WO2017098728A1 - 太陽電池モジュール - Google Patents

太陽電池モジュール Download PDF

Info

Publication number
WO2017098728A1
WO2017098728A1 PCT/JP2016/005086 JP2016005086W WO2017098728A1 WO 2017098728 A1 WO2017098728 A1 WO 2017098728A1 JP 2016005086 W JP2016005086 W JP 2016005086W WO 2017098728 A1 WO2017098728 A1 WO 2017098728A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin layer
solar cell
resin
cell module
resin substrate
Prior art date
Application number
PCT/JP2016/005086
Other languages
English (en)
French (fr)
Inventor
剛士 植田
直樹 栗副
善光 生駒
安藤 秀行
山本 圭一
元彦 杉山
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Priority to JP2017554795A priority Critical patent/JP6715497B2/ja
Priority to CN201680071640.9A priority patent/CN108604611A/zh
Priority to EP16872629.7A priority patent/EP3389098A1/en
Priority to US15/782,012 priority patent/US20180358492A1/en
Publication of WO2017098728A1 publication Critical patent/WO2017098728A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/048Encapsulation of modules
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/048Encapsulation of modules
    • H01L31/0481Encapsulation of modules characterised by the composition of the encapsulation material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/05Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells
    • H01L31/0504Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells specially adapted for series or parallel connection of solar cells in a module
    • H01L31/0508Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells specially adapted for series or parallel connection of solar cells in a module the interconnection means having a particular shape
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Definitions

  • the present invention relates to a solar cell module, and more particularly to a solar cell module using a resin substrate.
  • a resin substrate is used instead of a glass substrate. Since the thermal expansion coefficient of the resin substrate is generally larger than that of the glass substrate, the resin substrate has a larger amount of displacement of thermal expansion / contraction than the glass substrate. Due to thermal expansion and contraction of the resin substrate, stress is applied to the tab wiring between the solar cells and the sealing member, and thus the tab wiring may be fatigued.
  • gel and ethylene-vinyl acetate copolymer resin (EVA) are sequentially disposed on the resin substrate, and solar cells are disposed between the gel and EVA (see, for example, Patent Document 1).
  • the present invention has been made in view of such circumstances, and an object thereof is to provide a technique for improving the impact resistance of a solar cell module.
  • a solar cell module includes a resin substrate, a first resin layer disposed on the resin substrate, and a second resin layer disposed on the first resin layer.
  • positioned on a photoelectric conversion part and a 2nd resin layer are provided.
  • the tensile elastic modulus of the first resin layer is smaller than the tensile elastic modulus of each of the resin substrate, the second resin layer, and the third resin layer.
  • FIG. 1 is a top view showing a solar cell module according to Embodiment 1 of the present invention.
  • FIG. 2 is a cross-sectional view showing the solar cell module of FIG.
  • FIG. 3 is a diagram schematically showing a load applied to the solar cell module of FIG.
  • FIGS. 4A and 4B are views showing a neutral axis in the solar cell module of FIG.
  • FIG. 5 is a cross-sectional view showing a solar cell module according to Embodiment 2 of the present invention.
  • FIG. 6 is a cross-sectional view showing a solar cell module according to Embodiment 3 of the present invention.
  • FIG. 7 is a cross-sectional view showing a solar cell module according to Embodiment 4 of the present invention.
  • FIG. 1 is a top view showing a solar cell module according to Embodiment 1 of the present invention.
  • FIG. 2 is a cross-sectional view showing the solar cell module of FIG.
  • FIG. 3 is a diagram schematically showing a
  • FIG. 8 is a cross-sectional view showing a solar cell module according to Embodiment 5 of the present invention.
  • FIG. 9 is a diagram schematically showing light refraction at the interface of the resin layer.
  • FIG. 10 is a diagram showing the appearance of the solar cell modules of Examples 7 to 9.
  • FIG. 11 is a cross-sectional view showing a solar cell module according to Embodiment 7 of the present invention.
  • the first embodiment relates to a solar cell module including a plurality of solar cells.
  • the solar cell module needs to be lightweight, so a resin substrate is used instead of a glass substrate.
  • a leopard etc. may collide with a solar cell module. Since the resin substrate has a lower tensile elastic modulus than the glass substrate, a load due to a collision such as leopard is transmitted to the inside of the solar cell module, and the solar cell may be damaged. Therefore, even if a resin substrate is used for the solar cell module, improvement in impact resistance is desired.
  • a resin substrate, a gel, a resin layer, and solar cells are arranged in this order.
  • the tensile elastic modulus of the resin layer is higher than the tensile elastic modulus of the gel. Therefore, the local load from the gel is dispersed in the resin layer, and the dispersed load from the resin layer is applied to the solar battery cell.
  • FIG. 1 is a top view showing the solar cell module 100 according to the first embodiment.
  • a rectangular coordinate system composed of an x-axis, a y-axis, and a z-axis is defined.
  • the x axis and the y axis are orthogonal to each other in the plane of the solar cell module 100.
  • the z axis is perpendicular to the x axis and the y axis and extends in the thickness direction of the solar cell module 100.
  • the positive directions of the x-axis, y-axis, and z-axis are each defined in the direction of the arrow in FIG. 1, and the negative direction is defined in the direction opposite to the arrow.
  • the main plane disposed on the positive side of the z-axis is a “light-receiving surface”.
  • the main plane disposed on the negative direction side of the z-axis is the “back surface”.
  • the “light receiving surface” means a surface on which light is mainly incident, and the “back surface” may mean a surface opposite to the light receiving surface.
  • the positive direction side of the z-axis may be referred to as “light-receiving surface side”
  • the negative direction side of the z-axis may be referred to as “back surface side”.
  • the first member and the second member may be provided in direct contact unless otherwise specified. There may also be other members between the second member. “Upper” in the above description may be on the positive side of the z axis or on the negative side of the z axis. Furthermore, “substantially” indicates that they are different within the error range, that is, substantially the same.
  • the solar cell module 100 includes a plurality of solar cells 10, a plurality of tab wires 12, and a plurality of connection wires 14. Each of the plurality of solar cells 10 absorbs incident light and generates photovoltaic power.
  • the solar battery cell 10 is made of, for example, a semiconductor material such as crystalline silicon, gallium arsenide (GaAs), or indium phosphorus (InP).
  • the structure of the solar battery cell 10 is not particularly limited, but here, as an example, it is assumed that crystalline silicon and amorphous silicon are stacked. Although omitted in FIG.
  • a plurality of finger electrodes extending in the x-axis direction parallel to each other and extending in the y-axis direction so as to be orthogonal to the plurality of finger electrodes are provided on the light receiving surface and the back surface of each solar cell 10.
  • a plurality of, for example, two bus bar electrodes are provided.
  • the bus bar electrode connects each of the plurality of finger electrodes.
  • the plurality of solar cells 10 are arranged in a matrix on the xy plane.
  • four solar cells 10 are arranged in the x-axis direction, and five solar cells 10 are arranged in the y-axis direction.
  • the number of the photovoltaic cells 10 arranged in the x-axis direction and the number of the photovoltaic cells 10 arranged in the y-axis direction are not limited to these.
  • the five solar cells 10 arranged side by side in the y-axis direction are connected in series by the tab wiring 12 to form one solar cell string 16.
  • the solar cell string 16 may indicate only the plurality of solar cells 10 or a combination of the plurality of solar cells 10 and the plurality of tab wires 12.
  • the tab wiring 12 electrically connects the bus bar electrode on one light receiving surface side of the adjacent solar cells 10 and the bus bar electrode on the other back surface side. That is, the adjacent solar cells 10 are electrically connected to each other by the tab wiring 12.
  • the tab wiring 12 is an elongated metal foil, for example, an aluminum foil and a copper foil coated with solder or silver. Resin is used for connection between the tab wiring 12 and the bus bar electrode. This resin may be either conductive or non-conductive. When a non-conductive resin is used, the tab wiring 12 and the bus bar electrode are directly connected to each other for electrical connection. Further, the connection between the tab wiring 12 and the bus bar electrode may be solder instead of resin.
  • connection wires 14 extend in the x-axis direction on the positive and negative sides of the y-axis of the solar cell string 16, and the connection wires 14 electrically connect two adjacent solar cell strings 16. Connecting.
  • each of the solar battery cell 10 and the solar battery string 16 may be a “photoelectric converter”, and a combination of the plurality of solar battery strings 16 and the connection wiring 14 is a “photoelectric converter”. Also good.
  • a frame (not shown) may be attached to the edge portion of the solar cell module 100. The frame protects the edge of the solar cell module 100 and is used when the solar cell module 100 is installed on a roof or the like.
  • the adjacent photoelectric conversion part (solar cell 10) is mutually electrically connected by the tab wiring 12, and the tab wiring 12 is formed with aluminum.
  • the tab wiring 12 By using aluminum as the tab wiring 12, it is possible to suppress the decomposition of the first resin layer 22, the second resin layer 24, or the third resin layer 26 due to the catalytic reaction of the metal forming the tab wiring 12, and form these. It is possible to suppress discoloration of the resin.
  • the tab wiring 12 formed of non-plated aluminum can suppress discoloration of resin more than the tab wiring 12 which plated the copper foil with silver.
  • FIG. 2 is a cross-sectional view taken along the line A-A ′ of FIG.
  • the solar cell module 100 includes a solar cell 10, a tab wire 12, a connection wire 14, a solar cell string 16, a first resin substrate 20, a first resin layer 22, a second resin layer 24, a third resin layer 26, a second A resin substrate 28 is included.
  • the upper side in FIG. 2 corresponds to the back surface side, and the lower side corresponds to the light receiving surface side.
  • the first resin substrate 20 is disposed on the light receiving surface side of the solar cell module 100 and protects the surface of the solar cell module 100.
  • a polycarbonate resin having translucency is used for the first resin substrate 20 .
  • substrate 20 is formed in the rectangular plate shape of thickness 1mm, it is not limited to this.
  • Polycarbonate resin is a kind of thermoplastic plastic, its tensile elastic modulus is 2.3 to 2.5 GPa, and its water vapor permeability is 40 to 50 g / m 2 / day.
  • the tensile elastic modulus is also called Young's modulus.
  • the first resin layer 22 is disposed on the negative direction side of the z axis of the first resin substrate 20.
  • a gel having a tensile modulus of 0.000001 to 0.001 GPa and a loss coefficient of 0.1 to 0.52 is used.
  • a gel is, for example, a silicone gel, an acrylic gel, a urethane gel, or the like.
  • the tensile modulus is 0.000005 GPa and the water vapor permeability is 300-2500 g / m 2 / day.
  • the loss coefficient is a ratio G ′′ / G ′ between the storage shear modulus (G ′) and the loss shear modulus (G ′′) and is represented by tan ⁇ .
  • the loss factor indicates how much energy the material absorbs when the material deforms. The larger the value of tan ⁇ , the more energy is absorbed. This loss factor is measured by a dynamic viscoelasticity measuring device.
  • the first resin layer 22 is formed of a rectangular sheet material having translucency and having a surface having substantially the same dimensions as the xy plane of the first resin substrate 20.
  • the first resin layer 22 may be liquid.
  • the second resin layer 24 is disposed on the negative direction side of the z axis of the first resin layer 22.
  • thermoplastic resins like resin films such as EVA, PVB (polyvinyl butyral), a polyimide, are used, for example.
  • a thermosetting resin may be used.
  • EVA is used.
  • the tensile modulus is 0.01 to 0.25 GPa
  • the water vapor permeability is 30 to 50 g / m 2 / day
  • the loss factor is 0.05.
  • the second resin layer 24 is formed of a rectangular sheet material having translucency and having a surface having substantially the same dimensions as the xy plane of the first resin substrate 20.
  • the solar cell string 16 is formed by connecting a plurality of solar cells 10 arranged in the y-axis direction by the tab wiring 12.
  • the connection wiring 14 is connected to the positive side end and the negative side end of the y axis of the solar cell string 16.
  • Such connection wiring 14 and solar cell string 16 are disposed on the negative direction side of the z-axis of the second resin layer 24.
  • Each of the plurality of solar cells 10 is formed in a flat plate shape having a light receiving surface and a back surface.
  • the third resin layer 26 is disposed on the negative direction side of the z-axis of the connection wiring 14, the solar cell string 16, and the second resin layer 24. Therefore, the connection wiring 14 and the solar cell string 16 are sealed by the second resin layer 24 and the third resin layer 26. Specifically, the light receiving surface of the solar battery cell 10 is disposed so as to contact the second resin layer 24, and the back surface of the solar battery cell 10 is disposed so as to contact the third resin layer 26.
  • the third resin layer 26 may be formed of the same material as the second resin layer 24, or may be formed of a material different from that of the second resin layer 24. In the latter case, a material having a tensile elastic modulus smaller than that of the second resin layer 24 is used for the third resin layer 26.
  • EVA having a tensile modulus greater than 0.2 GPa is used for the second resin layer 24, and a filler having a tensile modulus smaller than 0.2 GPa is used for the third resin layer 26.
  • the second resin layer 24 is made of a filler having a tensile elastic modulus larger than 0.2 GPa
  • the third resin layer 26 is made of EVA having a tensile elastic modulus smaller than 0.2 GPa. Good.
  • FIG. 3 schematically shows a load applied to the solar cell module 100.
  • FIG. 3 is a partial cross-sectional view showing a part of FIG. 2, but the z-axis direction is reversed, and the upper side of FIG. 3 corresponds to the light receiving surface side.
  • a load S1 is applied to the first resin substrate 20 from the light receiving surface side.
  • a local load due to a leopard collision is assumed as the load S1.
  • the tensile elastic modulus of the first resin substrate 20 described above is smaller than the elastic modulus of the glass substrate, which is 70 GPa, the first resin substrate 20 is bent in the negative direction of the z-axis with respect to the received load S1.
  • S2 occurs.
  • the load S2 is a local load on the xy plane corresponding to the deflection.
  • the first resin layer 22 has a tensile elastic modulus smaller than the tensile elastic modulus of each of the first resin substrate 20, the second resin layer 24, and the third resin layer 26, and has a loss coefficient larger than them.
  • the deflection of the first resin substrate 20 is absorbed to some extent. This corresponds to the magnitude of the load S3 in the first resin layer 22 being smaller than the magnitude of the load S2 in the first resin substrate 20.
  • the load S3 is a local load on the xy plane facing the negative direction of the z-axis, like the load S2.
  • the second resin layer 24 has a larger tensile elastic modulus and a smaller loss coefficient than the first resin layer 22. That is, the second resin layer 24 is formed to be harder than the first resin layer 22. Therefore, the second resin layer 24 is pressed in the xy plane by the load S3, thereby generating a load S4 that is more dispersed in the xy plane than the load S3 and that faces the negative direction of the z axis. . That is, the load S4 is smaller than the load S1 and is distributed on the xy plane.
  • the load S4 applied to the solar cell 10, the tab wiring 12, and the connection wiring 14 is small and distributed in the xy plane, there is a possibility that the solar cell 10, the tab wiring 12, and the connection wiring 14 may be damaged. Reduced.
  • the 3rd resin layer 26 is formed with the same material as the 2nd resin layer 24, the 2nd resin layer 24 and the 2nd resin layer 24 which have sealed the photovoltaic cell 10, the tab wiring 12, and the connection wiring 14 are used.
  • Each of the three resin layers 26 has the same tensile modulus and loss factor. If they are the same, the load continues even at the boundary between the second resin layer 24 and the third resin layer 26, so the direction of the load applied to the solar cell 10, the tab wiring 12, and the connection wiring 14 Diversity is limited.
  • the third resin layer 26 is formed of a material having a smaller tensile elastic modulus than the second resin layer 24, the load is further absorbed in the third resin layer 26.
  • the second resin substrate 28 is disposed on the negative direction side of the z axis of the third resin layer 26.
  • the second resin substrate 28 protects the back side of the solar cell module 100 as a back sheet. Therefore, when the first resin substrate 20 is called a resin substrate, the second resin substrate 28 corresponds to another resin substrate.
  • a glass epoxy resin is used for the second resin substrate 28. Since the tensile elastic modulus of the glass epoxy resin is 20 to 25 GPa, the tensile elastic modulus of the second resin substrate 28 is larger than the tensile elastic modulus of the first resin substrate 20.
  • a polycarbonate resin may be used for the second resin substrate 28 in the same manner as the first resin substrate 20.
  • the second resin substrate 28 is thicker in the z-axis direction than the first resin substrate 20.
  • FRP Fiber Reinforced Plastic
  • GFRP Glass Fiber Reinforced Plastic
  • CFRP Carbon Fiber Reinforced Plastics
  • the tensile elastic modulus of GFRP is 5 to 30 GPa
  • the tensile elastic modulus of CFRP is 10 to 150 GPa.
  • FIGS. 4A and 4B show the neutral shaft 30 in the solar cell module 100.
  • FIG. 4A is a partial cross-sectional view showing a part of FIG. 2, but the z-axis direction is reversed, and the upper side of FIG. 4A corresponds to the light receiving surface side.
  • the point P is assumed on the positive side of the z axis from the solar cell module 100, and the solar cell module 100 is bent with respect to the point P so that the back surface side of the solar cell module 100 protrudes. Assume that a moment is applied.
  • the neutral shaft 30 exists in the third resin layer 26.
  • the neutral shaft 30 is a portion where the material is not subjected to a load even when a bending moment is applied to the material. Further, a compressive stress is applied to a portion from the neutral shaft 30 toward the point P, and a tensile stress is applied to a portion in the opposite direction from the neutral shaft 30 to the point P. Therefore, if the thicknesses of the second resin substrate 28 and the first resin substrate 20 are the same, when the tensile elastic modulus of the second resin substrate 28 is larger than the tensile elastic modulus of the first resin substrate 20, the solar cell 10.
  • the photovoltaic cell 10 is generally weak against tensile stress, it is strong against compressive stress. As described above, by making the tensile elastic modulus of the second resin substrate 28 larger than the tensile elastic modulus of the first resin substrate 20, occurrence of damage to the solar battery cell 10 is suppressed.
  • FIG. 4B shows a solar cell module 200 to be compared with the solar cell module 100.
  • Solar cell 210, first resin substrate 220, first resin layer 222, second resin layer 224, and third resin layer 226 in solar cell module 200 are solar cell 10, first resin substrate 20, and first resin layer. 22, respectively correspond to the second resin layer 24 and the third resin layer 26.
  • the second resin substrate 228 is formed of a material having a smaller tensile elastic modulus than the first resin substrate 220. Due to such a difference, the neutral shaft 230 exists in the second resin layer 224 on the point P side of the neutral shaft 30. Therefore, tensile stress is applied to the solar battery cell 210, and the solar battery cell 210 is more likely to be damaged than in the case of FIG. Returning to FIG.
  • the description has focused on the tensile elastic modulus of the first resin substrate 20 and the like.
  • the first resin substrate 20 is made of polycarbonate resin instead of a glass substrate.
  • the water vapor permeability of the glass substrate is almost 0, but the water vapor permeability of the polycarbonate resin is 40 to 50 g / m 2 / day, so the latter is more likely to transmit moisture.
  • the second resin layer 24 having a water vapor permeability smaller than that of the first resin layer 22 is used. By using the 2nd resin layer 24, possibility that a water
  • Example 1 shows the impact drop test results for the solar cell module 100.
  • the impact drop test the test specified in “Appendix 7 Falling Test (A-8)” of JIS C8917: 2005 “Environmental Test Method and Durability Test Method of Crystalline Solar Cell Module” is performed.
  • the first resin substrate 20, the first resin layer 22, the second resin layer 24, the third resin layer 26, and the second resin substrate 28 are polycarbonate resin, silicone gel, filler, filler, glass epoxy. Made of resin. In Example 1, even when a steel ball or ice ball is dropped from 100 cm, it is not destroyed.
  • Comparative Example 1 the polycarbonate resin, the filler, and the filler are provided so as to correspond to the first resin substrate 20, the first resin layer 22, the second resin layer 24, the third resin layer 26, and the second resin substrate 28.
  • Fillers, glass epoxy resins are used.
  • the steel ball or ice ball is not destroyed when dropped from 50 cm, but is destroyed when dropped from 100 cm or 80 cm.
  • glass, filler, filler, PET (polyethylene terephthalate) resin so as to correspond to the first resin substrate 20, the second resin layer 24, the third resin layer 26, and the second resin substrate 28. Is used.
  • Comparative Example 2 even when a steel ball or ice ball is dropped from 100 cm, it is not destroyed. That is, the impact resistance of Example 1 is improved over the impact resistance of Comparative Example 1.
  • the impact resistance of Example 1 is equivalent to the impact resistance of Comparative Example 2.
  • the bending rigidity of another resin substrate is made larger than the bending rigidity of the resin substrate.
  • the bending rigidity of another resin substrate is preferably larger than the bending rigidity of the resin substrate (first resin substrate 20).
  • the bending rigidity per 1 m width of the second resin substrate 28 is larger than the bending rigidity per 1 m width of the first resin substrate 20.
  • the flexural modulus can be measured according to JIS K7171: 2016 (Plastics—How to obtain bending properties) as follows.
  • the flexural modulus can be measured, for example, by compressing the test piece at a test temperature of 25 ° C. and a test speed of 5 mm / min.
  • E f ( ⁇ f2 ⁇ f1 ) / ( ⁇ f2 ⁇ f1 ) (2)
  • E f is the flexural modulus (Pa)
  • ⁇ f1 is the bending stress (Pa) measured with the deflection s 1
  • ⁇ f2 is the bending stress (Pa) measured with the deflection s 2
  • s i the deflection (mm)
  • L the distance between the fulcrums (mm)
  • h the test piece. Represents the average thickness (mm).
  • the impact resistance when the bending stiffness of the second resin substrate 28 was made smaller than that of the first resin substrate 20 was evaluated by the following examples. However, the present embodiment is not limited to these examples.
  • Example 2 A first resin substrate having a thickness of 1 mm, a first resin layer having a thickness of 1 mm, a second resin layer having a thickness of 0.6 mm, a photoelectric conversion unit, a third resin layer having a thickness of 0.6 mm, and a second resin having a thickness of 1 mm.
  • Resin substrates were laminated in order from the top and compressed and heated at 145 ° C. under reduced pressure to produce a solar cell module.
  • Polycarbonate (PC) was used for the first resin substrate.
  • a gel was used for the first resin layer.
  • Polyolefin (PO) was used for the second resin layer.
  • the photoelectric conversion part used the photovoltaic cell.
  • Polyolefin (PO) was used for the third resin layer.
  • Polycarbonate (PC) (flexural modulus 2.3 GPa) was used for the second resin substrate.
  • Example 3 A solar cell module was produced in the same manner as in Example 2 except that the second resin substrate was glass epoxy (bending elastic modulus 20 GPa).
  • Example 4 A solar cell module was produced in the same manner as in Example 2 except that the second resin substrate was glass epoxy (bending elastic modulus 20 GPa) and the thickness of the second resin substrate was 2 mm.
  • the impact resistance was tested in accordance with the hail test specified in Annex 7 of JIS C8917: 1998 (environmental test method and durability test method for crystalline solar cell module) under the following test conditions. . That is, a steel ball having a mass of 227 ⁇ 2 g and a diameter of about 38 mm is dropped on the solar cell module of each example from the height of 1 m and 20 cm to the center point of the first resin substrate 20 of the solar cell module. It was. And the thing which the photoelectric conversion part did not break at the height of 1 m, the thing which the photoelectric conversion part did not break at the height of 20 cm and the photoelectric conversion part was broken at the height of 1 m, ⁇ , the height of 20 cm In FIG. 2, the photoelectric conversion part was evaluated as x. The bending rigidity is shown as a ratio when the bending rigidity of Example 2 is 1.
  • the bending rigidity of the second resin substrate 28 is preferably larger than the bending rigidity of the first resin substrate 20. That is, it is preferable that the solar cell module 100 further includes a second resin substrate 28 disposed on the third resin layer 26 and having a bending rigidity larger than that of the first resin substrate 20.
  • the thermal expansion coefficient of the second resin substrate 28 is smaller than the thermal expansion coefficient of the first resin substrate 20.
  • the thermal shock resistance when the linear expansion coefficient of the second resin substrate 28 was made smaller than the linear expansion coefficient of the first resin substrate 20 was evaluated by the following examples. However, the present embodiment is not limited to these examples.
  • Example 5 A first resin substrate having a thickness of 1 mm, a first resin layer having a thickness of 1 mm, a second resin layer having a thickness of 0.6 mm, a photoelectric conversion unit, a third resin layer having a thickness of 0.6 mm, and a second resin having a thickness of 2 mm.
  • Resin substrates were laminated in order from the top and compressed and heated at 145 ° C. under reduced pressure to produce a solar cell module.
  • As the first resin substrate 20 polycarbonate (PC) (linear expansion coefficient 70 ⁇ 10 ⁇ 6 K ⁇ 1 ) was used.
  • a gel was used for the first resin layer.
  • ethylene-vinyl acetate copolymer (EVA) was used for the second resin layer.
  • the photoelectric conversion part used the photovoltaic cell.
  • an ethylene-vinyl acetate copolymer EVA
  • EVA ethylene-vinyl acetate copolymer
  • As the second resin substrate carbon fiber reinforced plastic (CFRP) (linear expansion coefficient 2.5 ⁇ 10 ⁇ 6 K ⁇ 1 ) was used.
  • Example 6 A solar cell module was produced in the same manner as in Example 5 except that glass epoxy (linear expansion coefficient 20 ⁇ 10 ⁇ 6 K ⁇ 1 ) was used for the second resin substrate.
  • Example 3 A solar cell module was produced in the same manner as in Example 5 except that glass (linear expansion coefficient 9 ⁇ 10 ⁇ 6 K ⁇ 1 ) was used for the second resin substrate.
  • Example 4 A solar cell module was produced in the same manner as in Example 5 except that the first resin layer was not provided.
  • Example 5 A solar cell module was produced in the same manner as in Example 5 except that the first resin layer was not provided and glass (linear expansion coefficient 9 ⁇ 10 ⁇ 6 K ⁇ 1 ) was used for the second resin substrate.
  • Example 6 A solar cell module was fabricated in the same manner as in Example 5 except that the first resin layer was not provided and glass epoxy (linear expansion coefficient 20 ⁇ 10 ⁇ 6 K ⁇ 1 ) was used for the second resin substrate.
  • Example 7 A solar cell module was produced in the same manner as in Example 5 except that the first resin layer was not provided and polycarbonate (PC) (linear expansion coefficient 70 ⁇ 10 ⁇ 6 K ⁇ 1 ) was used for the second resin substrate.
  • PC polycarbonate
  • the thermal shock resistance is as follows according to the temperature cycle test of JIS C8990: 2009 (IEC61215: 2005) (Ground crystalline silicon solar cell (PV) module-requirements for design qualification and type certification) The test was conducted under various test conditions. That is, the solar cell module of each example was installed in a test tank, and the temperature of the solar cell module was periodically changed between ⁇ 40 ° C. ⁇ 2 ° C. and + 85 ° C. ⁇ 2 ° C. After performing such a temperature cycle test for 25 cycles, 50 cycles, and 200 cycles, tab wiring for connecting the solar cells to each other was visually confirmed.
  • the case where the tab wiring was not cut in 200 cycles was evaluated as “ ⁇ ”, and the case where the tab wiring was not cut in 50 cycles and the tab wiring was cut in 200 cycles was evaluated as “ ⁇ ”. Further, the case where the tab wiring was not cut in 25 cycles and the tab wiring was cut in 50 cycles was evaluated as ⁇ , and the case where the tab wiring was cut in 25 cycles was evaluated as x.
  • the temperature change rate between the lower limit and the upper limit is about 1.4 ° C./hour, the lower limit temperature holding time is 60 minutes, the upper limit temperature holding time is 1 hour 20 minutes, and the cycle time is 5 hours 20 hours. Minutes. The temperature cycle test was performed at least three times.
  • the thermal shock resistance is improved when the linear expansion coefficient of the second resin substrate 28 is smaller than the linear expansion coefficient of the first resin substrate 20. It was. Possibly, it is considered that the thermal expansion and contraction of the resin layer around the photoelectric conversion part can be suppressed and the cutting of the tab wiring can be suppressed because the thermal expansion coefficient of the second resin substrate 28 is small. Therefore, in this embodiment, it is preferable that the thermal expansion coefficient of the second resin substrate 28 is smaller than the thermal expansion coefficient of the first resin substrate 20. That is, it is preferable that the solar cell module 100 further includes a second resin substrate 28 disposed on the third resin layer 26 and having a smaller coefficient of thermal expansion than the first resin substrate 20.
  • the thickness of the second resin substrate 28 is not particularly limited, but is preferably 0.1 mm or more and 10 mm or less, and more preferably 0.2 mm or more and 5.0 mm or less. By setting it as such a range, the bending of the 2nd resin substrate 28 can be suppressed and the solar cell module 100 can be reduced in weight.
  • the tensile elastic modulus of the second resin substrate 28 is not particularly limited, but is preferably 1.0 GPa or more and 200 GPa or less, and more preferably 10 GPa or more and 100 GPa or less.
  • the tensile modulus of elasticity of the second resin substrate 28 is preferably larger than that of the first resin layer 22. That is, the tensile elastic modulus of the first resin layer 22 is preferably smaller than the tensile elastic modulus of each of the first resin substrate 20, the third resin layer 26, and the second resin substrate 28.
  • the solar cell module 100 is manufactured by laminating the solar cell string 16 with the first resin substrate 20, the first resin layer 22, the second resin layer 24, the third resin layer 26, and the second resin substrate 28.
  • the laminating apparatus for example, on the heater, the first resin substrate 20, the resin sheet constituting the first resin layer 22, the resin sheet constituting the second resin layer 24, the string of solar cells 10, and the third resin layer 26 are arranged.
  • the resin sheet and the 2nd resin substrate 28 which are comprised are laminated
  • This laminated body is heated to about 150 ° C. in a vacuum state, for example. Thereafter, heating is continued while pressing each component member on the heater side under atmospheric pressure to crosslink the resin component of the resin sheet.
  • the solar cell module 100 is obtained by attaching a frame to the laminate.
  • the tensile elastic modulus of the first resin layer 22 is made smaller than the tensile elastic modulus of each of the first resin substrate 20, the second resin layer 24, and the third resin layer 26.
  • the load can be reduced in the first resin layer 22.
  • etc. Is made larger than the tensile elasticity modulus of the 1st resin layer 22, a load can be disperse
  • etc. Is made small and disperse
  • damage to the solar battery cell 10 or the like is suppressed, the impact resistance of the solar battery module 100 can be improved.
  • the solar battery cell 10 and the like are sandwiched between the second resin layer 24 and the third resin layer 26, the solar battery cell 10 and the like can be fixed stably. Moreover, since the photovoltaic cell 10 grade
  • the second resin layer 24 and the third resin layer 26 are formed of different materials and the tensile elastic modulus of the third resin layer 26 is smaller than the tensile elastic modulus of the second resin layer 24, a solar cell The load applied to the cell 10 or the like can be reduced.
  • the solar cell module 100 can be protected from the back side.
  • the tensile elasticity modulus of the 2nd resin substrate 28 is larger than the tensile elasticity modulus of the 1st resin substrate 20, generation
  • production of the condition where a tensile stress is added to the photovoltaic cell 10 is suppressed, generation
  • the water vapor permeability of the second resin layer 24 is smaller than the water vapor permeability of the first resin layer 22, it is possible to suppress moisture from reaching the solar battery cell 10. Moreover, since the arrival of moisture to the solar battery cell 10 is suppressed, the occurrence of failure of the solar battery cell 10 can be suppressed.
  • the solar cell module 100 of an aspect of this embodiment includes a photoelectric conversion disposed on the resin substrate (first resin substrate 20), the first resin layer 22, the second resin layer 24, and the second resin layer 24. Part (solar cell 10, solar cell string 16) and a third resin layer 26.
  • the first resin layer 22 is disposed on the resin substrate.
  • the second resin layer 24 is disposed on the first resin layer 22.
  • the third resin layer 26 is disposed on the photoelectric conversion unit and the second resin layer 24.
  • the tensile elastic modulus of the first resin layer 22 is smaller than the tensile elastic modulus of each of the resin substrate, the second resin layer 24, and the third resin layer 26.
  • the water vapor permeability of the second resin layer 24 may be smaller than the water vapor permeability of the first resin layer 22.
  • the photoelectric conversion portion is formed in a flat plate shape having a light receiving surface and a back surface, the light receiving surface of the photoelectric conversion portion is disposed so as to be in contact with the second resin layer 24, and the back surface of the photoelectric conversion portion is connected to the third resin layer 26. You may arrange
  • the photoelectric conversion unit may be sealed by the second resin layer 24 and the third resin layer 26.
  • the second resin layer 24 and the third resin layer 26 may be formed of the same material.
  • the second resin layer 24 and the third resin layer 26 are formed of different materials, and the tensile elastic modulus of the third resin layer 26 may be smaller than the tensile elastic modulus of the second resin layer 24.
  • Another resin substrate (second resin substrate 28) disposed on the third resin layer 26 may be further provided.
  • the tensile elastic modulus of another resin substrate may be larger than the tensile elastic modulus of the resin substrate.
  • the solar cell module 100 includes a photoelectric substrate disposed on the resin substrate (first resin substrate 20), the first resin layer 22, the second resin layer 24, and the second resin layer 24.
  • a conversion unit solar cell 10, solar cell string 16
  • a third resin layer 26 are provided.
  • the first resin layer 22 is disposed on the resin substrate.
  • the second resin layer 24 is disposed on the first resin layer 22.
  • the third resin layer 26 is disposed on the photoelectric conversion unit and the second resin layer 24.
  • Adjacent photoelectric conversion units are electrically connected to each other by tab wiring 12.
  • the tensile elastic modulus of the first resin layer 22 is smaller than the tensile elastic modulus of each of the resin substrate, the second resin layer 24, and the third resin layer 26.
  • Embodiment 2 is related with the solar cell module provided with the several photovoltaic cell similarly to Embodiment 1.
  • FIG. Furthermore, even when a resin substrate is used for the solar cell module, improvement in impact resistance is desired.
  • the solar cell module according to Embodiment 2 is configured in the same manner as before, but suppresses the occurrence of warping by improving the symmetry of the configuration in the z-axis direction. Below, it demonstrates centering on the difference from before.
  • FIG. 5 is a cross-sectional view showing the solar cell module 100 according to the second embodiment.
  • the solar cell module 100 includes a solar cell 10, a tab wire 12, a connection wire 14, a solar cell string 16, a first resin substrate 20, a first resin layer 22, a second resin layer 24, a third resin layer 26, a second A resin substrate 28 and a fourth resin layer 40 are included.
  • the solar cell 10, the tab wiring 12, the connection wiring 14, the solar battery string 16, the first resin substrate 20, the first resin layer 22, the second resin layer 24, the third resin layer 26, and the second resin substrate 28 Since this is the same as above, the description thereof is omitted here.
  • the fourth resin layer 40 is disposed between the second resin substrate 28 and the third resin layer 26.
  • a gel such as silicone gel, acrylic gel, or urethane gel is used for the fourth resin layer 40.
  • the same material as the first resin layer 22 is used. Therefore, the tensile elastic modulus of the fourth resin layer 40 is made smaller than the tensile elastic modulus of each of the first resin substrate 20, the second resin layer 24, the third resin layer 26, and the second resin substrate 28.
  • the fourth resin layer 40 is disposed between the second resin substrate 28 and the third resin layer 26. Since the tensile elastic modulus of the fourth resin layer 40 is smaller than the tensile elastic modulus of each of the first resin substrate 20, the second resin layer 24, the third resin layer 26, and the second resin substrate 28, the configuration in the thickness direction The symmetry of can be improved. Moreover, since the symmetry of the structure in the thickness direction is improved, the occurrence of warpage in the solar cell module 100 can be suppressed. Moreover, since generation
  • the outline of this embodiment is as follows. You may further provide the 4th resin layer 40 arrange
  • the tensile elastic modulus of the fourth resin layer 40 is smaller than the tensile elastic modulus of each of the resin substrate (first resin substrate 20), the second resin layer 24, the third resin layer 26, and another resin substrate.
  • the third embodiment relates to a solar cell module including a plurality of solar cells as in the first embodiment. Furthermore, even when a resin substrate is used for the solar cell module, improvement in thermal shock resistance is desired.
  • the solar cell module according to Embodiment 3 is configured in the same manner as before, the solar cell module further includes a low thermal expansion layer, thereby improving the thermal shock resistance. Below, it demonstrates centering on the difference from before.
  • the low thermal expansion layer 50 is preferably disposed between the photoelectric conversion unit 10 and the second resin substrate 28.
  • the solar cell module 100 may further include a low thermal expansion layer 50 that is disposed on the third resin layer 26 and has a smaller thermal expansion coefficient than the first resin substrate 20. preferable.
  • the shape of the low thermal expansion layer 50 is not particularly limited, and may be a polygon such as a circle, an ellipse, or a rectangle depending on the application. Further, the size of the low thermal expansion layer 50 is not particularly limited, and the low thermal expansion layer 50 can be disposed along the tab wiring 12. By arranging in this way, even when the relatively expensive low thermal expansion layer 50 is used, the solar cell module 100 can be kept inexpensive and the thermal shock resistance can be improved. Note that the arrangement of the low thermal expansion layer 50 along the tab wiring 12 means that the low thermal expansion layer 50 may be arranged in contact with the photoelectric conversion unit 10 in the vertical direction, and the low thermal expansion layer 50 is disposed on the photoelectric conversion unit 10. It can also be arranged via another layer vertically above.
  • the upper direction in the vertical direction means the upper direction in the stacking direction (z-axis direction) of the solar cell modules 100.
  • the low thermal expansion layer 50 is disposed so as to cover the entire top surface of the resin layer disposed between the photoelectric conversion unit 10 and the second resin substrate 28. It is preferable. Specifically, the low thermal expansion layer 50 is preferably disposed in contact with the third resin layer 26 so as to cover the entire upper surface of the third resin layer 26.
  • the material which forms the low thermal expansion layer 50 is not specifically limited, For example, glass, paper, glass fiber, a ceramic sheet, a CFRP sheet etc. are mentioned.
  • the material forming the low thermal expansion layer 50 preferably has a low thermal expansion coefficient equal to or lower than that of glass. Specifically, the linear expansion coefficient is preferably greater than 0 and 10 ⁇ 10 ⁇ 6 K ⁇ 1 or less.
  • the solar cell module 100 of the present embodiment further includes the low thermal expansion layer 50 that is disposed on the third resin layer 26 and has a smaller thermal expansion coefficient than the resin substrate (first resin substrate 20). Also good. Therefore, the thermal shock resistance of the solar cell module 100 can be improved.
  • Embodiment 4 is related with the solar cell module provided with the several photovoltaic cell similarly to Embodiment 1.
  • FIG. Furthermore, it is desired for the solar cell module to improve the thermal shock resistance.
  • the solar cell module according to Embodiment 4 is configured in the same manner as before, but further includes a lubricating layer. Below, it demonstrates centering on the difference from before.
  • the solar cell module 100 is disposed between the first resin substrate 20 and the first resin layer 22, and the static friction coefficient between the first resin substrate 20 and the first resin layer 22 is 0. It is preferable to further include a lubricating layer 60 of 0001 to 0.1.
  • a lubricating layer 60 of 0001 to 0.1.
  • the solar cell module 100 further includes such a lubricating layer 60, it is possible to suppress the thermal expansion and contraction of the first resin substrate 20 from being directly transmitted to the first resin layer 22 due to the lubricating effect of the lubricating layer 60. . Therefore, the cutting of the tab wiring 12 derived from the thermal expansion and contraction of the first resin substrate 20 can be further suppressed, and the thermal shock resistance of the solar cell module 100 can be improved.
  • the coefficient of static friction between the first resin substrate 20 and the first resin layer 22 it is preferable to set the coefficient of static friction between the first resin substrate 20 and the first resin layer 22 to 0.0001 or more because the thermal shock resistance of the solar cell module 100 is improved. Moreover, the adhesiveness between the 1st resin board
  • the static friction coefficient between the first resin substrate 20 and the first resin layer 22 can be measured in accordance with, for example, the method described in JIS K7125: 1999 (Plastic-Film and Sheet-Friction Coefficient Test Method).
  • the material forming the lubricating layer 60 preferably contains grease.
  • the fluid resistance is large while the external force is less than the yield value, but starts to flow when the external force exceeds the yield value. Therefore, the thermal shock resistance of the solar cell module 100 can be improved and the handling of the solar cell module 100 can be facilitated.
  • Grease is a semi-solid or solid lubricant made by mixing a thickener with base oil.
  • the grease may be added with a dispersant, an antioxidant, or the like as necessary.
  • Examples of the base oil include refined mineral oil, synthetic lubricating oil, and mixed oils thereof.
  • Refined mineral oil can be obtained, for example, by distilling crude oil.
  • Examples of the synthetic lubricating oil include polyolefin, polyester, polyalkylene glycol, alkylbenzene, and alkylnaphthalene.
  • Examples of the thickener include a soap-type thickener and a non-soap-type thickener.
  • Examples of the soap thickener include metal soap thickeners such as calcium soap, aluminum soap, and lithium soap, and complex soap thickeners such as calcium complex, aluminum complex, and lithium complex.
  • Non-soap thickeners include, for example, urea thickeners such as diurea, triurea and polyurea, organic thickeners such as polytetrafluoroethylene (PTFE) and sodium terephthalate, and inorganic thickeners such as bentonite and silica gel. Examples include a fungicide.
  • the grease examples include silicone grease, silicone grease, fluoroether grease, and fluoroalkyl grease.
  • the grease preferably contains at least one of silicone grease and fluoroalkyl grease (Teflon (registered trademark) grease).
  • the grease is preferably semi-solid at ⁇ 40 ° C. to 150 ° C.
  • the grease semi-solid By making the grease semi-solid at ⁇ 40 ° C. to 150 ° C., liquid leakage can be reduced and the solar cell module 100 can be easily handled.
  • Grease dropping point is preferably 150 ° C. or lower. By setting the grease dropping point in such a range, the lubricity between the first resin substrate 20 and the first resin layer 22 is maintained for a long time even when the solar cell module 100 is at a high temperature. can do.
  • the dropping point can be measured by, for example, a dropping point test method defined in JIS K2200: 2013 (grease).
  • the melting point of grease is preferably -40 ° C or higher.
  • the coefficient of static friction between the first resin substrate 20 and the first resin layer 22 at ⁇ 40 ° C. is preferably 0.0001 to 0.1.
  • the thickness of the lubricating layer 60 is preferably 0.01 ⁇ m to 100 ⁇ m. From the viewpoint of adhesion, the thickness of the lubricating layer 60 is preferably 0.01 ⁇ m to 75 ⁇ m, and more preferably 0.01 ⁇ m to 50 ⁇ m.
  • the solar cell module 100 of the present embodiment may further include the lubricating layer 60 provided between the resin substrate (first resin substrate 20) and the first resin layer 22.
  • the coefficient of static friction between the resin substrate and the first resin layer 22 is 0.0001 to 0.1. Therefore, the thermal shock resistance of the solar cell module 100 can be improved.
  • Embodiment 5 relates to a solar cell module including a plurality of solar cells as in the first embodiment. Furthermore, it is desired for the solar cell module to reduce bubbles generated in the solar cell module.
  • the solar cell module according to Embodiment 5 is configured in the same manner as before, but the bubbles are reduced by providing slits 23 in the first resin layer 22. Below, it demonstrates centering on the difference from before.
  • the first resin layer 22 when the material forming the first resin layer 22 is gel, the first resin layer 22 preferably includes a slit 23. That is, it is preferable that the first resin layer 22 is a gel and the first resin layer 22 includes a slit 23.
  • the first resin layer 22 By providing such slits 23 in the first resin layer 22, bubbles generated by using the solar cell module 100 for a long period of time or bubbles that have entered when the solar cell module 100 is molded move through the slits 23. can do. Therefore, air bubbles can be easily removed from the solar cell module 100. Even if the bubbles in the solar cell module 100 are not completely removed, the bubbles move through the slits 23 and are dispersed, so that the bubbles can be reduced. Therefore, it is possible to make it difficult to visually confirm the bubbles in the solar cell module 100. Therefore, the interruption
  • the position where the slit 23 is provided is not particularly limited, and can be provided, for example, on the surface of the first resin layer 22.
  • the slit 23 can be provided on at least one of the surface of the first resin layer 22 on the first resin substrate 20 side and the surface of the first resin layer 22 on the third resin layer 26 side.
  • slits 23 are formed on the surface of the first resin layer 22 on the first resin substrate 20 side and on the surface of the first resin layer 22 on the third resin layer 26 side, as shown in FIG. Is preferably provided.
  • the size of the slit 23 in the stacking direction of the solar cell module 100 is preferably 5% to 99% with respect to the thickness of the first resin layer 22.
  • the size of the slit 23 in such a range it is possible to improve the escape of bubbles and to maintain the strength of the first resin layer 22. Further, by setting the size of the slit 23 in such a range, the local load can be more relaxed by the first resin layer 22.
  • the size of the slit 23 in the stacking direction of the solar cell module 100 is more preferably 10% to 50% with respect to the thickness of the first resin layer 22.
  • the size of the slit 23 in the direction perpendicular to the stacking direction of the solar cell module 100 is not particularly limited, taking into consideration the bubble escape and the strength of the first resin layer 22. Can be determined.
  • the direction of the slit 23 in the stacking direction of the solar cell module 100 is preferably parallel to the stacking direction of the solar cell module 100.
  • the direction of the slit 23 in such a direction the incident direction of light and the direction of the slit 23 become horizontal, and the slit 23 makes it difficult for light to be reflected or refracted. Therefore, the loss of light by the slit 23 can be suppressed by setting the direction of the slit 23 to such a direction.
  • the direction of the slit 23 in the direction perpendicular to the stacking direction of the solar cell module 100 is not particularly limited, and can be appropriately changed depending on the application.
  • the distance between the slits 23 is preferably 0.1 mm to 10 mm, more preferably 0.5 mm to 2 mm, and 0.8 mm to 1.mm. More preferably, it is 2 mm.
  • the first resin layer 22 may be formed of gel, and the first resin layer 22 may have a slit 23. Therefore, it is possible to prevent sunlight from being blocked by bubbles in the solar cell module 100 and appearance defects.
  • Embodiment 6 is related with the solar cell module provided with the several photovoltaic cell similarly to Embodiment 1.
  • FIG. Furthermore, the solar cell module is desired to have a good appearance.
  • the solar cell module according to Embodiment 6 is configured in the same manner as before, but the difference between the refractive index of the first resin layer 22 and the refractive index of the resin layer adjacent to the first resin layer 22 is within a predetermined range. To. Below, it demonstrates centering on the difference from before.
  • the difference in refractive index between the first resin layer 22 and the resin layer adjacent to the first resin layer 22 is preferably 0.1 or less. More specifically, the refractive index difference between the first resin layer 22 and the resin layer on the opposite side of the resin substrate 20 adjacent to the first resin layer 22 is preferably 0.1 or less. For example, the difference in refractive index between the first resin layer 22 and the second resin layer 24 is preferably 0.1 or less.
  • the refractive index difference in such a range the appearance of the solar cell module 100 can be improved. Specifically, when the solar cell module 100 is viewed from the upper surface, it is possible to make it difficult to confirm a circular light pattern.
  • the difference in refractive index between the first resin layer 22 and the resin layer adjacent to the first resin layer 22 is more preferably 0.05 or less.
  • the reason why the circular light pattern is generated is considered as follows. As described above, since the tensile elastic modulus of the first resin layer 22 is smaller than the tensile elastic modulus of the second resin layer 24, the impact resistance of the solar cell module 100 can be improved. However, since the first resin layer 22 is more flexible than the second resin layer 24, when the solar cell module 100 is laminated while heating, the first resin layer 22 is deformed and the first resin layer 22 is deformed. Concavities and convexities are likely to occur on 22. In particular, when the solar cell module 100 is laminated and molded in a vacuum state, such unevenness of the first resin layer 22 is likely to occur.
  • the appearance of the solar cell module 100 when the refractive index difference between the first resin layer 22 and the resin layer adjacent to the first resin layer 22 was 0.1 or less was evaluated by the following examples. However, the present embodiment is not limited to these examples.
  • Example 7 A first resin substrate having a thickness of 1 mm, a first resin layer having a thickness of 1 mm, a second resin layer having a thickness of 0.6 mm, a photoelectric conversion unit, a third resin layer having a thickness of 0.6 mm, and a second resin having a thickness of 2 mm.
  • Resin substrates were laminated in order from the top and compressed and heated at 145 ° C. under reduced pressure to produce a solar cell module.
  • Polycarbonate (PC) was used for the first resin substrate.
  • an acrylic gel having a refractive index of 1.49 to 1.53 was used.
  • an ethylene-vinyl acetate copolymer (EVA) having a refractive index of 1.54 was used.
  • the photoelectric conversion part used the photovoltaic cell.
  • an ethylene-vinyl acetate copolymer (EVA) was used.
  • Carbon fiber reinforced plastic (CFRP) was used for the second resin substrate. At this time, the difference in refractive index between the first resin layer and the second resin layer was 0.01 to 0.05.
  • Example 7 is the same as Example 7 except that the acrylic gel of the first resin layer is replaced with a silicone gel having a refractive index of 1.43, and a fifth resin layer is newly disposed between the first resin layer and the second resin layer. Thus, a solar cell module was produced.
  • the fifth resin layer is formed of an acrylic resin having a refractive index of 1.49 to 1.53. At this time, the difference in refractive index between the first resin layer and the fifth resin layer was 0.06 to 0.10.
  • Example 9 A solar cell module was produced in the same manner as in Example 7 except that the acrylic gel of the first resin layer was replaced with a silicone gel having a refractive index of 1.43. At this time, the refractive index difference between the first resin layer and the second resin layer was 0.11.
  • Example 10 A solar cell module was produced in the same manner as in Example 8 except that the acrylic resin of the fifth resin layer was replaced with polyethylene terephthalate (PET) having a refractive index of 1.60. At this time, the refractive index difference between the first resin layer and the fifth resin layer was 0.17.
  • PET polyethylene terephthalate
  • Example 11 A solar cell module was produced in the same manner as in Example 8 except that the acrylic resin of the fifth resin layer was replaced with polyvinylidene chloride (PVDC) having a refractive index of 1.60 to 1.63. At this time, the refractive index difference between the first resin layer and the fifth resin layer was 0.17 to 0.20.
  • PVDC polyvinylidene chloride
  • Example 8 A solar cell module was produced in the same manner as in Example 9 except that the polycarbonate (PC) of the first resin substrate was replaced with glass. At this time, the refractive index difference between the first resin layer and the second resin layer was 0.11.
  • Example 9 A solar cell module was produced in the same manner as in Example 9 except that the second resin layer ethylene-vinyl acetate copolymer (EVA) was not disposed.
  • EVA ethylene-vinyl acetate copolymer
  • the first resin layer is in direct contact with the photoelectric conversion part, and thus light is not refracted at the interface with the first resin layer.
  • the second resin layer is not disposed in the solar cell module of Comparative Example 9 and the load received by the first resin layer cannot be dispersed, the impact resistance is not sufficient.
  • the refractive index difference between the first resin layer 22 and the resin layer adjacent to the first resin layer 22 is 0.1 or less. Therefore, the appearance of the solar cell module 100 can be improved.
  • Embodiment 7 is related with the solar cell module provided with the several photovoltaic cell similarly to Embodiment 1.
  • FIG. Furthermore, it is desirable for the solar cell module that the resin used for the solar cell module does not change color even when used for a long time.
  • the solar cell module according to Embodiment 7 is configured in the same manner as before, but further includes an oxygen barrier layer. Below, it demonstrates centering on the difference from before.
  • the solar cell module 100 is disposed below the second resin layer 24 and above the third resin layer 26, and has an oxygen barrier layer 70 having an oxygen permeability of 200 cm 3 / m 2 ⁇ 24 h ⁇ atm or less. It is preferable to further comprise.
  • an oxygen barrier layer 70 By providing such an oxygen barrier layer 70, the amount of oxygen that enters the solar cell module 100 is reduced, and the amount of radicals derived from oxygen generated inside the second resin layer 24 and the third resin layer 26 is reduced. Can be reduced. Therefore, decomposition of the resin by radicals can be suppressed and discoloration of the resin can be suppressed.
  • the oxygen barrier layer 70 can be disposed below the second resin layer 24. Specifically, the oxygen barrier layer 70 can be disposed between the second resin layer 24 and the first resin layer 22. At this time, the oxygen barrier layer 70 may be in direct contact with the second resin layer 24, but may not be in direct contact with the second resin layer 24. For example, as in the embodiment of FIG. 11, the oxygen barrier layer 70 may be disposed between the first resin layer 22 and the first resin substrate 20. Further, the oxygen barrier layer 70 may be disposed under the first resin substrate 20. In addition to or in place of the oxygen barrier layer 70, the oxygen permeability of at least one of the first resin substrate 20 and the first resin layer 22 is 200 cm 3 / m 2 ⁇ 24 h ⁇ atm or less. Also good.
  • the oxygen barrier layer 70 can be disposed above the third resin layer 26. Specifically, it can be disposed between the third resin layer 26 and the second resin substrate 28, for example, as in the embodiment of FIG. At this time, the oxygen barrier layer 70 may be in direct contact with the third resin layer 26 as in the embodiment of FIG. 11, but may not be in direct contact with the third resin layer 26.
  • the oxygen barrier layer 70 can be disposed on the second resin substrate 28.
  • the oxygen permeability of the second resin substrate 28 may be 200 cm 3 / m 2 ⁇ 24 h ⁇ atm or less.
  • the oxygen permeability of the oxygen barrier layer 70 is preferably 200 cm 3 / m 2 ⁇ 24 h ⁇ atm or less, and more preferably 0.001 to 200 cm 3 / m 2 ⁇ 24 h ⁇ atm. By setting the oxygen permeability within such a range, discoloration of the resin in the solar cell module 100 can be suppressed.
  • the oxygen permeability can be measured in accordance with the provisions of JIS K7126-2 (Plastics—Films and sheets—Gas permeability test method—Part 2: Isobaric method). The oxygen permeability can be measured at a measurement temperature of 23 ° C. and a measurement humidity of 90% RH.
  • Materials for forming the oxygen barrier layer 70 include polyvinyl chloride (PVC), polyethylene terephthalate (PET), unstretched nylon (CNY), biaxially stretched nylon (ONY), and polyvinylidene chloride (PVDC) coated biaxially stretched polypropylene.
  • PVC polyvinyl chloride
  • PET polyethylene terephthalate
  • CNY unstretched nylon
  • ONY biaxially stretched nylon
  • PVDC polyvinylidene chloride coated biaxially stretched polypropylene.
  • OPP polyvinylidene chloride
  • PVDC coated biaxially stretched nylon
  • nylon MXD6 poly (metaxylylene adipamide)
  • EVOH ethylene-vinyl alcohol copolymer
  • vinylidene chloride-methyl acrylate A polymer, alumina-coated PET, silica-coated PET, nanocomposite-coated PET, and the like can be used.
  • the solar cell module 100 of the present embodiment is disposed below the second resin layer 24 and above the third resin layer 26, and has an oxygen permeability of 200 cm 3 / m 2 ⁇ 24 h ⁇ atm or less.
  • An oxygen barrier layer 70 may be further provided. Therefore, decomposition of the resin by radicals derived from oxygen can be suppressed and discoloration of the resin can be suppressed.
  • the tensile elastic modulus of the first resin layer is smaller than the tensile elastic modulus of each of the resin substrate, the second resin layer, and the third resin layer. Therefore, according to this embodiment, the impact resistance of the solar cell module can be improved.
  • Solar cell (photoelectric conversion part) 12 Tab wiring 14 Connection wiring 16 Solar cell string (photoelectric conversion part) 20 First resin substrate (resin substrate) 22 First resin layer 23 Slit 24 Second resin layer 26 Third resin layer 28 Second resin substrate (another resin substrate) 40 Fourth resin layer 50 Low thermal expansion layer 60 Lubrication layer 70 Oxygen barrier layer 100 Solar cell module

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Photovoltaic Devices (AREA)

Abstract

太陽電池モジュール(100)は、第1樹脂基板(20)と、第1樹脂基板(20)上に配置される第1樹脂層(22)と、第1樹脂層(22)上に配置される第2樹脂層(24)と、第2樹脂層(24)上に配置される光電変換部(10,16)と、光電変換部(10,16)と第2樹脂層(24)との上に配置される第3樹脂層(26)とを備え、第1樹脂層(22)の引張弾性率は、第1樹脂基板(20)、第2樹脂層(24)、第3樹脂層(26)のそれぞれの引張弾性率よりも小さい。

Description

太陽電池モジュール
 本発明は、太陽電池モジュールに関し、特に樹脂基板を使用する太陽電池モジュールに関する。
 太陽電池モジュールを軽量化するために、ガラス基板の代わりに樹脂基板が使用される。樹脂基板の熱膨張率は一般的にガラス基板と比較して大きいので、樹脂基板は、ガラス基板よりも、熱膨張・収縮の変位量が大きい。樹脂基板の熱膨張・収縮により、太陽電池セル間のタブ配線、封止部材に応力が加わるので、タブ配線が疲労破断する場合がある。そのために、例えば、樹脂基板上にゲル、エチレン-酢酸ビニル共重合樹脂(EVA)が順に配置されるとともに、ゲルとEVAの間に太陽電池セルが配置される(例えば、特許文献1参照)。
特開2011-49485号公報
 太陽電池モジュールには、ヒョウ等が衝突する場合があるので、熱膨張への対策に加えて、耐衝撃性の向上も必要とされる。ゲルは、ヒョウ等の衝突による樹脂基板のたわみをある程度吸収するが、たわんだ部分に荷重が集中する傾向にある。そのため、ゲルと太陽電池セルとが接するように配置されている場合、太陽電池セルには局所的な荷重が加わる。
 本発明はこうした状況に鑑みてなされたものであり、その目的は、太陽電池モジュールの耐衝撃性を向上する技術を提供することにある。
 上記課題を解決するために、本発明の態様に係る太陽電池モジュールは、樹脂基板と、樹脂基板上に配置される第1樹脂層と、第1樹脂層上に配置される第2樹脂層と、第2樹脂層上に配置される光電変換部と、光電変換部と第2樹脂層との上に配置される第3樹脂層とを備える。第1樹脂層の引張弾性率は、樹脂基板、第2樹脂層、第3樹脂層のそれぞれの引張弾性率よりも小さい。
図1は、本発明の実施形態1に係る太陽電池モジュールを示す上面図である。 図2は、図1の太陽電池モジュールを示す断面図である。 図3は、図2の太陽電池モジュールに加わる荷重を模式的に示す図である。 図4(a)-(b)は、図2の太陽電池モジュールにおける中立軸を示す図である。 図5は、本発明の実施形態2に係る太陽電池モジュールを示す断面図である。 図6は、本発明の実施形態3に係る太陽電池モジュールを示す断面図である。 図7は、本発明の実施形態4に係る太陽電池モジュールを示す断面図である。 図8は、本発明の実施形態5に係る太陽電池モジュールを示す断面図である。 図9は、樹脂層の界面における光の屈折を模式的に示す図である。 図10は、実施例7~9の太陽電池モジュールの外観を示す図である。 図11は、本発明の実施形態7に係る太陽電池モジュールを示す断面図である。
(実施形態1)
 本実施形態を具体的に説明する前に、概要を述べる。本実施形態1は、複数の太陽電池セルを備えた太陽電池モジュールに関する。この太陽電池モジュールの使用用途を拡大するために、太陽電池モジュールには軽量化が必要とされるので、ガラス基板ではなく樹脂基板が使用される。一方、太陽電池モジュールには、ヒョウ等が衝突する場合がある。ガラス基板よりも樹脂基板の方が、引張弾性率が低いので、ヒョウ等の衝突による荷重が太陽電池モジュール内部に伝わり、太陽電池セルが破損してしまうおそれがある。そのため、太陽電池モジュールには、樹脂基板を使用する場合であっても、耐衝撃性の向上が望まれる。
 樹脂基板にヒョウ等が衝突した場合、衝突による荷重が樹脂基板に加わり、衝突箇所を中心にして樹脂基板はたわむ。ここで、樹脂基板と太陽電池セルとの間にゲルを配置させる場合、ゲルの引張弾性率は低いので、樹脂基板からの荷重は、ゲルにおいて低減される。しかしながら、樹脂基板のたわんだ部分がゲルにも伝わり、伝わった部分の荷重がゲルでも大きくなる。その結果、太陽電池セルには、ゲルからの局所的な荷重が加えられる。一方、太陽電池セル、隣接した太陽電池セル間のタブ配線の破損を抑制するためには、荷重が分散されている方が望ましい。
 これに対応するために、本実施形態1に係る太陽電池モジュールでは、樹脂基板、ゲル、樹脂層、太陽電池セルを順に配置する。ここで、樹脂層の引張弾性率は、ゲルの引張弾性率よりも高い。そのため、樹脂層では、ゲルからの局所的な荷重が分散され、太陽電池セルには、樹脂層からの分散された荷重が加えられる。
 図1は、本実施形態1に係る太陽電池モジュール100を示す上面図である。図1に示すように、x軸、y軸、z軸からなる直角座標系が規定される。x軸、y軸は、太陽電池モジュール100の平面内において互いに直交する。z軸は、x軸およびy軸に垂直であり、太陽電池モジュール100の厚み方向に延びる。また、x軸、y軸、z軸のそれぞれの正の方向は、図1における矢印の方向に規定され、負の方向は、矢印と逆向きの方向に規定される。太陽電池モジュール100を形成する2つの主表面であって、かつx-y平面に平行な2つの主表面のうち、z軸の正方向側に配置される主平面が「受光面」であり、z軸の負方向側に配置される主平面が「裏面」である。なお、「受光面」とは光が主に入射する面を意味し、「裏面」とは受光面と反対側の面を意味することもある。また、z軸の正方向側を「受光面側」とよび、z軸の負方向側を「裏面側」とよぶこともある。
 また、「第1の部材上に第2の部材を設ける」等の記載では、特に限定しない限り、第1の部材および第2の部材が直接接触して設けられてもよく、第1の部材および第2の部材の間に他の部材が存在してもよい。上記の記載における「上」とは、z軸の正方向側であってもよく、z軸の負方向側であってもよい。さらに、「略」は、誤差の範囲で異なっていること、つまり実質的に同一であることを示す。
 太陽電池モジュール100は、複数の太陽電池セル10、複数のタブ配線12、複数の接続配線14を含む。複数の太陽電池セル10のそれぞれは、入射する光を吸収して光起電力を発生する。太陽電池セル10は、例えば、結晶系シリコン、ガリウム砒素(GaAs)またはインジウム燐(InP)等の半導体材料によって形成される。太陽電池セル10の構造は、特に限定されないが、ここでは、一例として、結晶シリコンとアモルファスシリコンとが積層されているとする。図1では省略しているが、各太陽電池セル10の受光面および裏面には、互いに平行にx軸方向に延びる複数のフィンガー電極と、複数のフィンガー電極に直交するようにy軸方向に延びる複数、例えば2本のバスバー電極とが備えられる。バスバー電極は、複数のフィンガー電極のそれぞれを接続する。
 複数の太陽電池セル10は、x-y平面上にマトリクス状に配列される。ここでは、x軸方向に4つの太陽電池セル10が並べられ、y軸方向に5つの太陽電池セル10が並べられる。なお、x軸方向に並べられる太陽電池セル10の数と、y軸方向に並べられる太陽電池セル10の数は、これらに限定されない。y軸方向に並んで配置される5つの太陽電池セル10は、タブ配線12によって直列に接続され、1つの太陽電池ストリング16が形成される。さらに、前述のごとく、x軸方向に4つの太陽電池セル10が並べられるので、y軸方向に延びた太陽電池ストリング16がx軸方向に4つ平行に並べられる。なお、太陽電池ストリング16は、複数の太陽電池セル10だけを示してもよいし、複数の太陽電池セル10と複数のタブ配線12との組合せを示してもよい。
 太陽電池ストリング16を形成するために、タブ配線12は、隣接した太陽電池セル10のうちの一方の受光面側のバスバー電極と、他方の裏面側のバスバー電極とを電気的に接続する。すなわち、隣接した太陽電池セル10は互いにタブ配線12で電気的に接続されている。タブ配線12は、細長い金属箔であり、例えば、アルミニウム箔、及び銅箔にハンダや銀等をコーティングしたものが用いられる。タブ配線12とバスバー電極との接続には樹脂が使用される。この樹脂は導電性、非導電性のいずれでもよい。非導電性の樹脂を用いる場合はタブ配線12とバスバー電極とが直接接続されることで電気的に接続される。また、タブ配線12とバスバー電極との接続は、樹脂ではなくハンダでもよい。
 さらに、太陽電池ストリング16のy軸の正方向側と負方向側において、複数の接続配線14がx軸方向に延びており、接続配線14は、隣接した2つの太陽電池ストリング16を電気的に接続する。以上の構成において、太陽電池セル10、太陽電池ストリング16のそれぞれが「光電変換部」であってもよく、複数の太陽電池ストリング16と接続配線14との組合せが「光電変換部」であってもよい。なお、太陽電池モジュール100の端縁部には、図示しないフレームが取り付けられてもよい。フレームは、太陽電池モジュール100の端縁部を保護するとともに、太陽電池モジュール100を屋根等に設置する際に利用される。
 なお、隣接した光電変換部(太陽電池セル10)は互いにタブ配線12で電気的に接続されており、タブ配線12は、アルミニウムにより形成されていることが好ましい。タブ配線12としてアルミニウムを用いることにより、タブ配線12を形成する金属の触媒反応によって、第1樹脂層22、第2樹脂層24又は第3樹脂層26が分解するのを抑制し、これらを形成する樹脂が変色するのを抑制することができる。なお、非めっきアルミニウムにより形成されたタブ配線12は、銅箔を銀でめっきしたタブ配線12よりも、樹脂の変色を抑制することができる。
 図2は、太陽電池モジュール100を示す図1のA-A’線断面図である。太陽電池モジュール100は、太陽電池セル10、タブ配線12、接続配線14、太陽電池ストリング16、第1樹脂基板20、第1樹脂層22、第2樹脂層24、第3樹脂層26、第2樹脂基板28を含む。図2の上側が裏面側に相当し、下側が受光面側に相当する。
 第1樹脂基板20は、太陽電池モジュール100の受光面側に配置されており、太陽電池モジュール100の表面を保護する。第1樹脂基板20には、例えば、透光性を有するポリカーボネート樹脂が使用される。また、第1樹脂基板20は、厚さ1mmの矩形板状に形成されるが、これに限定されない。ポリカーボネート樹脂は、熱可塑性プラスチックの一種であり、その引張弾性率は2.3~2.5GPaであり、その水蒸気透過度は40~50g/m/dayである。ここで、引張弾性率Eは、同軸方向のひずみσと応力εで表される比例定数であり、次のように示される。
 E=σ/ε
 また、引張弾性率は、ヤング率ともよばれる。
 第1樹脂層22は、第1樹脂基板20のz軸の負方向側に配置される。第1樹脂層22として、引張弾性率が0.000001~0.001GPaであり、損失係数が0.1~0.52であるゲルが使用される。このようなゲルは、例えば、シリコーンゲル、アクリルゲル、ウレタンゲル等である。シリコーンゲルについて、引張弾性率は0.000005GPaであり、水蒸気透過度は300~2500g/m/dayである。損失係数は、貯蔵剪断弾性率(G’)と損失剪断弾性率(G”)の比G”/G’であり、tanδで示される。損失係数は、材料が変形する際に材料がどのくらいエネルギーを吸収するかを示しており、tanδの値が大きいほどエネルギーを吸収する。この損失係数は、動的粘弾性測定装置によって測定される。第1樹脂層22は、透光性を有するとともに、第1樹脂基板20におけるx-y平面と略同一寸法の面を有する矩形状のシート材によって形成される。なお、第1樹脂層22は、液状であってもよい。
 第2樹脂層24は、第1樹脂層22のz軸の負方向側に配置される。第2樹脂層24として、例えば、EVA、PVB(ポリビニルブチラール)、ポリイミド等の樹脂フィルムのような熱可塑性樹脂が使用される。なお、熱硬化性樹脂が使用されてもよい。ここでは、特にEVAが使用されるとする。EVAについて、引張弾性率は0.01~0.25GPaであり、水蒸気透過度は30~50g/m/dayであり、損失係数は0.05である。第2樹脂層24は、透光性を有するとともに、第1樹脂基板20におけるx-y平面と略同一寸法の面を有する矩形状のシート材によって形成される。
 太陽電池ストリング16は、前述のごとく、y軸方向に並んだ複数の太陽電池セル10が、タブ配線12によって接続されることによって形成される。また、太陽電池ストリング16のy軸の正方向側端と負方向側端に、接続配線14が接続される。このような接続配線14、太陽電池ストリング16は、第2樹脂層24のz軸の負方向側に配置される。また、複数の太陽電池セル10のそれぞれは、受光面および裏面を有する平板状に形成される。
 第3樹脂層26は、接続配線14、太陽電池ストリング16と第2樹脂層24のz軸の負方向側に配置される。そのため、接続配線14、太陽電池ストリング16は、第2樹脂層24と第3樹脂層26とによって密封される。具体的には、太陽電池セル10の受光面が第2樹脂層24と接するように配置され、太陽電池セル10の裏面が第3樹脂層26と接するように配置される。第3樹脂層26は、第2樹脂層24と同一の材料で形成されてもよく、第2樹脂層24と異なった材料で形成されてもよい。後者の場合、第3樹脂層26には、第2樹脂層24の引張弾性率よりも小さい引張弾性率を有する材料が使用される。例えば、第2樹脂層24には、引張弾性率が0.2GPaより大きくなるEVAが使用され、第3樹脂層26には、0.2GPaより小さい引張弾性率の充填材が使用される。また、第2樹脂層24には、引張弾性率が0.2GPaより大きくなる充填材が使用され、第3樹脂層26には、引張弾性率が0.2GPaより小さくなるEVAが使用されてもよい。
 このような構成に対して、荷重が加わった場合を説明する。図3は、太陽電池モジュール100に加わる荷重を模式的に示す。図3は、図2の一部を示した部分断面図であるが、z軸の方向が逆になっており、図3の上側が受光面側に相当する。第1樹脂基板20には、受光面側から荷重S1が加えられる。ここでは、荷重S1として、ヒョウの衝突による局所的な荷重を想定する。前述した第1樹脂基板20の引張弾性率は、ガラス基板の弾性率の70GPaよりも小さいので、第1樹脂基板20では、受けた荷重S1に対してz軸の負方向にたわむことによって、荷重S2が生じる。荷重S2は、たわみに応じたx-y平面での局所的な荷重である。
 第1樹脂層22は、第1樹脂基板20、第2樹脂層24、第3樹脂層26のそれぞれの引張弾性率よりも小さい引張弾性率を有し、かつそれらよりも大きい損失係数を有するので、第1樹脂基板20のたわみをある程度吸収する。これは、第1樹脂層22における荷重S3の大きさは、第1樹脂基板20における荷重S2の大きさよりも小さいことに相当する。しかしながら、荷重S3は、荷重S2と同様に、z軸の負方向を向いたx-y平面での局所的な荷重である。
 第2樹脂層24は、第1樹脂層22と比較して、大きい引張弾性率と小さい損失係数を有する。つまり、第2樹脂層24は、第1樹脂層22よりも硬く形成されている。そのため、第2樹脂層24は、荷重S3によって、x-y平面で面押しされることによって、荷重S3よりもx-y平面で分散し、かつz軸の負方向を向いた荷重S4を生じる。つまり、荷重S4は、荷重S1と比較して、小さく、かつx-y平面で分散している。
 太陽電池セル10、タブ配線12、接続配線14に加えられる荷重S4が、小さく、かつx-y平面で分散しているので、太陽電池セル10、タブ配線12、接続配線14が破損するおそれは低減される。また、第3樹脂層26が、第2樹脂層24と同一の材料で形成されている場合、太陽電池セル10、タブ配線12、接続配線14を封止している第2樹脂層24と第3樹脂層26のそれぞれの引張弾性率と損失係数も同一になる。それらが同一であると、第2樹脂層24と第3樹脂層26の境界部分であっても、荷重が連続するので、太陽電池セル10、タブ配線12、接続配線14に加えられる荷重の方向の多様性が制限される。一方、第3樹脂層26が、第2樹脂層24よりも小さい引張弾性率の材料で形成されている場合、第3樹脂層26において荷重がさらに吸収される。図2に戻る。
 第2樹脂基板28は、第3樹脂層26のz軸の負方向側に配置される。第2樹脂基板28は、バックシートとして太陽電池モジュール100の裏面側を保護する。そのため、第1樹脂基板20を樹脂基板とよぶ場合に、第2樹脂基板28は別の樹脂基板に相当する。第2樹脂基板28には、例えば、ガラスエポキシ樹脂が使用される。ガラスエポキシ樹脂の引張弾性率は20~25GPaであるので、第2樹脂基板28の引張弾性率は、第1樹脂基板20の引張弾性率よりも大きくなる。
 なお、第2樹脂基板28には、第1樹脂基板20と同様にポリカーボネート樹脂が使用されてもよい。その場合、第2樹脂基板28の引張弾性率を第1樹脂基板20の引張弾性率よりも大きくするために、第2樹脂基板28は、第1樹脂基板20よりもz軸方向に厚くなるように形成される。さらに、第2樹脂基板28には、FRP(Fiber Reinforced Plastic)が使用されていてもよい。具体的には、第2樹脂基板28には、GFRP(Glass Fiber Reinforced Plastic)、CFRP(Carbon Fiber Reinforced Plastics)が使用されてもよい。GFRPの引張弾性率は5~30GPaであり、CFRPの引張弾性率は10~150GPaである。
 ここでは、第2樹脂基板28の引張弾性率を第1樹脂基板20の引張弾性率よりも大きくする理由を図4(a)-(b)を使用しながら説明する。図4(a)-(b)は、太陽電池モジュール100における中立軸30を示す。図4(a)は、図2の一部を示した部分断面図であるが、z軸の方向が逆になっており、図4(a)の上側が受光面側に相当する。ここでは、太陽電池モジュール100よりもz軸の正方向側にポイントPを想定するとともに、ポイントPを中心にして、太陽電池モジュール100の裏面側が突出するように、太陽電池モジュール100に対して曲げモーメントを加えた場合を想定する。
 第2樹脂基板28の引張弾性率が第1樹脂基板20の引張弾性率よりも大きい場合、第3樹脂層26に中立軸30が存在する。中立軸30とは、材料に曲げモーメントを加えても、材料が負荷を受けない部分のことである。さらに、中立軸30からポイントPに向かう部分には、圧縮応力が加わり、中立軸30からポイントPの逆方向の部分には、引張応力が加わる。そのため、第2樹脂基板28と第1樹脂基板20との厚みが同じであれば、第2樹脂基板28の引張弾性率が第1樹脂基板20の引張弾性率よりも大きい場合、太陽電池セル10には圧縮応力が加わる。太陽電池セル10は、一般的に引張応力に弱いが、圧縮応力に強い。このように、第2樹脂基板28の引張弾性率を第1樹脂基板20の引張弾性率よりも大きくすることよって、太陽電池セル10の破損の発生が抑制される。
 図4(b)は、太陽電池モジュール100の比較対象となる太陽電池モジュール200を示す。太陽電池モジュール200における太陽電池セル210、第1樹脂基板220、第1樹脂層222、第2樹脂層224、第3樹脂層226は、太陽電池セル10、第1樹脂基板20、第1樹脂層22、第2樹脂層24、第3樹脂層26にそれぞれ対応する。一方、第2樹脂基板228は、第1樹脂基板220よりも引張弾性率が小さい材料によって形成される。このような違いによって、中立軸230は、中立軸30よりもポイントP側の第2樹脂層224に存在する。そのため、太陽電池セル210には引張応力が加わり、図4(a)の場合よりも太陽電池セル210の破損の発生が生じやすくなる。図2に戻る。
 これまでは、太陽電池モジュール100の耐衝撃性の向上を目的として、第1樹脂基板20等の引張弾性率を中心に説明した。以下では、太陽電池モジュール100の耐水性の向上を目的とした観点から説明する。前述のごとく、太陽電池モジュール100を軽量化するために、第1樹脂基板20には、ガラス基板ではなく、ポリカーボネート樹脂が使用される。ガラス基板の水蒸気透過度はほぼ0であるが、ポリカーボネート樹脂の水蒸気透過度は40~50g/m/dayであるので、後者の方が水分を透過しやすい。このような状況下において、耐水性を向上するために、第1樹脂層22の水蒸気透過度よりも小さい水蒸気透過度を有する第2樹脂層24が使用される。第2樹脂層24を使用することにより、太陽電池セル10に水分が到達する可能性が低減される。
 以下では、太陽電池モジュール100に対する衝撃落下試験結果を説明することによって、太陽電池モジュール100の効果を説明する。表1は、太陽電池モジュール100に対する衝撃落下試験結果を示す。ここでは、衝撃落下試験として、JIS C8917:2005「結晶系太陽電池モジュールの環境試験方法及び耐久性試験方法」の「附属書7 降ひょう(雹)試験 A-8」に規定された試験がなされる。実施例1では、第1樹脂基板20、第1樹脂層22、第2樹脂層24、第3樹脂層26、第2樹脂基板28が、ポリカーボネート樹脂、シリコーンゲル、充填材、充填材、ガラスエポキシ樹脂で形成される。実施例1では、鋼球あるいは氷球を100cmから落下させた場合であっても、破壊されない。
Figure JPOXMLDOC01-appb-T000001
 一方、比較例1では、第1樹脂基板20、第1樹脂層22、第2樹脂層24、第3樹脂層26、第2樹脂基板28に対応するように、ポリカーボネート樹脂、充填材、充填材、充填材、ガラスエポキシ樹脂が使用される。比較例1では、鋼球あるいは氷球を50cmから落下させた場合に破壊されないが、100cm、80cmから落下させた場合に破壊される。さらに、比較例2では、第1樹脂基板20、第2樹脂層24、第3樹脂層26、第2樹脂基板28に対応するように、ガラス、充填材、充填材、PET(ポリエチレンテレフタレート)樹脂が使用される。比較例2では、鋼球あるいは氷球を100cmから落下させた場合であっても、破壊されない。つまり、実施例1の耐衝撃性は、比較例1の耐衝撃性よりも向上している。一方、試験の範囲において、実施例1の耐衝撃性は、比較例2の耐衝撃性と同等である。
 次に、別の樹脂基板の曲げ剛性を、樹脂基板の曲げ剛性より大きくした場合の例を説明する。本実施形態の太陽電池モジュール100において、別の樹脂基板(第2樹脂基板28)の曲げ剛性は、樹脂基板(第1樹脂基板20)の曲げ剛性よりも大きいことが好ましい。具体的には、第2樹脂基板28の1m幅当たりの曲げ剛性は、第1樹脂基板20の1m幅当たりの曲げ剛性よりも大きいことが好ましい。このようにすることにより、ヒョウ等の衝突に対する太陽電池モジュール100の耐衝撃性を向上させることができる。
 なお、曲げ剛性は、次の式(1)のように、表される。
  [数1]
 曲げ剛性(N・m)=曲げ弾性率(Pa)×断面二次モーメント(m) (1)
 曲げ弾性率は、次のように、JIS K7171:2016(プラスチック-曲げ特性の求め方)により測定することができる。なお、曲げ弾性率は、例えば、試験温度25℃、試験速度5mm/minで試験片を圧縮することにより測定することができる。
  [数2]
 E=(σf2-σf1)/(εf2-εf1) (2)
 上記式(2)において、Eは曲げ弾性率(Pa)、σf1はたわみsで測定した曲げ応力(Pa)、σf2はたわみsで測定した曲げ応力(Pa)、εfiは曲げひずみ(ε=0.0005及びε=0.0025)を表す。
 たわみは、次の式(3)によって算出される。
  [数3]
 s=εfi/6h (3)
 上記式(3)において、sはたわみ(mm)、εfiは曲げひずみ(ε=0.0005及びε=0.0025)、Lは支点間距離(mm)、hは試験片の平均厚さ(mm)を表す。
 断面二次モーメントは、断面が直方体の場合、次の式(4)のように、表される。
  [数4]
 I=bh/12 (4)
 上記式(4)において、Iは断面二次モーメント(m)、bは断面の幅(m)、hは断面の高さ(m)を表す。
 第2樹脂基板28の曲げ剛性を第1樹脂基板20の曲げ剛性よりも小さくした場合の耐衝撃性を、以下の実施例により評価した。ただし、本実施形態はこれらの実施例に限定されるものではない。
[実施例2]
 厚さ1mmの第1樹脂基板、厚さ1mmの第1樹脂層、厚さ0.6mmの第2樹脂層、光電変換部、厚さ0.6mmの第3樹脂層、厚さ1mmの第2樹脂基板を上から順に積層して145℃で減圧しながら圧縮加熱することにより太陽電池モジュールを作製した。第1樹脂基板は、ポリカーボネート(PC)を用いた。第1樹脂層は、ゲルを用いた。第2樹脂層は、ポリオレフィン(PO)を用いた。光電変換部は、太陽電池セルを用いた。第3樹脂層は、ポリオレフィン(PO)を用いた。第2樹脂基板は、ポリカーボネート(PC)(曲げ弾性率2.3GPa)を用いた。
[実施例3]
 第2樹脂基板をガラスエポキシ(曲げ弾性率20GPa)とした以外は、実施例2と同様に太陽電池モジュールを作製した。
[実施例4]
 第2樹脂基板をガラスエポキシ(曲げ弾性率20GPa)とし、第2樹脂基板の厚さを2mmとした以外は、実施例2と同様に太陽電池モジュールを作製した。
 (耐衝撃性)
 耐衝撃性は、JIS C8917:1998(結晶系太陽電池モジュールの環境試験方法及び耐久性試験方法)の附属書7に規定の降ひょう試験に準拠し、以下のような試験条件にて試験を実施した。すなわち、各例の太陽電池モジュールに、質量227±2g、直径約38mmの鋼球を1m及び20cmの高さから力を加えずに、太陽電池モジュールの第1樹脂基板20の中心点に落下させた。そして、1mの高さにおいて光電変換部が破損しなかったものを○、20cmの高さにおいて光電変換部が破損せず1mの高さにおいて光電変換部が破損したものを△、20cmの高さにおいて光電変換部が破損したものを×と評価した。なお、曲げ剛性は、実施例2の曲げ剛性を1とした場合の比率で示してある。
Figure JPOXMLDOC01-appb-T000002
 各実施例の耐衝撃性を降ひょう試験により評価したところ、表2のように、実施例2及び3の太陽電池モジュールにおいては、20cmの高さにおいて光電変換部が破損しなかったが、1mの高さにおいて光電変換部が破損した。一方、実施例4の太陽電池モジュールにおいては、1mの高さにおいても光電変換部が破損しなかった。
 実施例2~4の結果より、第2樹脂基板28の曲げ剛性が、第1樹脂基板20の曲げ剛性より大きい場合に、耐衝撃性が向上することが確認できた。おそらく、第2樹脂基板28の曲げ剛性が大きいことにより、衝撃時のモジュール全体のたわみを抑制することができ、太陽電池モジュール100の破壊が抑制できたものと考えられる。そのため、本実施形態においては、第2樹脂基板28の曲げ剛性は、第1樹脂基板20の曲げ剛性よりも大きいことが好ましい。すなわち、太陽電池モジュール100は、第3樹脂層26上に配置され、第1樹脂基板20よりも大きい曲げ剛性を有する第2樹脂基板28をさらに備えることが好ましい。
 また、特に限定されないが、第2樹脂基板28の熱膨張率は、第1樹脂基板20の熱膨張率よりも小さいことが好ましい。このようにすることにより、太陽電池モジュール100の耐熱衝撃性が向上し、温度変化によるタブ配線12の切断を抑制することができる。
 第2樹脂基板28の線膨張率を第1樹脂基板20の線膨張率よりも小さくした場合の耐熱衝撃性を、以下の実施例により評価した。ただし、本実施形態はこれらの実施例に限定されるものではない。
[実施例5]
 厚さ1mmの第1樹脂基板、厚さ1mmの第1樹脂層、厚さ0.6mmの第2樹脂層、光電変換部、厚さ0.6mmの第3樹脂層、厚さ2mmの第2樹脂基板を上から順に積層して145℃で減圧しながら圧縮加熱することにより太陽電池モジュールを作製した。第1樹脂基板20は、ポリカーボネート(PC)(線膨張率70×10-6-1)を用いた。第1樹脂層は、ゲルを用いた。第2樹脂層は、エチレン-酢酸ビニル共重合体(EVA)を用いた。光電変換部は、太陽電池セルを用いた。第3樹脂層は、エチレン-酢酸ビニル共重合体(EVA)を用いた。第2樹脂基板は、炭素繊維強化プラスチック(CFRP)(線膨張率2.5×10-6-1)を用いた。
[実施例6]
 第2樹脂基板にガラスエポキシ(線膨張率20×10-6-1)を用いた以外は、実施例5と同様に太陽電池モジュールを作製した。
[比較例3]
 第2樹脂基板にガラス(線膨張率9×10-6-1)を用いた以外は、実施例5と同様に太陽電池モジュールを作製した。
[比較例4]
 第1樹脂層を設けないこと以外は、実施例5と同様に太陽電池モジュールを作製した。
[比較例5]
 第1樹脂層を設けず、第2樹脂基板にガラス(線膨張率9×10-6-1)を用いた以外は、実施例5と同様に太陽電池モジュールを作製した。
[比較例6]
 第1樹脂層を設けず、第2樹脂基板にガラスエポキシ(線膨張率20×10-6-1)を用いた以外は、実施例5と同様に太陽電池モジュールを作製した。
[比較例7]
 第1樹脂層を設けず、第2樹脂基板にポリカーボネート(PC)(線膨張率70×10-6-1)を用いた以外は、実施例5と同様に太陽電池モジュールを作製した。
 (耐熱衝撃性)
 耐熱衝撃性は、JIS C8990:2009(IEC61215:2005)(地上設置の結晶シリコン太陽電池(PV)モジュール-設計適格性確認及び形式認証のための要求事項)の温度サイクル試験に準じ、以下のような試験条件にて試験を実施した。すなわち、各実施例の太陽電池モジュールを試験槽内に設置し、太陽電池モジュールの温度を-40℃±2℃と+85℃±2℃との間で周期的に変化させた。このような温度サイクル試験を25サイクル、50サイクル及び200サイクル行った後、目視にて太陽電池セルを互いに接続するタブ配線を確認した。そして、200サイクルでタブ配線が切断しなかったものを◎、50サイクルでタブ配線が切断せず200サイクルでタブ配線が切断したものを○と評価した。また、25サイクルでタブ配線が切断せず50サイクルでタブ配線が切断したものを△、25サイクルでタブ配線が切断したものを×と評価した。なお、下限と上限との間の温度変化速度を約1.4℃/時間、下限温度の保持時間を60分、上限温度の保持時間を1時間20分とし、1サイクルの時間を5時間20分とした。また、温度サイクル試験は少なくとも3回実施した。
Figure JPOXMLDOC01-appb-T000003
 各実施例の耐熱衝撃性を温度サイクル試験により評価したところ、表3のように、実施例5の太陽電池モジュールにおいては、200サイクル後であってもタブ配線は切断しなかった。一方、比較例3及び4の太陽電池モジュールにおいては、50サイクル後ではタブ配線は切断しなかったが、200サイクル後ではタブ配線が切断した。また、実施例6及び比較例5の太陽電池モジュールにおいては、25サイクル後ではタブ配線は切断しなかったが、50サイクル後ではタブ配線が切断した。また、比較例6及び比較例7の太陽電池モジュールにおいては、25サイクル後でもタブ配線が切断した。そのため、第2樹脂基板28の線膨張率を第1樹脂基板20の線膨張率よりも小さくすることにより、太陽電池モジュール100の耐熱衝撃性を向上させることができることが確認できた。また、実施例5,実施例6及び比較例3、並びに比較例4~6の比較により、引張弾性率の比較的小さいゲルを第1樹脂層に用いることにより、耐熱衝撃性を向上させることも確認できた。
 実施例5及び6並びに比較例3~7の結果より、第2樹脂基板28の線膨張率が、第1樹脂基板20の線膨張率より小さい場合に、耐熱衝撃性が向上することが確認できた。おそらく、第2樹脂基板28の熱膨張率が小さいことにより、光電変換部周辺の樹脂層の熱伸縮を抑制することができ、タブ配線の切断が抑制できたものと考えられる。そのため、本実施形態においては、第2樹脂基板28の熱膨張率は、第1樹脂基板20の熱膨張率よりも小さいことが好ましい。すなわち、太陽電池モジュール100は、第3樹脂層26上に配置され、第1樹脂基板20よりも小さい熱膨張率を有する第2樹脂基板28をさらに備えることが好ましい。
 第2樹脂基板28の厚みは、特に限定されないが、0.1mm以上10mm以下であることが好ましく、0.2mm以上5.0mm以下であることがより好ましい。このような範囲とすることによって、第2樹脂基板28のたわみを抑制し、太陽電池モジュール100をより軽量化できる。
 第2樹脂基板28の引張弾性率は特に限定されないが、1.0GPa以上200GPa以下であることが好ましく、10GPa以上100GPa以下であることがより好ましい。また第2樹脂基板28の引張弾性率は、第1樹脂層22よりも大きいことが好ましい。すなわち、第1樹脂層22の引張弾性率は、第1樹脂基板20、第3樹脂層26及び第2樹脂基板28のそれぞれの引張弾性率よりも小さいことが好ましい。
 これまで説明した太陽電池モジュール100の製造方法を説明する。太陽電池モジュール100は、太陽電池ストリング16を、第1樹脂基板20、第1樹脂層22、第2樹脂層24、第3樹脂層26、第2樹脂基板28によってラミネートすることにより製造される。ラミネート装置では、例えばヒーター上に、第1樹脂基板20、第1樹脂層22を構成する樹脂シート、第2樹脂層24を構成する樹脂シート、太陽電池セル10のストリング、第3樹脂層26を構成する樹脂シート、第2樹脂基板28が順に積層される。この積層体は、例えば真空状態で150℃程度に加熱される。その後、大気圧下でヒーター側に各構成部材を押し付けながら加熱を継続し、樹脂シートの樹脂成分を架橋させる。さらに、この積層体にフレームが取り付けられることによって、太陽電池モジュール100が得られる。
 本実施形態によれば、第1樹脂層22の引張弾性率を、第1樹脂基板20、第2樹脂層24、第3樹脂層26のそれぞれの引張弾性率よりも小さくするので、外部からの荷重を第1樹脂層22において小さくできる。また、太陽電池セル10等に接している第2樹脂層24の引張弾性率を第1樹脂層22の引張弾性率よりも大きくするので、荷重を分散させることができる。また、太陽電池セル10等に加わる荷重は、小さくされ、かつ分散されているので、太陽電池セル10等の破損を抑制できる。また、太陽電池セル10等の破損が抑制されるので、太陽電池モジュール100の耐衝撃性を向上できる。
 また、第2樹脂層24と第3樹脂層26とによって太陽電池セル10等を挟むので、太陽電池セル10等を安定するように固定できる。また、第2樹脂層24と第3樹脂層26とによって太陽電池セル10等が密封されるので、太陽電池セル10等をより固定できる。また、第2樹脂層24と第3樹脂層26とが同一の材料で形成された場合は、太陽電池セル10等に加わる荷重の方向がさまざまになることを抑制できる。また、第2樹脂層24と第3樹脂層26とを異なった材料で形成し、第3樹脂層26の引張弾性率を第2樹脂層24の引張弾性率よりも小さくした場合は、太陽電池セル10等に加わる荷重を低減できる。
 また、第3樹脂層26上に第2樹脂基板28が配置されるので、裏面側からも太陽電池モジュール100を保護できる。また、第2樹脂基板28の引張弾性率が第1樹脂基板20の引張弾性率よりも大きいので、太陽電池セル10に引張応力が加わる状況の発生を抑制できる。また、太陽電池セル10に引張応力が加わる状況の発生が抑制されるので、太陽電池セル10の破損の発生を抑制できる。また、第2樹脂層24の水蒸気透過度が、第1樹脂層22の水蒸気透過度よりも小さいので、水分が太陽電池セル10に到達することを抑制できる。また、太陽電池セル10への水分の到達が抑制されるので、太陽電池セル10の故障発生を抑制できる。
 本実施形態の概要は、次の通りである。本実施形態のある態様の太陽電池モジュール100は、樹脂基板(第1樹脂基板20)と、第1樹脂層22と、第2樹脂層24と、第2樹脂層24上に配置される光電変換部(太陽電池セル10、太陽電池ストリング16)と、第3樹脂層26とを備える。第1樹脂層22は、樹脂基板上に配置される。第2樹脂層24は、第1樹脂層22上に配置される。第3樹脂層26は、光電変換部と第2樹脂層24との上に配置される。第1樹脂層22の引張弾性率は、樹脂基板、第2樹脂層24、第3樹脂層26のそれぞれの引張弾性率よりも小さい。
 第2樹脂層24の水蒸気透過度は、第1樹脂層22の水蒸気透過度よりも小さくてもよい。
 光電変換部は、受光面および裏面を有する平板状に形成され、光電変換部の受光面は、第2樹脂層24と接するように配置され、光電変換部の裏面は、第3樹脂層26と接するように配置されてもよい。
 光電変換部は、第2樹脂層24と第3樹脂層26とによって密封されてもよい。
 第2樹脂層24と第3樹脂層26とは、同一の材料で形成されてもよい。
 第2樹脂層24と第3樹脂層26とは、異なった材料で形成され、第3樹脂層26の引張弾性率は、第2樹脂層24の引張弾性率よりも小さくてもよい。
 第3樹脂層26上に配置される別の樹脂基板(第2樹脂基板28)をさらに備えてもよい。
 別の樹脂基板の引張弾性率は、樹脂基板の引張弾性率よりも大きくてもよい。
 本実施形態の他の態様の太陽電池モジュール100は、樹脂基板(第1樹脂基板20)と、第1樹脂層22と、第2樹脂層24と、第2樹脂層24上に配置される光電変換部(太陽電池セル10、太陽電池ストリング16)と、第3樹脂層26とを備える。第1樹脂層22は、樹脂基板上に配置される。第2樹脂層24は、第1樹脂層22上に配置される。第3樹脂層26は、光電変換部と第2樹脂層24との上に配置される。隣接した光電変換部は互いにタブ配線12で電気的に接続されている。第1樹脂層22の引張弾性率は、樹脂基板、第2樹脂層24、第3樹脂層26のそれぞれの引張弾性率よりも小さい。
(実施形態2)
 次に、実施形態2を説明する。実施形態2は、実施形態1と同様に、複数の太陽電池セルを備えた太陽電池モジュールに関する。さらに、太陽電池モジュールには、樹脂基板を使用する場合であっても、耐衝撃性の向上が望まれる。実施形態2に係る太陽電池モジュールは、これまでと同様に構成されるが、z軸方向の構成の対称性を向上することによって、そりの発生を抑制する。以下では、これまでとの差異を中心に説明する。
 図5は、本実施形態2に係る太陽電池モジュール100を示す断面図である。図5は、図2と同様に示される。太陽電池モジュール100は、太陽電池セル10、タブ配線12、接続配線14、太陽電池ストリング16、第1樹脂基板20、第1樹脂層22、第2樹脂層24、第3樹脂層26、第2樹脂基板28、第4樹脂層40を含む。太陽電池セル10、タブ配線12、接続配線14、太陽電池ストリング16、第1樹脂基板20、第1樹脂層22、第2樹脂層24、第3樹脂層26、第2樹脂基板28は、これまでと同様であるので、ここでは説明を省略する。
 第4樹脂層40は、第2樹脂基板28と第3樹脂層26との間に配置される。第4樹脂層40には、第1樹脂層22と同様に、シリコーンゲル、アクリルゲル、ウレタンゲル等のゲルが使用され、例えば、第1樹脂層22と同一の材料が使用される。そのため、第4樹脂層40の引張弾性率は、第1樹脂基板20、第2樹脂層24、第3樹脂層26、第2樹脂基板28のそれぞれの引張弾性率よりも小さくされる。
 本実施形態によれば、第2樹脂基板28と第3樹脂層26との間に第4樹脂層40が配置される。第4樹脂層40の引張弾性率が、第1樹脂基板20、第2樹脂層24、第3樹脂層26、第2樹脂基板28のそれぞれの引張弾性率よりも小さいので、厚さ方向の構成の対称性を向上できる。また、厚さ方向の構成の対称性が向上されるので、太陽電池モジュール100におけるそりの発生を抑制できる。また、太陽電池モジュール100におけるそりの発生が抑制されるので、太陽電池モジュール100の耐衝撃性を向上できる。
 本実施形態の概要は、次の通りである。別の樹脂基板(第2樹脂基板28)と第3樹脂層26との間に配置される第4樹脂層40をさらに備えてもよい。第4樹脂層40の引張弾性率は、樹脂基板(第1樹脂基板20)、第2樹脂層24、第3樹脂層26、別の樹脂基板のそれぞれの引張弾性率よりも小さい。
(実施形態3)
 次に、実施形態3を説明する。実施形態3は、実施形態1と同様に、複数の太陽電池セルを備えた太陽電池モジュールに関する。さらに、太陽電池モジュールには、樹脂基板を使用する場合であっても、耐熱衝撃性の向上が望まれる。実施形態3に係る太陽電池モジュールは、これまでと同様に構成されるが、太陽電池モジュールが低熱膨張層をさらに備えることにより、耐熱衝撃性を向上させる。以下では、これまでとの差異を中心に説明する。
 <低熱膨張層50>
 第2樹脂基板28の線膨張率を第1樹脂基板20の線膨張率より小さくすることにより、太陽電池モジュール100の耐熱衝撃性を向上させることが実施例5及び6並びに比較例3~7により確認できている。このような効果は、光電変換部10と第2樹脂基板28との間に、低熱膨張層50を設けることによっても実現することができる。そのため、低熱膨張層50は、光電変換部10と第2樹脂基板28との間に配置されることが好ましい。具体的には、図6に示すように、太陽電池モジュール100は、第3樹脂層26上に配置され、第1樹脂基板20よりも小さい熱膨張率を有する低熱膨張層50をさらに備えることが好ましい。
 低熱膨張層50の形状は、特に限定されず、用途に応じて円形、楕円形、矩形などの多角形とすることができる。また、低熱膨張層50の大きさも、特に限定されず、低熱膨張層50はタブ配線12に沿って配置することができる。このように配置することにより、比較的高価な低熱膨張層50を用いた場合であっても、太陽電池モジュール100を低廉に抑えることができ、かつ、耐熱衝撃性を向上させることができる。なお、低熱膨張層50をタブ配線12に沿って配置するとは、低熱膨張層50を光電変換部10の鉛直方向上方に接するように配置してもよく、低熱膨張層50を光電変換部10の鉛直方向上方に他の層を介して配置することもできる。ここで、鉛直方向上方とは、太陽電池モジュール100の積層方向(z軸方向)上方をいう。また、耐熱衝撃性をより向上させるという観点からは、低熱膨張層50は、光電変換部10と第2樹脂基板28との間に配置される樹脂層の上面全体を覆うように配置されていることが好ましい。具体的には、低熱膨張層50は、第3樹脂層26上に接触して配置され、第3樹脂層26の上面全体を覆うように配置されていることが好ましい。 
 低熱膨張層50を形成する材料は特に限定されないが、例えば、ガラス、紙、ガラス繊維、セラミックシート、CFRPシートなどが挙げられる。なお、低熱膨張層50を形成する材料は、ガラス以下の低熱膨張率を有することが好ましい。具体的には、線膨張率が0より大きく10×10-6-1以下である事が好ましい。
 以上の通り、本実施形態の太陽電池モジュール100は、第3樹脂層26上に配置され、樹脂基板(第1樹脂基板20)よりも小さい熱膨張率を有する低熱膨張層50をさらに備えていてもよい。そのため、太陽電池モジュール100の耐熱衝撃性を向上させることができる。
(実施形態4)
 次に、実施形態4を説明する。実施形態4は、実施形態1と同様に、複数の太陽電池セルを備えた太陽電池モジュールに関する。さらに、太陽電池モジュールには、耐熱衝撃性を改善することが望まれる。実施形態4に係る太陽電池モジュールは、これまでと同様に構成されるが、潤滑層をさらに備える。以下では、これまでとの差異を中心に説明する。
 <潤滑層60>
 図7のように、太陽電池モジュール100は、第1樹脂基板20と第1樹脂層22との間に配置され、第1樹脂基板20と第1樹脂層22との間の静摩擦係数が0.0001~0.1である潤滑層60をさらに備えることが好ましい。太陽電池モジュール100がこのような潤滑層60をさらに備えることにより、第1樹脂基板20の熱伸縮が、潤滑層60による潤滑効果により、第1樹脂層22に直接伝わるのを抑制することができる。そのため、第1樹脂基板20の熱伸縮に由来するタブ配線12の切断をより抑制することができ、太陽電池モジュール100の耐熱衝撃性を向上させることができる。また、第1樹脂基板20と第1樹脂層22との間の静摩擦係数を0.0001以上とすることにより、太陽電池モジュール100の耐熱衝撃性が良好になるため好ましい。また、第1樹脂基板20と第1樹脂層22との間の静摩擦係数を0.1以下とすることにより、第1樹脂基板20と第1樹脂層22との間の密着性が良好になるため好ましい。
 第1樹脂基板20と第1樹脂層22との間の静摩擦係数は、例えばJIS K7125:1999(プラスチック-フィルム及びシート-摩擦係数試験方法)に記載された方法に準じて測定することができる。
 潤滑層60を形成する材料は、グリースを含むことが好ましい。グリースは外力を受けた場合に、外力が降伏値より小さい間は流体抵抗が大きいが、外力が降伏値以上になると流動を始める。そのため、太陽電池モジュール100の耐熱衝撃性を向上させるとともに、太陽電池モジュール100の取り扱いを容易にすることができる。
 グリースは、基油に増ちょう剤を混ぜて作った半固体状又は固体状の潤滑剤である。また、グリースは、基油及び増ちょう剤に加えて、分散剤及び酸化防止剤などを必要に応じて添加してもよい。
 基油としては、例えば精製鉱油、合成潤滑油及びこれらの混合油などが挙げられる。精製鉱油としては、例えば原油を蒸留することにより得ることができる。合成潤滑油としては、例えばポリオレフィン、ポリエステル、ポリアルキレングリコール、アルキルベンゼン、アルキルナフタレンなどが挙げられる。
 増ちょう剤としては、例えば石けん系増ちょう剤及び非石けん系増ちょう剤などが挙げられる。石けん系増ちょう剤としては、例えばカルシウム石けん、アルミニウム石けん、リチウム石けんなどの金属石けん系増ちょう剤、カルシウムコンプレックス、アルミニウムコンプレックス、リチウムコンプレックスなどの複合型石けん系増ちょう剤などが挙げられる。非石けん系増ちょう剤としては、例えばジウレア、トリウレア及びポリウレアなどのウレア系増ちょう剤、ポリテトラフルオロエチレン(PTFE)、ナトリウムテレフレートなどの有機系増ちょう剤、ベントナイト、シリカゲルなどの無機系増ちょう剤などが挙げられる。
 グリースとしては、例えばシリコン系グリース、シリコーン系グリース、フルオロエーテル系グリース、フルオロアルキル系グリースなどが挙げられる。これらの中でも、耐熱性の観点から、グリースは、シリコーン系グリース及びフルオロアルキル系グリース(テフロン(登録商標)系グリース)の少なくともいずれか一方を含むことが好ましい。
 グリースは、-40℃~150℃において半固体状であることが好ましい。グリースを-40℃~150℃において半固体状にすることにより、液漏れが少なくすることができ、太陽電池モジュール100の取り扱いを容易にすることができる。
 グリースの滴点は150℃以下であることが好ましい。グリースの滴点をこのような範囲とすることにより、太陽電池モジュール100が高温になった場合であっても、第1樹脂基板20と第1樹脂層22との間の潤滑性を長期間維持することができる。なお、滴点は、例えばJIS K2200:2013(グリース)に規定された滴点試験方法により測定することができる。
 グリースの融点は-40℃以上であることが好ましい。グリースの融点をこのような範囲とすることにより、寒冷地においても、第1樹脂基板20と第1樹脂層22との間の潤滑性を維持することができ、太陽電池モジュール100の耐熱衝撃性を向上させることができる。
 -40℃における第1樹脂基板20と第1樹脂層22との間の静摩擦係数は、0.0001~0.1であることが好ましい。-40℃における第1樹脂基板20と第1樹脂層22との間の静摩擦係数をこのような範囲とすることにより、寒冷地においても、太陽電池モジュール100の耐熱衝撃性を向上させることができる。
 潤滑層60の厚みは、0.01μm~100μmであることが好ましい。なお、密着性の観点からは、潤滑層60の厚みは、0.01μm~75μmであることが好ましく、0.01μm~50μmであることが更に好ましい。
 以上の通り、本実施形態の太陽電池モジュール100は、樹脂基板(第1樹脂基板20)と第1樹脂層22との間に設けられた潤滑層60をさらに備えていてもよい。そして、樹脂基板と第1樹脂層22との静摩擦係数が0.0001~0.1である。そのため、太陽電池モジュール100の耐熱衝撃性を向上させることができる。
(実施形態5)
 次に、実施形態5を説明する。実施形態5は、実施形態1と同様に、複数の太陽電池セルを備えた太陽電池モジュールに関する。さらに、太陽電池モジュールには、太陽電池モジュール内に発生する気泡を小さくすることが望まれる。実施形態5に係る太陽電池モジュールは、これまでと同様に構成されるが、第1樹脂層22にスリット23を設けることによって気泡を小さくする。以下では、これまでとの差異を中心に説明する。
 図8に示すように、第1樹脂層22を形成する材料がゲルの場合、第1樹脂層22はスリット23を含むことが好ましい。すなわち、第1樹脂層22はゲルであり、第1樹脂層22はスリット23を含むことが好ましい。第1樹脂層22にこのようなスリット23を設けることで、太陽電池モジュール100を長期間使用することにより発生した気泡や、太陽電池モジュール100の成形時に入り込んだ気泡が、スリット23を介して移動することができる。そのため、太陽電池モジュール100から気泡を抜けやすくすることができる。また、太陽電池モジュール100内の気泡が完全に抜けない場合であっても、気泡はスリット23を介して移動し、分散するため、気泡を小さくすることができる。そのため、太陽電池モジュール100内の気泡を、目視で確認しにくくすることができる。したがって、太陽電池モジュール100内の気泡による太陽光の遮断や、外観状の不具合を抑制することができる。
 スリット23を設ける位置は、特に限定されず、例えば第1樹脂層22の表面に設けることができる。具体的には、スリット23は、第1樹脂層22の第1樹脂基板20側の表面、及び第1樹脂層22の第3樹脂層26側の表面の少なくともいずれか一方に、設けることができる。なお、気泡を抜けやすくするには、図8に示すように、第1樹脂層22の第1樹脂基板20側の表面、及び第1樹脂層22の第3樹脂層26側の表面にスリット23が設けられていることが好ましい。
 太陽電池モジュール100の積層方向におけるスリット23の大きさは、第1樹脂層22の厚みに対して5%~99%であることが好ましい。スリット23の大きさをこのような範囲とすることにより、気泡の抜けをよくすることができ、第1樹脂層22の強度も維持することができる。また、スリット23の大きさをこのような範囲とすることにより、局所的な荷重を第1樹脂層22でより緩和させることができる。なお、太陽電池モジュール100の積層方向におけるスリット23の大きさは、第1樹脂層22の厚みに対して10%~50%であることがより好ましい。また、太陽電池モジュール100の積層方向に対して垂直方向(x軸及びy軸方向)におけるスリット23の大きさは特に限定されず、気泡の抜けや第1樹脂層22の強度などを考慮して定めることができる。
 太陽電池モジュール100の積層方向におけるスリット23の向きは、太陽電池モジュール100の積層方向と平行であることが好ましい。スリット23の向きをこのような向きにすることにより、光の入射方向とスリット23の方向が水平となり、スリット23により光の反射や屈折が生じにくくなる。そのため、スリット23の向きをこのような向きにすることにより、スリット23による光の損失を抑制することができる。なお、太陽電池モジュール100の積層方向に対して垂直方向(x軸及びy軸方向)におけるスリット23の向きは特に限定されず、用途に応じて適宜変更することができる。
 太陽電池モジュール100の積層方向に対して水平な断面において、スリット23間の距離は0.1mm~10mmであることが好ましく、0.5mm~2mmであることがより好ましく、0.8mm~1.2mmであることがさらに好ましい。スリット23間の距離をこのような範囲とすることにより、気泡の抜けを向上させるとともに、第1樹脂層22の強度を維持することができる。
 以上の通り、本実施形態の太陽電池モジュール100においては、第1樹脂層22はゲルにより形成されており、第1樹脂層22はスリット23を有していてもよい。そのため、太陽電池モジュール100内の気泡による太陽光の遮断や、外観状の不具合を抑制することができる。
(実施形態6)
 次に、実施形態6を説明する。実施形態6は、実施形態1と同様に、複数の太陽電池セルを備えた太陽電池モジュールに関する。さらに、太陽電池モジュールには、良好な外観を有することが望まれる。実施形態6に係る太陽電池モジュールは、これまでと同様に構成されるが、第1樹脂層22の屈折率と第1樹脂層22に隣接する樹脂層との屈折率の差を所定の範囲内にする。以下では、これまでとの差異を中心に説明する。
 本実施形態の太陽電池モジュール100においては、第1樹脂層22と第1樹脂層22に隣接する樹脂層との屈折率差が0.1以下であることが好ましい。より具体的には、第1樹脂層22と、第1樹脂層22に隣接する樹脂基板20の反対側の樹脂層との屈折率差が0.1以下であることが好ましい。例えば、第1樹脂層22と第2樹脂層24との屈折率差が0.1以下であることが好ましい。屈折率差をこのような範囲にすることにより、太陽電池モジュール100の外観をより良好にすることができる。具体的には、太陽電池モジュール100を上面から見た場合に、円形状の光の模様を確認しにくくすることができる。なお、第1樹脂層22と第1樹脂層22に隣接する樹脂層との屈折率差は0.05以下であることがより好ましい。
 円形状の光の模様が発生する理由は以下の通りであると考えられる。上述したように、第1樹脂層22の引張弾性率は第2樹脂層24の引張弾性率よりも小さいため、太陽電池モジュール100の耐衝撃性を向上させることができる。しかしながら、第1樹脂層22は第2樹脂層24と比較して柔軟性があるため、加熱しながら太陽電池モジュール100をラミネート成形した場合に、第1樹脂層22が変形して第1樹脂層22に凹凸が生じやすい。特に、真空状態で太陽電池モジュール100をラミネート成型した場合にこのような第1樹脂層22の凹凸が生じやすくなる。このような凹凸が生じた場合、図9の矢印で示すように、第1樹脂層22と、第1樹脂層22に隣接する樹脂層との界面において、光の屈折が生じる。この光の屈折により、円形状の光の模様が生じ、太陽電池モジュール100の外観に影響を及ぼしているのではないかと考えられる。
 第1樹脂層22と第1樹脂層22に隣接する樹脂層との屈折率差を0.1以下にした場合の太陽電池モジュール100の外観を、以下の実施例により評価した。ただし、本実施形態はこれらの実施例に限定されるものではない。
[実施例7]
 厚さ1mmの第1樹脂基板、厚さ1mmの第1樹脂層、厚さ0.6mmの第2樹脂層、光電変換部、厚さ0.6mmの第3樹脂層、厚さ2mmの第2樹脂基板を上から順に積層して145℃で減圧しながら圧縮加熱することにより太陽電池モジュールを作製した。第1樹脂基板は、ポリカーボネート(PC)を用いた。第1樹脂層は、1.49~1.53の屈折率を有するアクリルゲルを用いた。第2樹脂層は、1.54の屈折率を有するエチレン-酢酸ビニル共重合体(EVA)を用いた。光電変換部は、太陽電池セルを用いた。第3樹脂層は、エチレン-酢酸ビニル共重合体(EVA)を用いた。第2樹脂基板は、炭素繊維強化プラスチック(CFRP)を用いた。このとき、第1樹脂層と第2樹脂層の屈折率差は0.01~0.05であった。
[実施例8]
 第1樹脂層のアクリルゲルを1.43の屈折率を有するシリコーンゲルに代え、第1樹脂層と第2樹脂層の間に第5樹脂層を新たに配置した以外は、実施例7と同様にして太陽電池モジュールを作製した。なお、第5樹脂層は1.49~1.53の屈折率を有するアクリル樹脂により形成されている。このとき、第1樹脂層と第5樹脂層の屈折率差は0.06~0.10であった。
[実施例9]
 第1樹脂層のアクリルゲルを、1.43の屈折率を有するシリコーンゲルに代えた以外は、実施例7と同様にして太陽電池モジュールを作製した。このとき、第1樹脂層と第2樹脂層の屈折率差は0.11であった。
[実施例10]
 第5樹脂層のアクリル樹脂を、1.60の屈折率を有するポリエチレンテレフタレート(PET)に代えた以外は、実施例8と同様にして太陽電池モジュールを作製した。このとき、第1樹脂層と第5樹脂層の屈折率差は0.17であった。
[実施例11]
 第5樹脂層のアクリル樹脂を、1.60~1.63の屈折率を有するポリ塩化ビニリデン(PVDC)に代えた以外は、実施例8と同様にして太陽電池モジュールを作製した。このとき、第1樹脂層と第5樹脂層の屈折率差は0.17~0.20であった。
[比較例8]
 第1樹脂基板のポリカーボネート(PC)を、ガラスに代えた以外は実施例9と同様にして太陽電池モジュールを作製した。このとき、第1樹脂層と第2樹脂層の屈折率差は0.11であった。
[比較例9]
 第2樹脂層のエチレン-酢酸ビニル共重合体(EVA)を配置しない以外は、実施例9と同様にして太陽電池モジュールを作製した。
 [評価]
 各例で作製した太陽電池モジュールの外観を目視にて評価した。結果を表4に示す。また、参考として、実施例7~9の太陽電池モジュールの外観を図10に示す。
Figure JPOXMLDOC01-appb-T000004
 図10に示すように、実施例7の太陽電池モジュールは、円形状の光の模様が外観上確認できなかった。おそらく、第1樹脂層と第2樹脂層の屈折率差が0.05以下であるためと考えられる。また、図10に示すように、実施例8の太陽電池モジュールは、円形状の光の模様が外観上ほとんど確認できなかった。おそらく、第1樹脂層と第5樹脂層の屈折率差が0.1以下であるためと考えられる。
 一方、図10に示すように、実施例9の太陽電池モジュールは、円形状の光の模様が見られた。おそらく、第1樹脂層と第2樹脂層の屈折率差が0.1を超えているためであると考えられる。また、実施例10及び実施例11の太陽電池モジュールは、円形状の光の模様が見られた。おそらく、第1樹脂層と第5樹脂層の屈折率差が0.1を超えているためであると考えられる。
 なお、比較例8の太陽電池モジュールは、第1樹脂層と第2樹脂層の屈折率差が0.1を超えているにもかかわらず、円形状の光の模様が確認できなかった。おそらく、基板がガラスにより形成されており、樹脂基板のようにラミネート成型しても変形せず、第1樹脂層及び第2樹脂層の変形が抑制されたためと考えられる。ただし、比較例8の太陽電池モジュールは、ガラスが用いられているため、太陽電池モジュールが重くなってしまう。
 比較例9の太陽電池モジュールは、円形状の光の模様が外観上確認できなかった。おそらく、第1樹脂層が光電変換部に直接接しているため、第1樹脂層との界面における光の屈折が生じなかったためと考えられる。ただし、比較例9の太陽電池モジュールは第2樹脂層が配置されておらず、第1樹脂層で受けた荷重を分散することができないため、耐衝撃性が十分ではない。
 以上の通り、本実施形態の太陽電池モジュール100においては、第1樹脂層22と第1樹脂層22に隣接する樹脂層との屈折率差が0.1以下である。そのため、太陽電池モジュール100の外観をより良好にすることができる。
(実施形態7)
 次に、実施形態7を説明する。実施形態7は、実施形態1と同様に、複数の太陽電池セルを備えた太陽電池モジュールに関する。さらに、太陽電池モジュールには、長期間使用しても太陽電池モジュールに用いられる樹脂が変色しないことが望まれる。実施形態7に係る太陽電池モジュールは、これまでと同様に構成されるが、さらに酸素バリア層を備える。以下では、これまでとの差異を中心に説明する。
 本実施形態の太陽電池モジュール100は、第2樹脂層24より下及び第3樹脂層26より上にそれぞれ配置され、200cm/m・24h・atm以下の酸素透過度を有する酸素バリア層70をさらに備えることが好ましい。このような酸素バリア層70を備えることにより、太陽電池モジュール100内に進入する酸素の量を低減し、第2樹脂層24及び第3樹脂層26の内部で発生する酸素由来のラジカルの発生量を低減することができる。そのため、ラジカルによる樹脂の分解を抑制し、樹脂の変色を抑制することができる。
 本実施形態において、酸素バリア層70は、第2樹脂層24より下に配置することができる。具体的には、酸素バリア層70は、第2樹脂層24と第1樹脂層22との間に配置することができる。このとき、酸素バリア層70は第2樹脂層24と直接接していてもよいが、第2樹脂層24と直接接していなくてもよい。例えば、図11の実施形態のように、酸素バリア層70は、第1樹脂層22と第1樹脂基板20との間に配置することもできる。また、酸素バリア層70は、第1樹脂基板20の下に配置することもできる。なお、酸素バリア層70に加え、又は酸素バリア層70に代えて、第1樹脂基板20及び第1樹脂層22の少なくともいずれか一方の酸素透過度を200cm/m・24h・atm以下としてもよい。
 本実施形態において、酸素バリア層70は、第3樹脂層26より上に配置することができる。具体的には、例えば図11の実施形態のように、第3樹脂層26と第2樹脂基板28との間に配置することができる。このとき、図11の実施形態のように酸素バリア層70は第3樹脂層26と直接接していてもよいが、第3樹脂層26と直接接していなくてもよい。例えば、酸素バリア層70は、第2樹脂基板28の上に配置することができる。なお、酸素バリア層70に加え、又は酸素バリア層70に代えて、第2樹脂基板28の酸素透過度を200cm/m・24h・atm以下としてもよい。
 酸素バリア層70の酸素透過度は200cm/m・24h・atm以下が好ましく、0.001~200cm/m・24h・atmであることがより好ましい。酸素透過度をこのような範囲とすることにより、太陽電池モジュール100内の樹脂の変色を抑制することができる。なお、酸素透過度は、JIS K7126-2(プラスチック-フィルム及びシート-ガス透過度試験方法-第2部:等圧法)の規定に従って測定することができる。なお、酸素透過度は、測定温度23℃、測定湿度90%RHで測定することができる。
 酸素バリア層70を形成する材料としては、ポリ塩化ビニル(PVC)、ポリエチレンテレフタレート(PET)、無延伸ナイロン(CNY)、二軸延伸ナイロン(ONY)、ポリ塩化ビニリデン(PVDC)コート二軸延伸ポリプロピレン(OPP)、ポリ塩化ビニリデン(PVDC)コート二軸延伸ナイロン(ONY)、ポリ(メタキシリレンアジパミド)(ナイロンMXD6)、エチレン-ビニルアルコール共重合体(EVOH)、塩化ビニリデン-メチルアクリレート共重合体、アルミナコートPET、シリカコートPET、ナノコンポジット系コートPETなどを用いることができる。
 以上の通り、本実施形態の太陽電池モジュール100は、第2樹脂層24より下及び第3樹脂層26より上にそれぞれ配置され、200cm/m・24h・atm以下の酸素透過度を有する酸素バリア層70をさらに備えていてもよい。そのため、酸素由来のラジカルによる樹脂の分解を抑制し、樹脂の変色を抑制することができる。
 特願2015-240766号(出願日:2015年12月10日)の全内容は、ここに援用される。
 以上、実施例に沿って本発明の内容を説明したが、本実施形態はこれらの記載に限定されるものではなく、種々の変形及び改良が可能であることは、当業者には自明である。
 本実施形態の太陽電池モジュールは、第1樹脂層の引張弾性率は、樹脂基板、第2樹脂層、第3樹脂層のそれぞれの引張弾性率よりも小さい。そのため、本実施形態によれば、太陽電池モジュールの耐衝撃性を向上させることができる。
 10  太陽電池セル(光電変換部)
 12  タブ配線
 14  接続配線
 16  太陽電池ストリング(光電変換部)
 20  第1樹脂基板(樹脂基板)
 22  第1樹脂層
 23  スリット
 24  第2樹脂層
 26  第3樹脂層
 28  第2樹脂基板(別の樹脂基板)
 40  第4樹脂層
 50  低熱膨張層
 60  潤滑層
 70  酸素バリア層
 100 太陽電池モジュール

Claims (16)

  1.  樹脂基板と、
     前記樹脂基板上に配置される第1樹脂層と、
     前記第1樹脂層上に配置される第2樹脂層と、
     前記第2樹脂層上に配置される光電変換部と、
     前記光電変換部と前記第2樹脂層との上に配置される第3樹脂層とを備え、
     前記第1樹脂層の引張弾性率は、前記樹脂基板、前記第2樹脂層、前記第3樹脂層のそれぞれの引張弾性率よりも小さいことを特徴とする太陽電池モジュール。
  2.  前記第2樹脂層の水蒸気透過度は、前記第1樹脂層の水蒸気透過度よりも小さいことを特徴とする請求項1に記載の太陽電池モジュール。
  3.  前記光電変換部は、受光面および裏面を有する平板状に形成され、
     前記光電変換部の受光面は、前記第2樹脂層と接するように配置され、
     前記光電変換部の裏面は、前記第3樹脂層と接するように配置されることを特徴とする請求項1又は2に記載の太陽電池モジュール。
  4.  前記光電変換部は、前記第2樹脂層と前記第3樹脂層とによって密封されることを特徴とする請求項3に記載の太陽電池モジュール。
  5.  前記第2樹脂層と前記第3樹脂層とは、同一の材料で形成されることを特徴とする請求項1~4のいずれか1項に記載の太陽電池モジュール。
  6.  前記第2樹脂層と前記第3樹脂層とは、異なった材料で形成され、
     前記第3樹脂層の引張弾性率は、前記第2樹脂層の引張弾性率よりも小さいことを特徴とする請求項1~4のいずれか1項に記載の太陽電池モジュール。
  7.  前記第3樹脂層上に配置される別の樹脂基板をさらに備えることを特徴とする請求項1~6のいずれか1項に記載の太陽電池モジュール。
  8.  前記別の樹脂基板の引張弾性率は、前記樹脂基板の引張弾性率よりも大きいことを特徴とする請求項7に記載の太陽電池モジュール。
  9.  前記別の樹脂基板と前記第3樹脂層との間に配置される第4樹脂層をさらに備え、
     前記第4樹脂層の引張弾性率は、前記樹脂基板、前記第2樹脂層、前記第3樹脂層、前記別の樹脂基板のそれぞれの引張弾性率よりも小さいことを特徴とする請求項7又は8に記載の太陽電池モジュール。
  10.  前記別の樹脂基板の曲げ剛性は、前記樹脂基板の曲げ剛性よりも大きいことを特徴とする請求項7~9のいずれか1項に記載の太陽電池モジュール。
  11.  前記第3樹脂層上に配置され、前記樹脂基板よりも小さい熱膨張率を有する低熱膨張層をさらに備えることを特徴とする請求項1~10のいずれか1項に記載の太陽電池モジュール。
  12.  前記第1樹脂層はゲルにより形成されており、
     前記第1樹脂層はスリットを有することを特徴とする請求項1~11のいずれか1項に記載の太陽電池モジュール。
  13.  前記樹脂基板と前記第1樹脂層との間に設けられた潤滑層をさらに備え、
     前記樹脂基板と前記第1樹脂層との静摩擦係数が0.0001~0.1であることを特徴とする請求項1~12のいずれか1項に記載の太陽電池モジュール。
  14.  前記第1樹脂層と前記第1樹脂層に隣接する樹脂層との屈折率差が0.1以下であることを特徴とする請求項1~13のいずれか1項に記載の太陽電池モジュール。
  15.  前記第2樹脂層より下及び前記第3樹脂層より上にそれぞれ配置され、200cm/m・24h・atm以下の酸素透過度を有する酸素バリア層をさらに備えることを特徴とする請求項1~14のいずれか1項に記載の太陽電池モジュール。
  16.  隣接した前記光電変換部は互いにタブ配線で電気的に接続されており、
     前記タブ配線はアルミニウムにより形成されていることを特徴とする請求項1~15のいずれか1項に記載の太陽電池モジュール。
PCT/JP2016/005086 2015-12-10 2016-12-08 太陽電池モジュール WO2017098728A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2017554795A JP6715497B2 (ja) 2015-12-10 2016-12-08 太陽電池モジュール
CN201680071640.9A CN108604611A (zh) 2015-12-10 2016-12-08 太阳能电池模块
EP16872629.7A EP3389098A1 (en) 2015-12-10 2016-12-08 Solar cell module
US15/782,012 US20180358492A1 (en) 2015-12-10 2016-12-08 Solar cell module

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-240766 2015-12-10
JP2015240766 2015-12-10

Publications (1)

Publication Number Publication Date
WO2017098728A1 true WO2017098728A1 (ja) 2017-06-15

Family

ID=59012929

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/005086 WO2017098728A1 (ja) 2015-12-10 2016-12-08 太陽電池モジュール

Country Status (5)

Country Link
US (1) US20180358492A1 (ja)
EP (1) EP3389098A1 (ja)
JP (1) JP6715497B2 (ja)
CN (1) CN108604611A (ja)
WO (1) WO2017098728A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107919407A (zh) * 2017-11-21 2018-04-17 深圳万佳互动科技有限公司 柔性太阳能电池复合材料及其制造方法
WO2019087797A1 (ja) * 2017-10-31 2019-05-09 パナソニックIpマネジメント株式会社 太陽電池モジュール
WO2019087693A1 (ja) * 2017-10-30 2019-05-09 パナソニックIpマネジメント株式会社 太陽電池モジュール及びその製造方法
WO2019176646A1 (ja) * 2018-03-13 2019-09-19 パナソニックIpマネジメント株式会社 太陽電池モジュール

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190378943A1 (en) * 2018-06-11 2019-12-12 Alta Devices, Inc. Planarization of photovoltaics
FR3105656B1 (fr) * 2019-12-24 2022-07-29 Total Renewables Ensemble pour couverture de surface
CN114649434B (zh) * 2020-12-21 2024-09-20 杭州福斯特应用材料股份有限公司 图案化胶膜和光伏组件

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005044911A (ja) * 2003-07-24 2005-02-17 Kyocera Corp 太陽電池モジュールおよびその製造方法
JP2006134969A (ja) * 2004-11-02 2006-05-25 Mitsui Chemical Fabro Inc 太陽電池封止用シート
WO2009091068A1 (ja) * 2008-01-15 2009-07-23 Affinity Co., Ltd. 太陽電池モジュールおよびその製造方法
JP2010512027A (ja) * 2006-12-04 2010-04-15 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー ブロッキング傾向の少ない特定のポリ(ビニルブチラール)/フィルム二層カプセル材層を用いる太陽電池及びその簡素化された製造方法
JP2011049485A (ja) * 2009-08-28 2011-03-10 Kyocera Corp 太陽電池モジュールおよびその製造方法
WO2011093383A1 (ja) * 2010-01-29 2011-08-04 三洋電機株式会社 太陽電池モジュール
JP6057113B1 (ja) * 2016-06-13 2017-01-11 パナソニックIpマネジメント株式会社 太陽電池モジュール及びその製造方法

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4333983A (en) * 1980-04-25 1982-06-08 Optical Coating Laboratory, Inc. Optical article and method
JP3397443B2 (ja) * 1994-04-30 2003-04-14 キヤノン株式会社 太陽電池モジュール及びその製造方法
JP3740251B2 (ja) * 1997-06-09 2006-02-01 キヤノン株式会社 太陽電池モジュールの製造方法
AU2001236043A1 (en) * 2000-03-03 2001-09-12 Toyoda Gosei Co. Ltd. Resin hose for fuel
JP2004319800A (ja) * 2003-04-17 2004-11-11 Canon Inc 太陽電池モジュール
US7390961B2 (en) * 2004-06-04 2008-06-24 Sunpower Corporation Interconnection of solar cells in a solar cell module
EP1930953A4 (en) * 2005-09-30 2014-08-13 Toray Industries SEALING FILM FOR A SOLAR CELL MODULE AND SOLAR CELL MODULE
US7879685B2 (en) * 2006-08-04 2011-02-01 Solyndra, Inc. System and method for creating electric isolation between layers comprising solar cells
JP5484663B2 (ja) * 2007-09-25 2014-05-07 三洋電機株式会社 太陽電池モジュールの製造方法
FR2933985B1 (fr) * 2008-07-18 2010-08-20 Arkema France Melange de peroxydes pour la reticulation d'elastomeres
US20100224235A1 (en) * 2009-03-06 2010-09-09 E.I. Du Pont De Nemours And Company Light weight solar cell modules
JP5608171B2 (ja) * 2009-11-05 2014-10-15 株式会社カネカ 太陽電池モジュール
EP2672526B1 (en) * 2011-01-31 2019-12-11 Panasonic Intellectual Property Management Co., Ltd. Solar cell module and method for manufacturing same
JP2012216803A (ja) * 2011-03-25 2012-11-08 Mitsubishi Chemicals Corp 太陽電池モジュール
US20130240019A1 (en) * 2012-03-14 2013-09-19 Ppg Industries Ohio, Inc. Coating-encapsulated photovoltaic modules and methods of making same
KR20130123664A (ko) * 2012-05-03 2013-11-13 (주)엘지하우시스 태양전지 봉지재 및 그 제조 방법
JP2014090113A (ja) * 2012-10-31 2014-05-15 Ma Packaging:Kk 太陽電池モジュール用バックシート
JP2014203928A (ja) * 2013-04-03 2014-10-27 株式会社小糸製作所 太陽電池モジュール
JPWO2015056399A1 (ja) * 2013-10-16 2017-03-09 パナソニックIpマネジメント株式会社 太陽電池モジュール
JP2015185680A (ja) * 2014-03-24 2015-10-22 三菱化学株式会社 太陽電池モジュール
JP2015201521A (ja) * 2014-04-07 2015-11-12 信越化学工業株式会社 太陽電池用シリコーン封止材料及び太陽電池モジュール

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005044911A (ja) * 2003-07-24 2005-02-17 Kyocera Corp 太陽電池モジュールおよびその製造方法
JP2006134969A (ja) * 2004-11-02 2006-05-25 Mitsui Chemical Fabro Inc 太陽電池封止用シート
JP2010512027A (ja) * 2006-12-04 2010-04-15 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー ブロッキング傾向の少ない特定のポリ(ビニルブチラール)/フィルム二層カプセル材層を用いる太陽電池及びその簡素化された製造方法
WO2009091068A1 (ja) * 2008-01-15 2009-07-23 Affinity Co., Ltd. 太陽電池モジュールおよびその製造方法
JP2011049485A (ja) * 2009-08-28 2011-03-10 Kyocera Corp 太陽電池モジュールおよびその製造方法
WO2011093383A1 (ja) * 2010-01-29 2011-08-04 三洋電機株式会社 太陽電池モジュール
JP6057113B1 (ja) * 2016-06-13 2017-01-11 パナソニックIpマネジメント株式会社 太陽電池モジュール及びその製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3389098A4 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019087693A1 (ja) * 2017-10-30 2019-05-09 パナソニックIpマネジメント株式会社 太陽電池モジュール及びその製造方法
WO2019087797A1 (ja) * 2017-10-31 2019-05-09 パナソニックIpマネジメント株式会社 太陽電池モジュール
JPWO2019087797A1 (ja) * 2017-10-31 2019-11-14 パナソニックIpマネジメント株式会社 太陽電池モジュール
CN107919407A (zh) * 2017-11-21 2018-04-17 深圳万佳互动科技有限公司 柔性太阳能电池复合材料及其制造方法
WO2019176646A1 (ja) * 2018-03-13 2019-09-19 パナソニックIpマネジメント株式会社 太陽電池モジュール
JPWO2019176646A1 (ja) * 2018-03-13 2021-02-18 パナソニックIpマネジメント株式会社 太陽電池モジュール

Also Published As

Publication number Publication date
CN108604611A (zh) 2018-09-28
JPWO2017098728A1 (ja) 2018-09-27
JP6715497B2 (ja) 2020-07-01
US20180358492A1 (en) 2018-12-13
EP3389098A4 (en) 2018-10-17
EP3389098A1 (en) 2018-10-17

Similar Documents

Publication Publication Date Title
WO2017098728A1 (ja) 太陽電池モジュール
WO2017208793A1 (ja) 太陽電池モジュール及びその製造方法
WO2018110582A1 (ja) 太陽電池モジュール
JP6767708B2 (ja) 太陽電池モジュール
EP2530763A1 (en) Secondary battery apparatus and method of manufacturing the same
US9082912B2 (en) Photovoltaic module backsheet, materials for use in module backsheet, and processes for making the same
JP2015057811A (ja) 太陽電池モジュール
KR20120075377A (ko) 전지
WO2018150894A1 (ja) 太陽電池モジュール
US20120308873A1 (en) Secondary battery apparatus and method of manufacturing secondary battery apparatus
WO2013046773A1 (ja) 太陽電池モジュール
JP6057113B1 (ja) 太陽電池モジュール及びその製造方法
JP6655828B2 (ja) 太陽電池モジュール
JP2019062088A (ja) 太陽電池モジュール
JP2015185680A (ja) 太陽電池モジュール
WO2017150045A1 (ja) 太陽電池モジュール
JP2017107994A (ja) 太陽電池モジュール
WO2017145663A1 (ja) 太陽電池モジュール
WO2019087802A1 (ja) 太陽電池モジュール
WO2019031378A1 (ja) 太陽電池モジュール及び太陽電池モジュールの中間製品
CN102569457A (zh) 新型太阳能光伏电池用绝缘背板
WO2013031954A1 (ja) 太陽電池モジュールおよび太陽光発電システム
KR102081439B1 (ko) 서로 다른 소재가 혼합제조된 pv패널
JP2019054692A (ja) 太陽電池モジュール及びその製造方法
JP2018093040A (ja) 太陽電池モジュール

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16872629

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017554795

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2016872629

Country of ref document: EP