WO2017084589A1 - Procédé et dispositif pour produire de l'hydrogène par électrolyse de l'eau avec un procédé en deux étapes basé sur un système à trois électrodes - Google Patents

Procédé et dispositif pour produire de l'hydrogène par électrolyse de l'eau avec un procédé en deux étapes basé sur un système à trois électrodes Download PDF

Info

Publication number
WO2017084589A1
WO2017084589A1 PCT/CN2016/106143 CN2016106143W WO2017084589A1 WO 2017084589 A1 WO2017084589 A1 WO 2017084589A1 CN 2016106143 W CN2016106143 W CN 2016106143W WO 2017084589 A1 WO2017084589 A1 WO 2017084589A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
hydrogen
oxygen
evolution catalytic
catalytic
Prior art date
Application number
PCT/CN2016/106143
Other languages
English (en)
Chinese (zh)
Inventor
王永刚
夏永姚
陈龙
Original Assignee
复旦大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 复旦大学 filed Critical 复旦大学
Publication of WO2017084589A1 publication Critical patent/WO2017084589A1/fr

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/02Hydrogen or oxygen
    • C25B1/04Hydrogen or oxygen by electrolysis of water
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/051Electrodes formed of electrocatalysts on a substrate or carrier
    • C25B11/073Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material
    • C25B11/091Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material consisting of at least one catalytic element and at least one catalytic compound; consisting of two or more catalytic elements or catalytic compounds
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Definitions

  • the invention belongs to the technical field of electrolyzed water, and in particular relates to a novel method and device for hydrogen production by electrolysis of water in a two-step method based on a three-electrode system.
  • Electrolytic water preparation of hydrogen is relatively simple, the technology is relatively mature, and the hydrogen production process is not polluted, which is an important means to achieve large-scale production of hydrogen.
  • alkaline water electrolysis technology is industrialized early, the technology is mature, and the equipment cost is low. Therefore, alkaline water electrolysis plays a dominant role in the water electrolysis industry.
  • the conventional electrolyzed water technology generates hydrogen and oxygen at the same time as the anode and cathode in the electrode process, which will easily lead to the mixing of hydrogen and oxygen, resulting in impure gas production, and subsequent purification will be greatly increased. Large preparation costs.
  • ion-selective membrane to separate the hydrogen produced by the hydrogen evolution catalytic electrode and the oxygen produced by the oxygen evolution catalytic electrode is an effective solution, but the use of ion-selective membranes also greatly increases the cost.
  • the hydrogen production rate and oxygen production rate are different.
  • the membrane loss is also very serious, which further increases the cost.
  • the selective ion exchange membrane further increases the internal resistance of the electrolytic cell and increases energy consumption.
  • the mainstream work is to improve or prepare a new type of diaphragm, in order to reduce the internal resistance, while taking into account the hydrophilicity, ion permeability and the ability to completely separate hydrogen and oxygen.
  • many new membranes have been explored, the effects are still not very significant.
  • the invention provides a two-step method for electrolyzing water to produce hydrogen by a three-electrode system, wherein the electrolysis cell comprises three electrodes: a hydrogen evolution catalytic electrode which catalyzes the generation of hydrogen by electrolyzing water, and has oxygen for electrolyzing water.
  • a hydrogen evolution catalytic electrode which catalyzes the generation of hydrogen by electrolyzing water, and has oxygen for electrolyzing water.
  • the cathode In the hydrogen production step, the cathode is connected to the hydrogen evolution catalytic electrode, and the anode is connected to the nickel hydroxide electrode; in the oxygen production step, the cathode is connected to the nickel hydroxide electrode, and the anode is connected to the oxygen evolution catalytic electrode.
  • the method for the two-step method for electrolyzing water to produce hydrogen based on the three-electrode system provided by the invention has the following specific steps:
  • Hydrogen production step ie, step of generating hydrogen from electrolyzed water:
  • the water molecule is electrochemically reduced to hydrogen on the surface of the hydrogen evolution catalytic electrode as a cathode, that is, H 2 O+e - ⁇ 1/2H 2 + OH - ; and the Ni(OH) 2 electrode as an anode is electrochemically oxidized to a NiOOH electrode. , that is, Ni(OH) 2 + OH - -e - ⁇ NiOOH + H 2 O, in which electrons flow from the Ni(OH) 2 electrode to the hydrogen evolution catalytic electrode through an external circuit;
  • Oxygen production step ie, step of generating oxygen from electrolyzed water
  • NiOOH electrode as a cathode is electrochemically reduced to a Ni(OH) 2 electrode, that is, NiOOH + H 2 O + e - ⁇ Ni(OH) 2 + OH - ; and the hydroxide ion is on the surface of the oxygen evolution catalytic electrode as an anode. It is electrochemically oxidized to oxygen, that is, 2OH - -2e - ⁇ 1/2O 2 + H 2 O; in this process, electrons flow from the oxygen evolution catalytic electrode to the NiOOH electrode through the external circuit.
  • the step (1) and the step (2) are alternately cycled.
  • the two steps are alternately cycled to realize the recycling of Ni(OH) 2 , and at the same time, the electrolysis of hydrogen and electrolysis to produce oxygen at different times is effectively realized, and finally the hydrogen and oxygen mixing is effectively prevented, thereby achieving the purpose of high-purity hydrogen production. .
  • the hydrogen evolution catalytic electrode has a catalytic effect on hydrogen generation from electrolyzed water, and the catalytic electrode material is:
  • a simple substance or a compound based on a transition metal such as Ni, Co, Fe, such as Ni, a Ni-Mo alloy, a Ni-Cr-Fe alloy, CoO, Co 2 O 3 , CoSe 2 , FeP;
  • W-based compounds such as WC, W 2 C, WS 2 ; or
  • Mo-based compounds such as MoS 2 , MoB, Mo 2 S; or
  • a compound such as C 3 N 4 is a compound such as C 3 N 4 .
  • the oxygen evolution catalytic electrode has a catalytic effect on the generation of oxygen by the electrolyzed water, and the catalytic electrode material is:
  • a compound based on a noble metal such as Ru, Ir, such as IrO x , RuO 2 ; or
  • Elemental or compound based on transition metals such as Ni, Co, Fe, Mn, such as NiFeO x , NiCoO x , CoFeO x , CoO x , NiCuO x , NiO x , SrNb 0.1 Co 0.7 Fe 0.2 O 3-x , MnO x , CoMn 2 O 4 ; or
  • a bioelectrochemical catalyst such as a laccase or the like.
  • the nickel hydroxide electrode is a nickel hydroxide electrode used in a conventional nickel-hydrogen battery, which is composed of an active material Ni(OH) 2 and other additive components, and the added components are nickel powder, Co(OH) 2 , carbon. One or more of powder and binder.
  • the binder is polytetrafluoroethylene.
  • Ni(OH) 2 active material and the additive component are pressed or coated on the metal current collector to form a Ni(OH) 2 electrode by mixing into a film or slurry.
  • the metal current collector includes: a nickel mesh, a foamed nickel, a stainless steel mesh, a titanium mesh, or the like.
  • the electrolyte of the technique for electrolyzing water of the present invention must be an alkaline aqueous solution, and the alkaline aqueous solution is potassium hydroxide or sodium hydroxide.
  • the most notable feature of the electrolyzer designed in accordance with the present invention is that no separator is required to separate the hydrogen and oxygen produced by the electrolysis.
  • the purity of the hydrogen and oxygen produced by the test showed that although there was no separator, hydrogen and oxygen did not mix.
  • the invention adopts a two-step constant current electrolysis method, and the electrolysis curve is shown in Fig. 2, which exhibits excellent electrolyzed water performance: repeating 20 times of two-step electrolysis hydrogen production and oxygen production, when 200 mA constant current electrolysis,
  • the average hydrogen production voltage is about 1.6V
  • the average oxygen production voltage is about 0.5V.
  • those skilled in the art can reasonably select an appropriate voltage range according to the selection of the electrode material and the electrolysis current.
  • the average voltage range of the hydrogen production may be 1.0-3.0 V
  • the oxygen generation voltage range may be 0.2-1.5 V. .
  • the invention is intended to be illustrative only and not to limit the scope of the invention.
  • the electrolysis device of the present invention can use different driving voltages to generate hydrogen and oxygen, and in particular, sustainable energy sources such as solar energy and wind energy can be used to produce hydrogen more efficiently.
  • the hydrogen production or oxygen production step can be selectively performed according to the change of the sunlight intensity, and the utilization rate of the raw energy can be increased; or the hydrogen can be prepared by using excess electric energy at night, and the solar energy can be used to generate oxygen during the day.
  • the two-step electrolysis water hydrogen production method based on the three-electrode system proposed by the present invention is characterized in that hydrogen is electrolyzed by water and oxygen is electrolyzed in two steps.
  • the nickel hydroxide (Ni(OH) 2 ) electrode is electrochemically oxidized into a NiOOH electrode during the preparation of hydrogen in electrolyzed water; it is electrochemically reduced to Ni(OH) 2 during the subsequent electrolysis of water to oxygen. .
  • the nickel hydroxide (Ni(OH) 2 ) electrode acts as a proton and electron buffer, separating the two steps of hydrogen production and oxygen production.
  • the apparatus for electrolyzing water to produce hydrogen by a two-step method based on a three-electrode system of the present invention comprises a hydrogen generating electrode pair and an oxygen generating electrode
  • the hydrogen generation electrode pair includes the hydrogen evolution catalytic electrode and a nickel hydroxide electrode
  • the oxygen generation electrode pair includes the oxygen evolution catalytic electrode and a nickel hydroxide electrode.
  • the nickel hydroxide electrode is oxidized to a NiOOH electrode.
  • the NiOOH electrode is electrochemically reduced to a Ni(OH) 2 electrode.
  • the pair of hydrogen producing electrodes and the pair of oxygen generating electrodes are arranged to operate simultaneously or at different times, preferably at different times.
  • the cyclic electrochemical oxidation-reduction process of the nickel hydroxide electrode divides the conventional electrolyzed water process into two steps of continuous or separate, thereby realizing the preparation of high purity by separately preparing hydrogen and oxygen at different time periods. hydrogen.
  • this method of segmentation also allows the device to eliminate the need for ion-selective membranes to separate hydrogen and oxygen, thus greatly reducing manufacturing costs.
  • Figure 1 shows the working diagram of a three-electrode system two-step electrolysis water electrolysis cell.
  • Figure 2 shows a schematic diagram of a three-electrode system two-step electrolysis water hydrogen/oxygen cycle.
  • the term “about” means that the value can vary by no more than 1% from the recited value.
  • the expression “about 100” includes all values between 99 and 101 and (eg, 99.1, 99.2, 99.3, 99.4, etc.).
  • the terms "containing” or “including” may be open, semi-closed, and closed. In other words, the terms also include “consisting essentially of,” or “consisting of.”
  • system As used herein, the terms “system,” “device,” and “system” have the same meaning and are used interchangeably.
  • hydrofluorescence As used herein, the terms “hydrogen production”, “hydrogen production” have the same meaning and are used interchangeably.
  • the hydrogen and oxygen generated by the electrolyzed water device of the present invention are not mixed and have high safety.
  • the electrolyzed water device of the present invention can still perform high-efficiency electrolysis to generate hydrogen gas and oxygen under unstable voltage output conditions.
  • the catalytic electrode for electrolysis of hydrogen in the three-electrode electrolyzer uses a platinum electrode, the catalytic electrode for electrolysis to generate oxygen is ruthenium oxide, and the nickel hydroxide electrode is commercially available with commercially available nickel hydroxide electrode.
  • the three electrodes have an area of 20 square centimeters.
  • the electrolytic solution was electrolyzed using a 1 mol/L potassium hydroxide solution using a constant current of 200 mA. First, the cathode is connected to the platinum electrode, and the anode is connected to the nickel hydroxide electrode. The current is electrolyzed at 200 mA for 600 seconds, and the average voltage is about 1.6 V. Hydrogen is generated on the platinum electrode.
  • the cathode was connected to nickel hydroxide, and the anode was connected to the ruthenium oxide electrode, and the current was electrolyzed at a current of 200 mA until the voltage was raised to 1 V for 600 seconds, and the average voltage was 0.5 V.
  • Oxygen was generated on the ruthenium oxide electrode. No gas is formed on the nickel hydroxide throughout the process. With this cycle 20 times, the curve is stable as shown in Figure 1, and the gas is stably generated. Purity identification confirmed that no mixing of hydrogen and oxygen occurred.
  • the catalytic electrode for electrolysis of hydrogen in the three-electrode electrolytic cell uses a platinum electrode, the catalytic electrode for electrolyzing oxygen is a mixed electrode of CoO and carbon, and the nickel hydroxide electrode is a commercially available nickel hydroxide electrode commercially available.
  • the three electrodes have an area of 20 square centimeters.
  • the electrolytic solution was electrolyzed using a 1 mol per liter potassium hydroxide solution using a constant current of 200 mA.
  • the cathode is connected to the platinum electrode, the anode is connected to the nickel hydroxide electrode, and the electrolysis time is 200 mA.
  • the electrolysis time is 600 seconds, the average voltage is about 1.6 V, and hydrogen gas is generated on the platinum electrode.
  • the cathode is connected to nickel hydroxide, the anode is connected to the CoO and the carbon composite electrode, and the current is electrolyzed at a current of 200 mA until the voltage is raised to 1 V for 600 seconds.
  • the average voltage is about 0.55 V, and oxygen is generated on the mixed electrode of CoO and carbon. No gas is formed on the nickel hydroxide throughout the process. By this cycle 20 times, the cycle is stable and the gas is stably generated. Purity identification confirmed that no mixing of hydrogen and oxygen occurred.
  • the catalytic electrode for electrolysis of hydrogen in the three-electrode electrolyzer uses a single layer of MoS 2 and graphene composite electrodes, the catalytic electrode for electrolysis of oxygen is ruthenium oxide, and the nickel hydroxide electrode is commercially available as a commercially available nickel hydroxide electrode.
  • the three electrodes have an area of 20 square centimeters.
  • the electrolytic solution was electrolyzed using a 1 mol per liter potassium hydroxide solution using a constant current of 200 mA.
  • the cathode is connected to the MoS 2 /graphene composite electrode
  • the anode is connected to the nickel hydroxide electrode
  • the electrolysis time is 600 mA.
  • the electrolysis time is 600 seconds, and the average voltage is about 1.65 V.
  • Hydrogen is generated on the MoS 2 /graphene composite electrode. Then, the cathode was connected to a nickel hydroxide electrode, and the anode was connected to a ruthenium oxide electrode, and the same was electrolyzed at a current of 200 mA until the voltage was raised to 1 V for 600 seconds. The average voltage was about 0.5 V, and oxygen was generated on the ruthenium oxide. No gas is formed on the nickel hydroxide throughout the process. By this cycle 20 times, the cycle is stable and the gas is stably generated. Purity identification confirmed that no mixing of hydrogen and oxygen occurred.
  • the catalytic electrode for electrolysis of hydrogen in the three-electrode electrolyzer uses a platinum electrode, the catalytic electrode for electrolysis to generate oxygen is ruthenium oxide, and the nickel hydroxide electrode is a composite electrode synthesized by in situ growth of nickel hydroxide and carbon nanotubes.
  • the three electrodes have an area of 20 square centimeters.
  • the electrolytic solution was electrolyzed using a 1 mol per liter potassium hydroxide solution using a constant current of 200 mA. First, the cathode is connected to the platinum electrode, the anode is connected to the nickel hydroxide electrode, and the electrolysis is performed at 200 mA constant current for 600 seconds.
  • the average voltage is about 1.62 V, and hydrogen gas is generated on the platinum electrode.
  • the cathode was connected to a nickel hydroxide electrode, and the anode was connected to a ruthenium oxide electrode, and the same was electrolyzed at a current of 200 mA until the voltage was raised to 1 V for 600 seconds.
  • the average voltage was about 0.53 V, and oxygen was generated on the ruthenium oxide electrode. No gas is formed on the nickel hydroxide throughout the process. By this cycle 20 times, the cycle is stable and the gas is stably generated. Purity identification confirmed that no mixing of hydrogen and oxygen occurred.
  • the catalytic electrode for electrolysis of hydrogen in the three-electrode electrolytic cell uses a C 3 N 4 and graphene composite electrode, the catalytic electrode for electrolysis to generate oxygen is ruthenium oxide, and the nickel hydroxide electrode is commercially available for purchase of a commercial nickel hydroxide electrode.
  • the three electrodes have an area of 20 square centimeters.
  • the electrolytic solution was electrolyzed using a 1 mol per liter potassium hydroxide solution using a constant current of 200 mA.
  • the cathode is connected to the C 3 N 4 /graphene composite electrode, the anode is connected to the nickel hydroxide electrode, and the electrolysis time is 200 mA, the electrolysis time is 600 seconds, the average voltage is about 1.67 V, and the C 3 N 4 /graphene composite electrode Hydrogen is generated on it.
  • the cathode was connected to a nickel hydroxide electrode, and the anode was connected to a ruthenium oxide electrode, and the same was electrolyzed at a current of 200 mA until the voltage was raised to 1 V for 600 seconds.
  • the average voltage was about 0.5 V, and oxygen was generated on the ruthenium oxide. No gas is formed on the nickel hydroxide throughout the process. By this cycle 20 times, the cycle is stable and the gas is stably generated. Purity identification confirmed that no mixing of hydrogen and oxygen occurred.
  • the catalytic electrode for electrolysis of hydrogen in the three-electrode electrolyzer uses a single-layer MoS 2 /graphene composite electrode, the catalytic electrode for electrolysis of oxygen is a CoO/carbon composite electrode, and the nickel hydroxide electrode is commercially available for commercial nickel hydroxide electrode. .
  • the three electrodes have an area of 20 square centimeters.
  • the electrolytic solution was electrolyzed using a 1 mol per liter potassium hydroxide solution using a constant current of 200 mA. First, the cathode is connected to the MoS 2 /graphene composite electrode, the anode is connected to the nickel hydroxide electrode, and the 200 mA constant current electrolysis is performed.
  • the electrolysis time is 600 seconds, the average voltage is about 1.65 V, and hydrogen gas is generated on the MoS 2 /graphene composite electrode.
  • the cathode is connected to the nickel hydroxide electrode, the anode is connected to the CoO/carbon composite electrode, and the current is electrolyzed at a current of 200 mA until the voltage is raised to 1 V for about 600 seconds.
  • the average voltage is about 0.55 V, and oxygen is generated on the CoO/carbon composite electrode. No gas is formed on the nickel hydroxide throughout the process. By this cycle 20 times, the cycle is stable and the gas is stably generated. Purity identification confirmed that no mixing of hydrogen and oxygen occurred.
  • the catalytic electrode for electrolysis of hydrogen in the three-electrode electrolytic cell uses a platinum electrode, the catalytic electrode for electrolyzing oxygen is a mixed electrode of MnO x and carbon, and the nickel hydroxide electrode is a commercially available nickel hydroxide electrode commercially available.
  • the three electrodes have an area of 20 square centimeters.
  • the electrolytic solution was electrolyzed using a 1 mol per liter potassium hydroxide solution using a constant current of 200 mA. First, the cathode is connected to the platinum electrode, the anode is connected to the nickel hydroxide electrode, and the electrolysis time is 200 mA. The electrolysis time is 600 seconds, and the average voltage voltage is about 1.6 V. Hydrogen is generated on the platinum electrode.
  • the cathode is connected with nickel hydroxide, the anode is connected with MnO x and the carbon composite electrode, and the same current is electrolyzed at 200 mA until the voltage is raised to 1 V for 600 seconds, the average voltage is about 0.58 V, and oxygen is generated on the mixed electrode of MnO x and carbon. . No gas is formed on the nickel hydroxide throughout the process. By this cycle 20 times, the cycle is stable and the gas is stably generated. Purity identification confirmed that no mixing of hydrogen and oxygen occurred.
  • the catalytic electrode for electrolysis of hydrogen in the three-electrode electrolyzer uses a platinum electrode, the catalytic electrode for electrolyzing oxygen is a nitrogen-doped mesoporous carbon electrode, and the nickel hydroxide electrode is a commercially available nickel hydroxide electrode commercially available.
  • the three electrodes have an area of 20 square centimeters.
  • the electrolytic solution was electrolyzed using a 1 mol per liter potassium hydroxide solution using a constant current of 200 mA. First, the cathode is connected to the platinum electrode, the anode is connected to the nickel hydroxide electrode, and the electrolysis time is 200 mA. The electrolysis time is 600 seconds, and the average voltage voltage is about 1.6 V. Hydrogen is generated on the platinum electrode.
  • the cathode is connected with nickel hydroxide, the anode is connected with MnO x and the carbon composite electrode, and the same current is electrolyzed at 200 mA until the voltage is raised to 1 V for 600 seconds, and the average voltage is about 0.58 V, which is formed on the nitrogen-doped mesoporous carbon electrode. oxygen. No gas is formed on the nickel hydroxide throughout the process. By this cycle 20 times, the cycle is stable and the gas is stably generated. Purity identification confirmed that no mixing of hydrogen and oxygen occurred.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)
  • Electrodes For Compound Or Non-Metal Manufacture (AREA)

Abstract

Cette invention concerne un procédé et un dispositif pour produire de l'hydrogène par électrolyse de l'eau avec un procédé en deux étapes basé sur un système à trois électrodes. Une cuve d'électrolyse du dispositif comprend une électrode catalytique à dégagement d'hydrogène, une électrode catalytique à dégagement d'oxygène et une électrode à l'hydroxyde de nickel Le procédé comprend les étapes suivantes : des molécules d'eau sont réduites par voie électrochimique en hydrogène à la surface d'une électrode catalytique de dégagement d'hydrogène, tandis que dans le même temps, une électrode au Ni(OH)2 est oxydée par voie électrochimique en électrode au NiOOH; pendant le processus, des électrons circulent depuis l'électrode au Ni(OH)2 jusqu'à l'électrode catalytique à dégagement d'hydrogène à travers un circuit externe; après quoi, l'électrode au NiOOH est réduite par voie électrochimique en électrode au Ni(OH)2, tandis que par ailleurs, des ions hydroxyle sont oxydés par voie électrochimique en oxygène sur la surface d'une électrode catalytique à dégagement d'oxygène; pendant le processus, les électrons circulent depuis l'électrode catalytique à dégagement d'oxygène vers l'électrode NiOOH à travers un circuit externe. Le dispositif et le procédé séparent efficacement les étapes de production d'hydrogène et de production d'oxygène qui se produisent simultanément dans l'électrolyse de l'eau. Le dispositif d'électrolyse permet de préparer de l'hydrogène de grande pureté à la condition de ne pas utiliser de membrane, en raison de la séparation complète des étapes de production d'hydrogène et de production d'oxygène, ce qui permet de réduire le coût de production de l'hydrogène par électrolyse de l'eau.
PCT/CN2016/106143 2015-11-18 2016-11-16 Procédé et dispositif pour produire de l'hydrogène par électrolyse de l'eau avec un procédé en deux étapes basé sur un système à trois électrodes WO2017084589A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510799110.3A CN105420748B (zh) 2015-11-18 2015-11-18 一种基于三电极体系的两步法电解水制氢的方法及装置
CN201510799110.3 2015-11-18

Publications (1)

Publication Number Publication Date
WO2017084589A1 true WO2017084589A1 (fr) 2017-05-26

Family

ID=55499275

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/106143 WO2017084589A1 (fr) 2015-11-18 2016-11-16 Procédé et dispositif pour produire de l'hydrogène par électrolyse de l'eau avec un procédé en deux étapes basé sur un système à trois électrodes

Country Status (2)

Country Link
CN (1) CN105420748B (fr)
WO (1) WO2017084589A1 (fr)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108468060A (zh) * 2018-03-16 2018-08-31 浙江大学 一种高效、新颖多孔氮氧化物纳米片催化剂电极的制备及其应用
CN112354544A (zh) * 2019-07-24 2021-02-12 南京理工大学 氢氧化镍层包覆单质钌结构析氢催化剂及其制备方法
CN113088989A (zh) * 2021-03-23 2021-07-09 南昌大学 一种大幅降低铂电化学分解水能耗的新方法
FR3111918A1 (fr) 2020-06-30 2021-12-31 Total Sa Dispositif d’électrolyse de l’eau pour la production d’hydrogène
CN114032571A (zh) * 2021-10-13 2022-02-11 西安交通大学 一种耦合分步电解水装置和水系电池的一体化系统与方法
EP3971325A1 (fr) 2020-09-21 2022-03-23 Total Se Système de génération de h2 et de capture de co2
CN115466969A (zh) * 2022-10-27 2022-12-13 哈尔滨工业大学 一种自支撑碳阳极辅助电解水制氢的方法
WO2023281002A1 (fr) 2021-07-07 2023-01-12 Totalenergies Onetech Procédé de génération d'hydrogène par électrolyse de l'eau découplée

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105420748B (zh) * 2015-11-18 2018-01-12 复旦大学 一种基于三电极体系的两步法电解水制氢的方法及装置
CN107308967B (zh) * 2016-04-26 2020-10-27 中国科学院理化技术研究所 一种光催化分解甲酸制氢助催化剂、光催化体系及分解甲酸制氢的方法
CN105821436B (zh) * 2016-05-09 2018-07-24 复旦大学 一种基于三电极体系的双电解槽两步法氯碱电解方法及装置
CN106757142B (zh) * 2016-11-21 2020-07-03 沈阳化工大学 一种碳纤维负载纳米级双金属PtCo催化电极制备方法及其应用
DE102017110863B4 (de) * 2017-05-18 2021-02-04 Zentrum für Sonnenenergie- und Wasserstoff-Forschung Baden-Württemberg Nickelelektrode, Verfahren zu deren Herstellung und deren Verwendung
CN109321936B (zh) * 2018-11-29 2020-06-02 厦门大学 一种基于液流氧化还原媒介分步电解水制氢的装置和方法
CN109569693B (zh) * 2019-01-07 2021-12-21 中国科学技术大学 一种二维碳氮基复合材料光催化剂及其制备方法、应用
CN109680293A (zh) * 2019-03-01 2019-04-26 武汉科技大学 一种单反应电极半电解水装置
CN110075872B (zh) * 2019-04-28 2020-04-03 湖南大学 利用电化学活化二硫化钼/碳复合材料电催化析氢的方法
CN110197909B (zh) * 2019-06-17 2021-05-25 中国科学院大连化学物理研究所 镍铁催化材料、其制备方法及在电解水制氢气、制备液态太阳燃料中的应用
CN110592611A (zh) * 2019-09-23 2019-12-20 苏州大学 催化电极及其制备方法及应用
CN112981430B (zh) * 2019-12-13 2022-04-12 华中科技大学 一种碱性镍基电池的再生电极在电催化析氢反应中的应用
CN111074291A (zh) * 2019-12-31 2020-04-28 西安泰金工业电化学技术有限公司 一种新型电解水制氢工艺
CN112921341B (zh) * 2021-01-25 2022-06-21 北京化工大学 高效小分子催化氧化与产氢耦合的反应系统
CN113355680A (zh) * 2021-06-03 2021-09-07 中国科学技术大学 在电解水中分离析氢与析氧的方法及装置
CN113140740B (zh) * 2021-06-22 2021-08-17 成都大学 Pd@Ni0.7Cu0.3/NiOOH/CuO混晶甲醇氧化复合电极及其制备方法
CN113684488A (zh) * 2021-08-30 2021-11-23 四川大学 一种碳素铬铁液相法制造新能源电池材料及新能源氢气工艺
CN113913844B (zh) * 2021-10-22 2022-10-04 合肥综合性国家科学中心能源研究院(安徽省能源实验室) 一种基于电源切换的无膜电解水制氢装置
CN114411162A (zh) * 2021-11-22 2022-04-29 中国华能集团清洁能源技术研究院有限公司 一种双电解槽电解水制氢方法
CN114232007B (zh) * 2021-11-23 2023-03-24 中国华能集团清洁能源技术研究院有限公司 一种三电极体系电解水制氢方法
CN113862690B (zh) * 2021-11-30 2022-11-29 合肥综合性国家科学中心能源研究院(安徽省能源实验室) 一种基于双极电极体系电解水制氢装置
CN114108015B (zh) * 2021-12-16 2023-08-04 合肥综合性国家科学中心能源研究院(安徽省能源实验室) 一种压滤式无膜水电解槽
CN114457351A (zh) * 2022-02-23 2022-05-10 复旦大学 一种基于单电解槽双电极两步法分步电解水制氢的方法及装置
CN114892182A (zh) * 2022-05-10 2022-08-12 上海嘉氢源科技有限公司 基于三电极体系的两步法电解水制氢的电解槽及其应用

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09176879A (ja) * 1995-12-22 1997-07-08 Hakukin Warmers Co Ltd 水素ガス製造機構
WO2012056557A1 (fr) * 2010-10-29 2012-05-03 株式会社日立製作所 Batterie secondaire non aqueuse
CN102677084A (zh) * 2012-05-22 2012-09-19 浙江师范大学 一种电解水制氢的方法和装置
CN104662203A (zh) * 2012-10-16 2015-05-27 德诺拉工业有限公司 碱溶液的电解槽
CN104797742A (zh) * 2012-09-21 2015-07-22 Ucl商业有限公司 电解电催化剂
CN105420748A (zh) * 2015-11-18 2016-03-23 复旦大学 一种基于三电极体系的两步法电解水制氢的方法及装置
CN105734600A (zh) * 2016-03-19 2016-07-06 复旦大学 一种三电极体系双电解槽两步法电解水制氢的装置及方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB201119283D0 (en) * 2011-11-08 2011-12-21 Univ Glasgow Apparatus and methods for the electrochemical generation of oxygen and/or hydrogen
CN103159297B (zh) * 2011-12-13 2014-09-03 中国科学院大连化学物理研究所 一种光电解池分解水产氢并在线分离装置
WO2014035919A2 (fr) * 2012-08-27 2014-03-06 Sun Catalytix Corporation Barbotage pour transport d'espèces dissoutes à travers une barrière

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09176879A (ja) * 1995-12-22 1997-07-08 Hakukin Warmers Co Ltd 水素ガス製造機構
WO2012056557A1 (fr) * 2010-10-29 2012-05-03 株式会社日立製作所 Batterie secondaire non aqueuse
CN102677084A (zh) * 2012-05-22 2012-09-19 浙江师范大学 一种电解水制氢的方法和装置
CN104797742A (zh) * 2012-09-21 2015-07-22 Ucl商业有限公司 电解电催化剂
CN104662203A (zh) * 2012-10-16 2015-05-27 德诺拉工业有限公司 碱溶液的电解槽
CN105420748A (zh) * 2015-11-18 2016-03-23 复旦大学 一种基于三电极体系的两步法电解水制氢的方法及装置
CN105734600A (zh) * 2016-03-19 2016-07-06 复旦大学 一种三电极体系双电解槽两步法电解水制氢的装置及方法

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108468060A (zh) * 2018-03-16 2018-08-31 浙江大学 一种高效、新颖多孔氮氧化物纳米片催化剂电极的制备及其应用
CN112354544A (zh) * 2019-07-24 2021-02-12 南京理工大学 氢氧化镍层包覆单质钌结构析氢催化剂及其制备方法
CN112354544B (zh) * 2019-07-24 2023-04-28 南京理工大学 氢氧化镍层包覆单质钌结构析氢催化剂及其制备方法
FR3111918A1 (fr) 2020-06-30 2021-12-31 Total Sa Dispositif d’électrolyse de l’eau pour la production d’hydrogène
WO2022002906A1 (fr) 2020-06-30 2022-01-06 Totalenergies Se Dispositif d'électrolyse de l'eau pour la production d'hydrogène
EP3971325A1 (fr) 2020-09-21 2022-03-23 Total Se Système de génération de h2 et de capture de co2
WO2022058600A1 (fr) 2020-09-21 2022-03-24 Totalenergies Se Système de génération de h2 et de capture de co2
CN113088989A (zh) * 2021-03-23 2021-07-09 南昌大学 一种大幅降低铂电化学分解水能耗的新方法
WO2023281002A1 (fr) 2021-07-07 2023-01-12 Totalenergies Onetech Procédé de génération d'hydrogène par électrolyse de l'eau découplée
FR3125069A1 (fr) 2021-07-07 2023-01-13 Totalenergies Se Procédé de génération d’hydrogène par électrolyse de l’eau découplée
CN114032571A (zh) * 2021-10-13 2022-02-11 西安交通大学 一种耦合分步电解水装置和水系电池的一体化系统与方法
CN115466969A (zh) * 2022-10-27 2022-12-13 哈尔滨工业大学 一种自支撑碳阳极辅助电解水制氢的方法

Also Published As

Publication number Publication date
CN105420748B (zh) 2018-01-12
CN105420748A (zh) 2016-03-23

Similar Documents

Publication Publication Date Title
WO2017084589A1 (fr) Procédé et dispositif pour produire de l'hydrogène par électrolyse de l'eau avec un procédé en deux étapes basé sur un système à trois électrodes
CN105734600B (zh) 一种三电极体系双电解槽两步法电解水制氢的装置及方法
CN109659143B (zh) 一种氢氧化镍/二硫化三镍/泡沫镍复合物及其制备方法与应用
Zhao et al. Progress and perspectives for solar‐driven water electrolysis to produce green hydrogen
CN109954503B (zh) 一种硒化镍和三元硒化镍铁复合电催化剂及制备方法和应用
WO2017193896A1 (fr) Procédé électrolytique chlore-alcali à deux étapes basé sur un système à trois électrodes et dispositif utilisant des cellules électrolytiques doubles
CN113151843A (zh) 一种分步电解水制氢的方法及装置
JP2008539328A (ja) 亜鉛と水の酸化還元によって水素を生成及び吸蔵するための電気化学的方法
CN105951117B (zh) 一种低成本生产高纯度过氧化氢和氢气的电解方法
CN105463497B (zh) 一种可以电解水制取氢气的电池装置
WO2015056641A1 (fr) Dispositif d'électrolyse d'eau et système de stockage d'énergie et d'alimentation en énergie utilisant celui-ci
CN105148920A (zh) 一种自支撑过渡金属-金属合金催化剂及其制备方法和应用
CN113908870B (zh) 双功能非贵金属氮化物催化剂的可控制备和大电流电解尿素制氢应用
CN110787824A (zh) 一种钒掺杂过渡金属氮化物的制备方法及其应用
Zhang et al. Hydrogen production by traditional and novel alkaline water electrolysis on nickel or iron based electrocatalysts
CN109985629B (zh) 一种蠕虫状Ni/NixFe1-xOy析氢催化剂及其制备方法
CN113337846A (zh) 一种负载型表面部分硫化的层状金属氢氧化物电催化剂及其制备方法与应用
Gao et al. Synthesis of FeCo2O4@ Co3O4 nanocomposites and their electrochemical catalytical performaces for energy-saving H2 prodcution
CN114457351A (zh) 一种基于单电解槽双电极两步法分步电解水制氢的方法及装置
CN111534830A (zh) 一种电解水产生高纯氢的装置及方法
CN216738553U (zh) 一种分步电解水制氢装置
CN113293407B (zh) 一种富铁纳米带析氧电催化剂及其制备方法
CN113652710B (zh) 一种铜钴析氧催化剂的制备方法
CN213570766U (zh) 一种基于铅网的水分解制氢装置
CN115928135A (zh) 一种铁掺杂氢氧化镍复合硒化镍材料及其制备方法和应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16865766

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16865766

Country of ref document: EP

Kind code of ref document: A1