WO2017077811A1 - 気流制御システム - Google Patents

気流制御システム Download PDF

Info

Publication number
WO2017077811A1
WO2017077811A1 PCT/JP2016/079788 JP2016079788W WO2017077811A1 WO 2017077811 A1 WO2017077811 A1 WO 2017077811A1 JP 2016079788 W JP2016079788 W JP 2016079788W WO 2017077811 A1 WO2017077811 A1 WO 2017077811A1
Authority
WO
WIPO (PCT)
Prior art keywords
air
air flow
engine
engine compartment
outlet
Prior art date
Application number
PCT/JP2016/079788
Other languages
English (en)
French (fr)
Inventor
裕之 坂根
栗林 信和
史朗 坂東
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Priority to DE112016005037.2T priority Critical patent/DE112016005037T5/de
Priority to JP2017548683A priority patent/JP6493554B2/ja
Priority to US15/772,131 priority patent/US10946720B2/en
Publication of WO2017077811A1 publication Critical patent/WO2017077811A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/02Heating, cooling or ventilating [HVAC] devices the heat being derived from the propulsion plant
    • B60H1/025Heating, cooling or ventilating [HVAC] devices the heat being derived from the propulsion plant from both the cooling liquid and the exhaust gases of the propulsion plant
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00642Control systems or circuits; Control members or indication devices for heating, cooling or ventilating devices
    • B60H1/00735Control systems or circuits characterised by their input, i.e. by the detection, measurement or calculation of particular conditions, e.g. signal treatment, dynamic models
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00642Control systems or circuits; Control members or indication devices for heating, cooling or ventilating devices
    • B60H1/00814Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation
    • B60H1/00821Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation the components being ventilating, air admitting or air distributing devices
    • B60H1/00864Ventilators and damper doors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/02Heating, cooling or ventilating [HVAC] devices the heat being derived from the propulsion plant
    • B60H1/14Heating, cooling or ventilating [HVAC] devices the heat being derived from the propulsion plant otherwise than from cooling liquid of the plant, e.g. heat from the grease oil, the brakes, the transmission unit
    • B60H1/16Heating, cooling or ventilating [HVAC] devices the heat being derived from the propulsion plant otherwise than from cooling liquid of the plant, e.g. heat from the grease oil, the brakes, the transmission unit the air being heated by direct contact with the plant, e.g. air-cooled motor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K11/00Arrangement in connection with cooling of propulsion units
    • B60K11/02Arrangement in connection with cooling of propulsion units with liquid cooling
    • B60K11/04Arrangement or mounting of radiators, radiator shutters, or radiator blinds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K11/00Arrangement in connection with cooling of propulsion units
    • B60K11/08Air inlets for cooling; Shutters or blinds therefor
    • B60K11/085Air inlets for cooling; Shutters or blinds therefor with adjustable shutters or blinds
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P11/00Component parts, details, or accessories not provided for in, or of interest apart from, groups F01P1/00 - F01P9/00
    • F01P11/10Guiding or ducting cooling-air, to, or from, liquid-to-air heat exchangers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P7/00Controlling of coolant flow
    • F01P7/02Controlling of coolant flow the coolant being cooling-air
    • F01P7/10Controlling of coolant flow the coolant being cooling-air by throttling amount of air flowing through liquid-to-air heat exchangers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/02Heating, cooling or ventilating [HVAC] devices the heat being derived from the propulsion plant
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/02Heating, cooling or ventilating [HVAC] devices the heat being derived from the propulsion plant
    • B60H1/04Heating, cooling or ventilating [HVAC] devices the heat being derived from the propulsion plant from cooling liquid of the plant
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P7/00Controlling of coolant flow
    • F01P7/02Controlling of coolant flow the coolant being cooling-air
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/80Technologies aiming to reduce greenhouse gasses emissions common to all road transportation technologies
    • Y02T10/88Optimized components or subsystems, e.g. lighting, actively controlled glasses

Definitions

  • the present invention relates to an airflow control system.
  • a vehicle exhaust heat recovery device includes a radiator disposed between a front opening of an engine compartment and a traveling engine, and a fan disposed between the traveling engine and the radiator.
  • a radiator disposed between a front opening of an engine compartment and a traveling engine
  • a fan disposed between the traveling engine and the radiator.
  • the fan sucks the air flow heated by the exhaust heat of the traveling engine from the lower side of the traveling engine and blows it out toward the radiator to pass through the radiator.
  • the radiator the exhaust heat contained in the airflow can be transmitted to the traveling engine via a heat medium (for example, engine cooling water).
  • a heat medium for example, engine cooling water
  • the exhaust heat of the traveling engine is recovered by the radiator, and the recovered exhaust heat is used for warming up the travel engine. For this reason, when the warm-up of the traveling engine proceeds, the temperature of the heat medium finally converges to a predetermined temperature, and the exhaust heat recovery capability by the radiator is reduced. Therefore, when the warming-up of the traveling engine is completed, the exhaust heat of the traveling engine included in the air flow is not used for warming up the traveling engine but is discharged to the outside of the vehicle.
  • the present invention has been made in view of the above points, and an object of the present invention is to provide an airflow control system in which exhaust heat of a traveling engine can be used in another area outside an engine compartment.
  • the vehicle is disposed in front of the vehicle interior in the vehicle traveling direction, and is disposed in the engine compartment (2) that houses the traveling engine (3).
  • the exhaust heat of the traveling engine can be used in another area by blowing the air flow blown from the blower to the other area through the air outlet.
  • FIG. 2 is a layout view of the electric fan, radiator, condenser, shroud, and shutter of FIG. 1 from the Tenchi region improvement side.
  • FIG. 4B is a control map showing the relationship between the air temperature Tair used in the warm-up promotion process of FIG. 4B and the rotational speed N of the electric fan. It is a schematic diagram for demonstrating the action
  • FIG. 10 is a layout view of an electric fan, a radiator, a capacitor, and a shutter according to a second modification of the first embodiment from the Tenchi region improvement side. It is a figure which shows the whole structure of the airflow control system in 2nd Embodiment.
  • FIG. 10 is a diagram illustrating the reflux duct and the reflux switching door of FIG. 9. It is the schematic diagram which looked at the airflow control system from the heaven district improvement side in 2nd Embodiment. It is a schematic diagram which shows typically an airflow in the airflow control system of 2nd Embodiment. It is the figure which looked at the main electric fan and the sub electric fan in the 2nd modification of 2nd Embodiment from the vehicle progress back side. It is the figure which looked at the airflow in the 2nd modification of 2nd Embodiment from the vehicle width direction. It is a figure which shows the whole structure of the airflow control system in 3rd Embodiment. It is a figure which shows the structure of the indoor air conditioning unit in 3rd Embodiment.
  • FIG. 1 is a diagram showing an overall configuration of an airflow control system 1 in the first embodiment.
  • the airflow control system 1 controls the airflow in the engine compartment 2 of the vehicle to cool and warm up the traveling engine 3, to prevent the front windshield 4 from being fogged, and to heat the passenger compartment 5.
  • the engine compartment 2 of the present embodiment is a space for housing the traveling engine 3 and is located on the front side in the vehicle traveling direction with respect to the passenger compartment 5 of the vehicle 1.
  • the traveling engine 3 is an internal combustion engine that applies rotational force to driving wheels of a vehicle.
  • the engine hood 6 formed so as to cover the heaven region improvement side of the engine compartment 2 is disposed on the heaven region improvement side of the engine compartment 2 of the vehicle.
  • An under cover 7 is disposed on the lower side of the engine compartment 2 in the vertical direction so as to cover the lower side of the engine compartment 2 in the vertical direction.
  • the airflow control system 1 includes an electric fan 10, a radiator 20, a condenser 30, a shroud 40, and a shutter 50.
  • the electric fan 10, the radiator 20, the condenser 30, the shroud 40, and the shutter 50 are blowers arranged in the engine compartment 2.
  • the electric fan 10 is disposed between the front opening 8 a of the engine compartment 2 and the traveling engine 3.
  • the electric fan 10 rotates the fan forward to blow out the airflow sucked from the front side of the vehicle traveling direction through the front opening 8a, the condenser 30, the shutter 50, and the radiator 20 to the traveling engine 3 side.
  • the electric fan 10 blows out the air flow sucked in from the traveling engine 3 side to the radiator 20 side by rotating the fan in the reverse direction.
  • the electric fan 10 includes an axial flow type fan and an electric motor that rotationally drives the fan.
  • the front opening 8a is formed in a front damper or the like, and is an opening that opens the engine compartment 2 forward in the vehicle traveling direction.
  • the radiator 20 is a heat exchanger disposed between the electric fan 10 and the front opening 8a.
  • the radiator 20 is a heat exchanger that transfers heat between the traveling engine 3 and the air flow via a heat medium.
  • a heat medium for example, a liquid obtained by mixing an antifreeze into water, so-called engine cooling water is used.
  • the capacitor 30 is disposed between the radiator 20 and the front opening 8a.
  • the condenser 30 constitutes a refrigeration cycle for an air conditioner that circulates refrigerant together with a compressor, a pressure reducing valve, an evaporator, and the like.
  • the capacitor 30 is a heat exchanger that radiates heat from the refrigerant to the air flow.
  • the shutter 50 is disposed between the condenser 30 and the radiator 20, and opens and closes the air flow path 41 between the radiator 20 and the front opening 8a as shown in FIG.
  • the air flow path 41 corresponds to the first air flow path.
  • the shutter 50 of the present embodiment includes a plurality of doors arranged in the vertical direction or the vehicle width direction.
  • the shutter 50 opens and closes the air flow path 41 by opening and closing a plurality of doors with an electric actuator.
  • the shroud 40 supports the electric fan 10 and constitutes an air flow path 42 between the electric fan 10 and the shutter 50 via the radiator 20.
  • the air flow path 42 corresponds to the second air flow path.
  • the shroud 40 is configured to cover the air flow path 42 from the top side in the vertical direction, the right side in the vehicle width direction, and the left side in the vehicle width direction.
  • the shroud 40 of this embodiment forms an air outlet 43 that blows out the air flow blown from the electric fan 10.
  • the air outlet 43 is provided between the electric fan 10 and the shutter 50 and opens to the heaven region improvement side. In other words, the air outlet 43 opens to the upper side in the vertical direction intersecting the direction connecting the shutter 50 and the electric fan 10 (that is, the vehicle traveling direction).
  • the air distribution destination duct 60 is a duct for guiding the air flow blown from the air outlet 2a of the engine compartment 2 to the shield outlet 61 and the vehicle interior inlet 62.
  • the air distribution destination duct 60 of the present embodiment is provided in the cowl area 70.
  • the cowl area 70 is an area formed between the front windshield 4, the passenger compartment 5, and the engine compartment 2, and communicating with the outside of the vehicle, which is the heavenly region improvement side.
  • the air outlet 2 a is formed between the engine compartment 2 and the cowl area 70.
  • the shield outlet 61 is an opening through which an air flow blown from the air outlet 2 a of the engine compartment 2 is blown to the outer surface of the front windshield 4.
  • the outer surface of the front windshield 4 is the front side of the front windshield 4 in the vehicle traveling direction.
  • the vehicle interior inlet 62 is an opening through which the air flow blown from the air outlet 2 a of the engine compartment 2 is blown into the vehicle compartment 5.
  • the outer surface of the front windshield 4 and the interior of the passenger compartment 5 are located behind the engine compartment 2 in the vehicle traveling direction. For this reason, the outer surface of the front windshield 4 and the interior of the passenger compartment 5 correspond to other areas located on the rear side in the vehicle traveling direction with respect to the engine compartment 2.
  • the reflux switching door 80 is a door that opens and closes the air outlet 2a.
  • the air distribution destination switching door 81 is an exit door that opens and closes the vehicle interior introduction port 62.
  • the air distribution destination switching door 81 corresponds to the introduction port door.
  • the exhaust heat door 82 opens and closes the exhaust port 2 b of the engine compartment 2.
  • the exhaust port 2b is a hole that is provided on the rear side of the under cover 7 in the vehicle traveling direction and communicates between the inside of the engine compartment 2 and the outside of the vehicle that is the lower side in the vertical direction of the vehicle.
  • the airflow control system 1 of the present embodiment includes a control ECU 90, electric actuators 91, 92, 93, 94 and sensors 95, 96, 97 as shown in FIG.
  • the control ECU 90 includes a microcomputer, a memory, and the like, and executes an airflow control process according to the computer program.
  • This memory is a non-transitional physical storage medium.
  • control ECU 90 performs the shutter 50, the reflux switching door 80, and the like via the electric actuators 91 to 94 based on the output signals of the sensors 95 to 97 and communication with other ECUs such as an air conditioner ECU.
  • the air distribution destination switching door 81 and the exhaust heat door 82 are controlled.
  • the electric actuator 91 is an electric motor that opens and closes the shutter 50.
  • the electric actuator 92 is an electric motor that opens and closes the reflux switching door 80.
  • the electric actuator 93 is an electric motor that opens and closes the air distribution destination switching door 81.
  • the electric actuator 94 is an electric motor that opens and closes the exhaust heat door 82.
  • the sensor 95 is a temperature sensor that detects the temperature of the heat medium circulated between the radiator 20 and the traveling engine 3 (hereinafter referred to as the heat medium temperature Tw).
  • the sensor 96 is a temperature sensor that detects an air temperature Tair in the engine compartment 2.
  • the sensor 97 is a temperature sensor that detects an air temperature Tamb that is an outside air temperature outside the vehicle.
  • the control ECU 90 executes the airflow control process according to the flowcharts of FIGS. 4A, 4B, 4C, 4D, and 4E.
  • control ECU 90 determines whether or not the heat medium temperature Tw is lower than the threshold value T1 based on the detection value of the sensor 95 in step S100 of FIG. 4A. At this time, when the heat medium temperature Tw is lower than the threshold value T1, YES is determined in step S100.
  • step S101 the heat exchange efficiency is low by determining whether or not the air temperature Tair ⁇ (heat medium temperature Tw + ⁇ T) is established based on the detection value of the sensor 95 and the detection value of the sensor 96. It is determined whether or not. In this determination, hysteresis may be set as will be described later.
  • the heat exchange efficiency is the efficiency of heat exchange performed between the air flow passing through the radiator 20 and the heat medium in order to transfer the heat from the air flow to the heat medium.
  • the control ECU 90 determines that the air temperature Tair ⁇ (heat medium temperature Tw + ⁇ T). ) Is established. In this case, the control ECU 90 determines YES in step S101 because the heat exchange efficiency is low.
  • control ECU 90 executes warm-up promotion processing for promoting warm-up of the traveling engine 3 in step S102.
  • the air flow path 41 between the radiator 20 and the front opening 8a is closed by controlling the shutter 50 by the electric actuator 91. Then, the electric fan 10 is stopped. Then, the air outlet 2 a of the engine compartment 2 is closed by controlling the reflux switching door 80 by the electric actuator 92. At this time, if there is an exhaust heat door 82, the exhaust heat door 82 is closed.
  • the shutter 50 closes the air flow path 41, and the reflux switching door 80 closes the air outlet 2a. Therefore, exhaust heat of the traveling engine 3 is suppressed from being discharged to the outside of the engine compartment 2. For this reason, in the traveling engine 3, as shown in FIG. 5A, warm-up is promoted by exhaust heat contained in the air flow in the engine compartment 2. Thereafter, the control ECU 90 returns to step S100.
  • control ECU 90 executes a heat recovery process for recovering the exhaust heat of the traveling engine 3 and transmitting it to the traveling engine 3 in step S103.
  • control ECU 90 controls the shutter 50 by the electric actuator 91 to close the air flow path 41 between the radiator 20 and the front opening 8a. Then, the electric fan 10 is rotated in the reverse direction. Then, the air outlet 2 a of the engine compartment 2 is closed by controlling the reflux switching door 80 by the electric actuator 91. At this time, if there is an exhaust heat door 82, the exhaust heat door 82 is closed.
  • the shutter 50 closes the air flow path 41, and the reflux switching door 80 closes the air outlet 2a. Therefore, exhaust heat of the traveling engine 3 is suppressed from being discharged to the outside of the engine compartment 2.
  • the electric fan 10 rotates the fan in the reverse direction. For this reason, the electric fan 10 blows out the air flow sucked in from the traveling engine 3 side to the radiator 20 side.
  • the electric fan 10 sucks the air flow heated by the exhaust heat of the traveling engine 3 and blows it out to the radiator 20 side to allow the air flow to pass through the radiator 20.
  • the heat from the air flow is recovered by the radiator 20, and the recovered heat is transmitted to the traveling engine 3 through the heat medium.
  • the warm-up of the traveling engine 3 is promoted by the exhaust heat contained in the airflow.
  • the airflow blown out from the electric fan 10 is blocked by the shutter 50 from flowing toward the front opening 8a, and blown out from the air outlet 43 of the shroud 40 toward the heaven region improvement side.
  • This blown air flow flows along the engine hood 6 to the rear side in the vehicle traveling direction.
  • This flow of air flows to the rear side in the vehicle traveling direction with respect to the traveling engine 3.
  • the air flow passes through the periphery of the traveling engine 3 and is sucked into the electric fan 10.
  • recirculation of the air flow that passes around the radiator 20, the electric fan 10, and the traveling engine 3 occurs.
  • the air flow is heated by the exhaust heat of the traveling engine 3, and heat is transferred from the heated air flow to the traveling engine 3 via the radiator 20. .
  • the control ECU 90 returns to step S100.
  • control ECU 90 controls the rotational speed N of the electric fan 10 so that the heat medium temperature Tw approaches (heat medium temperature Tw + ⁇ T).
  • the air temperature Tair When the air temperature Tair is equal to or higher than (heat medium temperature Tw + ⁇ T), the higher the air temperature Tair, the higher the rotational speed N of the fan. For this reason, the air volume of the electric fan 10 is increased as the air temperature Tair increases. For this reason, the air volume which passes the radiator 20 increases, so that the air temperature Tair becomes high. Thereby, the higher the air temperature Tair, the greater the amount of exhaust heat recovered by the radiator 20. As a result, the air temperature Tair approaches (heat medium temperature Tw + ⁇ T). That is, the difference between the air temperature Tair and the heat medium temperature Tw is maintained at ⁇ T.
  • the control ECU 90 When the air temperature Tair is less than (heat medium temperature Tw + ⁇ T) and equal to or higher than the heat medium temperature Tw, and the current fan speed N is zero, the control ECU 90 performs steps S101 to S102 as described above. Then, the fan speed N is maintained at zero.
  • step S101 If the air temperature Tair is less than (heat medium temperature Tw + ⁇ T) and greater than or equal to the heat medium temperature Tw, and the current rotational speed N of the fan is greater than zero, the control ECU 90 proceeds from step S101 to step S103.
  • the rotation speed N may be a constant value. This constant value is the same as the rotational speed N of the fan when the air temperature Tair is the same as (heat medium temperature Tw + ⁇ T).
  • the determination content of step S101 is whether or not the air temperature Tair is smaller than the heat medium temperature Tw.
  • control ECU 90 proceeds from step S101 to step S102 and maintains the fan rotation speed N at zero.
  • the fan starts to rotate when the air temperature Tair reaches (heat medium temperature Tw + ⁇ T). Further, in the lowering process of the air temperature Tair, the rotation of the fan stops when the air temperature Tair becomes the heat medium temperature Tw.
  • hysteresis may be provided in the response of the rotational speed N of the fan to the air temperature Tair.
  • step S100 when the temperature Tw of the heat medium is equal to or higher than the threshold value T1, the control ECU 90 determines NO in step S100.
  • step S104 the control ECU 90 determines whether or not the travel medium 3 is warmed up by determining whether or not the temperature Tw of the heat medium is lower than the threshold value T2 based on the detection value of the sensor 95. It is determined whether or not there is.
  • the threshold value T2 is larger than the threshold value> T1.
  • the control ECU 90 determines that the traveling engine 3 is warming up and determines YES in step S104.
  • step S105 the control ECU 90 determines whether or not the air temperature Tair is equal to or higher than the air temperature Tamb based on the detection values of the sensors 96 and 97.
  • Control ECU90 determines whether the exhaust heat which can be utilized for uses, such as heating in the compartment 5 and anti-fogging, is contained in the air in the engine compartment 2 by this.
  • step S105 determines NO in step S105, assuming that the exhaust heat that can be used for heating or anti-fogging in the passenger compartment 5 is not present in the air in the engine compartment 2. Then, the process proceeds to step S103.
  • step S105 the control ECU 90 determines that the exhaust heat that can be used for heating or anti-fogging in the passenger compartment 5 exists in the air in the engine compartment 2 in step S105. Is determined. In this case, in step S106, the control ECU 90 executes a use process for using the exhaust heat for other purposes. Control ECU90 respond
  • control ECU 90 controls the shutter 50 by the electric actuator 91 to close the air flow path 41 between the radiator 20 and the front opening 8a. Then, the electric fan 10 is reversely rotated. Then, the air outlet 2 a of the engine compartment 2 is opened by controlling the reflux switching door 80 by the electric actuator 92. At this time, the exhaust heat door 82 may be opened or closed.
  • the shutter 50 closes the air flow path 41, and the reflux switching door 80 opens the air outlet 2a. Therefore, the exhaust heat of the traveling engine 3 can be discharged to the outside of the engine compartment 2.
  • the electric fan 10 blows out the air flow sucked in from the traveling engine 3 side to the radiator 20 side. For this reason, as in the heat recovery process 103 described above, recirculation of the air flow passing around the radiator 20, the electric fan 10, and the traveling engine 3 occurs.
  • a part of the air flow blown out from the electric fan 10 is introduced into the air distribution duct 60 from the air outlet 2a of the engine compartment 2.
  • the air flow introduced into the air distribution destination duct 60 is blown out from the shield outlet 61 and the vehicle interior inlet 62.
  • the air flow blown out from the shield outlet 61 flows along the outer surface of the front windshield 4. For this reason, the temperature of the front windshield 4 rises.
  • the air flow is blown into the vehicle compartment 5 from the vehicle interior introduction port 62, whereby the heat in the vehicle compartment 5 is heated using the exhaust heat of the traveling engine 3. Done. Thereafter, the control ECU 90 returns to step S100.
  • the control ECU 90 determines that the warm-up of the traveling engine 3 has been completed when it is determined NO in step S104, based on the detection value of the sensor 95, that the temperature Tw of the heat medium is higher than the threshold value T2.
  • the control ECU 90 determines whether or not the heat medium temperature Tw is higher than the threshold value T3 based on the detection value of the sensor 95, thereby forcibly scavenging the heat in the engine compartment 2. Determine whether.
  • the threshold value T3 is larger than the threshold value T2.
  • the control ECU 90 corresponds to the exhaust heat determination unit by executing step S107.
  • the control ECU 90 determines that the heat in the engine compartment 2 should be forcibly purged, and YES in step S107.
  • control ECU 90 opens the air flow path 41 between the radiator 20 and the front opening 8a by controlling the shutter 50 by the electric actuator 91 in step S108. Then, the electric fan 10 is rotated forward. Then, the air outlet 2 a is closed by controlling the reflux switching door 80 by the electric actuator 92. And the exhaust port 2b is opened by controlling the exhaust heat door 82 by the electric actuator 94.
  • the control ECU 90 corresponds to the exhaust control unit by executing step S108.
  • the electric fan 10 blows out the air flow sucked through the front opening 8a, the condenser 30, the shutter 50, and the radiator 20 from the front side in the vehicle traveling direction to the traveling engine 3 side. For this reason, the blown air flow passes around the traveling engine 3.
  • step S107 the control ECU 90 determines that the heat in the engine compartment 2 should not be forcibly purged when the heat medium temperature Tw is lower than the threshold value T3. In this case, the control ECU 90 determines NO in step S107, and determines that the exhaust heat that can be used for heating or anti-fogging in the passenger compartment 5 is included in the air in the engine compartment 2. . Control ECU90 respond
  • control ECU 90 can perform any of the warm-up promotion process in step S102, the heat recovery process in step S103, the heat utilization process in step S106, and the heat damage prevention process in step S108. Will be carried out.
  • FIG. 6 shows the relationship between the air temperature Tair, the heat medium temperature Tw, and the threshold values T1, T2, and T3 of this embodiment.
  • step S102 When the air temperature Tair ⁇ the heat medium temperature Tw, the heat medium temperature Tw ⁇ the threshold value T1, and the air temperature Tair ⁇ the heat medium temperature Tw + ⁇ T, the warm-up promotion process in step S102 is executed.
  • the exhaust heat of the traveling engine 3 is reduced from being discharged to the outside of the engine compartment 2, and the air temperature Tair in the engine compartment 2 is easily increased. Thereby, the warm-up time of the traveling engine 3 can be shortened.
  • control ECU 90 controls the number of passages of the radiator 20 by controlling the number of rotations of the electric fan 10, and the temperature difference between the air temperature Tair and the temperature Tw of the heat medium is determined by ⁇ T. To maintain. As a result, the exhaust heat of the traveling engine 3 can be efficiently recovered in the heat medium via the radiator 20.
  • step S104 when the air temperature Tair ⁇ the heat medium temperature Tw, and the threshold value T1 ⁇ the heat medium temperature Tw ⁇ the threshold value T2 and the air temperature Tair> the air temperature Tamb, the heat utilization process of step S104 is executed.
  • the heat utilization process in step S106 is executed.
  • the front windshield 4 during running in the winter season is exposed to cold running wind and the glass temperature decreases. Therefore, the passenger compartment side of the front windshield 4 is likely to be cloudy due to occupant expiration. At this time, the waste heat air that has been thrown away in the past is allowed to flow toward the outside of the front windshield 4, thereby increasing the temperature of the front windshield 4 and improving the anti-fogging effect.
  • the anti-fogging effect can be enhanced because hot air is used as it is.
  • step S108 When the air temperature Tair ⁇ the heat medium temperature Tw and the heat medium temperature Tw> the threshold value T3, the heat damage prevention process of step S108 is executed.
  • the air temperature Tair of the engine compartment 2 further rises and approaches the heat resistant temperature T3 of the equipment in the engine compartment 2, it will cause equipment failure. In particular, it is a severe temperature environment for rubber parts, resin parts, wire harnesses, and the like. By controlling the air flow in the engine compartment 2, it is possible to scavenge more effectively in a necessary scene in a necessary part.
  • the threshold value T1 is a threshold value for determining whether or not the heat medium temperature Tw is a low water temperature.
  • the threshold value T2 is a threshold value for determining whether or not the warm-up of the traveling engine 3 has been completed.
  • the threshold value T3 is the heat resistant temperature of the devices in the engine compartment 2.
  • N1 in FIG. 6 is exhaust heat that is forcibly scavenged from the inside of the engine compartment 2 to the outside of the vehicle.
  • N2 is exhaust heat that is not recovered by the heat medium.
  • N3 is exhaust heat recovered by the heat medium.
  • the airflow control system 1 includes the electric fan 10 and the reflux switching door 80.
  • the electric fan 10 is disposed on the front side in the vehicle traveling direction with respect to the interior of the passenger compartment 5 and is disposed in the engine compartment 2 that houses the traveling engine 3.
  • the recirculation switching door 80 opens and closes an air outlet 2a that blows an air flow from the engine compartment 2 to another area on the rear side in the vehicle traveling direction with respect to the engine compartment.
  • the control ECU 90 determines whether the exhaust heat of the traveling engine 3 used in other areas (that is, areas other than the engine compartment 2) is included in the air in the engine compartment 2. When the control ECU 90 determines that the exhaust heat of the traveling engine 3 used in other areas is included in the air in the engine compartment 2, the control ECU 90 controls the reflux switching door 80 to open the air outlet 2a, and further exhausts the heat.
  • the electric fan 10 is controlled so that the air flow which includes it is blown from the air outlet 2a to another area (for example, inside the vehicle compartment 5 or the outer surface of the front windshield 4).
  • exhaust air that cannot be recovered by the radiator 20 is heated as a hot air by blowing an air flow into the passenger compartment 5 or the outer surface of the front windshield 4.
  • the air distribution destination duct 60 of the present embodiment is disposed in the cowl area 70.
  • the cowl area 70 is originally provided with a hole that communicates with the interior of the passenger compartment 5 through a firewall. For this reason, an airflow can be blown out from the air distribution destination duct 60 into the vehicle interior 5 using the hole.
  • the shutter 50 is disposed between the capacitor 30 and the front opening 8a. Further, the shutter 50 may be disposed in the front opening 8a. In FIG. 7, the front opening 8a is not shown.
  • an example in which a plurality of doors are arranged in a row and an opening / closing mechanism that opens and closes each of the plurality of doors with an electric actuator is provided as the shutter 50.
  • the opening / closing mechanism may be the shutter 50.
  • the shutter 50 in FIG. 8 includes a slide door 52 provided with a plurality of slits (that is, openings) 51 and a plurality of wind shielding plates 53 arranged in the air flow direction with respect to the plurality of slits 51.
  • an electromagnetic solenoid is used as the electric actuator 91, and the slide door 52 is slid in a direction orthogonal to the direction of the traveling wind. Traveling wind refers to the airflow with respect to the vehicle when the vehicle is traveling.
  • the shutter 50 closes the air flow path 41.
  • the shutter 50 opens the air flow path 41.
  • the electric fan 10 blows the air flow with the shutter 50 closing the air flow path 41 between the front opening 8a and the electric fan 10. For this reason, since the air in the engine compartment 2 is blown from the air outlet of the engine compartment 2 to another area, air outside the vehicle enters the engine compartment 2 from the front opening 8a or from the front opening 8a to the outside of the vehicle. It can suppress that exhaust heat comes out.
  • FIG. 9 shows a schematic configuration of the airflow control system 1 of the present embodiment.
  • the airflow control system 1 of this embodiment is obtained by adding a reflux duct 100 and an underfloor door 110 to the airflow control system 1 of the first embodiment.
  • the recirculation duct 100 is a duct for guiding the air flow so that the air flow recirculates as described later. Specifically, as shown in FIG. 10, the reflux duct 100 is formed to guide the air flow blown from the air outlet 43 of the shroud 40 to the air outlet 2 a and the reflux outlet 101 of the engine compartment 2. .
  • the reflux duct 100 is disposed on the lower side in the vertical direction with respect to the engine hood 6 in the engine compartment 2.
  • the reflux duct 100 is supported by the engine hood 6.
  • the reflux outlet 101 is an outlet for blowing the air flow that has passed through the reflux duct 100 to the rear side in the vehicle traveling direction with respect to the traveling engine 3 in the engine compartment 2.
  • the reflux switching door 80 of the present embodiment opens one of the air outlet 2a and the reflux outlet 101 and closes the other.
  • the underfloor door 110 is a door that opens and closes the opening 5b of the floor 5a in the passenger compartment 5.
  • the opening 5b communicates between the interior of the passenger compartment 5 and the underfloor storage space 5c.
  • a secondary battery that supplies electric power to a traveling motor or the like is stored.
  • the underfloor door 110 is opened and closed by an electric actuator 111.
  • the electric actuator 111 is controlled by the control ECU 90.
  • the shutter 50 is disposed on the front side in the vehicle traveling direction with respect to the capacitor 30, and the shutter 50 is disposed in the front opening 8a. .
  • the air flow sucked from the traveling engine 3 side by the electric fan 10 is blown out and passed through the radiator 20.
  • an air flow blown from the electric fan 10 through the air outlet 43 of the shroud 40 is blown out from the reflux outlet 101 to the traveling engine 3 to the rear side in the vehicle traveling direction through the reflux duct 100.
  • the air flow blown from the recirculation outlet 101 passes through the periphery of the traveling engine 3 to generate a recirculation of the air flow sucked into the electric fan 10.
  • control ECU 90 controls the reflux switching door 80 via the electric actuator 92 to open the air outlet 2a and close the reflux outlet 101. Further, the control ECU 90 controls the air distribution destination switching door 81 through the electric actuator 93 to open the vehicle interior introduction port 62. Further, the control ECU 90 controls the underfloor door 110 via the electric actuator 111 to open the opening 5b of the floor 5a in the passenger compartment 5.
  • the air flow blown from the electric fan 10 through the air outlet 43 of the shroud 40 is transmitted from the air outlet 2a of the reflux duct 100 and the vehicle interior inlet 62 of the air distribution destination duct 60 as indicated by an arrow Z2 in FIG. Blow out into chamber 5.
  • an air flow flows from the passenger compartment 5 through the opening 5b to the underfloor storage space 5c as indicated by an arrow Z3. For this reason, the temperature of the secondary battery in the underfloor storage space 5c can be raised.
  • the air flow blown out from the electric fan 10 through the air outlet 43 of the shroud 40 flows from the air outlet 2a of the reflux duct 100 and the shield outlet 61 of the air distribution destination duct 60 to the outer surface of the front windshield 4 as indicated by an arrow Z1. Blow out.
  • the air flow blown out from the electric fan 10 using the reflux duct 100 is blown out to the rear side in the vehicle traveling direction with respect to the traveling engine 3 in the engine compartment 2. For this reason, it can guide that recirculation
  • step S108 when the control ECU 90 performs the heat damage prevention process of step S108, when the vehicle is traveling, traveling wind flows from the front side in the vehicle traveling direction through the front opening 8a as the vehicle travels. The inflowed traveling wind blows out from the reflux outlet 101 to the traveling engine 3 through the reflux duct 100 to the rear in the vehicle traveling direction.
  • the pressure loss of the reflux duct 100 can be reduced by the Coanda effect and effective scavenging can be performed.
  • the main wind flow is an air flow having the highest air volume among a plurality of air flows flowing from the front opening 8a through the radiator 20 and the electric fan 10 to the traveling engine 3 side.
  • the engine compartment 2 can be effectively Can be scavenged.
  • the heat medium is not water but air, so that it can be taken out of the vehicle and discharged outside the vehicle as needed even during traveling.
  • the reflux duct 100 is supported by the engine hood 6 and is configured to be separable from the shroud 40. As shown in FIG. 10, in a state where the engine hood 6 covers the engine compartment 2, the reflux duct 100 and the shroud 40 are connected. In a state where the engine hood 6 has opened the engine compartment 2, the reflux duct 100 and the shroud 40 are divided as shown in FIG. For this reason, the inspection and maintenance of the apparatus below the reflux duct 100 can be easily performed.
  • the electric fan 10 is a main electric fan 10a
  • the electric fan 10b is a sub electric fan 10b.
  • the main electric fan 10a corresponds to the main blower
  • the sub electric fan 10b corresponds to the sub blower.
  • the sub electric fan 10b is arranged on the right side or the left side in the vehicle width direction with respect to the main electric fan 10a.
  • the sub electric fan 10b is supported by the shroud 40 together with the main electric fan 10a.
  • the sub electric fan 10b includes, for example, a centrifugal fan and an electric motor that rotates the centrifugal fan.
  • the sub electric fan 10b blows out the air flow sucked from the radiator 20 side through the opening 40a of the shroud 40.
  • the opening 40a of the shroud 40 penetrates in the vehicle traveling direction.
  • the reflux duct 100 of the first modification is formed to guide the air flow blown from the sub electric fan 10b to the air outlet 2a and the reflux outlet 101 of the engine compartment 2.
  • step S102 when the control ECU 90 executes the warm-up promotion process in step S102, the main electric fan 10a and the sub electric fan 10b are stopped.
  • step S103 When the control ECU 90 executes the heat recovery process of step S103, the main electric fan 10a is stopped and the sub electric fan 10b is rotated.
  • the shutter 50 closes the air flow path 41, and the reflux switching door 80 closes the air outlet 2a.
  • the sub electric fan 10b introduces an air flow sucked from the traveling engine 3 side and blows it into the recirculation duct 100 as indicated by an arrow Ga in FIG. 13B.
  • the air flow from the traveling engine 3 side is introduced into the main electric fan 10a, the radiator 20, the condenser 30, the radiator 20, and the sub electric fan 10b from the traveling engine 3 side to the sub electric fan 10b. It flows in order. For this reason, the waste heat contained in the airflow from the traveling engine 3 side is recovered by the radiator 20.
  • the sub electric fan 10b introduces an air flow sucked from the traveling engine 3 side and blows it into the reflux duct 100 as indicated by an arrow Ga. For this reason, the airflow flows from the recirculation outlet 101 of the recirculation duct 100 to the traveling engine 3 toward the rear side in the vehicle traveling direction. Thereafter, the air flow passes through the periphery of the traveling engine 3 and is sucked into the electric fan 10. As a result, recirculation of the air flow that passes around the radiator 20, the electric fan 10, and the traveling engine 3 occurs.
  • the control ECU 90 stops the main electric fan 10a and rotates the sub electric fan 10b when executing the heat utilization process of step S106.
  • the sub electric fan 10b introduces an air flow sucked through the main electric fan 10a from the traveling engine 3 side as indicated by an arrow Ga in the same manner as in the heat recovery process of step S103, and enters the recirculation duct 100.
  • the air flow introduced into the reflux duct 100 is blown out from the shield outlet 61 and the vehicle interior inlet 62 through the air distribution duct 60.
  • the control ECU 90 stops the sub electric fan 10b and rotates the main electric fan 10a in the forward direction when executing the heat damage prevention process of step S108.
  • the main electric fan 10a blows out the air flow sucked through the front opening 8a, the condenser 30, the shutter 50, and the radiator 20 from the front side in the vehicle traveling direction to the traveling engine 3 side. For this reason, the blown air flow passes around the traveling engine 3.
  • the air flow from the inside of the engine compartment 2 is sucked into the top and bottom of the vehicle through the exhaust port 2b and flows to the outside of the vehicle.
  • the control ECU 90 controls the sub electric fan 10b, so that the sub electric fan 10b introduces the air flow sucked through the main electric fan 10a from the traveling engine 3 side and returns. Air is blown into the duct 100. The air flow introduced into the reflux duct 100 is blown out from the shield outlet 61 and the vehicle interior inlet 62 through the air distribution duct 60. For this reason, the air flow including waste heat can be used for heating in the passenger compartment 5 and anti-fogging of the front windshield 4.
  • the control ECU 90 of the present embodiment controls the electric actuators 91, 92, and 94 based on the communication signal from the air conditioner ECU 160 of the indoor air conditioning unit 120, the vehicle interior temperature Tr, and the like.
  • the indoor air conditioning unit 130 includes an inside / outside air switching box 131 and a case 132.
  • the inside / outside air switching box 131 is disposed at the most upstream portion of the air flow path 41 of the case 132.
  • the inside air introduction port 133 and the outside air introduction port 134 are switched and opened and closed by an inside / outside air switching door 135.
  • the inside / outside air switching door 135 is driven by a servo motor 136.
  • An electric blower 37 that blows air toward the passenger compartment is disposed downstream of the inside / outside air switching box 131.
  • the blower 137 is configured to drive a centrifugal blower fan 137a by a motor 137b.
  • An evaporator 138 that forms a cooling heat exchanger for cooling the blown air is disposed on the downstream side of the blower 137.
  • This evaporator 138 is one of the elements constituting the refrigeration cycle apparatus 139, and cools the blown air by evaporating the low-temperature and low-pressure refrigerant by absorbing heat from the blown air.
  • the refrigeration cycle apparatus 139 is well known.
  • the refrigeration cycle apparatus 139 is configured so that the refrigerant circulates from the discharge side of the compressor 140 to the evaporator 38 through the condenser 141, the liquid receiver 142, and the expansion valve 143 that forms the pressure reducing unit.
  • Outdoor air that is, cooling air
  • the cooling fan 141a is driven by a motor 141b.
  • the compressor 140 is driven by the traveling engine 3 via the electromagnetic clutch 140a. Therefore, the operation of the compressor 140 can be intermittently controlled by the energization of the electromagnetic clutch 140a.
  • a heater core 144 for heating the air flowing in the case 132 is disposed on the downstream side of the evaporator 138.
  • the heater core 144 is a heating heat exchanger that heats air (that is, cold air) that has passed through the evaporator 138 using a heat medium (that is, engine cooling water) that cools the traveling engine 3 as a heat source.
  • a bypass passage 145 is formed on the side of the heater core 144, and the bypass air of the heater core 144 flows through the bypass passage 145.
  • An air mix door 146 that forms a temperature adjustment unit is rotatably disposed between the evaporator 138 and the heater core 144.
  • the air mix door 146 is driven by a servo motor 147 so that its rotational position can be continuously adjusted.
  • the ratio of the amount of air passing through the heater core 144 and the amount of air passing through the bypass passage 145 and bypassing the heater core 144 is adjusted according to the opening of the air mix door 146, thereby adjusting the temperature of the air blown into the vehicle interior. It is like that.
  • Three types of air outlets including a defroster air outlet 148, a face air outlet 149, and a foot air outlet 150 are provided at the most downstream portion of the air flow path 41 of the case 132.
  • the case 132 is provided with opening forming portions 148 a, 149 a, and 150 a for forming the defroster outlet opening 148, the face outlet opening 149, and the foot outlet 150, respectively.
  • Doors 151, 152, and 153 are rotatably disposed upstream of the blowout openings 48 to 50. These doors 151 to 153 are opened and closed by a common servo motor 154 via a link mechanism (not shown).
  • the air conditioner ECU 160 is an electronic control device configured by a known microcomputer including a CPU and the like.
  • the air conditioner ECU 160 receives detection signals from the air conditioning sensor groups 95, 97, 161 to 163 and various operation signals from the air conditioning operation panel 170.
  • the air conditioning sensor group includes a temperature sensor 97 that detects the outside air temperature Tamb, a temperature sensor 161 that detects the vehicle interior temperature Tr, a solar radiation sensor 162 that detects the amount of solar radiation Ts incident on the vehicle interior, and an air blowing unit of the evaporator 138.
  • An evaporator temperature sensor 163 for detecting the evaporator blown air temperature Te, a water temperature sensor 95 for detecting the temperature Tw of the heat medium flowing into the heater core 144, and the like are provided.
  • the air conditioning operation panel 170 is provided with a temperature setting switch for setting the vehicle interior set temperature Tset.
  • the vehicle interior inlet 62 of the air distribution duct 60 of the present embodiment is connected to the outside air inlet 134 of the inside / outside air switching box 131.
  • the air distribution destination switching door 81 of the first embodiment is abolished.
  • the inside / outside air switching door 135 also serves as the air distribution destination switching door 81 for opening and closing the vehicle interior introduction port 62.
  • the control ECU 90 executes the heating / anti-fogging switching process according to the flowcharts of FIGS. 16A, 16B, and 16C.
  • step S200 the control ECU 90 determines whether or not the heat medium temperature Tw is less than 80 ° C. based on the detection value of the sensor 95. Thus, it is determined whether or not heating can be performed by the heater core 144.
  • step S200 When the heat medium temperature Tw is less than 80 ° C., it is determined that the heat medium is warming up and the temperature of the heat medium is insufficient. In this case, it is determined YES in step S200 because heating cannot be performed by the heater core 144.
  • step S210 the control ECU 90 determines whether or not the passenger compartment 5 needs to be heated by determining whether or not the target blowing temperature TAO is equal to or higher than a predetermined value.
  • the target blowing temperature TAO is a target value calculated by the air conditioner ECU 160 based on the outside air temperature Tamb, the temperature Tr in the vehicle interior, the solar radiation amount Ts, and the like.
  • the target blowing temperature TAO is an air temperature that needs to be blown out from the opening forming portions 148a, 149a, and 150a in order for the temperature Tr in the vehicle interior to maintain the vehicle interior set temperature Tset.
  • Step S210 when the target blowing temperature TAO is equal to or higher than a predetermined value, it is determined as YES in Step S210 because heating in the passenger compartment 5 is necessary.
  • step S220 the control ECU 90 determines whether the air temperature Tair is higher than the air temperature Tamb based on the detection values of the sensors 96 and 97.
  • step S220 when the air temperature Tair is higher than the air temperature Tamb, YES is determined in step S220. In this case, it is determined that the exhaust heat that can be used for heating in the passenger compartment 5 is included in the air in the engine compartment 2.
  • control ECU 90 executes control for heating the interior of the passenger compartment 5 in step S230.
  • the reflux switching door 80 is controlled via the electric actuator 92 to open the air outlet 2a of the engine compartment 2 and close the reflux outlet 101.
  • control ECU 90 rotates the electric fan 10 in the reverse direction.
  • control ECU 90 controls the servo motors 136 and 147 via the air conditioner ECU 160.
  • the inside / outside air switching door 135 closes the inside air introduction port 133 and opens the outside air introduction port 134.
  • control ECU 90 When controlling the servo motor 147 via the air conditioner ECU 160, the control ECU 90 fully closes the air inlet side or the air outlet side of the heater core 144 by the air mix door 146 to fully open the bypass passage 45.
  • the electric fan 10 sucks an air flow including exhaust heat from the traveling engine 3 side, and introduces the sucked air flow from the air outlet 43 of the shroud 40 into the return duct 100 and the air distribution destination duct 60 in the vehicle interior.
  • the air is blown out to the outside air introduction port 134 of the inside / outside air switching box 131 through the mouth 62.
  • the blown air flow is sucked by the blower 137 and blown out from the blower 137.
  • the blown air flow is blown from the opening forming portions 148a, 149a, 150a through the evaporator 138 and the bypass passage 45 into the vehicle interior.
  • the interior of the passenger compartment 5 is heated by exhaust heat contained in the air in the engine compartment 2.
  • the control ECU 90 returns to step S200.
  • step S210 the control ECU 90 determines NO when heating in the passenger compartment 5 is not required when the target blowing temperature TAO is less than a predetermined value. In this case, the control ECU 90 returns to step S200 without executing the heating control of step S230 or the anti-fogging control of step S260.
  • step S200 when the heat medium temperature Tw is 80 ° C. or higher, the control ECU 90 determines that the heat medium has been warmed up. In this case, it is determined as NO in step S200, assuming that heating can be performed by the heater core 144.
  • the control ECU 90 determines whether or not the air temperature Tamb is lower than the vehicle interior temperature Tr based on the detection values of the sensors 97 and 161. Thus, it is determined whether or not the front windshield needs to be fogged.
  • the control ECU 90 determines that the front windshield needs to be anti-fogged and determines YES in step S240.
  • control ECU 90 determines whether or not the air temperature Tair is higher than the air temperature Tamb in step S250. Thus, it is determined whether or not exhaust heat that can be used for anti-fogging is included in the air in the engine compartment 2.
  • control ECU 90 determines that the exhaust heat that can be used for anti-fogging is included in the air in the engine compartment 2, YES in step S250.
  • control ECU 90 executes a control for preventing the front windshield 4 from being fogged in step S260.
  • the reflux switching door 80 is controlled via the electric actuator 92 to open the air outlet 2a of the engine compartment 2 and close the reflux outlet 101. Then, the electric fan 10 is reversely rotated.
  • control ECU 90 controls the servo motors 136 and 147 via the air conditioner ECU 160.
  • the inside / outside air switching door 135 opens the inside air introduction port 133 and closes the outside air introduction port 134.
  • control ECU 90 When controlling the servo motor 147 via the air conditioner ECU 160, the control ECU 90 fully opens the air inlet side or the air outlet side of the heater core 144 by the air mix door 146 and fully closes the bypass passage 145.
  • the electric fan 10 sucks an air flow including exhaust heat from the traveling engine 3 side, and this sucked air flow passes from the air outlet 43 of the shroud 40 through the reflux duct 100 to the shield outlet of the air distribution destination duct 60. Blow out from 61 to the outer surface of the front windshield 4.
  • the blower 137 sucks vehicle interior air (hereinafter referred to as “inside air”) through the inside air introduction port 133 and blows it out to the evaporator 138 side.
  • This blown air stream flows to the evaporator 138.
  • the air flow is cooled by the refrigerant in the evaporator 138.
  • cold air is blown out from the evaporator 138.
  • This cold air passes through the heater core 144.
  • the hot air is blown out from the heater core 144.
  • the hot air blown out in this way is blown out from the opening forming portions 148a, 149a, 150a into the vehicle interior. For this reason, the interior of the passenger compartment 5 is heated by the heater core 144.
  • step S240 when the air temperature Tamb is equal to or higher than the vehicle interior temperature Tr, the control ECU 90 determines that the front windshield 4 does not need to be fogged and determines NO. In this case, the control ECU 90 returns to step S200 without executing the heating control of step S230 or the anti-fogging control of step S260.
  • control ECU 90 determines NO as exhaust heat that can be used for anti-fogging is not included in the air in the engine compartment 2. In this case, the control ECU 90 returns to step S200 without executing the heating control of step S230 or the anti-fogging control of step S260.
  • the control ECU 90 repeats the processes in steps S200 to S260 as described above, thereby performing heating in the passenger compartment 5 and anti-fogging of the front windshield 4 as necessary.
  • the control ECU 90 determines that heating of the passenger compartment 5 is necessary when the target blowing temperature TAO is equal to or higher than a predetermined value, and the air distribution destination via the electric actuator 93 is determined.
  • the switch door 81 is controlled to open the vehicle interior inlet 62. For this reason, warm air can be blown out from the vehicle interior introduction port 62 into the vehicle interior 5.
  • the control ECU 90 determines that anti-fogging of the front windshield is necessary, and controls the air distribution destination switching door 81 via the electric actuator 93 to control the vehicle interior. Close the inlet 62. For this reason, warm air can be blown from the shield outlet 61 to the outer surface of the front windshield 4.
  • control ECU 90 can switch the blow-out destination from which the hot air is blown out based on the target blowing temperature TAO, the air temperature Tair, the air temperature Tamb, and the like.
  • traveling engine 3 is an internal combustion engine that applies a rotational force to the drive wheels of the vehicle.
  • the internal combustion engine that generates electric power for driving the electric motor for traveling may be used as the traveling engine 3.
  • the air outlet 43 of the shroud 40 may be opened on the right side (or left side) in the vehicle width direction orthogonal to the vehicle traveling direction connecting the shutter 50 and the electric fan 10.
  • the example has been described in which the radiator 20 that performs heat exchange between the traveling engine 3 and the air flow via a heat medium as engine cooling water is used as a heat exchanger.
  • an oil cooler that exchanges heat between the traveling engine 3 and the air flow via a heat medium as oil may be used as a heat exchanger.
  • the air temperature Tair and the air temperature Tamb are compared to determine whether exhaust heat that can be used, such as heating or anti-fogging, is included in the air in the engine compartment 2.
  • exhaust heat that can be used such as heating or anti-fogging
  • the example in which the airflow control system 1 is applied to a vehicle that includes the front opening 8a has been described.
  • the airflow control system 1 may be applied to a vehicle that does not include the front opening 8a.
  • the airflow control system 1 may be applied to a vehicle provided in the engine hood 6 other than the front damper.
  • the air distribution destination switching door 81 is abolished, and the inside / outside air switching door 135 opens and closes the outside air introduction port 134 instead of the air distribution destination switching door 81 to thereby distribute the air distribution destination duct.
  • the example which opens and closes the 60 vehicle interior inlets 62 was demonstrated. However, instead of this, the following may be used.
  • both the air distribution destination switching door 81 and the inside / outside air switching door 135 may be provided in the airflow control system 1.
  • the vehicle is disposed on the front side in the vehicle traveling direction with respect to the vehicle interior and is used for traveling.
  • a blower disposed in an engine compartment housing the engine; An outlet door that opens and closes an air outlet that blows an air flow from inside the engine compartment to another area on the rear side in the vehicle traveling direction with respect to the engine compartment; With the outlet door opening the air outlet, the blower blows an air flow including exhaust heat of the traveling engine from the air outlet to another area.
  • an exhaust heat determination unit that determines whether exhaust heat of a traveling engine used in another area is included in air in the engine compartment; When the exhaust heat determination unit determines that the exhaust heat of the traveling engine used in other areas is included in the air in the engine compartment, the outlet door is controlled to open the air outlet, and the air flow including the exhaust heat is further generated.
  • An airflow control unit that controls the blower so as to blow air from the air outlet to another area.
  • the blower sucks an air flow including exhaust heat from the traveling engine side, and this sucked air flow Is blown out from the air outlet of the shroud, and this blown air flow is blown from the air outlet of the engine compartment to other areas.
  • an air distribution destination duct that guides the air flow from the air outlet of the engine compartment to the vehicle interior inlet for blowing the air flow into the vehicle interior as another area.
  • the air distribution destination duct is formed to guide the airflow from the air outlet of the engine compartment to the shield outlet that blows out the airflow to the outer surface of the front windshield as another area. Yes.
  • the vehicle is provided with an inlet door that opens and closes the vehicle interior inlet of the air distribution destination duct.
  • an inside / outside air switching door that opens one of the inside air introduction port for introducing the air flow from the vehicle interior and the outside air introduction port for introducing the air flow from the vehicle interior outlet of the air distribution destination duct.
  • the air-conditioning unit includes an air-conditioning unit that adjusts the temperature of the air flow introduced from one of the inside air introduction port and the outside air introduction port and blows it out into the vehicle interior, and the inside / outside air switching door is the introduction port door.
  • the air outlet is opened.
  • a heating control unit that controls the outlet door and controls the inlet door so as to open the cabin inlet of the air distribution duct.
  • an anti-fog determination unit that determines whether or not it is necessary to prevent the front windshield from being fogged, and an anti-fogging determination unit that prevents the front windshield from being fogged are prevented. And an anti-fogging control unit that controls the exit door to open the air outlet when the fog determination unit determines.
  • the air distribution destination duct is arranged in a vehicle interior and a cowl area between the front windshield and the engine compartment of the vehicle.
  • the cowl area is originally provided with a hole that communicates with the passenger compartment through a firewall. For this reason, the air flow can be introduced into the vehicle interior using this hole.
  • an introduction duct for guiding the air flow from the air outlet of the shroud to the air outlet of the engine compartment.
  • the introduction duct is supported by an engine hood formed so as to cover the engine compartment from the top and bottom, and is configured to be splitable with respect to the shroud.
  • the introduction duct and the shroud are connected, In the state where the engine hood has opened the engine compartment, the introduction duct and the shroud are divided.
  • the sub-blower is provided as a blower that is provided independently of the main blower and blows an air flow including exhaust heat.
  • an introduction duct for guiding the air flow blown from the sub blower to the air outlet of the engine compartment is provided.
  • the blower blows out an air flow from the reflux outlet of the introduction duct, and the blown air flow is sucked into the blower so that the air flow passing through the blower and the introduction duct is recirculated. It has become.
  • the exhaust control unit that controls the exhaust heat door to open the exhaust port when the exhaust heat determination unit determines that the heat in the engine compartment should be exhausted to the outside of the vehicle is provided. .
  • the exhaust port is formed so as to cover the engine compartment from below in the vertical direction, and is provided on the rear side in the vehicle traveling direction with respect to the under cover, and is provided in the engine compartment and below the vertical direction of the vehicle. Communication with the outside of the vehicle.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Transportation (AREA)
  • General Engineering & Computer Science (AREA)
  • Air-Conditioning For Vehicles (AREA)
  • Cooling, Air Intake And Gas Exhaust, And Fuel Tank Arrangements In Propulsion Units (AREA)

Abstract

気流制御システムが、送風機(10、10b)と出口ドア(80)とを備える。送風機は、車室内に対して車両進行方向前側に配置されて、かつ走行用エンジン(3)を収納するエンジンコンパートメント(2)内に配置されている。出口ドアは、前記エンジンコンパートメント内からの空気流を前記エンジンコンパートメントに対する車両進行方向後側の他のエリアに吹き出す空気出口(2a)を開閉する。前記出口ドアが前記空気出口を開けた状態で、記送風機が前記走行用エンジンの排熱を含む空気流を前記空気出口から前記他のエリアに送風させる。

Description

気流制御システム 関連出願への相互参照
 本出願は、2015年11月3日に出願された日本特許出願番号2015-216229号に基づくもので、ここにその記載内容が参照により組み入れられる。
 本発明は、気流制御システムに関するものである。
 従来、車両の排熱回収装置では、エンジンコンパートメントのフロント開口部と走行用エンジンとの間に配置されているラジエータと、走行用エンジンとラジエータとの間に配置されているファンとを備えるものが、例えば特許文献1に記載されている。
 排熱回収装置では、ファンが走行用エンジンの下側から走行用エンジンの排熱により加熱された空気流を吸い込んでラジエータに向けて吹き出してラジエータを通過させる。このため、ラジエータでは、空気流に含まれる排熱を熱媒体(例えば、エンジン冷却水)を介して走行用エンジンに伝えることができる。このことにより、ラジエータによって走行用エンジンの排熱を回収して走行用エンジンの暖機を促進することができる。
特開2012-246790号公報
 上記特許文献1の排熱回収装置では、上述の如く、走行用エンジンの排熱はラジエータで回収されてこの回収された排熱が走行用エンジンの暖機に用いられる。このため、走行用エンジンの暖機が進んでくると、最終的に熱媒体の温度が所定温度に収束してラジエータによる排熱回収能力が低下する。したがって、走行用エンジンの暖機が終了すると、空気流に含まれる走行用エンジンの排熱は、走行用エンジンの暖機に利用されずに、車両の外側に排出されていた。
 一方、近年のエンジン効率の向上に伴って走行用エンジンの排熱が少なくなっている。このため、例えば、暖房による快適性やフロントウインドシールドの防曇による視界支援などを担うシステムにとっては、走行用エンジンの排熱を熱源として確保することが困難になってきている。
 本発明は上記点に鑑みて、エンジンコンパートメントの外側の他のエリアで走行用エンジンの排熱を利用できるようにした気流制御システムを提供することを目的とする。
 上記目的を達成するため、請求項1に記載の発明では、車室内に対して車両進行方向前側に配置されて、かつ走行用エンジン(3)を収納するエンジンコンパートメント(2)内に配置されている送風機(10、10b)と、
 エンジンコンパートメント内からの空気流をエンジンコンパートメントに対する車両進行方向後側の他のエリアに吹き出す空気出口(2a)を開閉する出口ドア(80)と、を備え、
 出口ドアが空気出口を開けた状態で、記送風機が走行用エンジンの排熱を含む空気流を空気出口から他のエリアに送風させる。
 請求項1に記載の発明によれば、送風機から吹き出される空気流を空気出口を介して他のエリアに吹き出させることにより、他のエリアで走行用エンジンの排熱を利用することができる。
 なお、この欄および特許請求の範囲で記載した各手段の括弧内の符号は、後述する実施形態に記載の具体的手段との対応関係を示すものである。
第1実施形態における気流制御システムの全体構成を示す図である。 図1の電動ファン、ラジエータ、コンデンサ、シュラウド、およびシャッタを天地方向上側から配置図である。 第1実施形態における気流制御システムの電気的構成を示す模式図である。 図3の制御ECUの制御処理を示すフローチャートである。 図4A中の暖機促進処理を示すフローチャートである。 図4A中の熱回収処理を示すフローチャートである。 図4A中の熱利用処理を示すフローチャートである。 図4A中の熱害防止処理を示すフローチャートである。 図4Bの暖機促進処理で用いる空気温度Tairと電動ファンの回転数Nとの関係を示す制御マップである。 暖機促進処理の実行時における作動を説明するための模式図である。 熱回収処理の実行時における作動を説明するための模式図である。 熱利用処理の実行時における作動を説明するための模式図である。 熱害防止処理の実行時における作動を説明するための模式図である。 第1実施形態において、縦軸を時間とし、横軸を温度として、空気温度Tair(すなわちエンコパ内気温)と熱媒体温度Tw(すなわちエンジン水温)との関係を示す図である。 第1実施形態の第1変形例における電動ファン、ラジエータ、コンデンサ、およびシャッタを天地方向上側から配置図である。 第1実施形態の第2変形例における電動ファン、ラジエータ、コンデンサ、およびシャッタを天地方向上側から配置図である。 第2実施形態における気流制御システムの全体構成を示す図である。 図9の還流ダクトや還流切替ドアを示す図である。 第2実施形態において気流制御システムを天地方向上側から視た模式図である。 第2実施形態の気流制御システムにおいて空気流を模式的に示す模式図である。 第2実施形態の第2変形例におけるメイン電動ファン、サブ電動ファンを車両進行後側から視た図である。 第2実施形態の第2変形例における空気流を車両幅方向から視た図である。 第3実施形態における気流制御システムの全体構成を示す図である。 第3実施形態における室内空調ユニットの構成を示す図である。 第3実施形態における制御ECUの暖房・防曇切替処理を示すフローチャートである。 図16A中のステップS230の詳細を示すフローチャートである。 図16A中のステップS260の詳細を示すフローチャートである。
 以下、本発明の実施形態について図に基づいて説明する。なお、以下の各実施形態相互において、互いに同一もしくは均等である部分には、説明の簡略化を図るべく、図中、同一符号を付してある。
 (第1実施形態)
 図1は第1実施形態における気流制御システム1の全体構成を示す図である。
 気流制御システム1は、車両のエンジンコンパートメント2内の空気流を制御して走行用エンジン3の冷却や暖機、フロントウインドシールド4の防曇、および車室5内の暖房を行うものである。
 本実施形態のエンジンコンパートメント2は、走行用エンジン3を収納する空間であって、車両1のうち車室5に対して車両進行方向前側に位置する。走行用エンジン3は、車両の駆動輪に回転力を与える内燃機関である。
 車両のエンジンコンパートメント2の天地方向上側には、エンジンコンパートメント2の天地方向上側を覆うように形成されているエンジンフード6が配置されている。エンジンコンパートメント2の天地方向下側には、エンジンコンパートメント2の天地方向下側を覆うように形成されているアンダーカバー7が配置されている。
 気流制御システム1は、図1に示すように、電動ファン10、ラジエータ20、コンデンサ30、シュラウド40、およびシャッタ50を備える。
 電動ファン10、ラジエータ20、コンデンサ30、シュラウド40、およびシャッタ50は、エンジンコンパートメント2内に配置されている送風機である。
 電動ファン10は、エンジンコンパートメント2のフロント開口部8aと走行用エンジン3との間に配置されている。電動ファン10は、ファンを正回転させることにより、車両進行方向前側からフロント開口部8a、コンデンサ30、シャッタ50、ラジエータ20を通して吸い込んだ空気流を走行用エンジン3側に吹き出す。一方、電動ファン10は、ファンを逆回転させることにより、走行用エンジン3側から吸い込んだ空気流をラジエータ20側に吹き出す。
 本実施形態の電動ファン10は、軸流型のファンとこのファンを回転駆動させる電動モータとから構成されている。フロント開口部8aは、フロントダンパ等に形成されたものであって、エンジンコンパートメント2を車両進行方向前側に開口させる開口部である。
 ラジエータ20は、電動ファン10およびフロント開口部8aの間に配置されている熱交換器である。ラジエータ20は、走行用エンジン3と空気流との間での間で熱媒体を介して熱の移動を行う熱交換器である。熱媒体としては、例えば水に不凍液を混入した液体、いわゆるエンジン冷却水が、用いられる。
 コンデンサ30は、ラジエータ20とフロント開口部8aとの間に配置されている。コンデンサ30は、圧縮機、減圧弁、エバポレータ等とともに、冷媒を循環させる空調装置用の冷凍サイクルを構成する。コンデンサ30は、冷媒から空気流に放熱させる熱交換器である。
 シャッタ50は、コンデンサ30およびラジエータ20の間に配置されて、図2に示すように、ラジエータ20とフロント開口部8aの間の空気流路41を開閉する。空気流路41は第1空気流路に対応する。
 本実施形態のシャッタ50は、天地方向或いは車両幅方向に並べられている複数のドアを備える。シャッタ50は、電動アクチュエータによって複数のドアを開閉することにより空気流路41を開閉する。
 シュラウド40は、電動ファン10を支持するとともに、ラジエータ20を介して電動ファン10からシャッタ50迄の間に空気流路42を構成する。空気流路42は第2空気流路に対応する。シュラウド40は、図1および図2に示すように、空気流路42を天地方向下側と車両幅方向右側と車両幅方向左側とから覆うように構成されている。
 本実施形態のシュラウド40は、電動ファン10から送風された空気流を吹き出す空気出口43を形成する。空気出口43は、電動ファン10とシャッタ50の間に設けられて天地方向上側に開口している。すなわち、空気出口43は、シャッタ50と電動ファン10を結ぶ方向(すなわち、車両進行方向)に交差する天地方向の上側に開口している。
 配風先ダクト60は、エンジンコンパートメント2の空気出口2aから吹き出される空気流をシールド吹出口61および車室内導入口62に導くためのダクトである。本実施形態の配風先ダクト60は、カウルエリア70に設けられている。
 カウルエリア70は、フロントウインドシールド4と車室5とエンジンコンパートメント2との間に形成されて、天地方向上側である車両外側に連通している領域である。
 空気出口2aは、エンジンコンパートメント2およびカウルエリア70の間に形成されている。
 シールド吹出口61は、エンジンコンパートメント2の空気出口2aから吹き出される空気流をフロントウインドシールド4の外表面に吹き出す開口部である。フロントウインドシールド4の外表面は、フロントウインドシールド4のうち車両進行方向前側である。車室内導入口62は、エンジンコンパートメント2の空気出口2aから吹き出される空気流を車室5内に吹き出す開口部である。
 ここで、フロントウインドシールド4の外表面および車室5内は、エンジンコンパートメント2に対して車両進行方向後側に位置する。このため、フロントウインドシールド4の外表面および車室5内は、エンジンコンパートメント2に対して車両進行方向後側に位置する他のエリアに相当する。
 還流切替ドア80は、空気出口2aを開閉するドアである。配風先切替ドア81は、車室内導入口62を開閉する出口ドアである。配風先切替ドア81は導入口ドアに対応する。排熱ドア82は、エンジンコンパートメント2の排気口2bを開閉する。排気口2bは、アンダーカバー7の車両進行方向後側に設けられて、エンジンコンパートメント2内と車両の天地方向下側である車両外側との間を連通する穴部である。
 次に、本実施形態の気流制御システム1の電気的構成について説明する。
 本実施形態の気流制御システム1は、図3に示すように、制御ECU90、電動アクチュエータ91、92、93、94およびセンサ95、96、97を備える。
 制御ECU90は、マイクロコンピュータやメモリ等から構成されて、コンピュータプログラムに従って、気流制御処理を実行する。このメモリは、非遷移的実体的記憶媒体である。
 制御ECU90は、気流制御処理の実行に伴って、センサ95~97の出力信号やエアコンECU等の他のECUとの通信に基づいて電動アクチュエータ91~94を介してシャッタ50、還流切替ドア80、配風先切替ドア81、および排熱ドア82を制御する。
 電動アクチュエータ91は、シャッタ50を開閉させる電動モータである。電動アクチュエータ92は、還流切替ドア80を開閉させる電動モータである。電動アクチュエータ93は、配風先切替ドア81を開閉させる電動モータである。電動アクチュエータ94は、排熱ドア82を開閉させる電動モータである。
 センサ95は、ラジエータ20と走行用エンジン3の間で循環される熱媒体の温度(以下、熱媒体温度Twという)を検出する温度センサである。センサ96は、エンジンコンパートメント2内の空気温度Tairを検出する温度センサである。センサ97は、車両の外側の外気温である空気温度Tambを検出する温度センサである。
 次に、本実施形態の気流制御システム1の作動について説明する。
 制御ECU90は、図4A、図4B、図4C、図4D、図4Eのフローチャートにしたがって気流制御処理を実行する。
 まず、制御ECU90は、図4AのステップS100において、熱媒体温度Twが閾値T1よりも低いか否かをセンサ95の検出値に基づいて判定する。このとき、熱媒体温度Twが閾値T1よりも低いときには、ステップS100においてYESと判定する。
 これに伴い、ステップS101において、センサ95の検出値とセンサ96の検出値に基づいて、空気温度Tair<(熱媒体温度Tw+ΔT)が成立するか否かを判定することにより、熱交換効率が低いか否かを判定する。なお、この判定においては、後述するように、ヒステリシスが設定されてもよい。
 熱交換効率は、空気流からの熱を熱媒体に移動させるためにラジエータ20を通過する空気流と熱媒体の間で行われる熱交換の効率である。
 ここで、空気温度Tairから熱媒体温度Twを引いた差分値ST(=空気温度Tair-熱媒体温度Tw)が所定値ΔTよりも低いとき、制御ECU90は、空気温度Tair<(熱媒体温度Tw+ΔT)が成立すると判定する。この場合、制御ECU90は、ステップS101において、熱交換効率が低いとしてYESと判定する。
 この際に制御ECU90は、ステップS102で、走行用エンジン3の暖機を促進させるための暖機促進処理を実行する。
 具体的には、電動アクチュエータ91によってシャッタ50を制御することによりラジエータ20とフロント開口部8aの間の空気流路41を閉じる。そして電動ファン10を停止させる。そして、電動アクチュエータ92によって還流切替ドア80を制御することによりエンジンコンパートメント2の空気出口2aを閉じる。このとき、排熱ドア82がある場合は排熱ドア82を閉じる。
 これにより、シャッタ50が空気流路41を閉じ、かつ還流切替ドア80が空気出口2aを閉じる。そのため、走行用エンジン3の排熱がエンジンコンパートメント2の外側に排出することが抑制される。このため、走行用エンジン3では、図5Aに示すように、エンジンコンパートメント2内の空気流に含まれる排熱によって暖機が促進される。その後、制御ECU90はステップS100に戻る。
 制御ECU90は、上記ステップS101において、差分値ST(=空気温度Tair-熱媒体温度Tw)が所定値ΔTよりも大きいときには、熱交換効率が高いとしてNOと判定する。
 この際に、制御ECU90は、ステップS103で、走行用エンジン3の排熱を回収して走行用エンジン3に伝えるための熱回収処理を実行する。
 具体的には、制御ECU90は、電動アクチュエータ91によってシャッタ50を制御することによりラジエータ20とフロント開口部8aの間の空気流路41を閉じる。そして電動ファン10を逆回転させる。そして、電動アクチュエータ91によって還流切替ドア80を制御することによりエンジンコンパートメント2の空気出口2aを閉じる。このとき、排熱ドア82がある場合は排熱ドア82を閉じる。
 これにより、シャッタ50が空気流路41を閉じ、かつ還流切替ドア80が空気出口2aを閉じる。そのため、走行用エンジン3の排熱がエンジンコンパートメント2の外側に排出することが抑制される。このとき、電動ファン10は、ファンを逆回転させる。このため、電動ファン10は、走行用エンジン3側から吸い込んだ空気流をラジエータ20側に吹き出す。
 このため、電動ファン10は、走行用エンジン3の排熱で加熱された空気流を吸い込んでラジエータ20側に吹き出して空気流をラジエータ20に通過させる。これにより、空気流からの熱はラジエータ20に回収されて、この回収された熱は、熱媒体を介して走行用エンジン3に伝えられる。これにより、空気流に含まれる排熱によって走行用エンジン3の暖機が促進されることになる。
 これに加えて、電動ファン10から吹き出された空気流は、シャッタ50によってフロント開口部8a側に流れることが遮られ、シュラウド40の空気出口43から天地方向上側に吹き出される。この吹き出された空気流は、エンジンフード6に沿って車両進行方向後側に流れる。この流れた空気流は、走行用エンジン3に対して車両進行方向後側に流れる。その後空気流は、走行用エンジン3の周辺を通過して電動ファン10に吸い込まれる。このことにより、ラジエータ20、電動ファン10、および走行用エンジン3の周辺を通過する空気流の還流が発生することなる。このため、図5Bに示すように、走行用エンジン3の排熱により空気流が加熱されて、この加熱された空気流からラジエータ20を介して走行用エンジン3に熱を移動させることが繰り返される。その後、制御ECU90は、ステップS100に戻る。
 ここで、制御ECU90は、図4Fに示すように、熱媒体温度Twを(熱媒体温度Tw+ΔT)に近づけるように電動ファン10のファンの回転数Nを制御する。
 空気温度Tairが(熱媒体温度Tw+ΔT)以上である場合には、空気温度Tairが高くなるほどファンの回転数Nを高くする。このため、空気温度Tairが高くなるほど電動ファン10の送風量を増大させる。このため、空気温度Tairが高くなるほど、ラジエータ20を通過する風量が増える。これにより、空気温度Tairが高くなるほど、ラジエータ20で回収される排熱量が増加する。これにより、空気温度Tairが(熱媒体温度Tw+ΔT)に近づくことになる。すなわち、空気温度Tairと熱媒体温度Twとの差分がΔTに維持されることになる。
 また、制御ECU90は、空気温度Tairが(熱媒体温度Tw+ΔT)未満かつ熱媒体温度Tw以上であり、しかも現在のファンの回転数Nがゼロである場合は、上述の通り、ステップS101からステップS102に進みファンの回転数Nをゼロに維持する。
 また、制御ECU90は、空気温度Tairが(熱媒体温度Tw+ΔT)未満かつ熱媒体温度Tw以上であり、しかも現在のファンの回転数Nがゼロより大きい場合は、ステップS101からステップS103に進みファンの回転数Nを一定値としてもよい。この一定値は、空気温度Tairが(熱媒体温度Tw+ΔT)と同じである場合のファンの回転数Nと同じである。この場合は、ステップS101の判定内容が、空気温度Tairが熱媒体温度Twよりも小さいか否かになる。
 また、制御ECU90は、空気温度Tairが熱媒体温度Tw未満である場合は、ステップS101からステップS102に進みファンの回転数Nをゼロに維持する。
 このようになっているので、空気温度Tairの上昇過程においては、空気温度Tairが(熱媒体温度Tw+ΔT)になった時点でファンが回転し始める。また、空気温度Tairの下降過程においては、空気温度Tairが熱媒体温度Twになった時点でファンの回転が停止する。このように、空気温度Tairに対するファンの回転数Nの応答にヒステリシスが設けられていてもよい。
 上記ステップS100において制御ECU90は、熱媒体の温度Twが閾値T1以上であるときには、ステップS100においてNOと判定する。
 この際には、制御ECU90は、ステップS104において、センサ95の検出値に基づいて熱媒体の温度Twが閾値T2よりも低いか否かを判定することにより、走行用エンジン3が暖機中であるか否かを判定する。閾値T2は閾値>T1よりも大きい。制御ECU90は、ステップS104を実行することで排熱判定部に対応する。
 このとき、熱媒体温度Twが閾値T2よりも低いときには、制御ECU90は、走行用エンジン3の暖機中であるとして、ステップS104においてYESと判定する。
 この場合、制御ECU90は、ステップS105において、センサ96、97の検出値に基づいて、空気温度Tairが空気温度Tamb以上であるか否かを判定する。
 制御ECU90は、このことにより、車室5内の暖房や防曇などの用途に利用できる排熱がエンジンコンパートメント2内の空気に含まれているか否かを判定する。
 空気温度Tairが空気温度Tambよりも低いとき、制御ECU90は、車室5内の暖房や防曇などの用途に利用できる排熱がエンジンコンパートメント2内の空気に無いとして、ステップS105においてNOと判定してステップS103に進む。
 一方、空気温度Tairが空気温度Tamb以上であるとき、制御ECU90は、車室5内の暖房や防曇などの用途に利用できる排熱がエンジンコンパートメント2内の空気に有るとして、ステップS105においてYESと判定する。この場合、制御ECU90は、ステップS106で、他の用途に排熱を利用するための利用処理を実行する。制御ECU90は、ステップS106を実行することで気流制御部に対応する。
 具体的には、制御ECU90は、電動アクチュエータ91によってシャッタ50を制御することによりラジエータ20とフロント開口部8aの間の空気流路41を閉じる。そして、電動ファン10を逆回転させる。そして、電動アクチュエータ92によって還流切替ドア80を制御することによりエンジンコンパートメント2の空気出口2aを開ける。このとき、排熱ドア82は開けても閉じてもよい。
 これにより、シャッタ50が空気流路41を閉じ、かつ還流切替ドア80が空気出口2aを開く。したがって、走行用エンジン3の排熱がエンジンコンパートメント2の外側に排出されることが可能となる。
 このとき、電動ファン10は、走行用エンジン3側から吸い込んだ空気流をラジエータ20側に吹き出す。このため、上記103の熱回収処理と同様に、ラジエータ20、電動ファン10、および走行用エンジン3の周辺を通過する空気流の還流が発生することなる。
 これに加えて、電動ファン10から吹き出された空気流の一部は、エンジンコンパートメント2の空気出口2aから配風先ダクト60に導入される。この配風先ダクト60に導入された空気流は、シールド吹出口61および車室内導入口62から吹き出される。
 シールド吹出口61から吹き出された空気流は、フロントウインドシールド4の外表面に沿って流れる。このため、フロントウインドシールド4の温度が上昇する。
 したがって、走行用エンジン3の排熱を利用してフロントウインドシールド4に曇りが発生することを抑制することができる。
 これに加えて、図5Cに示すように、車室内導入口62から車室5内に空気流が吹き出されることにより、走行用エンジン3の排熱を利用して車室5内の暖房が行われる。制御ECU90はその後、ステップS100に戻る。
 制御ECU90は、上記ステップS104において、センサ95の検出値に基づいて熱媒体の温度Twが閾値T2よりも高いとしてNOと判定したときには、走行用エンジン3の暖機が終了したと判定する。
 次のステップS107において制御ECU90は、センサ95の検出値に基づいて熱媒体温度Twが閾値T3よりも高いか否かを判定することにより、エンジンコンパートメント2内の熱を強制的に掃気すべきか否かを判定する。閾値T3は、閾値T2よりも大きい。制御ECU90は、ステップS107を実行することで、排熱判定部に対応する。
 このとき制御ECU90は、熱媒体温度Twが閾値T3よりも高いときには、エンジンコンパートメント2内の熱を強制的に掃気すべきとして、ステップS107において、YESと判定する。
 この場合、制御ECU90は、ステップS108において、電動アクチュエータ91によってシャッタ50を制御することによりラジエータ20とフロント開口部8aの間の空気流路41を開ける。そして、電動ファン10を正回転させる。そして、電動アクチュエータ92によって還流切替ドア80を制御することにより空気出口2aを閉じる。そして、電動アクチュエータ94によって排熱ドア82を制御することにより排気口2bを開ける。制御ECU90は、ステップS108を実行することで排気制御部に対応する。
 これにより、電動ファン10は、車両進行方向前側からフロント開口部8a、コンデンサ30、シャッタ50、およびラジエータ20を通して吸い込んだ空気流を走行用エンジン3側に吹き出す。このため、この吹き出された空気流は、走行用エンジン3の周辺を通過する。
 このとき、車両が進行方向に走行しているときには、車両天地方向下側にはアンダーカバー7に沿って空気流が車両進行方向後側に流れる。このため、エンジンコンパートメント2内の気圧よりも車両の天地方向下側の気圧が低くなる。これにより、図5Dに示すように、エンジンコンパートメント2内からの空気流が排気口2bを通して車両の天地方向下側に吸い込まれて車両外側に流れる。その後、制御ECU90は、ステップS100に戻る。
 また制御ECU90は、上記ステップS107において、熱媒体温度Twが閾値T3よりも低いときには、エンジンコンパートメント2内の熱を強制的に掃気すべきではないとして判定する。この場合、制御ECU90は、上記ステップS107において、NOと判定して、車室5内の暖房や防曇などの用途に利用できる排熱がエンジンコンパートメント2内の空気に含まれていると判定する。制御ECU90は、ステップS107でこのように判定することで、排熱判定部に対応する。これに伴い制御ECU90は、ステップS106に移行する。
 このようなステップS100~ステップS108の処理を繰り返すことにより、制御ECU90は、ステップS102の暖機促進処理、ステップS103の熱回収処理、ステップS106の熱利用処理、ステップS108の熱害防止処理のいずれかを実施することになる。
 図6に本実施形態の空気温度Tair、熱媒体温度Tw、および閾値T1、T2、T3の関係について示す。
 (A)空気温度Tair≧熱媒体温度Tw、かつ熱媒体温度Tw<閾値T1、かつ空気温度Tair<熱媒体温度Tw+ΔTであるとき、ステップS102の暖機促進処理が実行される。
 この場合、走行用エンジン3の排熱がエンジンコンパートメント2の外側に排出されることが低減されて、エンジンコンパートメント2内の空気温度Tairが上がり易くなる。これにより、走行用エンジン3の暖機時間を短縮できる。
 (B)空気温度Tair≧熱媒体温度Tw、かつ閾値T1<熱媒体温度Tw<閾値T2、かつ空気温度Tair<空気温度Tambであるとき、ステップS103の熱回収処理が実行される。或いは、熱媒体温度Tw<閾値T1、かつ空気温度Tair≧(熱媒体温度Tw+ΔT)であるとき、ステップS103の熱回収処理が実行される。
 制御ECU90は、ステップS103の熱回収処理では、電動ファン10のファンの回転数を制御することにより、ラジエータ20の通過風量を制御して空気温度Tairと熱媒体の温度Twとの温度差をΔTに維持する。このことにより、走行用エンジン3の排熱をラジエータ20を介して熱媒体に効率的に熱回収することができる。
 このようなシーンにおいては、従来、走行用エンジン3の暖機促進のために、車室5内の空調(すなわち、暖房)用途に熱媒体(すなわち温水)を利用することが制限されている。従来の温水回収では利用できていなかった外気温よりも高いエンジンコンパートメント2内の空気流を、本実施形態では空調用途に利用することができるようになる。これは、ステップS103の熱回収処理でエンジン冷却水の温度が上がるからである。エンジン冷却水の温度が上がれば、空調装置のヒータコア中の冷却水温度が上昇する。したがって、空調装置によって車室内に送られる空気がヒータコアによって暖められる。
 (C)その後、熱媒体温度Twが更に高くなり、熱媒体温度Twが空気温度Tairに近づいてきた場合、熱媒体には回収しきれない温風としての排熱が、より多くなってくる。このため、温風を温風のまま利用したい空調システムにとっては、積極的にこの排熱を温風のまま利用できるようになる。
 すなわち、空気温度Tair≧熱媒体温度Tw、かつ閾値T1<熱媒体温度Tw<閾値T2、かつ空気温度Tair>空気温度Tambであるとき、ステップS104の熱利用処理が実行される。或いは、空気温度Tair≧熱媒体温度Tw、かつ閾値T2<熱媒体温度Tw<閾値T3であるとき、ステップS106の熱利用処理が実行される。
 例えば、冬期の走行中のフロントウインドシールド4は、冷たい走行風に晒されてガラス温度が低下する。そのため、乗員呼気などにより、フロントウインドシールド4の車室内側は曇りやすくなっている。このとき、従来捨てられていたこの排熱エアをフロントウインドシールド4の外気側へと流すことにより、フロントウインドシールド4の温度を高めて、防曇効果を高めることができる。防曇効果を高めることができるのは、温風を温風のまま利用するからこそである。
 (D)空気温度Tair≧熱媒体温度Tw、かつ熱媒体温度Tw>閾値T3であるとき、ステップS108の熱害防止処理が実行される。
 エンジンコンパートメント2の空気温度Tairが更に上昇し、エンジンコンパートメント2内の機器類の耐熱温度T3に近づいてくると、機器故障の原因となる。特に、ゴム部品や樹脂部品やワイヤハーネスなどにとっては、厳しい温度環境である。エンジンコンパートメント2内の空気流を制御することにより、必要な部位に、必要なシーンで、より効果的に掃気することができる。
 閾値T1は、熱媒体温度Twが低水温であるか否かを判定するための閾値である。閾値T2は、走行用エンジン3の暖機が完了したか否かを判定するための閾値である。閾値T3は、エンジンコンパートメント2内の機器類の耐熱温度である。
 ここで、図6中N1は、強制的にエンジンコンパートメント2内から車外に掃気される排熱である。N2は、熱媒体に回収されない排熱である。N3は、熱媒体に回収される排熱である。
 以上説明した本実施形態によれば、気流制御システム1は、電動ファン10と還流切替ドア80とを備える。電動ファン10は、車室5内に対して車両進行方向前側に配置されて、かつ走行用エンジン3を収納するエンジンコンパートメント2内に配置されている。還流切替ドア80は、エンジンコンパートメント2内からの空気流をエンジンコンパートメントに対して車両進行方向後側の他のエリアに吹き出す空気出口2aを開閉する。
 制御ECU90は、他のエリア(すなわち、エンジンコンパートメント2以外のエリア)で用いる走行用エンジン3の排熱がエンジンコンパートメント2内の空気に含まれているか否かを判定する。制御ECU90は、他のエリアで用いる走行用エンジン3の排熱がエンジンコンパートメント2内の空気に含まれると判定したとき、空気出口2aを開けるように還流切替ドア80を制御し、さらに排熱を含む空気流を空気出口2aから他のエリア(例えば、車室5内やフロントウインドシールド4の外表面)に送風させるように電動ファン10を制御する。
 これにより、空気流を車室5内やフロントウインドシールド4の外表面に吹き出させることにより、ラジエータ20では回収できない排熱を温風として、走行用エンジン3の暖機以外の用途である暖房や防曇に利用することができる。
 本実施形態では、電動ファン10がファンを逆回転させることにより、ラジエータ20、電動ファン10、および走行用エンジン3の周辺を通過する空気流の還流が発生する。このため、走行用エンジン3の排熱により空気流が加熱されて、この加熱された空気流からラジエータ20を介して熱媒体に排熱を回収させることが繰り返される。このため、走行用エンジン3の排熱を効率的に熱媒体に回収することができる。
 本実施形態の配風先ダクト60は、カウルエリア70に配置されている。カウルエリア70には、そもそも、ファイヤウォールを介して車室5内に連通する穴部が設けられている。このため、当該穴部を利用して配風先ダクト60から車室5内に空気流を吹き出させることができる。
 (第1実施形態の第1変形例)
 上記第1実施形態では、シャッタ50をラジエータ20およびコンデンサ30の間に配置した例について説明したが、これに代えて、図7に示すように、シャッタ50をコンデンサ30に対して車両進行方向前側に配置してもよい。
 すなわち、シャッタ50をコンデンサ30とフロント開口部8aとの間に配置する。また、シャッタ50としては、フロント開口部8a内に配置してもよい。なお、図7では、フロント開口部8aの図示を省略している。
 (第1実施形態の第2変形例)
 上記第1実施形態では、シャッタ50として、複数のドアを一列に並べて電動アクチュエータで複数のドアのそれぞれを開閉する開閉機構を設けた例について説明したが、これに代えて、図8のような開閉機構をシャッタ50としてもよい。
 図8のシャッタ50は、複数のスリット(すなわち開口部)51を備えるスライドドア52と、複数のスリット51に対して空気流れ方向に配置されている複数の遮風版53とから構成されている。この場合、電動アクチュエータ91として電磁ソレノイドを用いて、スライドドア52を走行風の方向に直交する方向にスライド移動させる。走行風は、車両走行時における車両に対する空気流をいう。
 複数のスリット51が複数の遮風版53のうち対応する遮風版53を閉じた場合には、シャッタ50が空気流路41を閉じることになる。一方、複数のスリット51が複数の遮風版53のうち対応する遮風版53を開けた場合には、シャッタ50が空気流路41を開けることになる。
 本実施形態では、シャッタ50がフロント開口部8aと電動ファン10の間の空気流路41を閉じた状態で、電動ファン10が空気流を送風させる。このため、エンジンコンパートメント2内の空気がエンジンコンパートメント2の空気出口から他のエリアに送風されるので、フロント開口部8aから車両外空気がエンジンコンパートメント2に入ったり、フロント開口部8aから車両外側に排熱が出たりすることを抑えることができる。
 (第2実施形態)
 第2実施形態では、上記第1実施形態において、エンジンコンパートメント2内に空気流の還流を発生させるために還流ダクト100(すなわち、導入ダクト)を設けた例について説明する。
 図9に本実施形態の気流制御システム1の概略構成を示す。本実施形態の気流制御システム1は、上記第1実施形態の気流制御システム1に還流ダクト100および床下ドア110を追加したものである。
 還流ダクト100は、後述するように、空気流の還流が生じるよう空気流を案内するためのダクトである。具体的には、図10に示すように、還流ダクト100は、シュラウド40の空気出口43から吹き出される空気流をエンジンコンパートメント2の空気出口2aと還流出口101とに導くために形成されている。
 還流ダクト100は、エンジンコンパートメント2のうちエンジンフード6に対して天地方向下側に配置されている。還流ダクト100は、エンジンフード6によって支持されている。
 還流出口101は、還流ダクト100を通過した空気流をエンジンコンパートメント2のうち走行用エンジン3に対して車両進行方向後側に吹き出すための吹出口である。本実施形態の還流切替ドア80は、空気出口2aおよび還流出口101のうち一方を開けて他方を閉じる。
 床下ドア110は、車室5内の床5aの開口部5bを開閉するドアである。開口部5bは、車室5内と床下収納空間5cとの間を連通している。床下収納空間5cには、走行用モータ等に電力を供給する二次電池が収納されている。床下ドア110は、電動アクチュエータ111により開閉される。電動アクチュエータ111は、制御ECU90により制御される。
 本実施形態では、上記第1実施形態の第1変形例と同様に、シャッタ50がコンデンサ30に対して車両進行方向前側に配置されて、かつシャッタ50がフロント開口部8a内に配置されている。
 次に、本実施形態の気流制御システム1の作動について図11、図12を参照して説明する。
 まず、電動ファン10が走行用エンジン3側から吸い込んだ空気流を吹き出してラジエータ20を通過させる。これに加えて、電動ファン10からシュラウド40の空気出口43を通って吹き出される空気流が、還流ダクト100を通して還流出口101から走行用エンジン3に対して車両進行方向後側に吹き出される。このことにより、この還流出口101から吹き出された空気流が走行用エンジン3の周辺を通過して電動ファン10に吸い込まれる空気流の還流を発生させる。
 また、制御ECU90が電動アクチュエータ92を介して還流切替ドア80を制御して空気出口2aを開けて還流出口101を閉じる。また、制御ECU90が電動アクチュエータ93を介して配風先切替ドア81を制御して車室内導入口62を開ける。さらに、制御ECU90が電動アクチュエータ111を介して床下ドア110を制御して車室5内の床5aの開口部5bを開ける。
 この場合、電動ファン10からシュラウド40の空気出口43を通して吹き出される空気流が、図12中矢印Z2の如く、還流ダクト100の空気出口2aおよび配風先ダクト60の車室内導入口62から車室5内に吹き出す。これに伴い、車室5内から開口部5bを通って床下収納空間5cに空気流が矢印Z3の如く流れる。このため、床下収納空間5c内の二次電池の温度を上昇させることができる。
 さらに、電動ファン10からシュラウド40の空気出口43を通して吹き出される空気流が矢印Z1の如く還流ダクト100の空気出口2aおよび配風先ダクト60のシールド吹出口61からフロントウインドシールド4の外表面に吹き出す。
 以上説明した本実施形態によれば、還流ダクト100を用いて電動ファン10から吹き出される空気流が、エンジンコンパートメント2のうち走行用エンジン3に対して車両進行方向後側に吹き出される。このため、エンジンコンパートメント2内にて空気流の還流が生じることを案内することができる。これにより、エンジンコンパートメント2内にて空気流の還流が容易に生じる。
 本実施形態では、床下ドア110を制御して車室5内の床5aの開口部5bを開けることにより、車室5内から開口部5bから床下収納空間5cに温風としての空気流を流すことができる。このため、床下収納空間5c内の二次電池の温度を上昇させることができる。
 本実施形態で、制御ECU90がステップS108の熱害防止処理を実施する際に、車両の走行時には、車両の走行に伴って車両進行方向前側からフロント開口部8aを通して走行風が流入する。この流入された走行風が還流ダクト100を通して還流出口101から走行用エンジン3に対して車両進行方向後方に吹き出す。
 したがって、エンジンコンパートメント2のうち走行用エンジン3に対して車両進行後側にエキゾーストマニホールド(すなわち排気ダクト)を有する車両の場合、矢印Z4の如く、走行用エンジン3の後側に溜まる熱を排気口2bから掃気することができる。
 また、還流ダクト100の還流出口101を、エンジンコンパートメント2のうちメインの風流れの近傍に設けることにより、コアンダ効果で、還流ダクト100の圧損を低減して、効果的に掃気することができる。
 ここで、メインの風流れとは、フロント開口部8aから、ラジエータ20および電動ファン10を通過して走行用エンジン3側に流れる複数の空気流のうち最も風量の多い空気流のことである。
 更に、車両外側の周辺の負圧になっている部分(例えば、車両下部など)に開口部を設けてメインの風流れを開口部から車両外側に排出させることにより、効果的にエンジンコンパートメント2内を掃気することができる。
 これらの効果は、熱媒体が水ではなく、エアであるため、走行中であっても、必要に応じて、車外から取り込んで、車外に排出できる。
 本実施形態では、還流ダクト100は、エンジンフード6に支持されて、かつシュラウド40に対して分割可能に構成されている。図10に示すように、エンジンフード6がエンジンコンパートメント2を覆った状態では、還流ダクト100とシュラウド40とが接続されている。エンジンフード6がエンジンコンパートメント2を開けた状態では、図9に示すように、還流ダクト100とシュラウド40とが分割されている。このため、還流ダクト100の下側の装置の点検整備を容易に行うことができる。
 (第2実施形態の第1変形例)
 上記第1、第2実施形態では、電動ファン10を逆回転させることにより、空気流の還流を発生させる例について説明した。これに代えて、電動ファン10に対して独立して設けられた電動ファン10bを用いて空気流の還流を発生させる本第2実施形態の第1変形例について説明する。
 本第1変形例では、電動ファン10と電動ファン10bとを便宜上、明確に区別するために、図13Aに示すように、電動ファン10をメイン電動ファン10aとし、電動ファン10bをサブ電動ファン10bとする。メイン電動ファン10aが主送風機に対応し、サブ電動ファン10bがサブ送風機に対応する。
 サブ電動ファン10bは、メイン電動ファン10aに対して車両幅方向右側或いは左側に配置されている。サブ電動ファン10bは、メイン電動ファン10aとともに、シュラウド40に支持されている。サブ電動ファン10bは、例えば、遠心ファンとこの遠心ファンを回転させる電動モータとから構成されている。
 サブ電動ファン10bは、シュラウド40の開口部40aを通してラジエータ20側から吸い込んだ空気流を吹き出す。シュラウド40の開口部40aは、車両進行方向に貫通している。
 本第1変形例の還流ダクト100は、サブ電動ファン10bから吹き出される空気流をエンジンコンパートメント2の空気出口2aと還流出口101とに導くために形成されている。
 本第1変形例では、制御ECU90がステップS102の暖機促進処理を実行する際には、メイン電動ファン10aおよびサブ電動ファン10bをそれぞれ停止する。
 制御ECU90がステップS103の熱回収処理を実行する際にメイン電動ファン10aを停止し、かつサブ電動ファン10bを回転させる。
 この際に、シャッタ50が空気流路41を閉じ、かつ還流切替ドア80が空気出口2aを閉じる。このため、サブ電動ファン10bは、図13Bの矢印Gaの如く、走行用エンジン3側から吸い込んだ空気流を導入して還流ダクト100内に送風する。
 ここで、走行用エンジン3側からサブ電動ファン10bに導入される迄に、走行用エンジン3側からの空気流が、メイン電動ファン10a、ラジエータ20、コンデンサ30、ラジエータ20、サブ電動ファン10bの順に流れる。このため、走行用エンジン3側からの空気流に含まれる廃熱がラジエータ20で回収される。
 このため、サブ電動ファン10bは、矢印Gaの如く、走行用エンジン3側から吸い込んだ空気流を導入して還流ダクト100内に送風する。このため、空気流は、還流ダクト100の還流出口101から走行用エンジン3に対して車両進行方向後側に流れる。その後、空気流は、走行用エンジン3の周辺を通過して電動ファン10に吸い込まれる。このことにより、ラジエータ20、電動ファン10、および走行用エンジン3の周辺を通過する空気流の還流が発生することなる。
 制御ECU90は、ステップS106の熱利用処理を実行する際にメイン電動ファン10aを停止し、かつサブ電動ファン10bを回転させる。
 この際に、サブ電動ファン10bは、ステップS103の熱回収処理の場合と同様に、矢印Gaの如く、走行用エンジン3側からメイン電動ファン10aを通して吸い込んだ空気流を導入して還流ダクト100内に送風する。この還流ダクト100に導入された空気流は、配風先ダクト60を通してシールド吹出口61および車室内導入口62から吹き出される。
 制御ECU90は、ステップS108の熱害防止処理を実行する際にサブ電動ファン10bを停止し、かつメイン電動ファン10aを正回転させる。
 メイン電動ファン10aは、車両進行方向前側からフロント開口部8a、コンデンサ30、シャッタ50、およびラジエータ20を通して吸い込んだ空気流を走行用エンジン3側に吹き出す。このため、この吹き出された空気流は、走行用エンジン3の周辺を通過する。
 その後、エンジンコンパートメント2内からの空気流が排気口2bを通して車両の天地方向下側に吸い込まれて車両外側に流れる。
 以上説明した第1変形例によれば、制御ECU90がサブ電動ファン10bを制御することにより、サブ電動ファン10bは、走行用エンジン3側からメイン電動ファン10aを通して吸い込んだ空気流を導入して還流ダクト100内に送風する。この還流ダクト100に導入された空気流は、配風先ダクト60を通してシールド吹出口61および車室内導入口62から吹き出される。このため、廃熱を含む空気流を車室5内の暖房やフロントウインドシールド4の防曇に利用することができる。
 (第3実施形態)
 本第3実施形態では、上記第2実施形態において、目標吹き出し温度TAO等に基づいて、吹出先を切り替える例について説明する。
 本実施形態の制御ECU90は、室内空調ユニット120のエアコンECU160からの通信信号、車室内温度Tr等に基づいて電動アクチュエータ91、92、94を制御する。
 以下、本実施形態の制御ECU90の制御処理の説明に先だって、室内空調ユニット120について図14、図15等を用いて説明する。
 室内空調ユニット130は、内外気切替箱131およびケース132を備える。内外気切替箱131は、ケース132の空気流路41の最上流部に配置されている。内気導入口133および外気導入口134を内外気切替ドア135により切替開閉するようになっている。この内外気切替ドア135はサーボモータ136によって駆動される。
 内外気切替箱131の下流側には車室内に向かって空気を送風する電動式の送風機37を配置している。この送風機137は、遠心式の送風ファン137aをモータ137bにより駆動するようになっている。送風機137の下流側には送風空気を冷却する冷房用熱交換器をなす蒸発器138を配置している。
 この蒸発器138は、冷凍サイクル装置139を構成する要素の一つであり、低温低圧の冷媒が送風空気から吸熱して蒸発することにより送風空気を冷却する。なお、冷凍サイクル装置139は周知のものである。圧縮機140の吐出側から、凝縮器141、受液器142および減圧部をなす膨張弁143を介して蒸発器38に冷媒が循環するように、冷凍サイクル装置139が構成されている。凝縮器141には電動式の冷却ファン141aによって室外空気(すなわち冷却空気)が送風される。この冷却ファン141aはモータ141bによって駆動される。
 冷凍サイクル装置139において、圧縮機140は電磁クラッチ140aを介して走行用エンジン3により駆動される。従って、電磁クラッチ140aの通電の断続により圧縮機140の作動を断続制御できる。
 室内空調ユニット130において、蒸発器138の下流側にはケース132内を流れる空気を加熱するヒータコア144を配置している。このヒータコア144は走行用エンジン3を冷却する熱媒体(すなわち、エンジン冷却水)を熱源として、蒸発器138通過後の空気(すなわち冷風)を加熱する加熱用熱交換器である。ヒータコア144の側方にはバイパス通路145が形成され、このバイパス通路145をヒータコア144のバイパス空気が流れる。
 蒸発器138とヒータコア144との間に温度調整部をなすエアミックスドア146を回転自在に配置してある。エアミックスドア146はサーボモータ147により駆動されて、その回転位置が連続的に調整可能になっている。
 エアミックスドア146の開度によりヒータコア144を通る空気量と、バイパス通路145を通過してヒータコア144をバイパスする空気量との割合を調節し、これにより、車室内に吹き出す空気の温度を調整するようになっている。
 ケース132の空気流路41の最下流部には、デフロスタ吹出開口部148、フェイス吹出開口部149、およびフット吹出口150の計3種類の吹出口が設けられている。
 つまり、ケース132には、デフロスタ吹出開口部148、フェイス吹出開口部149、およびフット吹出口150をそれぞれ形成する開口形成部148a、149a、150aが設けられている。これら吹出開口部48~50の上流部には、ドア151、152、153が回転自在に配置されている。これらのドア151~153は、図示しないリンク機構を介して共通のサーボモータ154によって開閉操作される。
 エアコンECU160は、CPU等を含む周知のマイクロコンピュータから構成される電子制御装置である。エアコンECU160には、空調用センサ群95、97、161~163からの検出信号、および空調操作パネル170からの各種操作信号が入力される。
 空調用センサ群としては、外気温Tambを検出する温度センサ97、車室内温度Trを検出する温度センサ161、車室内に入射する日射量Tsを検出する日射センサ162、蒸発器138の空気吹出部に配置されて蒸発器吹出空気温度Teを検出する蒸発器温度センサ163、ヒータコア144に流入する熱媒体の温度Twを検出する水温センサ95等が設けられる。空調操作パネル170には、車室内設定温度Tsetを設定する温度設定スイッチ等が設けられる。
 本実施形態の配風先ダクト60の車室内導入口62は、内外気切替箱131の外気導入口134に接続されている。
 本実施形態では、上記第1実施形態の配風先切替ドア81が廃止されている。内外気切替ドア135は、車室内導入口62を開閉するための配風先切替ドア81を兼ねる。
 次に、本実施形態の気流制御システム1の作動について説明する。
 制御ECU90は、図16A、図16B、図16Cのフローチャートにしたがって、暖房・防曇切替処理を実行する。
 まず、制御ECU90は、ステップS200において、センサ95の検出値に基づいて熱媒体温度Twが80℃未満であるか否かを判定する。このことにより、ヒータコア144により暖房を実施可能であるか否かを判定することになる。
 熱媒体温度Twが80℃未満であるときには、熱媒体がウォームアップ中であって、熱媒体の温度が不十分であると判定する。この場合、ヒータコア144により暖房を実施不可能であるとしてステップS200でYESと判定する。
 次に、制御ECU90は、ステップS210において、目標吹き出し温度TAOが所定値以上であるか否かを判定することにより、車室5内の暖房が必要であるか否かを判定する。制御ECU90は、ステップS210を実行することで暖房判定部に対応する。
 目標吹き出し温度TAOは、外気温Tamb、車室内の温度Tr、日射量Ts等に基づいてエアコンECU160によって算出される目標値である。目標吹き出し温度TAOは、車室内の温度Trが車室内設定温度Tsetを維持するために、開口形成部148a、149a、150aから吹き出すことが必要な空気温度である。
 このとき、目標吹き出し温度TAOが所定値以上であるときには、車室5内の暖房が必要であるとして、ステップS210においてYESと判定する。
 これに伴い、制御ECU90は、ステップS220において、センサ96、97の検出値に基づいて、空気温度Tairが空気温度Tambよりも高いか否かを判定する。
 このことにより、車室5内の暖房に利用できる排熱がエンジンコンパートメント2内の空気に含まれているか否かを判定することになる。
 このとき、空気温度Tairが空気温度Tambよりも高いときには、ステップS220においてYESと判定する。この場合、車室5内の暖房に利用できる排熱がエンジンコンパートメント2内の空気に含まれていると判定する。
 この場合、制御ECU90は、ステップS230において車室5内を暖房する制御を実行する。具体的には、電動アクチュエータ92を介して還流切替ドア80を制御してエンジンコンパートメント2の空気出口2aを開けて、還流出口101を閉じる。
 そして制御ECU90は、電動ファン10を逆回転させる。これに加えて、制御ECU90は、エアコンECU160を介してサーボモータ136、147を制御する。制御ECU90は、ステップ230を実行することで暖房制御部に対応する。
 制御ECU90は、エアコンECU160を介してサーボモータ136を制御する際に、内外気切替ドア135によって内気導入口133を閉じて外気導入口134を開けることになる。
 制御ECU90は、エアコンECU160を介してサーボモータ147を制御する際に、エアミックスドア146によってヒータコア144の空気入口側或いは、空気出口側を全閉して、バイパス通路45を全開させる。
 このため、電動ファン10は、排熱を含む空気流を走行用エンジン3側から吸い込んで、この吸い込んだ空気流をシュラウド40の空気出口43から還流ダクト100、配風先ダクト60の車室内導入口62を通して内外気切替箱131の外気導入口134に吹き出す。
 この吹き出された空気流は、送風機137によって吸い込まれて送風機137から吹き出される。この吹き出された空気流は、蒸発器138およびバイパス通路45を通して開口形成部148a、149a、150aから車室内に吹きされる。このことにより、エンジンコンパートメント2内の空気に含まれる排熱により、車室5内の暖房等を行うことになる。その後、制御ECU90は、ステップS200に戻る。
 また、制御ECU90は、上記ステップS210において、目標吹き出し温度TAOが所定値未満であるときには、車室5内の暖房が不要であるとしてNOと判定する。この場合、制御ECU90は、ステップS230の暖房制御やステップS260の防曇制御を実行することなく、ステップS200に戻る。
 また、制御ECU90は、上記ステップS200において、熱媒体温度Twが80℃以上であるときには、熱媒体のウォームアップが完了したと判定する。この場合、ヒータコア144により暖房を実施可能であるとして、ステップS200において、NOと判定する。
 この場合、制御ECU90は、次のステップS240において、センサ97、161の検出値に基づいて空気温度Tambが車室内温度Tr未満であるか否かを判定する。このことにより、フロントウインドシールドの防曇が必要であるか否かを判定する。
 このとき、空気温度Tambが車室内温度Tr未満である場合には、制御ECU90は、フロントウインドシールドの防曇が必要であるとして、ステップS240において、YESと判定する。
 これに伴い、制御ECU90は、ステップS250において、空気温度Tairが空気温度Tambよりも高いか否かを判定する。このことにより、防曇に利用できる排熱がエンジンコンパートメント2内の空気に含まれているか否かを判定する。制御ECU90は、ステップS250を実行することで、防曇判定部に対応する。
 このとき、空気温度Tairが空気温度Tambよりも高いときには、制御ECU90は、防曇に利用できる排熱がエンジンコンパートメント2内の空気に含まれているとして、ステップS250において、YESと判定する。
 これに伴い、制御ECU90は、ステップS260において、フロントウインドシールド4を防曇する制御を実行する。具体的には、電動アクチュエータ92を介して還流切替ドア80を制御してエンジンコンパートメント2の空気出口2aを開けて、還流出口101を閉じる。そして、電動ファン10を逆回転させる。制御ECU90は、ステップS260を実行することで、防曇制御部に対応する。
 これに加えて、制御ECU90は、エアコンECU160を介してサーボモータ136、147を制御する。
 制御ECU90は、エアコンECU160を介してサーボモータ136を制御する際に、内外気切替ドア135によって内気導入口133を開けて外気導入口134を閉じることになる。
 制御ECU90は、エアコンECU160を介してサーボモータ147を制御する際に、エアミックスドア146によってヒータコア144の空気入口側を、或いは、空気出口側を、全開して、バイパス通路145を全閉させる。
 このため、電動ファン10は、排熱を含む空気流を走行用エンジン3側から吸い込んで、この吸い込んだ空気流をシュラウド40の空気出口43から還流ダクト100を通して配風先ダクト60のシールド吹出口61からフロントウインドシールド4の外表面に吹き出す。
 この吹き出された空気流は、フロントウインドシールド4の温度を上昇させる。このため、フロントウインドシールド4の内表面に露が生じることを防ぐことができる。
 室内空調ユニット130において、送風機137は、内気導入口133を介して車室内空気(以下、内気)を吸い込んで蒸発器138側に吹き出す。この吹き出された空気流は、蒸発器138に流れる。この際に、空気流は、蒸発器138において冷媒により冷却される。このため、蒸発器138から冷風が吹き出されることになる。この冷風はヒータコア144を通過する。このため、冷風はヒータコア144において熱媒体により加熱されるので、ヒータコア144から温風が吹き出される。このように吹き出される温風は、開口形成部148a、149a、150aから車室内に吹き出される。このため、ヒータコア144によって車室5内が暖房されることになる。
 また、制御ECU90は、上記ステップS240において、空気温度Tambが車室内温度Tr以上であるときには、フロントウインドシールド4の防曇が必要でないとして、NOと判定する。この場合、制御ECU90は、ステップS230の暖房制御やステップS260の防曇制御を実行することなく、ステップS200に戻る。
 制御ECU90は、上記ステップS250において、空気温度Tairが空気温度Tamb未満であるときには、防曇に利用できる排熱がエンジンコンパートメント2内の空気に含まれていないとしてNOと判定する。この場合、制御ECU90は、ステップS230の暖房制御やステップS260の防曇制御を実行することなく、ステップS200に戻る。
 制御ECU90は、このようなステップS200~S260の処理を繰り返すことにより、必要に応じて、車室5内の暖房やフロントウインドシールド4の防曇を実行する。
 以上説明した本実施形態によれば、制御ECU90は、目標吹き出し温度TAOが所定値以上であるときには、車室5内の暖房が必要であると判定して、電動アクチュエータ93を介して配風先切替ドア81を制御して車室内導入口62を開ける。このため、車室内導入口62から温風を車室5内に吹き出すことができる。
 制御ECU90は、空気温度Tambが車室内温度Tr未満であるときには、フロントウインドシールドの防曇が必要であると判定して、電動アクチュエータ93を介して配風先切替ドア81を制御して車室内導入口62を閉じる。このため、シールド吹出口61からフロントウインドシールド4の外表面に温風を吹き出すことができる。
 このように制御ECU90は、目標吹き出し温度TAO、空気温度Tair、空気温度Tamb等に基づいて温風を吹き出す吹出先を切り替えることができる。
 (他の実施形態)
 (1)上記第1、2、3実施形態では、走行用エンジン3を車両の駆動輪に回転力を与える内燃機関とした例について説明した。しかし、走行用電動機を駆動するための電力を発生する内燃機関を走行用エンジン3としてもよい。
 (2)上記第1、2、3実施形態では、シュラウド40の空気出口43を、シャッタ50および電動ファン10を結ぶ車両進行方向に直交する天地方向の上側に開口するようにした例を示した。しかし、これに代えて、シュラウド40の空気出口43を、車両進行方向に直交する天地方向の下側に開口するようにしてもよい。
 或いは、シュラウド40の空気出口43を、シャッタ50および電動ファン10を結ぶ車両進行方向に直交する車両幅方向の右側(或いは、左側)に開口するようにしてもよい。
 (3)上記第1、2、3実施形態では、走行用エンジン3および空気流の間でエンジン冷却水としての熱媒体を介して熱交換するラジエータ20を熱交換器とした例について説明した。しかし、これに代えて、走行用エンジン3および空気流の間でオイルとしての熱媒体を介して熱交換するオイルクーラを熱交換器としてもよい。
 (4)上記第2、3実施形態では、還流ダクト100の還流出口101から吹き出される空気流を走行用エンジン3に対して車両進行方向後側に吹き出させるようにした例について説明した。しかし、これに代えて、次のようにしてもよい。
 すなわち、還流ダクト100および電動ファン10を通過した空気流がフロントウインドシールド4内にて還流を発生させるのであれば、還流出口101から吹き出される空気流がフロントウインドシールド4内のどの部位に吹き出されるようにしてもよい。
 (5)上記第1、2、3実施形態では、シャッタ50を電動アクチュエータ91で開閉した例について説明した。しかし、これに代えて、シャッタ50を手動で開閉できるようにしたものを用いてもよい。
 (6)上記第2、第3実施形態では、空気温度Tairと空気温度Tambとを比較して、暖房や防曇など利用できる排熱がエンジンコンパートメント2内の空気に含まれているか否かを判定した例について説明した。しかし、これに代えて、次のようにしてもよい。
 すなわち、空気温度Tairと空気温度Tamb以外の情報を用いて、車室5内の暖房や防曇などの用途に利用できる排熱がエンジンコンパートメント2内の空気に含まれているか否かを判定してもよい。
 (7)上記第1、第2、第3実施形態では、フロント開口部8aを備える車両に気流制御システム1を適用した例について説明した。しかし、これに代えて、フロント開口部8aを備えていない車両に気流制御システム1を適用してもよい。
 ここで、フロント開口部8aとしては、フロントダンパ以外のエンジンフード6に設けた車両に気流制御システム1を適用してもよい。
 (8)上記第1、第2、第3実施形態では、シャッタ50を備える車両に気流制御システム1を適用した例について説明した。しかし、これに代えて、シャッタ50を備えていない車両に気流制御システム1を適用してもよい。
 (9)上記第1実施形態では、ステップS108において、還流切替ドア80によって空気出口2aを閉じる例について説明した。しかし、これに限らず、車種によって、還流切替ドア80や配風先切替ドア81の開閉制御を変えてもよい。
 (10)上記第3実施形態では、配風先切替ドア81を廃止して、内外気切替ドア135が配風先切替ドア81の代わりに、外気導入口134を開閉することによって配風先ダクト60の車室内導入口62を開閉する例について説明した。しかし、これに代えて、次のようにしてもよい。
 すなわち、配風先切替ドア81と内外気切替ドア135とを両方とも気流制御システム1に設けてもよい。
 (11)なお、本開示は上記した実施形態に限定されるものではなく、適宜変更が可能である。また、上記各実施形態は、互いに無関係なものではなく、組み合わせが明らかに不可な場合を除き、適宜組み合わせが可能である。また、上記各実施形態において、実施形態を構成する要素は、特に必須であると明示した場合および原理的に明らかに必須であると考えられる場合等を除き、必ずしも必須のものではないことは言うまでもない。また、上記各実施形態において、実施形態の構成要素の個数、数値、量、範囲等の数値が言及されている場合、特に必須であると明示した場合および原理的に明らかに特定の数に限定される場合等を除き、その特定の数に限定されるものではない。また、上記各実施形態において、構成要素等の形状、位置関係等に言及するときは、特に明示した場合および原理的に特定の形状、位置関係等に限定される場合等を除き、その形状、位置関係等に限定されるものではない。
 (まとめ)
 上記1~3実施形態、各変形例、および他の実施形態の一部または全部に記載された第1の観点によれば、車室内に対して車両進行方向前側に配置されて、かつ走行用エンジンを収納するエンジンコンパートメント内に配置されている送風機と、
 エンジンコンパートメント内からの空気流をエンジンコンパートメントに対する車両進行方向後側の他のエリアに吹き出す空気出口を開閉する出口ドアと、を備え、
 出口ドアが空気出口を開けた状態で、送風機が走行用エンジンの排熱を含む空気流を空気出口から他のエリアに送風させる。
 第2の観点によれば、他のエリアで用いる走行用エンジンの排熱がエンジンコンパートメント内の空気に含まれているか否かを判定する排熱判定部と、
 他のエリアで用いる走行用エンジンの排熱がエンジンコンパートメント内の空気に含まれると排熱判定部が判定したとき、空気出口を開けるように出口ドアを制御し、さらに排熱を含む空気流を空気出口から他のエリアに送風させるように送風機を制御する気流制御部とを備える。
 これにより、必要に応じて自動的に排熱を含む空気流を空気出口から他のエリアに送風させることができる。
 第3の観点によれば、シャッタがフロント開口部および送風機の間の第1空気流路を閉じた状態で、送風機が走行用エンジン側から排熱を含む空気流を吸い込んでこの吸い込んだ空気流をシュラウドの吹出口から吹き出し、この吹き出された空気流がエンジンコンパートメントの空気出口から他のエリアに送風される。
 これにより、フロント開口部から車両外空気がエンジンコンパートメントに入ったり、フロント開口部から排熱が出ることを抑えることができる。
 第4の観点によれば、他のエリアとしての車室内に空気流を吹き出すための車室内導入口へエンジンコンパートメントの空気出口からの空気流を導く配風先ダクトを備える。
 第5の観点によれば、配風先ダクトは、他のエリアとしてのフロントウインドシールドの外表面に空気流を吹き出すシールド吹出口へエンジンコンパートメントの空気出口からの空気流を導くために形成されている。
 第6の観点によれば、記配風先ダクトの車室内導入口を開閉する導入口ドアを備える。
 第7の観点によれば、車室内から空気流を導入する内気導入口と配風先ダクトの車室内吹出口から空気流を導入する外気導入口とのうち一方を開ける内外気切替ドアを有し、内気導入口および外気導入口のうち一方から導入された空気流の温度を調整して車室内に吹き出す空調ユニットを備え、内外気切替ドアは、導入口ドアである。
 これにより、内外気切替ドアは、導入口ドアの代わりに、配風先ダクトの車室導入口を開閉する。このため、導入口ドアを廃止することができる。
 第8の観点によれば、車室内を暖房する必要があるか否かを判定する暖房判定部と、車室内を暖房する必要があると暖房判定部が判定したとき、空気出口を開けるように出口ドアを制御し、配風先ダクトの車室内導入口を開けるように導入口ドアを制御する暖房制御部とを備える。
 これにより、必要に応じて、排熱を利用した車室内の暖房を行うことができる。
 第9の観点によれば、フロントウインドシールドに曇りが生じることを防止する必要があるか否かを判定する防曇判定部と、フロントウインドシールドに曇りが生じることを防止する必要があると防曇判定部が判定したとき、空気出口を開けるように出口ドアを制御する防曇制御部とを備える。
 これにより、必要に応じて、排熱を利用したフロントウインドシールドの防曇を行うことができる。
 第10の観点によれば、配風先ダクトは、車両のうち車室内およびフロントウインドシールドとエンジンコンパートメントとの間であるカウルエリアに配置されている。
 ここで、カウルエリアには、そもそも、ファイヤウォールを介して車室内に連通する穴部が設けられている。このため、この穴部を利用して車室内への空気流の導入を行うことができる。
 第11の観点によれば、シュラウドの吹出口からの空気流をエンジンコンパートメントの空気出口に導くための導入ダクトを備える。
 第12の観点によれば、 導入ダクトは、エンジンコンパートメントを天地方向から覆うように形成されているエンジンフードに支持されて、かつシュラウドに対して分割可能に構成されており、
 エンジンフードがエンジンコンパートメントを覆った状態では、導入ダクトとシュラウドとが接続されており、
 エンジンフードがエンジンコンパートメントを開けた状態では、導入ダクトとシュラウドとが分割されている。
 これにより、エンジンフードがエンジンコンパートメントを開けた状態では、導入ダクトの下側の装置の点検整備を容易に行うことができる。
 第13の観点によれば、主送風機に対して独立して設けられて排熱を含む空気流を送風する送風機としてのサブ送風機を備える。
 第14の観点によれば、サブ送風機から送風される空気流をエンジンコンパートメントの空気出口に導くための導入ダクトを備える。
 第15の観点によれば、送風機が導入ダクトの還流出口から空気流を吹き出してこの吹き出された空気流が送風機に吸い込まれることにより、送風機および導入ダクトを通過する空気流の還流が生じるようになっている。
 第16の観点によれば、エンジンコンパートメント内の熱を車両外側に排出するべきであると排熱判定部が判定したときに、排気口を開けるように排熱ドアを制御する排気制御部を備える。
 これにより、必要に応じて自動的にエンジンコンパートメント内の熱を車両外側に排出することができる。
 第17の観点によれば、排気口は、エンジンコンパートメントを天地方向下側から覆うように形成されてアンダーカバーに対して車両進行方向後側に設けられて、エンジンコンパートメント内と車両の天地方向下側である車両外側との間を連通する。
 これにより、車両の走行時にてアンダーカバーに下側に空気流が流れることに伴って、エンジンコンパートメント内の気圧よりも、アンダーカバーに対して車両進行方向後側で、かつ車両の天地方向下側である車両外側の気圧が低くなる。このような気圧の変化によって、エンジンコンパートメント内の排熱を車両外側に排出することができる。

Claims (17)

  1.  気流制御システムであって、
     車室内に対して車両進行方向前側に配置されて、かつ走行用エンジン(3)を収納するエンジンコンパートメント(2)内に配置されている送風機(10、10b)と、
     前記エンジンコンパートメント内からの空気流を前記エンジンコンパートメントに対する車両進行方向後側の他のエリアに吹き出す空気出口(2a)を開閉する出口ドア(80)と、を備え、
     前記出口ドアが前記空気出口を開けた状態で、前記送風機が前記走行用エンジンの排熱を含む空気流を前記空気出口から前記他のエリアに送風させる気流制御システム。
  2.  前記他のエリアで用いる前記走行用エンジンの排熱が前記エンジンコンパートメント内の空気に含まれているか否かを判定する排熱判定部(S105、S107)と、
     前記他のエリアで用いる前記走行用エンジンの排熱が前記エンジンコンパートメント内の空気に含まれると前記排熱判定部が判定したとき、前記空気出口を開けるように前記出口ドアを制御し、さらに前記排熱を含む空気流を前記空気出口から前記他のエリアに送風させるように前記送風機を制御する気流制御部(S106)と、
     を備える請求項1に記載の気流制御システム。
  3.  前記エンジンコンパートメントを車両進行方向前側に開口させるフロント開口部(8a)および前記送風機の間に形成されている第1空気流路(41)を開閉するシャッタ(50)と、
     前記送風機および前記シャッタの間に設けられている第2空気流路(42)と、前記シャッタおよび前記送風機の間に設けられて前記第2空気流路から送風された空気流を吹き出す吹出口(43)とを形成するシュラウド(40)と、を備え、
     前記気流制御部が前記送風機を制御する際に、前記シャッタが前記フロント開口部および前記送風機の間の前記第1空気流路を閉じた状態で、前記送風機が前記走行用エンジン側から前記排熱を含む空気流を吸い込んでこの吸い込んだ空気流を前記シュラウドの前記吹出口から吹き出し、この吹き出された空気流が前記エンジンコンパートメントの空気出口から前記他のエリアに送風される請求項2に記載の気流制御システム。
  4.  前記他のエリアとしての車室内に空気流を吹き出すための車室内導入口(62)へ前記エンジンコンパートメントの前記空気出口からの空気流を導く配風先ダクト(60)を備える請求項2または3に記載の気流制御システム。
  5.  前記配風先ダクトは、前記他のエリアとしてのフロントウインドシールドの外表面に空気流を吹き出すシールド吹出口(61)へ前記エンジンコンパートメントの前記空気出口からの空気流を導くために形成されている請求項4に記載の気流制御システム。
  6.  前記配風先ダクトの車室内導入口を開閉する導入口ドア(81)を備える請求項4または5に記載の気流制御システム。
  7.  車室内から空気流を導入する内気導入口(133)と前記配風先ダクトの車室内導入口から空気流を導入する外気導入口(134)とのうち一方を開ける内外気切替ドア(135)を有し、前記内気導入口および前記外気導入口のうち一方から導入された空気流の温度を調整して車室内に吹き出す空調ユニット(130)を備え、
     前記内外気切替ドアは、前記導入口ドアである請求項6に記載の気流制御システム。
  8.  車室内を暖房する必要があるか否かを判定する暖房判定部(S210)と、
     前記車室内を暖房する必要があると前記暖房判定部が判定したとき、前記空気出口を開けるように前記出口ドアを制御し、前記配風先ダクトの車室内導入口を開けるように前記導入口ドアを制御する暖房制御部(S230)と、を備える請求項6または7に記載の気流制御システム。
  9.  前記フロントウインドシールドに曇りが生じることを防止する必要があるか否かを判定する防曇判定部(S240)と、
     前記フロントウインドシールドに曇りが生じることを防止する必要があると前記防曇判定部が判定したとき、前記空気出口を開けるように前記出口ドアを制御する防曇制御部(S260)と、を備える請求項8に記載の気流制御システム。
  10.  前記配風先ダクトは、車両のうち前記車室内およびフロントウインドシールド(4)と前記エンジンコンパートメントとの間であるカウルエリア(70)に配置されている請求項4ないし8のいずれか1つに記載の気流制御システム。
  11.  前記シュラウドの吹出口からの空気流を前記エンジンコンパートメントの空気出口に導くための導入ダクト(100)を備える請求項3に記載の気流制御システム。
  12.  前記導入ダクトは、前記エンジンコンパートメントを天地方向から覆うように形成されているエンジンフード(6)に支持されて、かつ前記シュラウドに対して分割可能に構成されており、
     前記エンジンフードが前記エンジンコンパートメントを覆った状態では、前記導入ダクトと前記シュラウドとが接続されており、
     前記エンジンフードが前記エンジンコンパートメントを開けた状態では、前記導入ダクトと前記シュラウドとが分割されている請求項11に記載の気流制御システム。
  13.  前記エンジンコンパートメントのうち前記フロント開口部および前記走行用エンジンの間に配置されて前記エンジンコンパートメントの空気と前記走行用エンジンとの間で熱媒体を介して熱交換する熱交換器(20)と、
     前記走行用エンジンおよび前記熱交換器の間に配置されて前記フロント開口部から前記熱交換器を通して吸い込んだ空気流を前記走行用エンジンに向けて吹き出す主送風機(10a)と、
     前記主送風機に対して独立して設けられて前記排熱を含む空気流を送風する前記送風機としてのサブ送風機(10b)と、
     を備える請求項3に記載の気流制御システム。
  14.  前記サブ送風機から送風される空気流を前記エンジンコンパートメントの空気出口に導くための導入ダクト(100)を備える請求項3に記載の気流制御システム。
  15.  前記導入ダクトは、前記送風機からの空気流を前記エンジンコンパートメント内に吹き出す還流出口(101)を形成し、前記送風機からの空気流を前記還流出口に導くために形成されており、
     前記送風機が前記導入ダクトの還流出口から空気流を吹き出してこの吹き出された空気流が前記送風機に吸い込まれることにより、前記送風機および前記導入ダクトを通過する空気流の還流が生じるようになっている請求項10、11、12、14のいずれか1つに記載の気流制御システム。
  16.  前記エンジンコンパートメント内と車両外側との間を連通する排気口(2b)を開閉する排熱ドア(82)と、
     前記エンジンコンパートメント内の熱を車両外側に排出するべきか否かを判定する排熱判定部(S107)と、
     前記エンジンコンパートメント内の熱を車両外側に排出するべきであると前記排熱判定部が判定したときに、前記排気口を開けるように前記排熱ドアを制御する排気制御部(S108)と、
     を備える請求項1ないし15のいずれか1つに記載の気流制御システム。
  17.  前記排気口は、前記エンジンコンパートメントを天地方向下側から覆うように形成されてアンダーカバー(7)に対して車両進行方向後側に設けられて、前記エンジンコンパートメント内と車両の天地方向下側である前記車両外側との間を連通する請求項16に記載の気流制御システム。
PCT/JP2016/079788 2015-11-03 2016-10-06 気流制御システム WO2017077811A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
DE112016005037.2T DE112016005037T5 (de) 2015-11-03 2016-10-06 Luftströmungssteuersystem
JP2017548683A JP6493554B2 (ja) 2015-11-03 2016-10-06 気流制御システム
US15/772,131 US10946720B2 (en) 2015-11-03 2016-10-06 Airflow control system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015216229 2015-11-03
JP2015-216229 2015-11-03

Publications (1)

Publication Number Publication Date
WO2017077811A1 true WO2017077811A1 (ja) 2017-05-11

Family

ID=58662559

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/079788 WO2017077811A1 (ja) 2015-11-03 2016-10-06 気流制御システム

Country Status (4)

Country Link
US (1) US10946720B2 (ja)
JP (1) JP6493554B2 (ja)
DE (1) DE112016005037T5 (ja)
WO (1) WO2017077811A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019058810A1 (ja) * 2017-09-19 2019-03-28 株式会社デンソー 熱交換システム
DE102018108004A1 (de) * 2018-04-05 2019-10-10 Volkswagen Aktiengesellschaft Unterboden-Verkleidungsteil für ein Kraftfahrzeug
WO2021009051A1 (en) * 2019-07-12 2021-01-21 Jaguar Land Rover Limited Active vane control system and method
WO2022004159A1 (ja) * 2020-06-29 2022-01-06 株式会社デンソー 冷凍サイクル装置

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3243679B1 (en) * 2016-05-11 2019-07-10 Ningbo Geely Automobile Research & Development Co., Ltd. Charge air shutter
US10414266B1 (en) * 2017-04-28 2019-09-17 Oshkosh Defense, Llc Vehicle cooling systems and methods
JP6721007B2 (ja) * 2017-07-24 2020-07-08 株式会社デンソー 冷却システム
KR102609407B1 (ko) * 2017-08-21 2023-12-04 한온시스템 주식회사 차량용 공조장치 및 그 제어방법
JP6589963B2 (ja) * 2017-10-30 2019-10-16 マツダ株式会社 車両のグリルシャッター制御装置
KR102598318B1 (ko) * 2018-11-30 2023-11-06 현대자동차주식회사 차량의 액티브 에어 플랩 제어 방법
DE102018222641A1 (de) * 2018-12-20 2020-06-25 Audi Ag Verfahren zum Erwärmen mindestens einer Glasfläche eines Kraftfahrzeugs
JP6687144B1 (ja) * 2019-03-19 2020-04-22 トヨタ自動車株式会社 機関冷却水循環システムの異常検出装置
US11286843B2 (en) * 2019-08-20 2022-03-29 Engineered Machined Products, Inc. System for fan control
EP3792090B1 (en) * 2019-09-16 2023-07-19 Ningbo Geely Automobile Research & Development Co., Ltd. Vehicle air feeding system and corresponding method
DE102020002486A1 (de) * 2019-12-20 2021-06-24 Gentherm Gmbh Belüftungseinrichtung für eine Kabine eines Fahrzeugs
JP7393289B2 (ja) * 2020-04-13 2023-12-06 株式会社Subaru 車両
DE102021204386B4 (de) 2021-04-30 2022-12-01 Volkswagen Aktiengesellschaft Kühlerrollo für ein Kraftfahrzeug
GB2607059B (en) * 2021-05-27 2024-02-21 Jaguar Land Rover Ltd Airflow apparatus for a vehicle

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4734996Y1 (ja) * 1968-10-11 1972-10-23
JPS50643U (ja) * 1973-04-30 1975-01-07
JPS5012842Y1 (ja) * 1970-02-28 1975-04-19
JPH1024867A (ja) * 1996-07-10 1998-01-27 Mitsubishi Motors Corp 車両用エンジンのアンダーカバー
JP2008290523A (ja) * 2007-05-23 2008-12-04 Calsonic Kansei Corp 車両用空調システム
JP2011084080A (ja) * 2009-09-16 2011-04-28 Keihin Corp 自動車用シャッタ装置及びその故障判定方法
JP2013023048A (ja) * 2011-07-20 2013-02-04 Suzuki Motor Corp 車両用空調装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3851251A (en) * 1971-10-25 1974-11-26 Martin Marietta Corp Receiver method and apparatus
JP2006244928A (ja) 2005-03-04 2006-09-14 Nissan Motor Co Ltd 燃料電池冷却システム
JP2008106727A (ja) * 2006-10-27 2008-05-08 Honda Motor Co Ltd 車両前部の空気取入装置
US20110061405A1 (en) 2009-09-16 2011-03-17 Keihin Corporation Vehicular air conditioner equipped with vehicle shutter device, and failure determining method for vehicle shutter device
JP2012246790A (ja) 2011-05-25 2012-12-13 Fuji Heavy Ind Ltd 排気熱回収装置
JP2015216229A (ja) 2014-05-09 2015-12-03 日東電工株式会社 半導体装置の製造方法及び熱硬化性樹脂シート
JP6319009B2 (ja) 2014-09-19 2018-05-09 株式会社デンソー 冷却装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4734996Y1 (ja) * 1968-10-11 1972-10-23
JPS5012842Y1 (ja) * 1970-02-28 1975-04-19
JPS50643U (ja) * 1973-04-30 1975-01-07
JPH1024867A (ja) * 1996-07-10 1998-01-27 Mitsubishi Motors Corp 車両用エンジンのアンダーカバー
JP2008290523A (ja) * 2007-05-23 2008-12-04 Calsonic Kansei Corp 車両用空調システム
JP2011084080A (ja) * 2009-09-16 2011-04-28 Keihin Corp 自動車用シャッタ装置及びその故障判定方法
JP2013023048A (ja) * 2011-07-20 2013-02-04 Suzuki Motor Corp 車両用空調装置

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019058810A1 (ja) * 2017-09-19 2019-03-28 株式会社デンソー 熱交換システム
JP2019051900A (ja) * 2017-09-19 2019-04-04 株式会社デンソー 熱交換システム
DE102018108004A1 (de) * 2018-04-05 2019-10-10 Volkswagen Aktiengesellschaft Unterboden-Verkleidungsteil für ein Kraftfahrzeug
WO2021009051A1 (en) * 2019-07-12 2021-01-21 Jaguar Land Rover Limited Active vane control system and method
WO2022004159A1 (ja) * 2020-06-29 2022-01-06 株式会社デンソー 冷凍サイクル装置
CN115666985A (zh) * 2020-06-29 2023-01-31 株式会社电装 制冷循环装置
JP7435308B2 (ja) 2020-06-29 2024-02-21 株式会社デンソー 冷凍サイクル装置

Also Published As

Publication number Publication date
US20180312039A1 (en) 2018-11-01
JPWO2017077811A1 (ja) 2018-03-01
US10946720B2 (en) 2021-03-16
JP6493554B2 (ja) 2019-04-03
DE112016005037T5 (de) 2018-08-09

Similar Documents

Publication Publication Date Title
JP6493554B2 (ja) 気流制御システム
US10913332B2 (en) Heat exchange unit
US10875384B2 (en) Air flow circulation structure for vehicle
JP2014513645A (ja) 熱交換器をバイパスする空気流路を含む加熱、換気、および/または空気調和装置
JP6512368B2 (ja) 車両用空調ユニット
JP2012236495A (ja) 車両用空調装置
JPWO2018193570A1 (ja) 車両空調設備
JP2007112268A (ja) 車両用バッテリ適温化システム
JP4650108B2 (ja) 車両の強電系冷却装置
JPH09309322A (ja) 自動車用空調装置
JP6489282B2 (ja) 冷却モジュール
JP4797848B2 (ja) 車両用温度調節装置
JP2009035153A (ja) 車両用空調装置
WO2022270594A1 (ja) 車両用空調装置
US20230084147A1 (en) Environmental control system
JP2007076426A (ja) 電子機器冷却装置および車両用空調装置
US20210129626A1 (en) Hvac system including two-layer airflow cooling mode
JP2008126789A (ja) 車両用インスツルメントパネル冷却装置
KR20220138743A (ko) 차량용 hvac시스템의 제어방법
JPH0825982A (ja) 冷却ファン装置
JP2000038015A (ja) 車両用空調装置
KR20180092086A (ko) 차량용 공조장치
JPH0120171Y2 (ja)
JP2007321744A (ja) 電動ポンプの制御方法及び車両用暖房装置
JPH115428A (ja) 車両用空調装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16861878

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017548683

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15772131

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 112016005037

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16861878

Country of ref document: EP

Kind code of ref document: A1