozone generator or an ozonizer.
- the exhaust shut-off valve 34 is an electromagnetically driven on-off valve, and is provided between the ozone generator 32 and the exhaust passage 16 in the ozone passage 31.
- the exhaust cutoff valve 34 is arranged at a position spaced from the downstream end of the ozone passage 31 to the upstream side.
- the exhaust cutoff valve 34 can be shifted between an open state that allows ventilation and a closed state that blocks ventilation, and the closed state corresponds to the cutoff state.
- the exhaust cutoff valve 34 is in the open state, the amount of ventilation of the ozone passage 31 is adjusted according to the opening degree of the exhaust cutoff valve 34.
- the amount of ventilation of the ozone passage 31 is maximized when the exhaust cutoff valve 34 is fully open.
- the exhaust cutoff valve 34 corresponds to a ventilation cutoff unit.
- the pressure sensor 35 is provided between the ozone generation part 32 and the exhaust shut-off valve 34 in the ozone passage 31. Specifically, the pressure sensor 35 is disposed at a position near the ozone generator 32. In this case, the pressure change accompanying the opening / closing of the exhaust cutoff valve 34 is easily reflected in the detection result of the pressure sensor 35.
- the pressure sensor 35 corresponds to a pressure detection unit.
- the flow sensor 36 is provided between the air pump 33 and the ozone generator 32 in the ozone passage 31, and can detect the amount of air discharged from the air pump 33. Specifically, the flow sensor 36 is arranged at a position near the air pump 33. In this case, the detection result of the flow sensor 36 tends to reflect the change in the air flow accompanying the driving and stopping of the air pump 33.
- the flow rate sensor 36 corresponds to a flow rate detection unit.
- the exhaust passage valve 34 is provided in the ozone passage 31, the exhaust gas flowing through the exhaust passage 16 enters the ozone passage 31 depending on the operating state of the engine 10 and the air pump 33 and the opening / closing timing of the exhaust passage valve 34. There seems to be something.
- the ozone passage 31 is provided with an entry collecting portion 37 that collects PM contained in the exhaust gas.
- the entry collecting part 37 is disposed at the downstream end of the ozone passage 31 on the downstream side of the exhaust cutoff valve 34.
- the ozone passage 31 has an entry passage portion 31 a that enters the exhaust passage 16.
- the downstream end of the entrance passage portion 31 a is the downstream end of the ozone passage 31, and this downstream end is opened toward the downstream side of the exhaust passage 16.
- the entry passage portion 31a includes an intersection portion 31b extending in a direction intersecting the exhaust flow direction in the exhaust passage 16, and an extension portion 31c extending from the intersection portion 31b toward the downstream side of the exhaust passage 16. Yes.
- the approach collection part 37 is provided with respect to the downstream end of the extension part 31c.
- the extended portion 31 c is entirely separated from the inner peripheral surface of the ozone passage 31, and the heat of the exhaust gas flowing through the exhaust passage 16 is easily applied to the ingress collecting portion 37.
- the entrance collection unit 37 has a configuration in which a flow path of a gas such as ozone is meandered in the ozone passage 31, and this configuration is realized by a labyrinth structure.
- the entrance collection part 37 includes a passage forming part 37a such as piping that forms the ozone passage 31, a storage part 37b that stores the downstream end of the passage formation part 37a, a passage formation part 37a, and a storage part 37b.
- the cover part 37c which covers the boundary part between and.
- Each of the storage portion 37b and the cover portion 37c is a cylindrical member that is open at one end, and a gap through which gas flows is formed between the passage forming portion 37a, the storage portion 37b, and the cover portion 37c.
- the passage forming part 37a, the storage part 37b, and the cover part 37c are all formed of a metal material having heat resistance.
- the ozone that has reached the entry and collection portion 37 flows out from the passage formation portion 37a into the storage portion 37b, and is formed between the passage formation portion 37a and the storage portion 37b. Through the gap, the gap between the storage portion 37b and the cover portion 37c is reached. And it flows out into the exhaust passage 16 from the clearance gap between the accommodating part 37b and the cover part 37c.
- the exhaust gas flowing through the exhaust passage 16 enters the ozone passage 31, it travels along a route opposite to ozone.
- the flow path becomes narrower as the collected PM increases, and the gas does not flow easily.
- the air pump 33 when air is supplied to the ozone passage 31 by the air pump 33, the more PM collected by the entry collection unit 37, the more difficult the air passes through the entry collection unit 37, and the flow rate in the ozone passage 31 is increased. It decreases and the pressure on the upstream side of the entrance collection part 37 becomes high.
- a collection state changes because the collected PM increases.
- the combustion system has an ECU 40 as a control device.
- the ECU 40 includes a processor 41a, a RAM 41b, a memory 41c, and an interface 41d for inputting and outputting information.
- the memory 41c is a rewritable nonvolatile storage medium and corresponds to a storage unit.
- the ECU 40 is connected to an engine rotation sensor 42, an intake pressure sensor 43, an air flow meter 44, an accelerator opening sensor 45, and a throttle opening sensor 46.
- the engine speed is detected by an engine rotation sensor 42 attached in the vicinity of the output shaft 10 a of the engine 10.
- Examples of the physical quantity representing the engine load include intake pressure, intake air amount, accelerator pedal depression amount, and the like.
- the intake pressure is detected by an intake pressure sensor 43 attached to the downstream portion of the compressor 11c in the intake passage 15.
- the intake air amount is detected by an air flow meter 44 attached to the upstream side portion of the compressor 11c in the intake passage 15.
- the accelerator pedal depression amount is detected by an accelerator opening sensor 45 attached to the accelerator pedal.
- the opening of the throttle valve 23 is detected by a throttle opening sensor 46 attached to the throttle valve 23.
- the ECU 40 is connected to an exhaust temperature sensor 51, an exhaust pressure sensor 52, a catalyst temperature sensor 53, a pressure sensor 35, and a flow rate sensor 36.
- the ECU 40 acquires physical quantities detected by the sensors 51 to 53, 35, and 36 in addition to the detected values of the operating state of the engine 10 such as the engine speed and the engine load. Then, the operation of the ozone supply device 30 is controlled based on these physical quantities.
- the exhaust temperature sensor 51 is attached to the exhaust passage 16 and detects the exhaust temperature.
- the exhaust pressure sensor 52 is attached to the exhaust passage 16 and detects the exhaust pressure.
- the exhaust temperature sensor 51 and the exhaust pressure sensor 52 are disposed in the exhaust passage 16 between the NOx purification catalyst 12 and the exhaust turbine 11a. The exhaust pressure corresponds to the second pressure.
- the catalyst temperature sensor 53 is provided between the NOx purification catalyst 12 and the DPF 13 in the exhaust passage 16 and detects the internal temperature of the NOx purification catalyst 12 by detecting the temperature of the exhaust gas that has passed through the NOx purification catalyst 12. .
- the catalyst temperature sensor 53 may be attached to the NOx purification catalyst 12.
- the ozone generator 32, the air pump 33, and the exhaust cutoff valve 34 are connected to the ECU 40 as actuators.
- the ECU 40 controls the operation of these actuators by outputting a command signal.
- the ozone generation unit 32 adjusts the amount of ozone generated by the ozone generation unit 32 by controlling the voltage application to the electrodes.
- the air pump 33 adjusts the amount of air blown by the air pump 33 by controlling the amount of power supplied to the air pump 33 by duty control.
- the ECU 40 constructs the NOx oxidation unit 61, the DPF regeneration unit 62, the collection regeneration unit 63, and the concentration change unit 64 shown in FIG. 4 as functional blocks by executing the control program stored in the memory 41c by the processor 41a. To do.
- the ECU 40 removes the NOx oxidation unit 61 that promotes oxidation of NOx in the exhaust, the DPF regeneration unit 62 that performs DPF regeneration to remove the PM collected by the DPF 13, and the PM collected by the entry collection unit 37. It has the collection reproduction
- the DPF regeneration unit 62 promotes PM combustion in the DPF 13 by performing a process of increasing the exhaust temperature. Examples of the process for increasing the exhaust temperature include a process for increasing the fuel injection amount in the engine 10 and a process for shifting the ozone supply device 30 to the supply state and supplying ozone to the DPF 13. Both the NOx oxidation unit 61 and the collection / regeneration unit 63 perform a process of shifting the ozone supply device 30 to the supply state.
- the ECU 40 has a concentration changing unit 64 that can change the ozone concentration generated by the ozone generating unit 32.
- the concentration changing unit 64 can adjust the energization amount to the electrode in the ozone generation unit 32, and the ozone generation unit 32 generates ozone having a concentration corresponding to the energization amount.
- the concentration changing unit 64 can change the ozone concentration in a plurality of steps, and in these steps, the concentration Da for regeneration for performing the regeneration of the entry collecting unit 37 and the post-treatment for promoting the oxidation of NOx. Concentration Db is included.
- the inventors obtained the knowledge that the oxidation rate of PM increases as the ozone concentration increases through tests and the like.
- the ozone concentration at which the PM oxidation rate is relatively high is set as the regeneration concentration Da
- the ozone concentration at which the PM oxidation rate is relatively low is set as the post-processing concentration Db.
- the post-processing concentration Db is set as the post-processing concentration
- the regeneration concentration Da is set to, for example, an ozone concentration at which the oxidation rate of PM is 50 to 60%, and the post-treatment concentration Db is, for example, a concentration that is 1/5 to 1/4 of the regeneration concentration Da.
- the reproduction density Da corresponds to the first density
- the post-processing density Db corresponds to the second density.
- the ECU40 performs the ozone management process which manages the ozone production
- FIG. This ozone management process is repeatedly executed at a predetermined cycle during the operation period of the engine 10.
- the ECU 40 has a function of executing the ozone management process by the processor 41 a, and this function corresponds to the collection / reproduction unit 63.
- the ECU 40 corresponds to an ozone supply control device.
- step S101 it is determined whether or not the regeneration of the entry collection unit 37 is being performed as the collection unit regeneration.
- the process proceeds to step S102, and it is determined whether or not the ozone supply device 30 is in a supply state.
- the NOx oxidation unit 61 or the DPF regeneration unit 62 shifts the ozone supply device 30 to a supply state can be cited. .
- step S103 determines whether or not the DPF regeneration is in progress.
- the DPF 13 is at a high temperature (for example, 500 ° C. or higher) because the DPF regeneration unit 62 performs the process of increasing the exhaust gas temperature. If the DPF regeneration is not in progress, the process proceeds to step S104.
- step S104 it is determined whether or not to perform collection diagnosis.
- the variation in the exhaust state such as the temperature and pressure of the exhaust is relatively small
- the collection diagnosis is performed when the variation in the exhaust state is relatively small.
- step S105 When performing collection diagnosis, it progresses to step S105 and performs collection diagnosis processing.
- the collection diagnosis process will be described with reference to FIG. In FIG. 7, in step S201, the operation of the air pump 33 is started, and then, in step S202, the exhaust cutoff valve 34 is shifted to an open state.
- step S203 the gas pressure P1 of the ozone passage 31 is acquired based on the detection signal of the pressure sensor 35, and in step S204, the gas flow rate V1 of the ozone passage 31 is acquired based on the detection signal of the flow sensor 36.
- step S205 the exhaust pressure P2 in the exhaust passage 16 is acquired based on the detection signal of the exhaust pressure sensor 52.
- the acquisition process in steps S203 to S205 is performed on the condition that a predetermined time, such as several seconds, has elapsed until the air flow rate by the air pump 33 is stabilized after the operation of the air pump 33 is started in step S201.
- step S206 the collection state of the entry collection part 37 is calculated based on the gas pressure P1, the gas flow rate V1, and the exhaust pressure P2.
- a collection map indicating the relationship among the gas pressure P1, the gas flow rate V1, the exhaust pressure P2, and the collection state of the entry collection unit 37 is stored in the memory 41c.
- the collection map is read from the memory 41c, and the collection level corresponding to the gas pressure P1, the gas flow rate V1, and the exhaust pressure P2 acquired in steps S203 to S205 is set as the collection state of the entry collection unit 37.
- the ECU 40 has a function of executing steps S203 to S206.
- the function of executing step S203 corresponds to the first pressure acquisition unit
- the function of executing step S204 corresponds to the ventilation acquisition unit
- the function of executing step S205 corresponds to the second pressure acquisition unit
- the function to perform corresponds to the collection calculation unit.
- the relationship among the gas pressure P1, the gas flow rate V1, and the exhaust pressure P2 is shown for each collection level.
- the collection levels include level 0 as shown in FIG. 8 and level X as shown in FIG. 9, and at each collection level, at least one of gas pressure P1, gas flow rate V1 and exhaust pressure P2.
- step S ⁇ b> 106 it is determined whether or not the collection unit needs to be regenerated.
- it determines with collection part reproduction
- the collection unit regeneration process will be described with reference to FIG.
- step S301 the exhaust temperature of the exhaust passage 16 is acquired based on the detection signal of the exhaust temperature sensor 51.
- step S302 the temperature of the approach collection part 37 is estimated as a collection part temperature.
- the collector temperature is estimated based on the exhaust gas temperature.
- the exhaust gas temperature change mode and the outside air temperature change mode after the vehicle starts running are stored in the memory 41c, and the collector temperature is determined based on the exhaust temperature change mode and the outside air temperature change mode. May be estimated.
- step S303 it is determined whether or not the collection unit temperature is higher than a predetermined regeneration temperature.
- the regeneration temperature is set to 150 degrees, for example.
- the process proceeds to step S304.
- the collection unit temperature may be determined whether or not the collection unit temperature is lower than a predetermined upper limit temperature, and the condition that the collection unit temperature is lower than the upper limit temperature may be added to the condition that proceeds to step S304.
- ozone is easily decomposed by heat from around 200 degrees. For this reason, by setting the upper limit temperature to, for example, 200 degrees, when ozone is decomposed before reaching the ingress collecting unit 37, the ozone generating unit 32 does not generate ozone. Waste of electrical energy is avoided.
- step S304 the ozone concentration generated from the ozone generator 32 is set to the regeneration concentration Da.
- step S305 the ozone supply device 30 is shifted to the supply state, so that the collection unit regeneration is started using ozone having the regeneration concentration Da.
- the ozone generation in the ozone generator 32 is started by starting energization to the ozone generator 32.
- the PM collected by the entry collection unit 37 is easily oxidized by ozone having the regeneration concentration Da, and the oxidized PM is easily burned and removed by the heat of the entry collection unit 37. .
- step S101 if it is determined in step S101 that the collection unit is being regenerated, the process proceeds to step S108, and the process during reproduction is performed.
- the processing during reproduction will be described with reference to FIG. In FIG. 11, in steps S401 to S404, the same processing as in steps S203 to S206 of FIG. 7 is performed. Specifically, the gas pressure P1, the gas flow rate V1, and the exhaust pressure P2 are acquired, and the collection state of the entry collection unit 37 is calculated based on the gas pressure P1, the gas flow rate V1, and the exhaust pressure P2.
- step S405 it is determined whether or not the collection unit regeneration has been completed.
- the collection state is at a predetermined completion level, and it is assumed that the collection unit regeneration is completed when the collection state is at the completion level.
- the completion level is closer to the 0 level than the playback level.
- the process during regeneration is terminated as it is, and the collection unit regeneration is continued.
- the ozone supply device 30 is shifted to the stopped state in steps S406 to S408. Specifically, ozone generation in the ozone generator 32 is stopped in step S406, the exhaust cutoff valve 34 is shifted to a closed state in step S407, and the operation of the air pump 33 is stopped in step S408.
- the entrance collecting part 37 is provided in the ozone passage 31, even if the exhaust flows into the ozone passage 31 from the exhaust passage 16, the PM contained in the exhaust enters and collects. Collected by the unit 37. For this reason, it can suppress that the ozone supply apparatus 30 is contaminated with PM.
- the exhaust shut-off valve 34 may not be properly opened and closed, or that ozone may not be generated properly in the ozone generator 32. For example, when the exhaust shut-off valve 34 is fixed in an open state by PM, the exhaust shut-off valve 34 cannot prevent the backflow of exhaust gas in the ozone passage 31.
- the ozone generated in the ozone generation unit 32 can be switched between the regeneration concentration Da and the post-treatment concentration Db, ozone of the regeneration concentration Da is used for regeneration of the collection unit,
- the post-treatment concentration Db can be used for NOx oxidation and DPF regeneration.
- For collection part regeneration since the PM is oxidized in the entry collection part 37 because the regeneration concentration Da is sufficiently high, clogging occurs due to PM collected in the entry collection part 37, Even if clogging occurs, the clogging can be eliminated.
- the ozone concentration in the NOx purification catalyst 12 is set to the post-treatment concentration Db, so that the ozone is less likely to be greater than NOx. For this reason, it can suppress that ozone is discharge
- the ozone concentration is excessively high, so that the temperature rise associated with PM combustion in the DPF 13 becomes excessively large, and the PM collection capability of the DPF 13 decreases. There is concern about the occurrence of abnormalities.
- the ozone concentration is set to the post-treatment concentration Db, so that it is difficult for the temperature of the DPF 13 to rise excessively during the DPF regeneration. In this case, DPF regeneration is properly managed, and the occurrence of abnormality in the DPF 13 can be suppressed.
- ozone having a regeneration concentration Da is generated in the ozone generation unit 32.
- the PM oxidized by ozone is easily combusted by the heat of the entry collection unit 37, so that the removal efficiency of the PM collected by the entry collection unit 37 can be increased.
- generation is realizable by shortening the time for the ozone production
- regeneration is performed when the approach collection part 37 reaches the reproduction
- most of the ozone having the regeneration concentration Da is used for the oxidation of PM by the ingress collecting part 37, so that it is possible to suppress the release of ozone from the exhaust outlet 16a to the outside.
- the gas pressure P1, the gas flow rate V1, and the exhaust pressure are calculated using the principle that the larger the amount of PM collected by the entry collection unit 37, the more difficult the gas flows through the entry collection unit 37.
- the collection state of the entry collection unit 37 is estimated.
- sensors for performing exhaust aftertreatment such as the pressure sensor 35, the flow sensor 36, and the exhaust pressure sensor 52 are used for estimating the collection state.
- the cost burden corresponding to the increase in the number of dedicated sensors can be reduced.
- the collection state is estimated.
- the processing burden on the ECU 40 can be reduced.
- the entrance collection part 37 is disposed in the extension part 31 c of the ozone passage 31, the heat of the exhaust gas is easily applied to the entry collection part 37. For this reason, when performing collection part reproduction
- ozone is supplied from the ozone supply device 30 to the exhaust passage 16, but in the second embodiment, ozone is supplied from the ozone supply device 30 to the intake passage 15.
- the ozone passage 31 is connected to the intake passage 15 as shown in FIG.
- a connection portion of the ozone passage 31 is disposed between the air flow meter 44 and the compressor 11c.
- the intake passage 15 corresponds to an internal combustion passage through which exhaust flows, and the ozone passage 31 is connected to the internal combustion passage.
- the combustion system of this embodiment has an EGR device 70 that introduces a part of the exhaust gas as EGR gas to the intake side.
- the EGR device 70 includes an EGR passage 71, an EGR valve 72, and an EGR cooler 73.
- the EGR passage 71 connects the intake passage 15 and the exhaust passage 16 and is formed by piping or the like.
- a connection portion of the EGR passage 71 is disposed between the air flow meter 44 and the ozone passage 31, and in the exhaust passage 16, a connection portion of the EGR passage 71 is disposed on the downstream side of the DPF 13.
- the EGR valve 72 is an adjustment unit that adjusts the amount of EGR gas flowing through the EGR passage 71, and is, for example, an electromagnetically driven valve.
- the EGR cooler 73 is a cooling unit that cools the EGR gas, and is disposed upstream of the EGR valve 72 in the EGR passage 71.
- the EGR cooler 73 is, for example, a water-cooled heat exchanger, and performs heat exchange between the cooling water and the EGR gas by circulating the cooling water.
- the EGR device 70 includes a pre-cooler sensor 74 that detects the temperature of the EGR gas before being cooled by the EGR cooler 73, and a post-cooler sensor 75 that detects the temperature of the EGR gas after being cooled by the EGR cooler 73. have.
- the pre-cooler sensor 74 is disposed upstream of the EGR cooler 73 in the EGR passage 71
- the post-cooler sensor 75 is disposed downstream of the EGR cooler 73 in the EGR passage 71.
- These sensors 74 and 75 are electrically connected to the ECU 40.
- the catalyst temperature sensor 53 is not provided in the exhaust passage 16, but the ECU 40 can estimate the internal temperature of the NOx purification catalyst 12 based on the detection signal of the pre-cooler sensor 74.
- the amount of NOx generated due to fuel combustion tends to decrease due to a decrease in the oxygen concentration of the intake air.
- the ozone supplied from the ozone supply device 30 to the intake passage 15 is easily decomposed by NOx contained in the EGR gas and easily generates oxygen. Therefore, the ozone passage 31 is connected to the intake passage 15 at a position as close as possible to the engine 10, thereby shortening the period during which both ozone and NOx exist in the intake passage 15. For this reason, ozone supplied to the intake passage 15 is not easily decomposed by NOx of EGR gas.
- connection portion of the ozone passage 31 with respect to the intake passage 15 is disposed at a position near the compressor 11c between the EGR passage 71 and the compressor 11c. Further, it may be arranged on the downstream side.
- the ozone passage 31 may be connected between the compressor 11 c and the intercooler 21 in the intake passage 15 or may be connected to the intake manifold 22.
- the temperature of the ingress collecting part 37 is estimated based on the temperature of the EGR gas.
- the detection results of the pre-cooler sensor 74 and the post-cooler sensor 75 are used when estimating the collection unit temperature in step S302.
- the EGR acquired based on the intake air amount acquired based on the detection signal of the air flow meter 44 and the opening degree of the EGR valve 72 is estimated.
- the processes of steps S303 to S305 are performed in the collection unit regeneration process.
- step S501 and S502 the same processing as in steps S101 and S102 of the first embodiment is performed.
- step S503 the process proceeds to step S503 to determine whether or not to perform collection diagnosis.
- collection diagnosis is performed using the period in which the air pump 33 is in the operating state.
- the ozone concentration is set to the post-treatment concentration Db by the NOx oxidation unit 61 and the DPF regeneration unit 62.
- steps S504 to S507 the same processing as in steps S105 to S108 of the first embodiment is performed.
- step S504 the collection diagnosis process in step S504 will be described with reference to FIG.
- the processes in steps S201 and S202 of the first embodiment are not performed.
- steps S601 to S604 the same processing as in steps S203 to S206 of the above embodiment is performed.
- the ECU 40 has a function of executing steps S601 to S604.
- the function of executing step S601 corresponds to the first pressure acquisition unit
- the function of executing step S602 corresponds to the ventilation acquisition unit
- the function of executing step S603 corresponds to the second pressure acquisition unit
- the function to perform corresponds to the collection calculation unit.
- step S507 the processing during reproduction in step S507 will be described with reference to FIG.
- steps S701 to S705 the same processing as in steps S401 to S405 of the first embodiment is performed.
- step S706 the ozone concentration is set to the post-treatment concentration Db for the purpose of returning the ozone supply device 30 to the supply state after the collection unit regeneration is completed.
- steps S406 to S408 in the first embodiment is not performed.
- the entrance collection part 37 can be regenerated only by changing the ozone concentration from the post-treatment concentration Db to the regeneration concentration Da using the period in which the ozone supply device 30 is in the supply state.
- the extension portion 31c may extend toward the upstream side of the exhaust passage 16, and extends in a direction intersecting the exhaust flow from the intersection portion 31b. It may be. Further, the entry passage portion 31a may not have the extending portion 31c. Even in this case, the approach collection part 37 is arrange
- the entry collecting part 37 may be arranged upstream of the entry passage part 31a in the ozone passage 31 as shown in FIG.
- the heat resistance of the approach collection part 37 is low to some extent, it is hard to generate abnormality in the approach collection part 37.
- the ozone passage 31 does not need to have the entry passage portion 31a. Even in this case, since the entrance collection part 37 is disposed at the downstream end of the ozone passage 31, it is possible to realize a configuration in which the heat of the exhaust gas flowing through the exhaust passage 16 is easily applied to the entry collection part 37. However, with this configuration, it is expected that the exhaust easily reaches the entrance collection unit 37 and the frequency of performing the collection unit regeneration is increased.
- the entry collection unit 37 may have a filter 81 for removing PM from the exhaust gas.
- the filter 81 is made of a heat-resistant metal material, and is a mesh member having a large number of meshes.
- the filter 81 is provided in a state in which the peripheral edge extends along the inner peripheral surface of the ozone passage 31, and the exhaust gas passes through the filter 81 so that PM can be filtered out from the exhaust gas. .
- the PM collected by the filter 81 is oxidized and removed by ozone by performing the collection portion regeneration process.
- the entry collecting unit 37 may have electrodes 82 and 83 for electrically removing PM from the exhaust gas. These electrodes 82 and 83 are opposed to each other in the ozone passage 31, the first electrode 82 is an application electrode to which a high voltage V of, for example, 3 kV is applied, and the second electrode 83 is a grounded ground electrode. Has been. When a high voltage V is applied to the exhaust gas by the electrodes 82 and 83, PM in the exhaust gas is attracted to the second electrode 83 on the ground side and collected by the second electrode 83. Similar to the first embodiment, the PM collected by the second electrode 83 is oxidized and removed by ozone by performing the collection part regeneration process.
- V high voltage V
- the ECU 40 does not use the collection map when calculating the collection state of the entry collection unit 37, but correlates the gas pressure P1, the gas flow rate V1, the exhaust pressure P2, and the collection state.
- An included function or model may be used.
- the ECU 40 may calculate the ventilation state of the ozone passage 31 as the collection state instead of calculating the amount of PM collected by the entry collection unit 37 as the collection state. In this case, the correlation between the amount of PM collected by the entry collection unit 37 and the ventilation state of the ozone passage 31 is used.
- the ECU 40 determines whether or not to perform the collection unit regeneration based on the temperature of the entry collection unit 37, but determines whether or not to perform the collection unit regeneration based on the exhaust temperature. May be performed. For example, it is assumed that the change mode of the exhaust temperature is acquired and the collection unit regeneration is performed when a state where the exhaust temperature is higher than a predetermined temperature continues for a predetermined period. Even in this case, the PM can be appropriately removed by the heat stored in the approach collection unit 37.
- the ECU 40 may periodically perform the collection diagnosis process and the collection unit regeneration process regardless of the collection state of the entry collection unit 37.
- a configuration for periodically performing these processes a configuration in which the processing is repeated at a predetermined cycle such as 24 hours or 48 hours, or a configuration in which the traveling distance of the vehicle is repeated every time the predetermined distance such as 1000 km is reached.
- the function provided by the processor 41a of the ECU 40 can be provided by hardware and software different from those described above, or a combination thereof.
- a control circuit such as a control circuit of the vehicle control ECU may execute part or all of the ozone management process.
- each function may be provided by hardware and software different from those described above, or a combination thereof.
- various non-transitional tangible storage media such as a flash memory and a hard disk can be adopted as the memory 41c for storing a program executed by the processor 41a.
- the engine 10 included in the combustion system may be a gasoline engine instead of a diesel engine as long as it is an internal combustion engine.
- the combustion system configured to include the ozone supply device 30 is not limited to an on-board internal combustion engine, and may include an internal combustion engine mounted on a ship, a railway vehicle, an aircraft, or the like. Moreover, you may have the internal combustion engine for electric power generation.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Exhaust Gas After Treatment (AREA)
- Processes For Solid Components From Exhaust (AREA)
- Oxygen, Ozone, And Oxides In General (AREA)
Abstract
オゾン供給装置(30)は、排気通路(16)に接続されたオゾン通路(31)と、オゾンを生成するオゾン生成部(32)と、オゾン生成部(32)に空気を送るエアポンプ(33)と、オゾン通路(31)での排気の逆流を遮断する排気遮断弁(34)とを有している。オゾン供給装置(30)においては、排気に含まれるPMを捕集する進入捕集部(37)がオゾン通路(31)に設けられている。ECU(40)は、オゾン生成部(32)に生成させるオゾンの濃度を、進入捕集部(37)の再生を行うための再生用濃度と、NOxの酸化を促進させるための後処理用濃度とに変更可能になっている。再生用濃度のオゾンが進入捕集部(37)に供給されることで、進入捕集部(37)に捕集されたPMの酸化が促される。
Description
本出願は、当該開示内容が参照によって本出願に組み込まれた、2015年12月11日に出願された日本特許出願2015-242565を基にしている。
本開示は、オゾン供給制御装置及びオゾン供給装置に関する。
従来より、エンジン等の内燃機関からの排気が通る内燃通路に対してオゾンを供給するオゾン供給装置が知られている。内燃通路としては、排気通路があるのはもちろんのこと、排気の一部がEGR通路により排気通路から吸気通路に供給される場合の吸気通路もある。排気通路にNOx吸着触媒が設けられた構成では、排気通路にオゾンが供給されることで、NOがオゾンによりNO2に酸化されてNOx吸着触媒での吸着反応が活発になり、NOxの浄化率が高められる。オゾンが吸気通路に供給される構成では、内燃機関での着火性が向上しやすくなる。
例えば特許文献1では、オゾン供給装置が、排気通路に接続された空気供給通路と、空気供給通路に空気を供給するエアポンプと、エアポンプにより送風される空気を用いてオゾンを生成するオゾン発生装置とを有している。この構成では、オゾン発生装置により生成されたオゾンが排気通路に供給される。
しかしながら、オゾンを供給するオゾン通路が内燃通路に接続された構成では、内燃通路からオゾン通路に排気が逆流することがある。この場合、排気に含まれた粒子状物質によりオゾン供給装置が汚染されることが懸念される。例えば、排気の逆流を遮断する排気遮断弁がオゾン通路に設けられたオゾン供給装置では、排気がオゾン通路に進入して粒子状物質が排気遮断弁に付着すると、排気遮断弁が閉状態に移行できない状態になることが懸念される。この場合、排気が排気遮断弁通過してオゾン通路の上流端部から外部に放出されてしまう。
本開示は、上記点を鑑みてなされたもので、その目的は、オゾン供給装置が排気の通る通路にオゾンを供給する構成において、排気に含まれた粒子状物質によりオゾン供給装置が汚染されることを抑制することにある。
上述の課題に関する第1の態様は、オゾンを生成するオゾン生成部と、内燃機関からの排気が通る内燃通路に接続され、オゾン生成部により生成されたオゾンを内燃通路に供給するオゾン通路と、オゾン通路に設けられ、内燃通路からオゾン通路に進入した排気に含まれる粒子状物質を捕集する進入捕集部と、を有するオゾン供給装置の動作制御を行うオゾン供給制御装置であって、オゾン生成部にて生成されるオゾン濃度を、進入捕集部に捕集されている粒子状物質を酸化させて除去するための第1濃度と、この第1濃度より小さい第2濃度とに変更する濃度変更部を備えている。
第1の態様によれば、オゾン通路に進入捕集部が設けられているため、仮に排気が内燃通路からオゾン通路に流れ込んだとしても、その排気に含まれる粒子状物質を進入捕集部にて捕集することができる。このため、オゾン供給装置が粒子状物質により汚染されることを抑制できる。
ここで、排気の後処理や内燃機関での着火性向上のためにオゾン生成部によりオゾンが生成された場合、そのオゾンは進入捕集部を通過して内燃通路に供給されることになる。発明者らは、進入捕集部にて捕集された粒子状物質をオゾンにより酸化させて除去するには比較的大きなオゾン濃度が必要になる、という知見を得た。この知見によれば、排気の後処理や内燃機関での着火性向上のために生成されるオゾンの濃度では、進入捕集部にて捕集された粒子状物質をほとんど除去することができず、除去できたとしても一部のPMに過ぎない。このため、進入捕集部においては、捕集されて溜まった粒子状物質の量が過剰に増加した場合には、進入捕集部の通気量が低下してオゾン通路から内燃通路へのオゾンの供給量が不足するということが懸念される。
これに対して、本開示によれば、オゾン生成部からのオゾン濃度が第1濃度と第2濃度とに変更される。このため、進入捕集部にて捕集された粒子状物質を除去する場合には第1濃度のオゾンを使用し、排気の後処理や内燃機関での着火性向上を目的とする場合には第2濃度のオゾンを使用する、というようにオゾン濃度を使い分けることが可能になる。第1濃度のオゾンを使用した場合、オゾン濃度が十分に大きいことで、進入捕集部が捕集した粒子状物質を酸化して除去することができる。この場合、進入捕集部の通気量の低下に伴ってオゾン通路から内燃通路へのオゾンの供給量が不足するということを抑制できる。
また、排気の後処理や内燃機関での着火性向上を目的とした場合、オゾン濃度が高すぎると、PDF等の後処理装置にて温度が過剰に上昇することや、内燃機関での燃焼状態に異常が発生することが懸念される。このため、排気の後処理や内燃機関での着火性向上を目的とした場合には、オゾン濃度が過剰に大きくない第2濃度に設定されることで、排気の後処理や内燃機関での着火性向上を適正に実現することができる。
上述の課題に関する第2の態様は、オゾンを生成するオゾン生成部と、内燃機関からの排気が通る内燃通路に接続され、オゾン生成部により生成されたオゾンを内燃通路に供給するオゾン通路と、オゾン通路に設けられ、内燃通路からオゾン通路に進入した排気に含まれる粒子状物質を捕集する進入捕集部と、
を備えている。
を備えている。
第2の態様によれば、オゾン通路に進入捕集部が設けられているため、仮に排気が内燃通路からオゾン通路に流れ込んだとしても、その排気に含まれる粒子状物質を進入捕集部にて捕集することができる。このため、オゾン供給装置が粒子状物質により汚染されることを抑制できる。
以下、本開示の複数の実施形態を図面に基づいて説明する。なお、各実施形態において対応する構成要素には同一の符号を付すことにより、重複する説明を省略する場合がある。各実施形態において構成の一部分のみを説明している場合、当該構成の他の部分については、先行して説明した他の実施形態の構成を適用することができる。また、各実施形態の説明において明示している構成の組み合わせばかりではなく、特に組み合わせに支障が生じなければ、明示していなくても複数の実施形態の構成同士を部分的に組み合せることができる。
(第1実施形態)
図1に示す燃焼システムは、エンジン10、過給機11、NOx浄化触媒12、DPF13を備えている。燃焼システムは車両に搭載されたものであり、この車両は、エンジン10の出力を駆動源として走行する。エンジン10は、圧縮自着火式のディーゼルエンジンであり、燃焼に用いる燃料には、炭化水素化合物である軽油を用いている。エンジン10には、このエンジン10に空気を供給する吸気通路15と、エンジン10からの排気を放出する排気通路16とが接続されている。なお、エンジン10が内燃機関に相当する。
図1に示す燃焼システムは、エンジン10、過給機11、NOx浄化触媒12、DPF13を備えている。燃焼システムは車両に搭載されたものであり、この車両は、エンジン10の出力を駆動源として走行する。エンジン10は、圧縮自着火式のディーゼルエンジンであり、燃焼に用いる燃料には、炭化水素化合物である軽油を用いている。エンジン10には、このエンジン10に空気を供給する吸気通路15と、エンジン10からの排気を放出する排気通路16とが接続されている。なお、エンジン10が内燃機関に相当する。
過給機11は、排気タービン11a、回転軸11b及びコンプレッサ11cを備える。排気タービン11aは、エンジン10の排気通路16に配置され、排気の運動エネルギにより回転する。回転軸11bは、排気タービン11a及びコンプレッサ11cの各インペラを結合することで、排気タービン11aの回転力をコンプレッサ11cに伝達する。コンプレッサ11cは、吸気通路15に配置されており、吸気を圧縮してエンジン10に過給する。
吸気通路15においてコンプレッサ11cの下流側には、このコンプレッサ11cで圧縮された吸気を冷却する冷却器としてのインタークーラ21が設けられている。吸気通路15は、吸気マニホールド22を介してエンジン10の吸気側に接続されており、冷却器により冷却された圧縮吸気は、スロットルバルブ23により流量調整され、エンジン10が有する複数の燃焼室へ分配される。吸気通路15の上流端には、エンジン10に吸入される空気の浄化を行うエアクリーナ24が設けられている。
排気通路16は、排気マニホールド25を介してエンジン10の排気側に接続されている。NOx浄化触媒12は、排気通路16において排気タービン11aの下流側に配置されている。DPF13(Diesel Particulate Filter)は、NOx浄化触媒12の更に下流側に配置されており、排気に含まれている粒子状物質PM(Particulate Matter)を捕集する捕集装置である。排気通路16を流れる排気は、NOx浄化触媒12及びDPF13の両方を通過した後に、排気出口16aから放出される。燃焼システムにおいては、NOx浄化触媒12及びDPF13が排気浄化装置を構成している。なお、PMは個体や液体の微粒子であり、固体の微粒子は、例えば煤としてのsootであり、液体の微粒子は、例えば液化HCなどの未燃HCである。
NOx浄化触媒12は、排気中の窒素酸化物NOxを吸着する吸着触媒や、NOxを窒素N2に還元する還元触媒などを有している。吸着触媒は、NOxを吸着する吸着力を有しており、吸着触媒においては、一酸化窒素NOに対する吸着力に比べて二酸化窒素NO2に対する吸着力の方が非常に大きくなっている。なお、NOx浄化触媒12がNOx触媒に相当する。
燃焼システムは、排気通路16においてNOx浄化触媒12の上流側にオゾンO3を供給するオゾン供給装置30を有している。オゾン供給装置30から排気通路16にオゾンが供給された場合、オゾンによりNOがNO2に酸化されることで排気中のNO2の割合が増加し、その結果、NOx浄化触媒12でのNOxの吸着率が向上する。オゾン供給装置30は、排気通路16にオゾンを供給する供給状態と、オゾンを供給しない停止状態とに移行可能になっている。
オゾン供給装置30は、排気通路16に接続されたオゾン通路31と、オゾンを生成するオゾン生成部32と、オゾン通路31を通じてオゾン生成部32に空気を送るエアポンプ33と、オゾン通路31における排気の逆流を遮断する排気遮断弁34と、オゾン通路31の内部圧力をガス圧力として検出する圧力センサ35と、エアポンプ33からオゾン通路31に送られる空気の流量をガス流量として検出する流量センサ36とを有している。なお、排気通路16が排気の流れる内燃通路に相当し、オゾン通路31は内燃通路に接続されていることになる。また、ガス圧力が第1圧力に相当し、ガス流量が通気量に相当する。
オゾン通路31においては、その上流端にエアポンプ33が設けられており、エアポンプ33と排気通路16との間にオゾン生成部32が設けられている。オゾン通路31は、複数の配管が接続されることなどにより形成されている。
エアポンプ33は、遠心式のエアポンプであり、電動モータにより駆動されるインペラをケース内に収容して構成される。エアポンプ33は、大気を吸入する吸入口33aを有しており、この吸入口33aはケースに形成されている。エアポンプ33は送風状態に移行する送風部に相当する。なお、エアポンプ33の吸入口33aがオゾン通路31の上流端を形成している。
オゾン生成部32は、その内部に流通路を形成するハウジングを備え、流通路には複数の電極が配置されている。これらの電極は、互いに平行に対向するように配置された平板形状であり、高電圧が印加される電極と接地電圧の電極とが交互に配置されている。オゾン生成部32のハウジングには、エアポンプ33により送風された空気が流入する。この空気は、ハウジング内の流通路に流入し、電極間の通路である電極間通路を流通する。
オゾン生成部32の電極へ通電すると、電極から放出された電子が、電極間通路の空気中に含まれる酸素分子に衝突する。すると、酸素分子からオゾンが生成される。つまり、オゾン生成部32は、放電により酸素分子をプラズマ状態にしてオゾンを生成する。したがって、オゾン生成部32への通電時には、オゾン生成部32から排気通路16に向けて流れる空気にオゾンが含まれる。オゾン生成部32においては、電極への通電量が大きいほどオゾンの発生率が大きくなる。なお、オゾン生成部32はオゾン生成部やオゾナイザと称することもできる。
排気遮断弁34は、電磁駆動式の開閉弁であり、オゾン通路31においてオゾン生成部32と排気通路16との間に設けられている。この場合、排気遮断弁34は、オゾン通路31の下流端から上流側に離間した位置に配置されている。排気遮断弁34は、通気を可能にする開状態と、通気を遮断する閉状態とに移行可能になっており、閉状態が遮断状態に相当する。排気遮断弁34が開状態にある場合、オゾン通路31の通気量は排気遮断弁34の開度に応じて調整される。オゾン通路31の通気量は、排気遮断弁34が全開状態にある場合に最大になる。なお、排気遮断弁34が通気遮断部に相当する。
圧力センサ35は、オゾン通路31においてオゾン生成部32と排気遮断弁34との間に設けられている。具体的には、圧力センサ35は、オゾン生成部32寄りの位置に配置されている。この場合、圧力センサ35の検出結果に、排気遮断弁34の開閉に伴う圧力変化が反映されやすくなっている。なお、圧力センサ35が圧力検出部に相当する。
流量センサ36は、オゾン通路31においてエアポンプ33とオゾン生成部32との間に設けられており、エアポンプ33からの空気の吐出量を検出可能になっている。具体的には、流量センサ36は、エアポンプ33寄りの位置に配置されている。この場合、流量センサ36の検出結果に、エアポンプ33の駆動及び停止に伴う空気の流量変化が反映されやすくなっている。なお、流量センサ36が流量検出部に相当する。
ここで、オゾン通路31に排気遮断弁34が設けられているものの、エンジン10やエアポンプ33の運転状態や排気遮断弁34の開閉タイミングによっては、排気通路16を流れる排気がオゾン通路31に進入することがあると考えられる。これに対して、オゾン供給装置30においては、排気に含まれるPMを捕集する進入捕集部37がオゾン通路31に設けられている。進入捕集部37は、排気遮断弁34の下流側において、オゾン通路31の下流端に配置されている。
図2に示すように、オゾン通路31は、排気通路16の内部に入り込んだ入り込み通路部31aを有している。入り込み通路部31aの下流端がオゾン通路31の下流端になっており、この下流端は、排気通路16の下流側に向けて開放されている。入り込み通路部31aは、排気通路16において排気の流れ方向に交差する方向に延びた交差部分31bと、交差部分31bから排気通路16の下流側に向けて延びた延出部分31cとを有している。進入捕集部37は、延出部分31cの下流端に対して設けられている。延出部分31cは、その全体がオゾン通路31の内周面から離間しており、排気通路16を流れる排気の熱が進入捕集部37に付与されやすくなっている。
図3に示すように、進入捕集部37は、オゾン通路31においてオゾン等のガスの流路を蛇行させる構成を有しており、この構成はラビリンス構造により実現されている。具体的には、進入捕集部37は、オゾン通路31を形成する配管等の通路形成部37aと、通路形成部37aの下流端を収納した収納部37bと、通路形成部37aと収納部37bとの境界部を覆う覆い部37cとを有している。収納部37b及び覆い部37cは、いずれも一端が開放された筒状部材であり、通路形成部37aと収納部37bと覆い部37cとの間には、ガスが流れる隙間が形成されている。通路形成部37a、収納部37b及び覆い部37cは、いずれも耐熱性を有する金属材料により形成されている。
オゾンがオゾン通路31から排気通路16に供給される場合、進入捕集部37に到達したオゾンは、通路形成部37aから収納部37bの内部に流出し、通路形成部37aと収納部37bとの隙間を通じて、収納部37bと覆い部37cとの隙間に到達する。そして、収納部37bと覆い部37cとの間の隙間から排気通路16に流出する。排気通路16を流れる排気がオゾン通路31に進入する場合には、オゾンとは逆の経路で進むことになる。この場合、通路形成部37a、収納部37b及び覆い部37cにより流路が狭く且つ蛇行しているため、排気に含まれたPMが通路形成部37aや収納部37b、覆い部37cに付着しやすくなっている。すなわち、PMが進入捕集部37に捕集される構成が実現されている。
進入捕集部37においては、捕集されたPMが増加するほど流路が狭くなり、ガスが流れにくくなる。例えば、エアポンプ33により空気がオゾン通路31に供給されている場合、進入捕集部37が捕集したPMが多いほど空気が進入捕集部37を通過しにくくなり、オゾン通路31での流量が減少して進入捕集部37の上流側での圧力が高くなる。進入捕集部37においては、捕集したPMが増加することで捕集状態が変化する。
次に、燃焼システムの電気的な構成について説明する。図1に示すように、燃焼システムは、制御装置としてのECU40を有している。ECU40は、プロセッサ41a、RAM41b、メモリ41c及び情報の入出力を行うインターフェース41dを有している。メモリ41cは、書き換え可能な不揮発性の記憶媒体であり、記憶部に相当する。
ECU40には、エンジン回転センサ42、吸気圧センサ43、エアフロメータ44、アクセル開度センサ45及びスロットル開度センサ46が接続されている。エンジン回転数は、エンジン10の出力軸10aの近傍に取り付けられたエンジン回転センサ42により検出される。エンジン負荷を表わす物理量としては、吸気圧、吸気量、アクセルペダル踏込量等が挙げられる。吸気圧は、吸気通路15のうちコンプレッサ11cの下流側部分に取り付けられた吸気圧センサ43により検出される。吸気量は、吸気通路15のうちコンプレッサ11cの上流側部分に取り付けられたエアフロメータ44により検出される。アクセルペダル踏込量は、アクセルペダルに取り付けられたアクセル開度センサ45により検出される。スロットルバルブ23の開度は、スロットルバルブ23に取り付けられたスロットル開度センサ46により検出される。
また、ECU40には、排気温度センサ51、排気圧センサ52、触媒温度センサ53、圧力センサ35及び流量センサ36が接続されている。ECU40は、エンジン回転数やエンジン負荷等のエンジン10の作動状態の検出値に加え、センサ51~53,35,36により検出された物理量を取得する。そして、これらの物理量に基づき、オゾン供給装置30の作動を制御する。
排気温度センサ51は、排気通路16に取り付けられて排気温度を検出する。排気圧センサ52は、排気通路16に取り付けられて排気圧力を検出する。排気温度センサ51及び排気圧センサ52は、排気通路16においてNOx浄化触媒12と排気タービン11aとの間に配置されている。なお、排気圧力が第2圧力に相当する。
触媒温度センサ53は、排気通路16においてNOx浄化触媒12とDPF13との間に設けられており、NOx浄化触媒12を通過した排気の温度を検出することでNOx浄化触媒12の内部温度を検出する。なお、触媒温度センサ53は、NOx浄化触媒12に取り付けられていてもよい。
さらに、ECU40には、オゾン生成部32、エアポンプ33及び排気遮断弁34がアクチュエータとして接続されている。ECU40は、指令信号を出力することでこれらアクチュエータの動作制御を行う。例えば、オゾン生成部32については、電極への電圧印加を制御することでオゾン生成部32によるオゾンの生成量を調整する。また、エアポンプ33については、デューティ制御によりエアポンプ33への供給電力量を制御することでエアポンプ33による送風量を調整する。
ECU40は、メモリ41cに記憶された制御プログラムをプロセッサ41aにより実行することで、図4に示すNOx酸化部61、DPF再生部62、捕集再生部63及び濃度変更部64を、機能ブロックとして構築する。
ECU40は、排気中のNOxの酸化を促進させるNOx酸化部61と、DPF13が捕集したPMを除去するべくDPF再生を行うDPF再生部62と、進入捕集部37が捕集したPMを除去するべく進入捕集部37の再生を行う捕集再生部63とを有している。DPF再生部62は、排気温度を上昇させる処理を行うことでDPF13でのPMの燃焼を促進する。排気温度を上昇させる処理としては、エンジン10での燃料噴射量を増加させる処理や、オゾン供給装置30を供給状態に移行させてオゾンをDPF13に供給する処理などが挙げられる。NOx酸化部61及び捕集再生部63は、いずれもオゾン供給装置30を供給状態に移行させる処理を行う。
また、ECU40は、オゾン生成部32にて生成されるオゾン濃度を変更可能な濃度変更部64を有している。濃度変更部64は、オゾン生成部32について電極への通電量を調整することが可能になっており、オゾン生成部32では通電量に応じた濃度のオゾンが生成される。濃度変更部64は、複数段階でオゾン濃度を変更可能であり、これら段階には、進入捕集部37の再生を行うための再生用濃度Daと、NOxの酸化を促進させるための後処理用濃度Dbとが含まれている。
ここで、発明者らは、オゾン濃度が大きいほどPMの酸化率が大きくなるという知見を試験等により得た。本実施形態では、図5に示すように、PMの酸化率が比較的高くなるオゾン濃度を再生用濃度Daとして設定し、PMの酸化率が比較的低いオゾン濃度を後処理用濃度Dbとして設定する。ただし、後処理用濃度Dbのように低い濃度のオゾンであっても、NOx浄化触媒12でのNOx吸着率を向上させるほどにNOxの酸化を促すことは可能になっている。
なお、再生用濃度Daは、例えばPMの酸化率が50~60%になるオゾン濃度に設定されており、後処理用濃度Dbは、例えば再生用濃度Daの1/5~1/4の濃度に設定されている。また、再生用濃度Daが第1濃度に相当し、後処理用濃度Dbが第2濃度に相当する。
ECU40は、オゾン供給装置30によるオゾン生成を管理するオゾン管理処理を行う。このオゾン管理処理は、エンジン10の運転期間中に所定周期で繰り返し実行される。なお、ECU40は、オゾン管理処理をプロセッサ41aにより実行する機能を有しており、この機能が捕集再生部63に相当する。また、ECU40がオゾン供給制御装置に相当する。
図6において、ステップS101では、進入捕集部37の再生を捕集部再生として実行している最中であるか否かを判定する。捕集部再生中でない場合、ステップS102に進み、オゾン供給装置30が供給状態にあるか否かを判定する。ここで、捕集部再生中でなく且つオゾン供給装置30が供給状態にある場合としては、NOx酸化部61やDPF再生部62がオゾン供給装置30を供給状態に移行させた場合などが挙げられる。
オゾン供給装置30が供給状態にない場合、ステップS103に進み、DPF再生中であるか否かを判定する。DPF再生中である場合、DPF再生部62が排気温度を上昇させる処理を行っていることでDPF13が高温(例えば500度以上)になっている。DPF再生中でない場合、ステップS104に進む。
ステップS104では、捕集診断を行うか否かを判定する。ここでは、排気の温度や圧力といった排気状態の変動が比較的小さいか否かを判定し、排気状態の変動が比較的小さい場合に捕集診断を行うとする。排気状態の変動が比較的小さい状態としては、エンジン10がアイドル状態にある場合や、燃焼システムがアイドルストップ状態にあることでエンジン10が停止している場合、車両が高速で安定走行している場合などが挙げられる。車両が高速で安定走行している場合は、エンジン10が回転速度の変動が比較的小さい状態で高速回転していることになる。
捕集診断を行う場合、ステップS105に進み、捕集診断処理を行う。捕集診断処理については、図7を参照しつつ説明する。図7において、ステップS201では、エアポンプ33の運転を開始し、その後、ステップS202にて、排気遮断弁34を開状態に移行させる。
ステップS203では、オゾン通路31のガス圧力P1を圧力センサ35の検出信号に基づいて取得し、ステップS204では、オゾン通路31のガス流量V1を流量センサ36の検出信号に基づいて取得する。また、ステップS205では、排気通路16の排気圧力P2を排気圧センサ52の検出信号に基づいて取得する。ステップS203~S205の取得処理は、ステップS201にてエアポンプ33の運転を開始した後、エアポンプ33による送風量が安定するまで例えば数秒など所定時間が経過したことを条件として行う。
ステップS206では、ガス圧力P1、ガス流量V1及び排気圧力P2に基づいて、進入捕集部37の捕集状態を算出する。ここで、ガス圧力P1とガス流量V1と排気圧力P2と進入捕集部37の捕集状態との関係を示す捕集マップがメモリ41cに記憶されている。ここでは、メモリ41cから捕集マップを読み出し、ステップS203~S205にて取得したガス圧力P1、ガス流量V1及び排気圧力P2が該当する捕集レベルを進入捕集部37の捕集状態とする。
なお、ECU40は、ステップS203~S206を実行する機能を有している。ステップS203を実行する機能が第1圧力取得部に相当し、ステップS204を実行する機能が通気取得部に相当し、ステップS205を実行する機能が第2圧力取得部に相当し、ステップS206を実行する機能が捕集算出部に相当する。
捕集マップにおいては、捕集レベルごとにガス圧力P1とガス流量V1と排気圧力P2との関係が示されている。捕集レベルには、図8に示すようなレベル0や、図9に示すようなレベルXが含まれており、各捕集レベルでは、ガス圧力P1、ガス流量V1及び排気圧力P2のうち少なくとも1つが異なる値になっている。本実施形態では、進入捕集部37が捕集したPMの量が大きいほど捕集レベルが大きくなる。
図6に戻り、捕集診断処理の終了後、ステップS106に進み、捕集部再生を行う必要があるか否かを判定する。ここでは、捕集レベルがあらかじめ定められた再生レベルにあるか否かを判定し、再生レベルにある場合に捕集部再生を行う必要があるとする。捕集部再生が必要であると判定した場合、ステップS107に進み、捕集部再生処理を行う。捕集部再生処理については、図10を参照しつつ説明する。
図10において、ステップS301では、排気通路16の排気温度を排気温度センサ51の検出信号に基づいて取得する。ステップS302では、進入捕集部37の温度を捕集部温度として推定する。ここでは、排気温度に基づいて捕集部温度を推定する。ここで、進入捕集部37が延出部分31cに配置されていることに起因して、捕集部温度は排気温度に近い温度に変化しやすくなっている。なお、車両が走行を開始した後の排気温度の変化態様や外気温度の変化態様などをメモリ41cに記憶しておき、排気温度の変化態様や外気温度の変化態様などに基づいて捕集部温度を推定してもよい。
ステップS303では、捕集部温度があらかじめ定められた再生温度より大きいか否かを判定する。再生温度は、例えば150度に設定されている。捕集部温度が再生温度より大きい場合に、ステップS304に進む。
なお、捕集部温度があらかじめ定められた上限温度より小さいか否かを判定し、ステップS304に進む条件に、捕集部温度が上限温度より小さいことが加えられていてもよい。ここで、オゾンは200度を超えたあたりから熱によって分解されやすい。このため、上限温度を例えば200度に設定しておくことで、オゾンが進入捕集部37に到達する前に分解されてしまう場合には、オゾン生成部32でのオゾン生成を行わないことで電気エネルギーの浪費が回避される。
ステップS304では、オゾン生成部32から発生するオゾン濃度を再生用濃度Daに設定する。そして、ステップS305では、オゾン供給装置30を供給状態に移行させることで、再生用濃度Daのオゾンを使用して捕集部再生を開始する。ここでは、オゾン生成部32への通電を開始することで、オゾン生成部32でのオゾン生成を開始する。この場合、進入捕集部37にて捕集されていたPMが再生用濃度Daのオゾンにより酸化しやすく、酸化されたPMが進入捕集部37の熱により燃焼して除去されやすくなっている。
図6に戻り、ステップS101にて捕集部再生中であると判定した場合、ステップS108に進み、再生中処理を行う。再生中処理については、図11を参照しつつ説明する。図11において、ステップS401~S404では、図7のステップS203~S206と同じ処理を行う。具体的には、ガス圧力P1、ガス流量V1及び排気圧力P2を取得し、これらガス圧力P1、ガス流量V1及び排気圧力P2に基づいて進入捕集部37の捕集状態を算出する。
ステップS405では、捕集部再生が完了したか否かを判定する。ここでは、捕集状態があらかじめ定めらえた完了レベルにあるか否かを判定し、完了レベルにある場合に捕集部再生が完了したとする。本実施形態においては、完了レベルの方が再生レベルに比べて0レベルに近いレベルにあるとする。
捕集部再生が完了していない場合、そのまま再生中処理を終了し、捕集部再生を継続して行う。一方、捕集部再生が完了した場合、ステップS406~S408にて、オゾン供給装置30を停止状態に移行させる。具体的には、ステップS406にてオゾン生成部32でのオゾン生成を停止させ、ステップS407にて排気遮断弁34を閉状態に移行させ、ステップS408にてエアポンプ33の運転を停止させる。
ここまで説明した第1実施形態の作用効果を、以下に説明する。
第1実施形態によれば、オゾン通路31に進入捕集部37が設けられているため、仮に排気が排気通路16からオゾン通路31に流れ込んだとしても、その排気に含まれるPMが進入捕集部37により捕集される。このため、オゾン供給装置30がPMで汚染されることを抑制できる。オゾン供給装置30がPMで汚染された場合、排気遮断弁34の開閉が適正に行われなくなることや、オゾン生成部32にてオゾンが適正に生成されなくなることが懸念される。例えば、排気遮断弁34がPMにより開状態で固着した場合には、排気遮断弁34がオゾン通路31での排気の逆流を阻止することができなくなってしまう。これに対して、第1実施形態によれば、オゾン通路31において排気遮断弁34の下流側に進入捕集部37が配置されているため、排気遮断弁34がPMで固着することや、オゾン生成部32にてオゾンが適正に生成されなくなることを回避できる。
しかも、オゾン生成部32にて生成されるオゾンは、再生用濃度Daと後処理用濃度Dbとに切り替え可能になっているため、捕集部再生には再生用濃度Daのオゾンを使用し、NOxの酸化やDPF再生には後処理用濃度Dbを使用することが可能になっている。捕集部再生については、再生用濃度Daが十分に高いことで進入捕集部37においてPMが酸化されるため、進入捕集部37にて捕集したPMにより目詰まりが発生することや、仮に目詰まりが発生したとしてもその目詰まりを解消することが可能になる。
排気の後処理について、NOx浄化触媒12では、オゾン濃度が大き過ぎるとNOxよりもオゾンの方が多量に存在することになり、余ったオゾンがNOx浄化触媒12を通過して排気出口16aから外部に放出されることが懸念される。これに対して、NOx酸化部61についてはオゾン濃度が後処理用濃度Dbに設定されるため、オゾンがNOxより多くなりにくくなっている。このため、排気出口16aからオゾンが外部に放出されることを抑制できる。
また、排気の後処理について、DPF再生が行われている場合には、オゾン濃度が大き過ぎることでDPF13でのPM燃焼に伴う温度上昇が過剰に大きくなり、DPF13のPM捕集能力が低下するなどの異常が発生することなどが懸念される。これに対して、DPF再生部62についてはオゾン濃度が後処理用濃度Dbに設定されるため、DPF再生に際してDPF13の温度が過剰に上昇することが生じにくくなっている。この場合、DPF再生を適正に管理することになり、DPF13での異常発生を抑制できる。
第1実施形態によれば、進入捕集部37の温度が再生温度より大きいことを条件として、オゾン生成部32にて再生用濃度Daのオゾンが生成される。この場合、オゾンにて酸化されたPMが進入捕集部37の熱により燃焼しやすくなるため、進入捕集部37にて捕集されたPMの除去効率を高めることができる。このため、オゾン生成部32が再生用濃度Daでオゾンを生成する時間の短縮されることで、オゾン生成に際しての省エネ化を実現できる。
第1実施形態によれば、進入捕集部37が、捕集したPMの量が増加することで再生レベルに達した場合に捕集部再生が行われるため、PMの捕集量が比較的小さいにもかかわらず再生用濃度Daという高濃度でオゾンが生成されるという状況を回避できる。この場合、再生用濃度Daのオゾンのほとんどが進入捕集部37にてPMの酸化に用いられることになるため、オゾンが排気出口16aから外部に放出されるということを抑制できる。
第1実施形態によれば、進入捕集部37が捕集したPMの量が大きいほど進入捕集部37をガスが流れにくくなるという原理を用いて、ガス圧力P1、ガス流量V1及び排気圧力P2に基づいて、進入捕集部37の捕集状態が推定される。このため、圧力センサ35や流量センサ36、排気圧センサ52といった排気の後処理を行うためのセンサを捕集状態の推定に利用することになる。この場合、進入捕集部37の捕集状態を推定するための専用センサを設置する必要がないため、その専用センサが増える分のコスト負担を低減できる。
第1実施形態によれば、捕集状態の推定には、ガス圧力P1とガス流量V1と排気圧力P2と捕集状態との関係を示すマップを用いられるため、捕集状態を推定する際のECU40の処理負担を低減できる。
第1実施形態によれば、進入捕集部37がオゾン通路31の延出部分31cに配置されているため、排気の熱が進入捕集部37に付与されやすくなっている。このため、捕集部再生を行う際に、排気の熱を効率良く利用することができる。この場合、進入捕集部37を加熱するための専用熱源をオゾン供給装置30に設置する必要がないため、専用熱源が増える分のコスト負担を低減できる。
(第2実施形態)
上記第1実施形態では、オゾン供給装置30から排気通路16にオゾンが供給される構成としたが、第2実施形態では、オゾン供給装置30から吸気通路15にオゾンが供給される構成とする。
上記第1実施形態では、オゾン供給装置30から排気通路16にオゾンが供給される構成としたが、第2実施形態では、オゾン供給装置30から吸気通路15にオゾンが供給される構成とする。
本実施形態では、図12に示すように、オゾン通路31が吸気通路15に接続されている。吸気通路15においては、エアフロメータ44とコンプレッサ11cとの間にオゾン通路31の接続部分が配置されている。オゾン供給装置30から吸気通路15にオゾンが供給された場合、燃焼室に供給される吸気にオゾンが含まれていることで、エンジン10での着火性が向上しやすくなっている。なお、第2実施形態では、吸気通路15が排気の流れる内燃通路に相当し、オゾン通路31は内燃通路に接続されていることになる。
本実施形態の燃焼システムは、排気の一部をEGRガスとして吸気側に導入するEGR装置70を有している。EGR装置70は、EGR通路71、EGRバルブ72及びEGRクーラ73を有している。EGR通路71は、吸気通路15と排気通路16とを接続しており、配管等により形成されている。吸気通路15においては、エアフロメータ44とオゾン通路31との間にEGR通路71の接続部分が配置され、排気通路16においては、DPF13の下流側にEGR通路71の接続部分が配置されている。EGRバルブ72は、EGR通路71を流れるEGRガス量を調整する調整部であり、例えば電磁駆動式の弁である。EGRクーラ73は、EGRガスを冷却する冷却部であり、EGR通路71においてEGRバルブ72の上流側に配置されている。EGRクーラ73は、例えば水冷式の熱交換器であり、冷却水を流通させることでその冷却水とEGRガスとの間で熱交換を行う。
EGR装置70は、EGRクーラ73にて冷却される前のEGRガスの温度を検出するクーラ前センサ74と、EGRクーラ73にて冷却された後のEGRガスの温度を検出するクーラ後センサ75とを有している。クーラ前センサ74は、EGR通路71においてEGRクーラ73の上流側に配置されており、クーラ後センサ75は、EGR通路71においてEGRクーラ73下流側に配置されている。これらセンサ74,75は、ECU40に電気的に接続されている。本実施形態では、排気通路16に触媒温度センサ53が設けられていないが、ECU40は、クーラ前センサ74の検出信号に基づいてNOx浄化触媒12の内部温度を推定可能になっている。
吸気通路15にEGRガスが供給された場合、エンジン10においては、吸気の酸素濃度が低下することで燃料の燃焼に伴うNOxの生成量が低下しやすくなる。ここで、オゾン供給装置30から吸気通路15に供給されるオゾンは、EGRガスに含まれるNOxにより分解されて酸素を生成しやすくなる。そこで、オゾン通路31がエンジン10に極力近い位置で吸気通路15に接続されていることで、吸気通路15にオゾンとNOxとの両方が存在している期間が短縮化されている。このため、吸気通路15に供給されたオゾンがEGRガスのNOxにより分解されにくくなっている。
なお、本実施形態では、吸気通路15に対するオゾン通路31の接続部分が、EGR通路71とコンプレッサ11cとの間においてコンプレッサ11c寄りの位置に配置されているが、この接続部分は、吸気通路15の更に下流側に配置されていてもよい。例えば、オゾン通路31は、吸気通路15においてコンプレッサ11cとインタークーラ21との間に接続されていてもよく、吸気マニホールド22に接続されていてもよい。
本実施形態のオゾン管理処理においては、進入捕集部37の温度をEGRガスの温度に基づいて推定する。具体的には、上記第1実施形態のステップS107の捕集部再生処理において、ステップS302にて捕集部温度を推定する際に、クーラ前センサ74及びクーラ後センサ75の検出結果を用いる。ここでは、センサ74,75の検出信号に基づいて取得したEGRガスの温度に加えて、エアフロメータ44の検出信号に基づいて取得した吸気量と、EGRバルブ72の開度に基づいて取得したEGR量とに基づいて、進入捕集部37の温度を推定する。そして、上記第1実施形態と同様に、捕集部再生処理において、ステップS303~S305の処理を行う。
(第3実施形態)
上記第1実施形態では、オゾン管理処理の捕集診断処理及び捕集部再生処理が、オゾン供給装置30が停止状態にある場合に実行されたが、第3実施形態では、これら捕集診断処理及び捕集部再生処理が、オゾン供給装置30が供給状態にある場合に行われる。ここでは、オゾン管理処理について、上記第1実施形態との相違点を中心に、図13~図15を参照しつつ説明する。
上記第1実施形態では、オゾン管理処理の捕集診断処理及び捕集部再生処理が、オゾン供給装置30が停止状態にある場合に実行されたが、第3実施形態では、これら捕集診断処理及び捕集部再生処理が、オゾン供給装置30が供給状態にある場合に行われる。ここでは、オゾン管理処理について、上記第1実施形態との相違点を中心に、図13~図15を参照しつつ説明する。
図13において、ステップS501,S502では、上記第1実施形態のS101,S102と同じ処理を行う。ただし、ステップS502にてオゾン供給中である場合、そのまま本オゾン管理処理を終了するのではなく、ステップS503に進み、捕集診断を行うか否かの判定を行う。このように、本実施形態では、エアポンプ33が運転状態にある期間を利用して捕集診断を行う。この場合、捕集診断処理を行うためだけにエアポンプ33を運転させることがないため、エアポンプ33の運転について省エネ化を図ることができる。また、この場合のオゾン濃度は、NOx酸化部61やDPF再生部62により後処理用濃度Dbに設定されている。
ステップS504~S507では、上記第1実施形態のステップS105~S108と同じ処理を行う。
ただし、ステップS504の捕集診断処理については、図14を参照しつつ説明する。捕集診断処理においては、オゾン供給装置30が供給状態にあることに起因して、エアポンプ33の運転開始処理及び排気遮断弁34の閉処理を行う必要がない。すなわち、上記第1実施形態のステップS201,S202の処理を行わない。ステップS601~S604では、上記実施形態のステップS203~S206と同じ処理を行う。
なお、ECU40は、ステップS601~S604を実行する機能を有している。ステップS601を実行する機能が第1圧力取得部に相当し、ステップS602を実行する機能が通気取得部に相当し、ステップS603を実行する機能が第2圧力取得部に相当し、ステップS604を実行する機能が捕集算出部に相当する。
また、ステップS507の再生中処理については、図15を参照しつつ説明する。図15において、ステップS701~S705では、上記第1実施形態のステップS401~S405と同じ処理を行う。ステップS706では、捕集部再生が完了した後にオゾン供給装置30を供給状態に戻すことを目的として、オゾン濃度を後処理用濃度Dbに設定する。この場合、上記第1実施形態のステップS406~S408と同じ処理は行わない。このため、オゾン供給装置30が供給状態にある期間を利用して、オゾン濃度を後処理用濃度Dbから再生用濃度Daに変更するだけで、進入捕集部37の再生を行うことができる。
(他の実施形態)
以上、本開示の複数の実施形態について説明したが、本開示は、それらの実施形態に限定して解釈されるものではなく、本開示の要旨を逸脱しない範囲内において種々の実施形態及び組み合わせに適用することができる。
以上、本開示の複数の実施形態について説明したが、本開示は、それらの実施形態に限定して解釈されるものではなく、本開示の要旨を逸脱しない範囲内において種々の実施形態及び組み合わせに適用することができる。
変形例1として、進入捕集部37の入り込み通路部31aにおいて、延出部分31cが排気通路16の上流側に向けて延びていてもよく、交差部分31bから排気の流れに交差する方向に延びていてもよい。また、入り込み通路部31aが延出部分31cを有していなくてもよい。この場合でも、進入捕集部37は、交差部分31bに配置されていることで、入り込み通路部31aに配置されていることになる。
変形例2として、進入捕集部37は、図16に示すように、オゾン通路31において入り込み通路部31aよりも上流側に配置されていてもよい。この構成では、排気通路16を流れる排気から進入捕集部37に熱が付与されにくくなっている。このため、進入捕集部37の耐熱性がある程度低くても、進入捕集部37に異常が発生しにくくなっている。また、オゾン通路31において進入捕集部37の配置位置が上流端部に近いほど、排気が進入捕集部37に到達しにくくなり、捕集部再生を実施する頻度が低くなることが予想される。
変形例3として、オゾン通路31が入り込み通路部31aを有していなくてもよい。この場合でも、進入捕集部37がオゾン通路31の下流端部に配置されていることで、排気通路16を流れる排気の熱が進入捕集部37に付与されやすい構成を実現できる。ただし、この構成では、排気が進入捕集部37に到達しやすくなり、捕集部再生を実施する頻度が高くなることが予想される。
変形例4として、図17に示すように、進入捕集部37が、排気からPMを取り除くためのフィルタ81を有していてもよい。フィルタ81は、耐熱性を有する金属材料により形成されており、多数の網目を有する網状部材になっている。フィルタ81は、その周縁部がオゾン通路31の内周面に沿って延びた状態で設けられており、排気がフィルタ81を通過することでその排気からPMを濾し取ることが可能になっている。フィルタ81が捕集したPMは、上記第1実施形態と同様に、捕集部再生処理が行われることでオゾンにより酸化されて除去される。
変形例5として、図18に示すように、進入捕集部37が、排気からPMを電気的に取り除くための電極82,83を有していてもよい。これら電極82,83は、オゾン通路31において互いに対向しており、第1電極82は、例えば3kVの高電圧Vが印加される印加電極とされ、第2電極83は、接地された接地電極とされている。電極82,83により排気に対して高電圧Vが印加されると、排気中のPMが接地側の第2電極83に引き寄せられ、この第2電極83により捕集される。第2電極83が捕集したPMは、上記第1実施形態と同様に、捕集部再生処理が行われることでオゾンにより酸化されて除去される。
変形例6として、ECU40は、進入捕集部37の捕集状態を算出する場合に捕集マップを用いるのではなく、ガス圧力P1とガス流量V1と排気圧力P2と捕集状態との相関を含んだ関数やモデルなどを用いてもよい。
変形例7として、ECU40は、進入捕集部37が捕集したPMの量を捕集状態として算出するのではなく、オゾン通路31の通気状態を捕集状態として算出してもよい。この場合、進入捕集部37が捕集したPMの量とオゾン通路31の通気状態とが相関することを利用することになる。
変形例8として、ECU40は、進入捕集部37の温度に基づいて捕集部再生を行うか否かの判定を行ったが、排気温度に基づいて捕集部再生を行うか否かの判定を行ってもよい。例えば、排気温度の変化態様を取得しておき、排気温度が所定温度より高い状態が所定期間だけ継続した場合に捕集部再生を行うとする。この場合でも、進入捕集部37に蓄えられた熱によりPMの除去を適正に行うことが可能になる。
変形例9として、ECU40は、捕集診断処理や捕集部再生処理を、進入捕集部37の捕集状態に関係なく定期的に行ってもよい。例えば、これら処理を定期的に行う構成としては、24時間や48時間など所定周期で繰り返し行う構成や、車両の走行距離が1000kmなど所定距離に到達するごとに繰り返し行う構成が挙げられる。
変形例10として、ECU40のプロセッサ41aにより提供されていた機能は、上述のものとは異なるハードウェア及びソフトウェア、或いはこれらの組み合わせによって提供可能である。例えば、ECU40が省略された車両においては、車両制御ECUの制御回路等の制御回路が、オゾン管理処理の一部又は全部を実行してもよい。さらに、上述のものとは異なるハードウェア及びソフトウェア、或いはこれらの組み合わせによって、各機能が提供されてもよい。また、プロセッサ41aにて実行されるプログラムを記憶するメモリ41cとしては、フラッシュメモリ及びハードディスク等の種々の非遷移的実体的記憶媒体が採用可能である。
変形例11では、燃焼システムが有するエンジン10は、内燃機関であれば、ディーゼルエンジンではなく、ガソリンエンジンであってもよい。
変形例12として、オゾン供給装置30を含んで構成された燃焼システムは、車載された内燃機関に限らず、船舶や鉄道車両、航空機等に搭載された内燃機関を有していてもよい。また、発電用の内燃機関を有していてもよい。
Claims (8)
- オゾンを生成するオゾン生成部(32)と、
内燃機関(10)からの排気が通る内燃通路(15,16)に接続され、前記オゾン生成部により生成されたオゾンを前記内燃通路に供給するオゾン通路(31)と、
前記オゾン通路に設けられ、前記内燃通路から前記オゾン通路に進入した前記排気に含まれる粒子状物質を捕集する進入捕集部(37)と、
を有するオゾン供給装置(30)の動作制御を行うオゾン供給制御装置(40)であって、
前記オゾン生成部にて生成されるオゾン濃度を、前記進入捕集部に捕集されている前記粒子状物質を酸化させて除去するための第1濃度(Da)と、この第1濃度より小さい第2濃度(Db)とに変更する濃度変更部(64)を備えているオゾン供給制御装置。 - 前記濃度変更部は、前記進入捕集部の温度があらかじめ定められた再生温度より大きい場合に、前記オゾン濃度を前記第1濃度に変更するものである請求項1に記載のオゾン供給制御装置。
- 前記進入捕集部について、当該進入捕集部が前記粒子状物質を捕集することで変化する捕集状態を算出する捕集算出部(S206,S604)を備え、
前記濃度変更部は、前記捕集算出部により算出された前記捕集状態があらかじめ定められた特定状態にある場合に、前記オゾン濃度を前記第1濃度に変更するものである請求項1又は2に記載のオゾン供給制御装置。 - 前記オゾン通路の内部圧力を第1圧力(P1)として取得する第1圧力取得部(S203,S601)と、
前記オゾン通路での通気量(V1)を取得する通気取得部(S204,S602)と、
前記内燃機関の排気側から延びた前記内燃通路としての排気通路(16)の内部圧力を第2圧力(P2)として取得する第2圧力取得部(S205,S603)と、
を備え、
前記捕集算出部は、
前記第1圧力取得部、前記通気取得部及び前記第2圧力取得部の各取得結果に基づいて前記捕集状態を推定するものである請求項3に記載のオゾン供給制御装置。 - 前記第1圧力、前記第2圧力及び前記オゾン通路での通気量と前記捕集状態との関係を示す捕集マップを記憶した記憶部(41c)を備え、
前記捕集算出部は、
前記捕集マップを用いることで、前記第1圧力取得部、前記通気取得部及び前記第2圧力取得部の各取得結果に基づいて前記捕集状態を推定するものである請求項4に記載のオゾン供給制御装置。 - 前記内燃通路には、前記排気に含まれるNOxを吸着するNOx触媒(12)が設けられており、
前記第2濃度は、前記NOx触媒への前記NOxの吸着率を高めるべく、前記NOxを酸化させるためのオゾン濃度である請求項1~5のいずれか1つに記載のオゾン供給制御装置。 - オゾンを生成するオゾン生成部(32)と、
内燃機関(10)からの排気が通る内燃通路(15,16)に接続され、前記オゾン生成部により生成されたオゾンを前記内燃通路に供給するオゾン通路(31)と、
前記オゾン通路に設けられ、前記内燃通路から前記オゾン通路に進入した前記排気に含まれる粒子状物質を捕集する進入捕集部(37)と、
を備えているオゾン供給装置。 - 前記オゾン通路は、前記内燃通路の内部に入り込んだ状態で設けられた入り込み通路部(31a)を有しており、
前記進入捕集部は、前記入り込み通路部に設けられている請求項7に記載のオゾン供給装置。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE112016005678.8T DE112016005678T5 (de) | 2015-12-11 | 2016-11-21 | Ozonversorgungssteuervorrichtung und Ozonversorgungsvorrichtung. |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015-242565 | 2015-12-11 | ||
JP2015242565A JP6394581B2 (ja) | 2015-12-11 | 2015-12-11 | オゾン供給制御装置及びオゾン供給装置 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2017098906A1 true WO2017098906A1 (ja) | 2017-06-15 |
Family
ID=59014045
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2016/084438 WO2017098906A1 (ja) | 2015-12-11 | 2016-11-21 | オゾン供給制御装置及びオゾン供給装置 |
Country Status (3)
Country | Link |
---|---|
JP (1) | JP6394581B2 (ja) |
DE (1) | DE112016005678T5 (ja) |
WO (1) | WO2017098906A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2019163753A (ja) * | 2018-03-20 | 2019-09-26 | 株式会社Soken | オゾン供給装置 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000054833A (ja) * | 1998-08-05 | 2000-02-22 | Mitsubishi Motors Corp | 燃焼排ガス用NO▲x▼還元システム |
JP2002129936A (ja) * | 2000-10-24 | 2002-05-09 | Nissan Diesel Motor Co Ltd | ディーゼルエンジンの排気浄化装置 |
JP2007231869A (ja) * | 2006-03-02 | 2007-09-13 | Sumino Giken Kogyo Kk | 排気ガス浄化装置 |
JP2011185162A (ja) * | 2010-03-09 | 2011-09-22 | Toyota Industries Corp | 排ガス浄化装置 |
-
2015
- 2015-12-11 JP JP2015242565A patent/JP6394581B2/ja not_active Expired - Fee Related
-
2016
- 2016-11-21 DE DE112016005678.8T patent/DE112016005678T5/de not_active Withdrawn
- 2016-11-21 WO PCT/JP2016/084438 patent/WO2017098906A1/ja active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000054833A (ja) * | 1998-08-05 | 2000-02-22 | Mitsubishi Motors Corp | 燃焼排ガス用NO▲x▼還元システム |
JP2002129936A (ja) * | 2000-10-24 | 2002-05-09 | Nissan Diesel Motor Co Ltd | ディーゼルエンジンの排気浄化装置 |
JP2007231869A (ja) * | 2006-03-02 | 2007-09-13 | Sumino Giken Kogyo Kk | 排気ガス浄化装置 |
JP2011185162A (ja) * | 2010-03-09 | 2011-09-22 | Toyota Industries Corp | 排ガス浄化装置 |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2019163753A (ja) * | 2018-03-20 | 2019-09-26 | 株式会社Soken | オゾン供給装置 |
JP7002381B2 (ja) | 2018-03-20 | 2022-01-20 | 株式会社Soken | オゾン供給装置 |
Also Published As
Publication number | Publication date |
---|---|
DE112016005678T5 (de) | 2018-09-13 |
JP6394581B2 (ja) | 2018-09-26 |
JP2017106420A (ja) | 2017-06-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2737192B1 (en) | Exhaust gas control apparatus for internal combustion engines, and control method for exhaust gas control apparatus for internal combustion engines | |
WO2007136141A1 (ja) | 内燃機関の排気浄化装置 | |
JP2008038813A (ja) | 車両用エンジンの制御装置 | |
JP2005256713A (ja) | 内燃機関の排気浄化装置 | |
JP2006161718A (ja) | 内燃機関の排気浄化システム | |
JP2013124576A (ja) | 内燃機関の排気浄化装置 | |
JP4305402B2 (ja) | 内燃機関の排気浄化装置 | |
JP6447486B2 (ja) | 放電制御装置、ガス供給装置及び放電制御方法 | |
JP6394581B2 (ja) | オゾン供給制御装置及びオゾン供給装置 | |
JP4269927B2 (ja) | 内燃機関の排気浄化システム | |
JP2006274906A (ja) | 排気浄化装置 | |
JP4254664B2 (ja) | 内燃機関の排気浄化装置 | |
JP2010255582A (ja) | 内燃機関の排気浄化装置 | |
JP2005155500A (ja) | 内燃機関の排気浄化装置 | |
JP4973355B2 (ja) | 内燃機関の排気浄化システム | |
JP4591319B2 (ja) | 内燃機関用排気浄化装置 | |
JP2008063987A (ja) | 内燃機関の排気浄化システム | |
JP2007056786A (ja) | 排気浄化装置 | |
JP6056267B2 (ja) | エンジンの排気浄化装置 | |
JP4696655B2 (ja) | 内燃機関の排気浄化システム | |
JP5737429B2 (ja) | 内燃機関の排気浄化装置 | |
JP2007154783A (ja) | 内燃機関用排気浄化装置 | |
JP2010112205A (ja) | 内燃機関の排気浄化装置 | |
JP2004092557A (ja) | エンジン制御装置 | |
JP2010090712A (ja) | 内燃機関の排気浄化装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 16872806 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 112016005678 Country of ref document: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 16872806 Country of ref document: EP Kind code of ref document: A1 |