WO2017073586A1 - フェノール樹脂成形材料 - Google Patents

フェノール樹脂成形材料 Download PDF

Info

Publication number
WO2017073586A1
WO2017073586A1 PCT/JP2016/081658 JP2016081658W WO2017073586A1 WO 2017073586 A1 WO2017073586 A1 WO 2017073586A1 JP 2016081658 W JP2016081658 W JP 2016081658W WO 2017073586 A1 WO2017073586 A1 WO 2017073586A1
Authority
WO
WIPO (PCT)
Prior art keywords
molding material
mass
content
inorganic filler
phenol resin
Prior art date
Application number
PCT/JP2016/081658
Other languages
English (en)
French (fr)
Inventor
浩二 小泉
佑典 渡邉
亮一 井川
貴大 奥屋
裕二 日高
Original Assignee
住友ベークライト株式会社
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友ベークライト株式会社, 株式会社デンソー filed Critical 住友ベークライト株式会社
Priority to EP16859816.7A priority Critical patent/EP3369773A4/en
Priority to CN201680061511.1A priority patent/CN108137901A/zh
Priority to US15/767,279 priority patent/US20180305539A1/en
Publication of WO2017073586A1 publication Critical patent/WO2017073586A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L61/00Compositions of condensation polymers of aldehydes or ketones; Compositions of derivatives of such polymers
    • C08L61/04Condensation polymers of aldehydes or ketones with phenols only
    • C08L61/06Condensation polymers of aldehydes or ketones with phenols only of aldehydes with phenols
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/04Reinforcing macromolecular compounds with loose or coherent fibrous material
    • C08J5/0405Reinforcing macromolecular compounds with loose or coherent fibrous material with inorganic fibres
    • C08J5/043Reinforcing macromolecular compounds with loose or coherent fibrous material with inorganic fibres with glass fibres
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/04Reinforcing macromolecular compounds with loose or coherent fibrous material
    • C08J5/046Reinforcing macromolecular compounds with loose or coherent fibrous material with synthetic macromolecular fibrous material
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/04Reinforcing macromolecular compounds with loose or coherent fibrous material
    • C08J5/10Reinforcing macromolecular compounds with loose or coherent fibrous material characterised by the additives used in the polymer mixture
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/01Use of inorganic substances as compounding ingredients characterized by their specific function
    • C08K3/013Fillers, pigments or reinforcing additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/34Heterocyclic compounds having nitrogen in the ring
    • C08K5/3467Heterocyclic compounds having nitrogen in the ring having more than two nitrogen atoms in the ring
    • C08K5/3477Six-membered rings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2361/00Characterised by the use of condensation polymers of aldehydes or ketones; Derivatives of such polymers
    • C08J2361/04Condensation polymers of aldehydes or ketones with phenols only
    • C08J2361/06Condensation polymers of aldehydes or ketones with phenols only of aldehydes with phenols
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • C08K3/346Clay
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • C08K3/36Silica
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/40Glass
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/02Fibres or whiskers
    • C08K7/04Fibres or whiskers inorganic
    • C08K7/14Glass
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M37/00Apparatus or systems for feeding liquid fuel from storage containers to carburettors or fuel-injection apparatus; Arrangements for purifying liquid fuel specially adapted for, or arranged on, internal-combustion engines
    • F02M37/04Feeding by means of driven pumps
    • F02M37/08Feeding by means of driven pumps electrically driven
    • F02M37/10Feeding by means of driven pumps electrically driven submerged in fuel, e.g. in reservoir

Definitions

  • This disclosure relates to a phenolic resin molding material.
  • a fuel pump used in a vehicle or the like secures a clearance of a predetermined size between an inner wall of a housing that forms a pump chamber into which fuel flows and a resin impeller provided inside the housing. ing.
  • This clearance is set to such a magnitude that the impeller does not stop rotating due to contact between the impeller and the housing even when the impeller is swollen by the fuel and water contained in the fuel.
  • the fuel pump has a problem that output loss increases due to fuel leakage from the clearance or power consumption increases. Therefore, regarding the impeller for a fuel pump, development of a resin material having a small dimensional change (hereinafter referred to as “swelling amount”) due to swelling due to the fuel and water contained in the fuel is demanded.
  • the impeller for a fuel pump described in Patent Document 1 is molded from a resin material containing a phenol aralkyl resin, a phenol resin, and glass fiber.
  • SP value solubility parameter
  • the molding material for molding the impeller described in Patent Document 1 uses a modified phenolic resin and therefore has few molecular crosslinking points.
  • the impeller of patent document 1 has high water resistance, there exists a possibility that a crosslinking density may become coarse and the swelling amount by a fuel may become large. Further, even when the interfacial adhesive force between the resin and the glass fiber is small, there is a risk that the amount of swelling of the impeller due to fuel and water increases.
  • PPS polyphenylene sulfide
  • the swelling amount by the fuel and water is further smaller than that of the PPS resin. Development of resin materials is required.
  • the present disclosure has been made in view of the above points, and an object thereof is to provide a phenol resin molding material having a small amount of swelling with respect to fuel and water.
  • the phenol resin molding material of the present disclosure comprises a novolac type phenol resin, hexamethylenetetramine, and an inorganic filler.
  • the total content of the novolac-type phenolic resin and hexamethylenetetramine is 20 to 55% by mass with respect to the entire phenolic resin molding material.
  • the content of the inorganic filler is 45 to 80% by mass with respect to the entire phenol resin molding material.
  • the content of hexamethylenetetramine is 17 to 26 parts by mass with respect to the entire novolac type phenol resin.
  • This phenol resin molding material pays attention to the fact that the number of cross-linking points of the novolak type phenol resin is large, and by adding a large amount of hexamethylenetetramine as a binder between the cross-linking points, the cross-linking density is increased. . Thereby, the swelling amount with respect to the fuel and water of the phenol resin (henceforth "resin part") which combined novolak-type phenol resin and hexamethylenetetramine can be made small.
  • the phenol resin molding material can reduce the swelling amount with respect to fuel and water by increasing the content of the inorganic filler. Therefore, according to the present disclosure, an ultra-low swelling phenolic resin molding material having both fuel resistance and water resistance can be obtained.
  • a fuel pump comprising an impeller molded from a molding material according to an embodiment of the present disclosure.
  • molding material a phenol resin molding material (hereinafter, also referred to as “molding material”) according to an embodiment of the present disclosure will be described.
  • the molding material of the present embodiment preferably contains 20 to 55% by mass of a resin part with respect to the whole molding material.
  • the resin part means a phenol resin obtained by combining a novolac type phenol resin and hexamethylenetetramine.
  • the molding material of the present embodiment preferably contains 45 to 80% by mass of an inorganic filler with respect to the entire molding material. It is more preferable that the content of the resin part is 20 to 30% by mass and the content of the inorganic filler is 70 to 80% by mass.
  • the content of the resin part 55% by mass or less and the content of the inorganic filler 45% by mass or more with respect to the entire molding material By making the content of the resin part 55% by mass or less and the content of the inorganic filler 45% by mass or more with respect to the entire molding material, the content of the resin part that swells decreases, and the inorganic filling that does not swell Since the content of the material increases, the amount of swelling with respect to the fuel and water can be reduced.
  • the content of the resin part is 20% by mass or more and the content of the inorganic filler is 80% by mass or less with respect to the entire molding material, the fluidity deteriorates when the molding material is used for injection molding. It is prevented that injection molding becomes difficult. Therefore, productivity of a molded product by injection molding can be increased. Furthermore, since the molded product molded from the molding material is prevented from being easily broken, the workability of the molded product can be improved.
  • the resin part described above comprises a novolac type phenol resin and hexamethylenetetramine.
  • the resin part preferably contains 17 to 26 parts by mass of hexamethylenetetramine, more preferably 20 to 25 parts by mass with respect to the entire novolac type phenolic resin (100 parts by mass).
  • the above-described novolac type phenol resin preferably contains 100 to 90 parts by mass of an unmodified novolac type phenol resin having a molecular structure represented by the following chemical formula (1) with respect to the entire novolac type phenol resin.
  • chemical formula (1) n is 1 or an integer of 2 or more.
  • the unmodified novolac type phenolic resin has more reactive points for crosslinking as compared with the modified phenolic resin. Therefore, it is preferable that the content of the modified phenol resin is 0 to 10 parts by mass and the content of the unmodified novolac phenol resin is 100 to 90 parts by mass with respect to the entire novolac type phenol resin. More preferably, the content of the modified phenolic resin is 0 to 5 parts by mass, and the content of the unmodified novolac type phenolic resin is 100 to 95 parts by mass.
  • the inorganic filler described above preferably contains 50 to 65 parts by mass of glass fiber with respect to the entire inorganic filler (100 parts by mass).
  • the glass fiber content is more preferably 53 to 63 parts by mass with respect to the entire inorganic filler.
  • the content of the glass fiber is 65 parts by mass or less, when the molding material is used for injection molding, the fluidity is prevented from being deteriorated and the injection molding becomes difficult. Therefore, productivity in injection molding can be increased.
  • the inorganic filler contains 25 to 35 parts by mass of clay with respect to the whole inorganic filler.
  • the content of clay with respect to the whole inorganic filler is more preferably 30 to 34 parts by mass.
  • the clay is well-familiar with the resin part, and can enter the resin part finely to suppress swelling. Therefore, the swelling amount of the molding material with respect to the fuel and water can be reduced by setting the clay content to 25 parts by mass or more.
  • the content of clay is 35 parts by mass or less, when the molding material is used for injection molding, it is possible to prevent fluidity from being deteriorated and difficult to perform injection molding, and thus productivity can be increased. Further, it is possible to prevent the mechanical strength of the molded product from being lowered.
  • the inorganic filler preferably contains 5 to 15 parts by mass of silica with respect to the whole inorganic filler.
  • the silica content relative to the entire inorganic filler is more preferably 7 to 13 parts by mass.
  • the inorganic filler described above is preferably composed of only a silicon compound without containing, for example, calcium carbonate. Since the silicon compound has high reactivity with the silane coupling agent, it is possible to enhance the interfacial adhesion between the inorganic filler and the resin part. Therefore, it is possible to obtain a molding material having a small swelling amount with respect to fuel and water.
  • the silicon compound includes silicon in the composition. In this embodiment, for example, silica, clay, talc, mica, glass beads, glass flakes, wollastonite, and the like are used as the silicon compound.
  • various fillers and various additives used for ordinary thermosetting resin molding materials can be blended.
  • a mold release agent such as stearic acid or zinc stearate, an adhesion improver or coupling agent for improving the adhesion between the filler and the thermosetting resin, a color pigment or color dye such as carbon black, a solvent Etc.
  • a color pigment or color dye such as carbon black
  • a solvent Etc can be blended in the molding material.
  • the above-described molding material is manufactured by a normal method.
  • the above-mentioned various raw materials are blended and mixed uniformly, the mixed raw materials are heated, melted and kneaded, and then granulated or pulverized to obtain a molding material.
  • the heat-melt kneading is performed by a kneading apparatus such as a roll, a kneader, a twin screw extruder alone, or a combination of a roll and another mixing apparatus.
  • This molding material is suitable for injection molding, but the molding method is not particularly limited to injection molding, and can be molded by any other method such as transfer molding, compression molding, injection compression molding.
  • after forming various molded products by injection molding or the like it is preferable to perform after baking in which the molded products are heated for a predetermined time under a predetermined temperature. Thereby, the crosslink density of the resin part can be further increased.
  • Both after-baking of the molding material and after-baking of the molded product are preferably performed at 160 to 180 ° C. for 50 to 70 minutes, more preferably at 165 to 175 ° C. for 55 to 65 minutes.
  • Example 1 to 8 are shown as examples of the composition of the molding material of the present disclosure.
  • Example 9 to Example 14 are shown as another example of the composition of the molding material of the present disclosure.
  • the present disclosure is not limited to the following examples.
  • the material mixture blended with the composition shown in Table 1 and Table 2 was kneaded with heating rolls having different rotational speeds, and the one cooled in a sheet shape was pulverized to obtain a soot-like molding material.
  • the molding material used in Examples 1-14 includes the following formulation. (1) Novolac type phenol resin (2) Xylene-modified novolac type phenol resin (3) Hexamethylenetetramine (4) Glass fiber (5) Clay (6) Silica (7) Calcium carbonate (8) Silane coupling agent
  • test piece molding method and evaluation method used for property evaluation are as follows.
  • a bending test piece (length: 80 mm, width: 10 mm, thickness: 4 mm) is prepared by compression molding (mold temperature: 175 ° C., curing time: 180 seconds). A rectangular parallelepiped having lengthwise dimensions of 10 mm, 4 mm, and 2 mm was obtained. After baking of the test piece was performed at 170 ° C. for 1 hour.
  • the impeller shape of FIG. 2 was produced by transfer molding (mold temperature: 175 ° C., curing time: 20 seconds). After-baking of the molded product was performed at 170 ° C. for 1 hour.
  • test pieces and molded products of the molding material were obtained by the above-described blend and manufacturing method.
  • the measurement results for the test pieces of Example 1-8 are shown in Table 1 below, and the measurement results for the test pieces of Examples 9-14 are shown in Table 2 below.
  • test piece obtained from the molding material shown in Example 1-14 was immersed in a liquid containing 0.5 wt% of water in fuel D containing 35% of methanol for 1000 hours.
  • Table 1 and Table 2 the dimensional change of these test pieces in the width direction (direction having a dimension of 10 mm) is shown by the ratio (dimensional change rate) (%) to the size of the test piece before immersion.
  • the test temperature at this time is 80 degreeC.
  • the test temperature is set to 80 ° C. so as to correspond to the upper limit of the vehicle fuel temperature condition.
  • the molded product molded from the molding material of Example 1-14 was immersed in a liquid containing 0.5 wt% of water in fuel D containing 35% of methanol for 5000 hours.
  • Table 1 and Table 2 the dimensional change in the thickness direction in the entire molded product caused by immersion is shown by the ratio (dimensional change rate) (%) to the entire thickness of the molded product.
  • the dimensional change rate in the thickness direction of the molded product molded from the molding material of Example 1-6 is a molded product molded from the molding material of Example 9-14. Smaller than the dimensional change rate in the thickness direction.
  • the dimensional change rate in the thickness direction of the molded product molded with the above-described PPS resin (R7-120NA manufactured by Solvay) is 0.63% under the same conditions. Therefore, the dimensional change rate in the thickness direction of the molded product molded with the molding material of Example 1-6 is smaller than the dimensional change rate in the thickness direction of the molded product molded with the PPS resin. On the other hand, the dimensional change rate in the thickness direction of the molded product molded with the molding material of Examples 9-12 is larger than the dimensional change rate in the thickness direction of the molded product molded with the PPS resin.
  • the molding materials of Examples 1-7 and 11-14 all use only unmodified novolac phenolic resin as novolac phenolic resin.
  • the molding material of Example 8 contains 10% modified novolac phenolic resin and 90% unmodified novolac phenolic resin as novolak phenolic resin.
  • the test piece molded with the molding material of Example 8 has a dimensional change rate of 0.07%, which is smaller than the dimensional change rate of the test piece molded with the molding material of Examples 9-14.
  • the molding materials of Example 9 and Example 10 contain 50% modified novolac phenolic resin and 50% unmodified novolac phenolic resin as novolac phenolic resin.
  • the molding materials of Example 9 and Example 10 have a high content of the modified novolak type phenolic resin, so that crosslinking due to reaction with hexamethylenetetramine does not proceed, and the dimensional change of the test piece or the dimension in the thickness direction of the molded product The change seems to have increased.
  • the content of hexamethylenetetramine is 17 parts by mass with respect to the entire novolak-type phenol resin, and is less than the content of hexamethylenetetramine in the molding material of Example 2-8.
  • the dimensional change rate in the thickness direction of the molded product is 0.55%, which is smaller than the dimensional change rate in the thickness direction of the molded product molded with the PPS resin.
  • the molding material of Example 13 had a smaller amount of hexamethylenetetramine than the molding material of Example 1, and thus the crosslinking of the resin portion did not proceed and the swelling amount increased.
  • the molding material of Example 3 contains 23 parts by mass of hexamethylenetetramine, and the molding material of Example 4 contains 25 parts by mass of hexamethylenetetramine.
  • the dimensional change rate in the thickness direction of the molded product is 0.04%. From this result, it is considered that even when the content of hexamethylenetetramine was increased from a certain amount, crosslinking of the novolac type phenol resin did not progress so much.
  • pulse NMR measurement was performed on the molded products molded with the molding materials of Example 1-6 and Examples 9-12 and 14.
  • component amount with the shortest spin-spin relaxation time when the free induction decay curve obtained by the solid echo method is approximated by the sum of the relaxation curves of the three components is shown as “component amount of minimum relaxation time”. As shown. It can be said that the greater the amount of this minimum relaxation time component, the higher the crosslink density.
  • the pulse NMR measurement was performed at 90 ° C. for a plurality of samples.
  • the amount of the component of the minimum relaxation time is 70% or more. As the content of hexamethylenetetramine increases in the order of Examples 1, 2, 3, and 4, the amount of the component for the minimum relaxation time increases. On the other hand, in the molded products molded from the molding materials of Examples 9, 10, and 11, the amount of components of the minimum relaxation time is less than 70%.
  • the spin-spin relaxation time in the component having the shortest spin-spin relaxation time is shown as “minimum relaxation time”. It can be said that the shorter the minimum relaxation time, the higher the crosslink density. In the molded product molded from the molding material of Example 1-7, the minimum relaxation time is 8.5 ⁇ sec or less. Further, as the hexamethylenetetramine content increases in the order of Examples 1, 2, and 3, the minimum relaxation time becomes shorter. On the other hand, in the molded products molded with the molding materials of Examples 9, 10, and 11, the minimum relaxation time is longer than 8.5 ⁇ sec.
  • the component amount of the minimum relaxation time is 70% or more, and the minimum relaxation time is 8.5 ⁇ sec or less.
  • the content of the resin part is as large as 60% by mass, the dimensional change rate in the thickness direction of the molded product is larger than that of the PPS resin.
  • the molding material of Example 6 contains 20% by mass of a resin part. In the molded product molded with the molding material of Example 6, no cracks were observed.
  • the molding material of Example 5 contains 55 mass% resin part. Also in the molded product molded with the molding material of Example 5, the dimensional change rate in the thickness direction is 0.6%, which is smaller than the dimensional change rate in the thickness direction of the molded product molded with PPS resin.
  • the molding material of Example 12 contains 60% by mass of the resin part, and the content of the resin part that swells is large. As a result, it is considered that the dimensional change rate in the thickness direction of the molded product molded with the molding material of Example 12 was larger than the dimensional change rate in the thickness direction of the molded product molded with PPS resin.
  • the inorganic filler is composed only of a silicon compound such as glass fiber, clay and silica.
  • the molding material of Example 14 contains calcium carbonate instead of silica with respect to the composition of Example 7. Therefore, the dimensional change rate of the test piece molded with the molding material of Example 14 is 0.13%, which is higher than the dimensional change rate of the test piece molded with the molding material of Example 7 (0.06%). It is getting bigger. From this result, in the test piece molded with the molding material of Example 14, it is considered that the effect of interfacial adhesion by the silane coupling agent was not exhibited, and swelling was increased.
  • the molded product molded from the molding material of the present embodiment is suitable for a part that is used by being immersed in a fuel such as a vehicle.
  • FIG. 1 shows a fuel pump 2 in which an impeller 1 as an example of a molded product molded from the molding material of the present embodiment is used.
  • This fuel pump 2 is provided, for example, in a fuel tank of a vehicle.
  • the fuel pump 2 includes a motor unit 3 and a pump unit 4.
  • the motor unit 3 and the pump unit 4 are integrally configured by a cylindrical pump case 5.
  • the motor unit 3 includes a stator 7 around which a coil 6 is wound, a rotor 8 that is rotatably provided inside the stator 7, a shaft 9 that rotates together with the rotor 8, and the like.
  • a stator 7 around which a coil 6 is wound
  • a rotor 8 that is rotatably provided inside the stator 7, a shaft 9 that rotates together with the rotor 8, and the like.
  • the stator 7 When power is supplied from the terminal 101 of the connector 10 to the coil 6 of the stator 7, the stator 7 generates a rotating magnetic field.
  • the rotor 8 magnetized alternately with N and S poles in the circumferential direction rotates around the axis together with the shaft 9.
  • the pump unit 4 includes an impeller 1, a first pump housing 11, a second pump housing 12, and the like.
  • the impeller 1 is formed from a resin in a substantially disk shape, and has a plurality of blade grooves 13 provided side by side in the circumferential direction.
  • the shaft 9 of the motor unit 3 is fitted in the central hole 14 of the impeller 1. Therefore, the impeller 1 rotates with the shaft 9.
  • the shape of the impeller is not limited to that shown in FIGS. 1 and 2 and can be various shapes.
  • the impeller 1 is accommodated in a pump chamber 15 formed between the first pump housing 11 and the second pump housing 12.
  • the first pump housing 11 and the second pump housing 12 are formed from a metal such as aluminum, for example.
  • the first pump housing 11 has a suction port 16. Moreover, the 1st pump housing 11 has the 1st groove
  • the second pump housing 12 has a communication port 18 communicating with the motor unit 3 side. Moreover, the 2nd pump housing 12 has the 2nd groove
  • the fuel discharged from the pump unit 4 to the motor unit 3 flows through the gap between the housing and the stator 7 and the gap between the stator 7 and the rotor 8 and is discharged from the discharge port 20 of the fuel pump 2 to the internal combustion engine.
  • a predetermined clearance ⁇ is ensured between the inner wall of the pump chamber 15 formed between the first pump housing 11 and the second pump housing 12 and the impeller 1 of the present embodiment.
  • the clearance ⁇ between the impeller 1 and the housing of the fuel pump 2 is large, there is a possibility that output loss may increase due to fuel leakage from the clearance or power consumption may increase.
  • PPS resin may be employed as a resin material for molding a fuel pump impeller.
  • the swelling amount of the impeller molded from the molding material of the present embodiment with respect to the liquid is smaller than the swelling amount of the impeller molded from the PPS resin with respect to the liquid. Therefore, the phenol resin molding material of the present disclosure is excellent in fuel resistance and water resistance.
  • the molding material of the present embodiment is not limited to the above-described fuel pump impeller, and is suitable for molding various molded products that are immersed in fuel, such as a fuel injection valve, a fuel property sensor, or a fuel pipe. ing.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Reinforced Plastic Materials (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

フェノール樹脂成形材料は、ノボラック型フェノール樹脂、ヘキサメチレンテトラミン、および無機充填材を含んで成る。フェノール樹脂成形材料の全体に対し、ノボラック型フェノール樹脂とヘキサメチレンテトラミンとを合わせた含有量が20~55質量%である。フェノール樹脂成形材料の全体に対し、無機充填材の含有量が45~80質量%である。ノボラック型フェノール樹脂の全体に対し、ヘキサメチレンテトラミンの含有量が17~26質量部である。

Description

フェノール樹脂成形材料 関連出願の相互参照
 本出願は、当該開示内容が参照によって本出願に組み込まれた、2015年10月29日に出願された日本特許出願2015-212693号を基にしている。
 本開示は、フェノール樹脂成形材料に関する。
 一般に、車両等に用いられる燃料ポンプは、燃料が流入するポンプ室を成形するハウジングの内壁と、そのハウジングの内側に設けられる樹脂製のインペラとの間に、所定の大きさのクリアランスを確保している。このクリアランスは、インペラが燃料およびその燃料に含まれる水により膨潤した場合でも、インペラとハウジングとが当接してインペラの回転が停止することのない程度の大きさに設定されている。ここで、燃料ポンプは、インペラとハウジングとの間のクリアランスが大きいと、そのクリアランスからの燃料リークにより出力損失が増加する、または、消費電力が増加するという不具合が生じる。そのため、燃料ポンプ用インペラに関し、燃料及びその燃料に含まれる水による膨潤による寸法変化(以下「膨潤量」という)が小さい樹脂材料の開発が求められている。
 特許文献1に記載の燃料ポンプ用インペラは、フェノールアラルキル樹脂、フェノール樹脂、及びガラス繊維を含む樹脂材料から成形されている。特許文献1では、樹脂材料と水との溶解度パラメータ(SP値)の差を大きくすることで、燃料に含まれる水による膨潤量を小さくすると共に、ガラス繊維を含むことにより燃料ポンプ用インペラの機械的強度を高めている。
特開平8-93690号公報
 しかし、特許文献1に記載のインペラを成形する成形材料は、変性型フェノール樹脂が使用されているため分子の架橋点が少ない。その結果、特許文献1のインペラは、耐水性は高いものの、架橋密度が粗くなり、燃料による膨潤量が大きくなる恐れがある。また、樹脂とガラス繊維との界面接着力が小さい場合にも、燃料および水によるインペラの膨潤量が大きくなる恐れがある。
 そのため、近年では、燃料ポンプ用インペラを成形する樹脂材料として、PPS(ポリフェニレンサルファイド)樹脂が多く採用されている。PPS樹脂により成形した燃料ポンプ用インペラの膨潤量は、変性型フェノール樹脂を使用した樹脂材料により成形した燃料ポンプ用インペラの膨潤量よりも小さい。
 しかし、現在、燃料ポンプの出力損失の低減、および、消費電力の低減の観点から、インペラとハウジングとの間のクリアランスをさらに小さくするために、燃料及び水による膨潤量がPPS樹脂よりもさらに小さい樹脂材料の開発が求められている。
 本開示は、上記点に鑑みてなされたものであり、燃料および水に対する膨潤量が小さいフェノール樹脂成形材料を提供することを目的とする。
 本開示のフェノール樹脂成形材料は、ノボラック型フェノール樹脂、ヘキサメチレンテトラミン、および無機充填材を含んで成る。フェノール樹脂成形材料の全体に対し、ノボラック型フェノール樹脂とヘキサメチレンテトラミンとを合わせた含有量が20~55質量%である。フェノール樹脂成形材料の全体に対し、無機充填材の含有量が45~80質量%である。ノボラック型フェノール樹脂の全体に対し、ヘキサメチレンテトラミンの含有量が17~26質量部である。
 このフェノール樹脂成形材料は、ノボラック型フェノール樹脂の架橋点の数が多いことに着目し、これに架橋点間の結合剤であるヘキサメチレンテトラミンを多く配合することで、架橋密度を増加させている。これにより、ノボラック型フェノール樹脂とヘキサメチレンテトラミンとを合わせたフェノール樹脂(以下「樹脂部」という)の燃料及び水に対する膨潤量を小さくすることが可能である。
 さらに、このフェノール樹脂成形材料は、無機充填材の含有量を多くすることで、燃料及び水に対する膨潤量を小さくすることが可能である。したがって、本開示により、耐燃料性と耐水性を両立した超低膨潤のフェノール樹脂成形材料を得ることができる。
 本開示についての上記目的およびその他の目的、特徴や利点は、添付の図面を参照しながら下記の詳細な記述により、より明確になる。
本開示の一実施形態の成形材料から成形されたインペラを備える燃料ポンプ。 本開示の一実施形態の成形材料から成形されたインペラの平面図。
 以下、本開示の一実施形態のフェノール樹脂成形材料(以下、「成形材料」ということがある)について説明する。
 本実施形態の成形材料は、成形材料の全体に対し、20~55質量%の樹脂部を含有していることが好ましい。本開示において樹脂部とは、ノボラック型フェノール樹脂とヘキサメチレンテトラミンとを合わせたフェノール樹脂を意味する。また、本実施形態の成形材料は、成形材料の全体に対し、45~80質量%の無機充填材を含有していることが好ましい。なお、樹脂部の含有量が20~30質量%、無機充填材の含有量が70~80質量%であることがより好ましい。
 成形材料の全体に対し、樹脂部の含有量を55質量%以下とし、無機充填材の含有量を45質量%以上とすることで、膨潤する樹脂部の含有量が少なくなり、膨潤しない無機充填材の含有量が多くなることから、燃料及び水に対する膨潤量を小さくすることが可能である。
 成形材料の全体に対し、樹脂部の含有量を20質量%以上とし、無機充填材の含有量を80質量%以下とすることで、成形材料を射出成形に用いる際、流動性が悪化して射出成形が困難になることが防がれる。そのため、射出成形による成形品の生産性を高めることができる。さらに、成形材料から成形された成形品が割れ易くなることが防がれるので、その成形品の加工性を高めることができる。
 上述した樹脂部は、ノボラック型フェノール樹脂とヘキサメチレンテトラミンとを含んで成る。樹脂部は、ノボラック型フェノール樹脂の全体(100質量部)に対し17~26質量部のヘキサメチレンテトラミンを含んでいることが好ましく、20~25質量部であることがより好ましい。
 ノボラック型フェノール樹脂の全体に対し、ヘキサメチレンテトラミンの含有量を17質量部以上とすることで、樹脂部の架橋密度を高くして、燃料及び水に対する膨潤量を小さくすることが可能である。
 ノボラック型フェノール樹脂の全体に対し、ヘキサメチレンテトラミンの含有量を26質量部以下とすることで、成形材料の樹脂部に余剰のヘキサメチレンテトラミンが残存することが抑制される。したがって、成形材料を射出成形する際、および、射出成形後にアフターベーキングを行う際、ヘキサメチレンテトラミンの塩基性ガスの発生が抑制されるので、成形品の膨れや割れなどの不具合を防ぐことができる。
 ここで、上述したノボラック型フェノール樹脂は、ノボラック型フェノール樹脂の全体に対し、次の化学式(1)で表される分子構造を有する未変性ノボラック型フェノール樹脂を100~90質量部含むことが好ましい。化学式(1)において、nは、1または2以上の整数である。
Figure JPOXMLDOC01-appb-C000002
 未変性ノボラック型フェノール樹脂は、変性フェノール樹脂と比較して、架橋するための反応点が多い。そのため、ノボラック型フェノール樹脂の全体に対し、変性フェノール樹脂の含有量を0~10質量部とし、未変性ノボラック型フェノール樹脂の含有量を100~90質量部とすることが好ましい。なお、変性フェノール樹脂の含有量を0~5質量部とし、未変性ノボラック型フェノール樹脂の含有量を100~95質量部とすることがより好ましい。未変性ノボラック型フェノール樹脂の含有量を多くすることで、その未変性ノボラック型フェノール樹脂とヘキサメチレンテトラミンとの反応により、樹脂部の架橋密度を高めることが可能である。したがって、燃料及び水に対する樹脂部の膨潤量を小さくすることができる。
 上述した無機充填材は、無機充填材の全体(100質量部)に対して50~65質量部のガラス繊維を含むことが好ましい。ガラス繊維の含有量は、無機充填材の全体に対し53~63質量部であることがより好ましい。ガラス繊維の含有量を50質量部以上とすることで、成形品の機械的強度を高めることが可能である。
 ガラス繊維の含有量を65質量部以下とすることで、成形材料を射出成形に用いる際、流動性が悪化して射出成形が困難になることが防がれる。したがって、射出成形における生産性を高めることができる。
 また、無機充填材は、無機充填材の全体に対して25~35質量部のクレーを含むことが好ましい。無機充填材の全体に対するクレーの含有量は、30~34質量部であることがより好ましい。クレーは、樹脂部に対してなじみがよく、樹脂部の中に細かく入り込んで膨潤を抑制できる。そのため、クレーの含有量を25質量部以上とすることで、燃料及び水に対する成形材料の膨潤量を小さくすることが可能である。
 クレーの含有量を35質量部以下とすることで、成形材料を射出成形に用いる際、流動性が悪化して射出成形が困難になることが防がれるので、生産性を高めることができる。また、成形品の機械的強度の低下を防ぐことができる。
 また、無機充填材は、無機充填材の全体に対して5~15質量部のシリカを含むことが好ましい。無機充填材の全体に対するシリカの含有量は、7~13質量部であることがより好ましい。シリカの含有量を5質量部以上とすることで、成形材料を射出成形に用いる際、流動性が悪化して射出成形が困難になることが防がれるので、生産性を高めることができる。
 シリカの含有量を15質量部以下とすることで、成形材料の低膨潤性の悪化を防ぐことができる。
 また、上述した無機充填材は、例えば炭酸カルシウムなどを含むことなく、ケイ素化合物のみから構成されることが好ましい。ケイ素化合物はシランカップリング剤との反応性が高いため、無機充填材と樹脂部との界面接着性を高めることが可能である。したがって、燃料及び水に対する膨潤量が小さい成形材料を得ることができる。ケイ素化合物とは組成にケイ素を含むものである。本実施形態では、例えば、シリカ、クレー、タルク、マイカ、ガラスビーズ、ガラスフレーク、ワラストナイト等がケイ素化合物として用いられる。
 上述した成形材料には、通常の熱硬化性樹脂成形材料に使用される各種充填材、各種添加材を配合することができる。例えば、ステアリン酸またはステアリン酸亜鉛などの離型剤、充填材と熱硬化性樹脂との接着性を向上させるための密着性向上剤またはカップリング剤、カーボンブラックなどの着色顔料または着色染料、溶剤などを成形材料に配合することができる。
 上述した成形材料は、通常の方法により製造される。例えば、上記の各種原材料を配合して均一に混合し、混合された各種原材料を加熱溶融混練した後、造粒又は粉砕して、成形材料が得られる。加熱溶融混練は、ロール、コニーダ、二軸押出し機などの混練装置単独、またはロールと他の混合装置との組合せにより行われる。
 この成形材料は射出成形に適しているが、成形方法として特に射出成形のみに限定されず、その他の方法、例えば移送成形、圧縮成形、射出圧縮成形などいずれの方法でも成形できる。
 なお、射出成形等により種々の成形品を成形した後、その成形品を所定の温度のもとに所定の時間加熱するアフターベーキングを行うことが好ましい。これにより、樹脂部の架橋密度をさらに上げることが可能である。成形材料のアフターベーキングおよびその成形品のアフターベーキングはいずれも、160~180℃で50~70分行うのが好ましく、165~175℃で55~65分行うのがより好ましい。
 次に、実施例により本開示の成形材料をさらに具体的に説明する。表1では、本開示の成形材料の組成の例として、実施例1から実施例8を示している。表2では、本開示の成形材料の組成の別の例として、実施例9から実施例14を示している。但し、本開示は以下の実施例に限定されるものではない。
 表1および表2に示す組成で配合した材料混合物を回転速度の異なる加熱ロールで混練し、シート状に冷却したものを粉砕し、穎粒状の成形材料を得た。尚、加熱ロールの混練条件は、回転速度を高速側/低速側=20/14rpm、温度を高速側/低速側=90/20℃とし、所定の流動性となるように混練時間を5~10分の間で調整した。
 実施例1-14に用いた成形材料は、以下の配合物を含む。
 (1)ノボラック型フェノール樹脂
 (2)キシレン変性ノボラック型フェノール樹脂
 (3)ヘキサメチレンテトラミン
 (4)ガラス繊維
 (5)クレー
 (6)シリカ
 (7)炭酸カルシウム
 (8)シランカップリング剤
 特性評価に使用した試験片の成形方法、及び評価方法は、以下の通りである。
 (試験片)
 圧縮成形(金型温度175℃、硬化時間180秒)により曲げ試験片(長さ80mm、幅10mm、厚み4mm)を作製し、中央部から長さ方向を2mm幅で切出し、幅方向、厚み方向、長さ方向の寸法がそれぞれ10mm、4mm、2mmの直方体を得た。試験片のアフターベーキングは170℃で1時間行った。
 (成形品)
 移送成形(金型温度175℃、硬化時間20秒)により図2のインペラ形状を作製した。成形品のアフターベーキングは170℃で1時間行った。
 上述した配合物と製造方法により、成形材料の複数の試験片および成形品を得た。実施例1-8の試験片に関する測定結果を次の表1に示し、実施例9-14の試験片に関する測定結果を次の表2に示す。
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
 実施例1-14に示す成形材料から得た試験片を、メタノール35%を含むフューエルDに対し水0.5wt%を含む液体に対して1000時間浸漬した。表1および表2では、これらの試験片の幅方向(10mmの寸法を有する方向)の寸法変化を、浸漬前の試験片の寸法に対する比率(寸法変化率)(%)によって示している。このときの試験温度は、80℃である。試験温度は、車両の燃料温度条件の上限に対応するよう80℃に設定されている。
 表1および表2より明らかなように、実施例1-8の成形材料で成形された試験片の寸法変化率は、いずれも実施例9-14の成形材料で成形された試験片の寸法変化よりも小さい。
 さらに、実施例1-14の成形材料で成形された成形品を、メタノール35%を含むフューエルDに対して水0.5wt%を含む液体に対し、5000時間浸漬した。表1および表2では、浸漬により生じた成形品全体における厚み方向の寸法変化を、成形品の厚み全体に対する比率(寸法変化率)(%)によって示している。
 表1および表2より明らかなように、実施例1-6の成形材料で成形された成形品の厚み方向の寸法変化率は、いずれも実施例9-14の成形材料で成形された成形品の厚み方向の寸法変化率よりも小さい。
 ここで、上述したPPS樹脂(solvay社製R7-120NA)で成形された成形品の厚み方向の寸法変化率は、同条件において、0.63%である。したがって、実施例1-6の成形材料で成形された成形品の厚み方向の寸法変化率は、PPS樹脂で成形された成形品の厚み方向の寸法変化率より小さい。一方、実施例9-12の成形材料で成形された成形品の厚み方向の寸法変化率は、PPS樹脂で成形された成形品の厚み方向の寸法変化率より大きい。
 実施例1-7と実施例11-14の成形材料は、いずれもノボラック型フェノール樹脂として、未変性ノボラック型フェノール樹脂のみを使用している。実施例8の成形材料は、ノボラック型フェノール樹脂として、変性ノボラック型フェノール樹脂を10%、未変性ノボラック型フェノール樹脂を90%の割合で含有している。実施例8の成形材料で成形された試験片は寸法変化率が0.07%であり、実施例9-14の成形材料で成形された試験片の寸法変化率よりも小さい。
 一方、実施例9及び実施例10の成形材料は、ノボラック型フェノール樹脂として、変性ノボラック型フェノール樹脂を50%、未変性ノボラック型フェノール樹脂を50%の割合で含有している。実施例9及び実施例10の成形材料は、変性ノボラック型フェノール樹脂の含有量が多いことから、ヘキサメチレンテトラミンとの反応による架橋が進まず、試験片の寸法変化または成形品の厚み方向の寸法変化が大きくなったものと考えられる。
 実施例1の成形材料では、ノボラック型フェノール樹脂の全体に対しヘキサメチレンテトラミンの含有量が17質量部であり、実施例2-8の成形材料におけるヘキサメチレンテトラミンの含有量よりも少ない。この実施例1においても、成形品の厚み方向の寸法変化率が0.55%であり、PPS樹脂で成形された成形品の厚み方向の寸法変化率よりも小さい。
 一方、実施例13の成形材料は、実施例1の成形材料と比較してヘキサメチレンテトラミンの含有量が少ないことから、樹脂部の架橋が進まず、膨潤量が大きくなったものと考えられる。
 なお、実施例3の成形材料は、23質量部のヘキサメチレンテトラミンを含み、実施例4の成形材料は、25質量部のヘキサメチレンテトラミンを含む。実施例3と実施例4の成形材料で成形した成形品に対する膨潤試験では、成形品の厚み方向の寸法変化率は、いずれも0.04%である。この結果から、ヘキサメチレンテトラミンの含有量を一定量より増やしても、ノボラック型フェノール樹脂の架橋があまり進まなかったと考えられる。
 さらに、実施例1-6および実施例9-12、14の成形材料で成形した成形品について、パルスNMR測定を行った。表1および表2では、ソリッドエコー法により得られる自由誘導減衰曲線を3つの成分の緩和曲線の和で近似したときのスピン-スピン緩和時間が最も小さい成分量を「最少緩和時間の成分量」として示している。この最小緩和時間の成分量が多いほど、架橋密度が高くなっているということができる。なお、パルスNMR測定は、複数のサンプルについて90℃で行った。
 実施例1-7の成形材料で成形した成形品では、最少緩和時間の成分量がいずれも70%以上である。実施例1,2,3,4の順にヘキサメチレンテトラミンの含有量が多くなるに従い、最少緩和時間の成分量が多くなっている。一方、実施例9,10,11の成形材料で成形した成形品では、最少緩和時間の成分量が70%より少ない。
 また、表1および表2では、上述したスピン-スピン緩和時間が最も小さい成分におけるスピン-スピン緩和時間を「最小緩和時間」として示している。最小緩和時間が短いほど架橋密度が高くなっているということができる。実施例1-7の成形材料で成形した成形品では、最小緩和時間がいずれも8.5μ秒以下である。また、実施例1,2,3の順にヘキサメチレンテトラミンの含有量が多くなるに従い、最小緩和時間は短くなっている。一方、実施例9,10,11の成形材料で成形した成形品では、最少緩和時間が8.5μ秒より長い。
 上記パルスNMR測定の結果から、架橋密度が高いことが低膨潤性に効果があるということができる。
 なお、実施例12の成形材料で成形した成形品では、最少緩和時間の成分量が70%以上であり、最小緩和時間が8.5μ秒以下である。しかしながら、樹脂部の含有量が60質量%と多いため、成形品の厚み方向の寸法変化率がPPS樹脂のものよりも大きい数値となっている。
 実施例6の成形材料は、20質量%の樹脂部を含有している。実施例6の成形材料で成形した成形品においても、割れは認められなかった。実施例5の成形材料は、55質量%の樹脂部を含有している。実施例5の成形材料で成形した成形品においても、厚み方向の寸法変化率が0.6%であり、PPS樹脂で成形した成形品の厚み方向の寸法変化率よりも小さい。
 一方、実施例12の成形材料は、60質量%の樹脂部を含有しており、膨潤する樹脂部の含有量が多い。その結果、実施例12の成形材料で成形された成形品の厚み方向の寸法変化率が、PPS樹脂で成形された成形品の厚み方向の寸法変化率よりも大きくなったものと考えられる。
 実施例1-8の成形材料は、無機充填材が、ガラス繊維、クレーおよびシリカといったケイ素化合物のみから構成されている。実施例14の成形材料は、実施例7の組成に対し、シリカに代えて炭酸カルシウムを含む。そのため、実施例14の成形材料で成形された試験片の寸法変化率が0.13%であり、実施例7の成形材料で成形された試験片の寸法変化率(0.06%)よりも大きくなっている。この結果から、実施例14の成形材料で成形された試験片では、シランカップリング剤による界面接着の効果が発揮されず、膨潤が大きくなったものと考えられる。
 本実施形態の成形材料から成形される成形品は、例えば車両等の燃料に浸漬して用いられる部品に適している。
 図1に、本実施形態の成形材料から成形された成形品の一例としてのインペラ1が用いられる燃料ポンプ2を示す。この燃料ポンプ2は、例えば車両の燃料タンク内に設けられる。
 (燃料ポンプの構成)
 まず、燃料ポンプ2の構成について説明する。
 燃料ポンプ2は、モータ部3及びポンプ部4などから構成される。モータ部3及びポンプ部4は、筒状のポンプケース5により一体に構成されている。
 モータ部3は、コイル6が巻かれたステータ7、そのステータ7の内側に回転可能に設けられたロータ8、および、そのロータ8と共に回転するシャフト9などを有する。コネクタ10の端子101からステータ7のコイル6に通電されると、ステータ7は回転磁界を生じる。これにより、周方向にN極とS極とが交互に着磁されたロータ8がシャフト9と共に軸周りに回転する。
 ポンプ部4は、インペラ1、第1ポンプハウジング11、及び、第2ポンプハウジング12などを有する。
 図1および図2に示すように、インペラ1は、樹脂から略円盤状に成形されており、周方向に並んで設けられる複数の羽根溝13を有する。インペラ1の中央穴14にはモータ部3のシャフト9が嵌合している。そのため、インペラ1は、シャフト9と共に回転する。なお、インペラの形状は、図1および図2に示したものに限らず、種々の形状とすることが可能である。
 インペラ1は、第1ポンプハウジング11と第2ポンプハウジング12との間に成形されるポンプ室15に収容されている。第1ポンプハウジング11と第2ポンプハウジング12とは、例えばアルミなどの金属から成形される。
 第1ポンプハウジング11は、吸入口16を有している。また、第1ポンプハウジング11は、インペラ1側の面に、周方向にC字状に延びる第1溝17を有している。吸入口16と第1溝17とは連通している。
 第2ポンプハウジング12は、モータ部3側に連通する連通口18を有している。また、第2ポンプハウジング12は、インペラ1側の面に、周方向にC字状に延びる第2溝19を有している。連通口18と第2溝19とは連通している。
 モータ部3のシャフト9と共にインペラ1が回転すると、燃料ポンプ2が設置された燃料タンク内の燃料は、吸入口16からポンプ室15に吸入され、第1溝17を流れると共に、インペラ1の回転により羽根溝13で加圧される。燃料は、第2溝19を流れ、連通口18からモータ部3に吐出される。
 ポンプ部4からモータ部3に吐出された燃料は、ハウジングとステータ7との隙間、および、ステータ7とロータ8との隙間を流れ、燃料ポンプ2の吐出口20から内燃機関へ吐出される。
 (燃料ポンプ用インペラ)
 次に、上述した燃料ポンプ2が備えるインペラ1について説明する。
 図1に示すように、第1ポンプハウジング11と第2ポンプハウジング12との間に成形されるポンプ室15の内壁と、本実施形態のインペラ1との間には、所定のクリアランスαが確保されている。ここで、燃料ポンプ2は、インペラ1とハウジングとの間のクリアランスαが大きいと、そのクリアランスから燃料が漏れることにより出力損失が増加する、または、消費電力が増加する恐れがある。
 上述したように、近年では、燃料ポンプ用インペラを成形する樹脂材料として、PPS樹脂が採用されることがある。本実施形態の成形材料から成形されたインペラの液体に対する膨潤量は、PPS樹脂から成形されたインペラの液体に対する膨潤量よりも小さい。したがって、本開示のフェノール樹脂成形材料は、耐燃料性および耐水性に優れている。
 なお、本実施形態の成形材料は、上述した燃料ポンプ用インペラに限らず、例えば燃料噴射弁、燃料性状センサまたは燃料配管など、燃料に浸漬して用いられる種々の成形品を成形するのに適している。
 (他の実施形態)
 以上、本開示の好ましい実施形態について説明したが、本開示は上述した実施形態に何ら制限されることなく、本開示の主旨を逸脱しない範囲において種々変形して実施することが可能である。上記実施形態の構造は、あくまで例示であって、本開示の範囲はこれらの記載の範囲に限定されるものではない。本開示の範囲は、本開示における記載と均等の意味及び範囲内での全ての変更を含むものである。

 

Claims (7)

  1.  ノボラック型フェノール樹脂、ヘキサメチレンテトラミン、および無機充填材を含んで成るフェノール樹脂成形材料であって、
     前記フェノール樹脂成形材料の全体に対し、前記ノボラック型フェノール樹脂と前記ヘキサメチレンテトラミンとを合わせた含有量が20~55質量%であり、
     前記フェノール樹脂成形材料の全体に対し、前記無機充填材の含有量が45~80質量%であり、
     前記ノボラック型フェノール樹脂の全体に対し、前記ヘキサメチレンテトラミンの含有量が17~26質量部であるフェノール樹脂成形材料。
  2.  前記無機充填材は、ガラス繊維を含み、
     前記無機充填材の全体に対し、前記ガラス繊維の含有量が50~65質量部である請求項1に記載のフェノール樹脂成形材料。
  3.  前記無機充填材は、クレーを含み、
     前記無機充填材の全体に対し、前記クレーの含有量が25~35質量部である請求項1または2に記載のフェノール樹脂成形材料。
  4.  前記無機充填材は、シリカを含み、
     前記無機充填材の全体に対し、前記シリカの含有量が5~15質量部である請求項2または3に記載のフェノール樹脂成形材料。
  5.  前記無機充填材は、ケイ素化合物のみからなる請求項1から4のいずれか一項に記載のフェノール樹脂成形材料。
  6.  前記無機充填材は、ガラス繊維およびクレーを含み、
     前記無機充填材の全体に対し、前記ガラス繊維の含有量が50~65質量部であり、
     前記無機充填材の全体に対し、前記クレーの含有量が25~35質量部である請求項1から5のいずれか一項に記載のフェノール樹脂成形材料。
  7.  前記ノボラック型フェノール樹脂は、化学式(1)で表される分子構造を有する未変性ノボラック型フェノール樹脂を含み、
     前記ノボラック型フェノール樹脂の全体に対し、前記未変性ノボラック型フェノール樹脂の含有量が90~100質量部であり、
     前記化学式(1)において、nは、1または2以上の整数である請求項1から6のいずれか一項に記載のフェノール樹脂成形材料。
    Figure JPOXMLDOC01-appb-C000001

     
PCT/JP2016/081658 2015-10-29 2016-10-26 フェノール樹脂成形材料 WO2017073586A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP16859816.7A EP3369773A4 (en) 2015-10-29 2016-10-26 MATERIAL USED FOR THE MANUFACTURE OF PHENOLIC RESIN
CN201680061511.1A CN108137901A (zh) 2015-10-29 2016-10-26 酚醛树脂成形材料
US15/767,279 US20180305539A1 (en) 2015-10-29 2016-10-26 Phenolic-resin molding material

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015212693A JP6831175B2 (ja) 2015-10-29 2015-10-29 フェノール樹脂成形材料
JP2015-212693 2015-10-29

Publications (1)

Publication Number Publication Date
WO2017073586A1 true WO2017073586A1 (ja) 2017-05-04

Family

ID=58631619

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/081658 WO2017073586A1 (ja) 2015-10-29 2016-10-26 フェノール樹脂成形材料

Country Status (5)

Country Link
US (1) US20180305539A1 (ja)
EP (1) EP3369773A4 (ja)
JP (1) JP6831175B2 (ja)
CN (1) CN108137901A (ja)
WO (1) WO2017073586A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017082116A (ja) * 2015-10-29 2017-05-18 株式会社デンソー 燃料ポンプ用インペラ
KR102241110B1 (ko) * 2019-12-05 2021-04-19 주식회사 코아비스 모터 및 이를 포함한 전동식 펌프
JP7334680B2 (ja) * 2020-06-09 2023-08-29 トヨタ自動車株式会社 燃料供給システムの制御装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005263945A (ja) * 2004-03-18 2005-09-29 Sumitomo Bakelite Co Ltd コンミテータ用フェノール樹脂成形材料
JP2005281364A (ja) * 2004-03-29 2005-10-13 Sumitomo Bakelite Co Ltd フェノール樹脂成形材料
JP2006096778A (ja) * 2004-09-28 2006-04-13 Sumitomo Bakelite Co Ltd フェノール樹脂成形材料
JP2006225526A (ja) * 2005-02-18 2006-08-31 Sumitomo Bakelite Co Ltd フェノール樹脂成形材料
JP2011068705A (ja) * 2009-09-24 2011-04-07 Sumitomo Bakelite Co Ltd フェノール樹脂成形材料
JP2012149128A (ja) * 2011-01-17 2012-08-09 Panasonic Corp フェノール樹脂組成物とフェノール樹脂成形材料並びにフェノール樹脂成形品

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4105623A (en) * 1976-12-17 1978-08-08 Owens-Corning Fiberglas Corporation Method of making molding compounds and materials made thereby
US4785040A (en) * 1985-10-04 1988-11-15 Occidental Chemical Corporation Phenolic molding materials and processes
JP2643476B2 (ja) * 1989-09-27 1997-08-20 新神戸電機株式会社 ポンプ用ロータ
JP3034886B2 (ja) * 1989-10-24 2000-04-17 住友ベークライト株式会社 衝撃強度に優れるフェノール樹脂組成物
US5336723A (en) * 1992-09-30 1994-08-09 Sumitomo Bakelite Company Limited Phenolic resin molding materials
US5721332A (en) * 1994-05-16 1998-02-24 Sumikin Chemical Co., Ltd. Phenolic resin
JP3235813B2 (ja) * 1994-08-04 2001-12-04 住友ベークライト株式会社 フェノール樹脂組成物
US5691409A (en) * 1995-07-12 1997-11-25 Sumitomo Bakelite Company Limited Phenolic resin molding material
JP3586941B2 (ja) * 1995-10-17 2004-11-10 新神戸電機株式会社 ポンプ用インペラ
JP3192082B2 (ja) * 1996-02-14 2001-07-23 光洋精工株式会社 樹脂製プーリ
JP3763740B2 (ja) * 2000-12-28 2006-04-05 株式会社ジェイテクト 樹脂製プーリ
DE10256953A1 (de) * 2002-12-05 2004-06-24 Ashland-Südchemie-Kernfest GmbH Heißhärtendes Bindemittel auf Polyurethanbasis
WO2004081415A1 (ja) * 2003-03-11 2004-09-23 Sumitomo Bakelite Co. Ltd. プーリー用フェノール樹脂成形材料、樹脂プーリー、および樹脂成形材料の使用方法
JP4723822B2 (ja) * 2003-08-22 2011-07-13 旭有機材工業株式会社 摺動部品製造用フェノール樹脂成形材料及び樹脂製摺動部品
CN103119099B (zh) * 2010-09-24 2015-01-14 住友电木株式会社 酚醛树脂成型材料
JP5715884B2 (ja) * 2011-05-31 2015-05-13 住友ベークライト株式会社 スクロール成形品
WO2014061521A1 (ja) * 2012-10-17 2014-04-24 住友ベークライト株式会社 金属樹脂複合体および金属樹脂複合体の製造方法
WO2015087720A1 (ja) * 2013-12-13 2015-06-18 住友ベークライト株式会社 金属樹脂複合体
CN105829452B (zh) * 2013-12-20 2019-06-18 住友电木株式会社 热固化性树脂组合物及金属树脂复合体
EP3103839B1 (en) * 2014-02-07 2020-08-19 Sumitomo Bakelite Co.,Ltd. Phenolic resin composition for friction material, friction material, and brake
JP6547277B2 (ja) * 2014-10-31 2019-07-24 住友ベークライト株式会社 成形材料および成形品
JP6394286B2 (ja) * 2014-10-31 2018-09-26 住友ベークライト株式会社 フェノール樹脂組成物および成形体
JP2017082116A (ja) * 2015-10-29 2017-05-18 株式会社デンソー 燃料ポンプ用インペラ

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005263945A (ja) * 2004-03-18 2005-09-29 Sumitomo Bakelite Co Ltd コンミテータ用フェノール樹脂成形材料
JP2005281364A (ja) * 2004-03-29 2005-10-13 Sumitomo Bakelite Co Ltd フェノール樹脂成形材料
JP2006096778A (ja) * 2004-09-28 2006-04-13 Sumitomo Bakelite Co Ltd フェノール樹脂成形材料
JP2006225526A (ja) * 2005-02-18 2006-08-31 Sumitomo Bakelite Co Ltd フェノール樹脂成形材料
JP2011068705A (ja) * 2009-09-24 2011-04-07 Sumitomo Bakelite Co Ltd フェノール樹脂成形材料
JP2012149128A (ja) * 2011-01-17 2012-08-09 Panasonic Corp フェノール樹脂組成物とフェノール樹脂成形材料並びにフェノール樹脂成形品

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3369773A4 *

Also Published As

Publication number Publication date
CN108137901A (zh) 2018-06-08
JP6831175B2 (ja) 2021-02-17
US20180305539A1 (en) 2018-10-25
JP2017082117A (ja) 2017-05-18
EP3369773A1 (en) 2018-09-05
EP3369773A4 (en) 2019-06-19

Similar Documents

Publication Publication Date Title
WO2017073586A1 (ja) フェノール樹脂成形材料
US9725596B2 (en) Polyarylene sulfide resin composition and molded body
US9947433B2 (en) Thermoplastic resin composition and molded product using the same
WO2017073587A1 (ja) 燃料ポンプ用インペラ
JP2014187152A (ja) エポキシ樹脂成形材料、モールドコイルの製造方法及びモールドコイル
WO2017057559A1 (ja) ポリアリーレンスルフィド樹脂組成物及び製造方法
KR101071768B1 (ko) 자동차 써모스탯 하우징용 수지 조성물
JP5882040B2 (ja) 樹脂混練物、樹脂シートおよび樹脂混練物の製造方法
JP5696304B2 (ja) フェノール樹脂成形材料及びフェノール樹脂成形品
JP5547621B2 (ja) コイル部品
WO2018139034A1 (ja) 金属/樹脂複合構造体およびその製造方法
JP5504786B2 (ja) フェノール樹脂成形材料
JP2009120814A (ja) 樹脂組成物
WO2012039446A1 (ja) フェノール樹脂成形材料
JP6201456B2 (ja) ポリアリーレンスルフィド樹脂組成物、成形体およびそれらの製造方法
JP5934937B2 (ja) フェノール樹脂成形材料とそれを用いた成形品
JP2016164206A (ja) ポリアミド樹脂組成物およびそれを成形してなる成形品
JPH1149930A (ja) 耐熱衝撃性フェノール樹脂成形材料組成物
JP2009242472A (ja) 熱硬化性樹脂組成物および熱硬化性樹脂成形材料
JP2016199640A (ja) モーター周辺部品
JP6405746B2 (ja) フェノール樹脂成形材料
JP2003026899A (ja) コンミテータ用フェノール樹脂成形材料
CN115572489A (zh) 一种螺杆泵定子塑料材料及其制备方法
JP2010235724A (ja) フェノール樹脂成形材料及び樹脂プーリー
JPH0987488A (ja) 整流子成形用メラミン樹脂系組成物

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16859816

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15767279

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2016859816

Country of ref document: EP