WO2017073579A1 - めっき鋼板 - Google Patents

めっき鋼板 Download PDF

Info

Publication number
WO2017073579A1
WO2017073579A1 PCT/JP2016/081634 JP2016081634W WO2017073579A1 WO 2017073579 A1 WO2017073579 A1 WO 2017073579A1 JP 2016081634 W JP2016081634 W JP 2016081634W WO 2017073579 A1 WO2017073579 A1 WO 2017073579A1
Authority
WO
WIPO (PCT)
Prior art keywords
plating layer
steel sheet
phase
plated steel
less
Prior art date
Application number
PCT/JP2016/081634
Other languages
English (en)
French (fr)
Inventor
卓哉 光延
Original Assignee
新日鐵住金株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新日鐵住金株式会社 filed Critical 新日鐵住金株式会社
Priority to EP16859809.2A priority Critical patent/EP3369837B1/en
Priority to ES16859809T priority patent/ES2778682T3/es
Priority to BR112018003781-8A priority patent/BR112018003781A2/ja
Priority to MX2018002518A priority patent/MX2018002518A/es
Priority to US15/753,150 priority patent/US10655203B2/en
Priority to PL16859809T priority patent/PL3369837T4/pl
Priority to JP2017502901A priority patent/JP6160793B1/ja
Priority to CN201680060755.8A priority patent/CN108350554B/zh
Priority to KR1020187007029A priority patent/KR102085223B1/ko
Publication of WO2017073579A1 publication Critical patent/WO2017073579A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/04Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
    • C23C2/06Zinc or cadmium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C18/00Alloys based on zinc
    • C22C18/04Alloys based on zinc with aluminium as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/34Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the shape of the material to be treated
    • C23C2/36Elongated material
    • C23C2/40Plates; Strips
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/50Controlling or regulating the coating processes
    • C23C2/52Controlling or regulating the coating processes with means for measuring or sensing

Definitions

  • the present invention relates to a plated steel sheet having an Al-containing Zn-based plating layer on at least a part of the surface of the steel sheet.
  • Plated steel sheets are used for automobile structural members from the viewpoint of rust prevention.
  • Examples of the plated steel sheet for automobiles include galvannealed steel sheet and hot dip galvanized steel sheet.
  • Alloyed galvanized steel sheet has the advantage of excellent weldability and corrosion resistance after painting.
  • An example of an alloyed galvanized steel sheet is described in Patent Document 1.
  • the plating layer of the alloyed galvanized steel sheet is relatively hard due to the diffusion of Fe during the alloying treatment, it is more easily peeled off than the plating layer of the hot dip galvanized steel sheet. That is, cracks are likely to occur in the plating layer due to external pressure, and the cracks propagate to the interface with the underlying steel sheet, and the plating layer is likely to peel off from the interface.
  • the plating layer is peeled off together with the coating due to pebbles (chipping) caused by hopping of the traveling vehicle, and the underlying steel sheet is exposed and easily corroded. May be. Further, since the plating layer of the alloyed galvanized steel sheet contains Fe, if the coating is peeled off by chipping, the plating layer itself is corroded, and reddish brown rust may be generated. Powdering and flaking may occur in the plating layer of the alloyed galvanized steel sheet.
  • the plated layer of the hot-dip galvanized steel sheet not subjected to alloying treatment does not contain Fe and is relatively soft. For this reason, according to the hot dip galvanized steel sheet, corrosion accompanying chipping can be made difficult to occur, and powdering and flaking can be suppressed. Examples of hot-dip galvanized steel sheets are described in Patent Documents 2 to 5. However, since the melting point of the plated layer of the hot dip galvanized steel sheet is low, seizure to the mold tends to occur during press molding. Moreover, a crack may arise in a plating layer at the time of press molding or a bending process.
  • An object of the present invention is to provide a plated steel sheet that can obtain excellent chipping resistance, and that can suppress powdering and seizure to a mold during press molding, and generation of cracks during processing.
  • the present inventors have intensively studied to solve the above problems.
  • the plating layer has a predetermined chemical composition and a predetermined structure, it is possible to obtain excellent chipping resistance, powdering during press molding and seizure to a mold, and during processing. It has been found that the generation of cracks can be suppressed.
  • plastic deformability, seizure resistance, and powdering resistance may be collectively referred to as workability.
  • the above-mentioned predetermined structure cannot be obtained by a conventional method for producing a plated steel sheet, but can be obtained when a plated steel sheet is produced by a method different from the conventional method. Based on such knowledge, the present inventors have conceived the following aspects of the invention.
  • the average chemical composition of the plating layer and the intermetallic compound layer between the plating layer and the steel plate is mass%, Al: 10% to 40%, Si: 0.05% to 4%, Mg: 0% to 5%, and the balance: represented by Zn and impurities
  • the plating layer is It is composed of an Al phase in which Zn is dissolved and an Zn phase dispersed in the Al phase, and the average chemical composition is, by mass, Al: 25% to 50%, Zn: 50% to 75%, and impurities:
  • the number density of the first structure on the surface of the plating layer is 1.6 / cm 2 to 25.0 / cm 2 .
  • the first organization is: A second chemical structure having an average chemical composition expressed by mass%, Al: 37% to 50%, Zn: 50% to 63%, and impurities: less than 2%; A third structure having an average chemical composition expressed by mass%, Al: 25% to 36%, Zn: 64% to 75%, and impurities: less than 2%;
  • the average chemical composition of the plating layer and the intermetallic compound layer is, by mass, Al: 20% to 40%, Si: 0.05% to 2.5%, Mg: 0% to 2%, and the balance. : Represented by Zn and impurities, The plated steel sheet according to any one of (1) to (3), wherein
  • the intermetallic compound layer has a thickness of 100 nm to 1000 nm.
  • the area fraction of the first structure is 20% to 40%
  • the area fraction of the eutectoid structure is 50% to 70%
  • the total of the first structure and the eutectoid structure The area fraction of is 90% or more
  • the area fraction of the first structure is 30% to 40%
  • the area fraction of the eutectoid structure is 55% to 65%
  • the total of the first structure and the eutectoid structure The area fraction of is 95% or more
  • the Mg concentration is 0.05% to 5%
  • the Si concentration is Si%
  • the relationship of “Mg% ⁇ 2 ⁇ Si%” is established, Mg 2 Si crystals present in the plating layer have a maximum equivalent circular diameter of 2 ⁇ m or less
  • the plating layer has a predetermined chemical composition and structure, it is possible to obtain excellent chipping resistance, powdering during press molding and seizure to a mold, and during processing. Generation of cracks can be suppressed.
  • FIG. 1 is a sectional view showing an example of a plating layer contained in a plating steel plate concerning an embodiment of the present invention.
  • FIG. 2A is a diagram showing an outline of a 2T bending test.
  • FIG. 2B is a diagram showing an outline of the 1T bending test.
  • FIG. 2C is a diagram showing an outline of the 0T bending test.
  • FIG. 3 shows test No. which is an example of the invention. It is a figure which shows the change (heat pattern) of the temperature of the plated steel plate at the time of manufacturing 16 plated steel plate.
  • FIG. It is a figure which shows the BSE image of 16 plated steel plates.
  • FIG. 5 shows test No. which is an example of the invention.
  • FIG. 6 shows test No. 1 as a comparative example. It is a figure which shows the change (heat pattern) of the temperature of the plated steel plate at the time of manufacturing 20 plated steel plates.
  • FIG. It is a figure which shows the BSE image of 20 plated steel plates.
  • the plated steel sheet according to the present embodiment relates to a plated steel sheet having an Al-containing Zn-based plating layer on at least a part of the surface of the steel sheet.
  • the average chemical composition of the plating layer and the intermetallic compound layer between the plating layer and the steel plate will be described.
  • “%”, which is a unit of concentration of each element, means “mass%” unless otherwise specified.
  • the average chemical composition of the plating layer and the intermetallic compound layer included in the plated steel sheet according to this embodiment is Al: 10% to 40%, Si: 0.05% to 4%, Mg: 0% to 5%, And remainder: represented by Zn and impurities.
  • Al 10% to 40%
  • Al contributes to an increase in the melting point and an improvement in hardness of the Al-containing Zn-based plating layer.
  • the Al concentration is 10% or more, the higher the Al concentration, the higher the melting point of the Zn—Al alloy, and the Zn—Al alloy having an Al concentration of about 40% has a melting point of about 540 ° C.
  • the Al can also contribute to improving the ductility of the Al-containing Zn-based plating layer.
  • the ductility of the Al-containing Zn-based plating layer is particularly excellent when the Al concentration is 20% to 40%, but when the Al concentration is less than 5% or more than 40%, pure Zn It has been found to be lower than the ductility of the plating layer. Therefore, the Al concentration is 40% or less.
  • Si suppresses the reaction between Zn and Al contained in the plating bath and Fe contained in the steel plate which is the plating original plate during the formation of the plating layer, and the formation of an intermetallic compound layer between the plating layer and the steel plate. Suppress.
  • the intermetallic compound layer contains, for example, an Al—Zn—Fe compound, and is also called an interface alloy layer, which decreases the adhesion between the plating layer and the steel sheet, or decreases the workability. .
  • the concentration of Si contained in the plating bath is less than 0.05%, the intermetallic compound layer starts to grow immediately after the plating plate is immersed in the plating bath, and an excessive intermetallic compound layer is formed, so that the workability is remarkably reduced. It becomes. Therefore, the Si concentration in the plating bath is 0.05% or more, and the average Si concentration in the plating layer and the intermetallic compound layer is also 0.05% or more. On the other hand, if the Si concentration exceeds 4%, the Si phase that is the starting point of fracture tends to remain in the plating layer, and sufficient ductility may not be obtained. Therefore, the Si concentration is 4% or less, preferably 2% or less.
  • Mg contributes to improvement of corrosion resistance after painting.
  • Mg when Mg is contained in the plating layer, even if the coating film and the plating layer have cut flaws, corrosion from the cut flaws can be suppressed. This is because Mg is eluted along with corrosion, and a corrosion product containing Mg is generated around the cut flaw. Further, corrosion factors such as water and oxygen are generated from the cut flaw like a self-healing action. This is to prevent intrusion. The effect of suppressing this corrosion is remarkable when the Mg concentration is 0.05% or more. Therefore, the Mg concentration is preferably 0.05% or more, more preferably 1% or more.
  • Mg tends to form an intermetallic compound having poor workability such as MgZn 2 or Mg 2 Si.
  • Mg 2 Si tends to precipitate preferentially over MgZn 2 .
  • the Mg concentration is 5% or less, preferably 2% or less.
  • Mg% Mg%
  • Si concentration Si%
  • MgZn 2 having lower workability than Mg 2 Si is preferentially generated. To do. Therefore, even if the Mg concentration is 5% or less, it is preferable that the relationship of “Mg% ⁇ 2 ⁇ Si%” is satisfied.
  • the Mg 2 Si phase and the MgZn 2 phase are examples of other intermetallic compound phases.
  • Zn contributes to the improvement of sacrificial anticorrosive ability, corrosion resistance of the plating layer, and performance of the coating base. It is preferable that Al and Zn occupy most of the plating layer.
  • the impurities include Fe diffused from the steel sheet and elements inevitably contained in the plating bath.
  • Drawing 1 is a sectional view showing an example of a plating layer contained in a plating steel plate concerning an embodiment of the present invention.
  • the plated layer 11 included in the plated steel sheet 10 according to the present embodiment is composed of an Al phase in which Zn is dissolved and a Zn phase dispersed in the Al phase, and the average chemical composition is Al: 25% to 50%.
  • the average chemical composition is Al: 10% to 24%
  • Zn Eutectoid structure 14 represented by 76% to 90% and impurities: less than 2%.
  • the area fraction of the first structure 11 is 5% to 40%, and the total area fraction of the first structure 11 and the eutectoid structure 14 is 50% or more.
  • the area fraction of the Zn phase 15 that is a structure containing Zn of 90% or more is 25% or less, and the total area fraction of the intermetallic compound phases contained in the plating layer 10 is 9% or less,
  • the thickness of the intermetallic compound layer 30 between the plating layer 10 and the steel plate 20 is 2 ⁇ m or less.
  • the first structure is composed of an Al phase in which Zn is dissolved, and a Zn phase dispersed in the Al phase.
  • the average chemical composition is Al: 25% to 50%, Zn: 50% to 75%, and Impurity: a structure represented by less than 2%.
  • the first structure contributes to improvement of plastic deformability, workability, and chipping resistance.
  • the area fraction of the first structure is less than 5%, sufficient workability cannot be obtained. Therefore, the area fraction of the first tissue is 5% or more, preferably 20% or more, more preferably 30% or more.
  • the area fraction of the first structure that can be formed by the method described later is at most 40%.
  • the first organization 11 includes, for example, a second organization 12 and a third organization 13.
  • the second structure is a structure having an average chemical composition represented by Al: 37% to 50%, Zn: 50% to 63%, and impurities: less than 2%.
  • the third structure is a structure having an average chemical composition represented by Al: 25% to 36%, Zn: 64% to 75%, and impurities: less than 2%.
  • Each of the second structure and the third structure is composed of an Al phase in which Zn is dissolved and a Zn phase dispersed in the Al phase.
  • the ratio of the second structure and the third structure in the plating layer uses image processing from a backscattered electron (BSE) image obtained by a scanning electron microscope (scanning electron microscope (SEM)). Can be obtained.
  • BSE backscattered electron
  • SEM scanning electron microscope
  • the eutectoid structure is composed of an Al phase and a Zn phase, and has an average chemical composition expressed by Al: 10% to 24%, Zn: 76% to 90%, and impurities: less than 2%.
  • the eutectoid structure also contributes to the improvement of plastic deformability. If the area fraction of the eutectoid structure is less than 50% in the cross section of the plating layer, the proportion of the Zn phase increases, and sufficient press formability and post-coating corrosion resistance may not be obtained. Therefore, the area fraction of the eutectoid structure is preferably 50% or more, more preferably 55% or more.
  • the area fraction of the eutectoid structure that can be formed by the method described later is at most 75%.
  • the area fraction of the eutectoid structure is preferably 70% or less, more preferably 65% or less, in order to obtain a higher area fraction of the first structure that tends to contribute to the improvement of workability than the eutectoid structure.
  • the total area fraction of the first structure and the eutectoid structure is less than 50% in the cross section of the plating layer, sufficient plastic deformability cannot be obtained. For example, when complicated press molding is performed, many cracks may occur. Therefore, the total area fraction of the first structure and the eutectoid structure is 50% or more.
  • the area fraction of the first structure is preferably higher than the area fraction of the eutectoid structure.
  • the total area fraction of the first structure and the eutectoid structure is preferably 55% or more.
  • the total area fraction is 55% or more, more excellent workability can be obtained.
  • the total area fraction is 55% or more, for example, the area fraction of the eutectoid structure is 50% to 70%, and the area fraction of the first structure is 5% or more.
  • An outline of the 2T bending test is shown in FIG. 2A.
  • a sample of a plated steel sheet having a thickness t is bent by 180 ° with a space of 4t between them, and a crack in the bending top 51 is observed.
  • the total area fraction of the first structure and the eutectoid structure is more preferably 90% or more.
  • the total area fraction is 90% or more, further excellent workability can be obtained.
  • the total area fraction is 90% or more, for example, the area fraction of the eutectoid structure is 50% to 70%, and the area fraction of the first structure is 20% or more and less than 30%.
  • An outline of the 1T bending test is shown in FIG. 2B.
  • a sample of a plated steel sheet having a thickness t is bent 180 ° with a space of 2t between them, and a crack in the bending top 52 is observed.
  • the total area fraction of the first structure and the eutectoid structure is more preferably 95% or more.
  • the total area fraction is 95% or more, extremely excellent workability can be obtained.
  • the total area fraction is 95% or more, for example, the area fraction of the eutectoid structure is 50% to 65%, and the area fraction of the first structure is 30% or more.
  • An outline of the 0T bending test is shown in FIG. 2C. In the 0T bending test, as shown in FIG. 2C, a sample of a plated steel sheet having a thickness of t is bent 180 ° without a space therebetween, and a crack in the bending top 53 is observed.
  • Zn phase, intermetallic compound phase, etc. A Zn phase that is a structure containing 90% or more of Zn reduces workability.
  • the plating layer may contain a phase other than the first structure, eutectoid structure and Zn phase, for example, Si phase and Mg 2 Si phase, and other intermetallic compound phases (MgZn 2 phase etc.). These may also reduce workability. Therefore, it is preferable that the plating layer does not contain a Zn phase and an intermetallic compound phase.
  • the area fraction of the Zn phase is more than 25%, and the workability is significantly reduced.
  • the total area fraction of the intermetallic compound phase is more than 9%, and the workability is significantly reduced.
  • the area fraction of the Zn phase is 25% or less, and the total area fraction of the intermetallic compound phase is 9% or less. Also from the viewpoint of corrosion resistance, the area fraction of the Zn phase is preferably 20% or less. Further, from the viewpoint of securing higher ductility, the area fraction of the Si phase is preferably 3% or less.
  • the thickness of the intermetallic compound layer is 2000 nm or less, preferably 1000 nm or less. According to the manufacturing method described later, the thickness of the intermetallic compound layer is 100 nm or more.
  • the material of the steel plate is not particularly limited.
  • Al killed steel, extremely low carbon steel, high carbon steel, various high tensile steels, steel containing Ni and Cr, and the like can be used.
  • the strength of steel is not particularly limited.
  • Conditions for producing a steel sheet such as a steel making method, a hot rolling method, a pickling method, and a cold rolling method are not particularly limited.
  • the chemical composition of the steel, such as C content and Si content is not particularly limited.
  • the steel may contain Ni, Mn, Cr, Mo, Ti or B or any combination thereof.
  • the annealing temperature of a steel plate shall be about 800 degreeC, for example.
  • a Sendzimir method or a pre-plating method may be employed.
  • Ni may be contained in the intermetallic compound layer.
  • the building bath of the Zn—Al plating bath for example, pure Zn, Al, Mg, and an Al—Si alloy are used so that each component has a predetermined concentration and is melted at 450 ° C. to 650 ° C.
  • the steel sheet having a sufficiently reduced surface is immersed in a plating bath at 450 ° C. to 600 ° C. and the steel plate is pulled up from the plating bath, the molten metal adheres to the surface of the steel plate.
  • a plating layer is formed by cooling the molten metal. It is preferable to adjust the adhesion amount of the plating layer by performing wiping with N 2 gas before the molten metal solidifies. In this manufacturing method, the cooling method is varied according to the Al concentration of the plating bath.
  • cooling is performed from the plating bath temperature to the first temperature within the range of 360 ° C. to 435 ° C. at the first cooling rate of 10 ° C./second or more. Cool to a second temperature in the range of 280 ° C. to 310 ° C. with a second cooling rate of 0.02 ° C./sec to 0.50 ° C./sec, then 30 ° C./sec from the second temperature to room temperature Cooling is performed at the above third cooling rate.
  • the molten metal becomes supercooled.
  • dendrites dendritic crystals
  • the number density thereof is 1.6 pieces / cm 2 or more.
  • the dendrite number density is about 25.0 / cm 2 at most.
  • the periphery of the dendrite is substantially Zn phase.
  • the first cooling rate is 10 ° C./second or more
  • the Mg 2 Si phase of the intermetallic compound that crystallizes as the primary crystal is refined to an equivalent circular diameter of 2 ⁇ m or less. Can do. For this reason, it is easy to suppress the ductility fall accompanying formation of an intermetallic compound.
  • the first cooling rate is preferably 40 ° C./second or less.
  • the second cooling rate exceeds 0.50 ° C./second, Zn atoms and Al atoms cannot be sufficiently diffused, and a large amount of Zn phase tends to remain. Accordingly, the second cooling rate is set to 0.50 ° C./less.
  • the second cooling rate is set to 0.02 ° C./second or more.
  • the time taken for cooling from the first temperature to the second temperature is set to 180 seconds or more and 1000 seconds or less. This is because Zn atoms and Al atoms are sufficiently diffused and excessive formation of an intermetallic compound layer is suppressed.
  • Zn dissolved in Al finely precipitates, and is composed of an Al phase in which Zn is dissolved and a Zn phase dispersed in this Al phase.
  • a eutectoid structure composed of a structure and an Al phase and a Zn phase is obtained.
  • a Zn phase independent of the first structure and the eutectoid structure may precipitate, but the area fraction is 20% or less.
  • a second structure having a relatively high Al concentration Al: 37% to 50%
  • a third structure having a relatively low Al concentration between the second structure and the eutectoid structure (Al: 25% to 36%).
  • the third cooling rate is less than 30 ° C./second, the Zn phase may precipitate, grow and aggregate, and the area fraction of the Zn phase in the plating layer may be 20% or more. Accordingly, the third cooling rate is set to 30 ° C./second or more. Since the first structure remains as dendrite, for example, the number density of the first structure is 1.6 / cm 2 to 25.0 / cm 2 .
  • the cooling is performed from the plating bath temperature to the first temperature of 410 ° C. at the first cooling rate of 10 ° C./second or more, and from the first temperature to the second temperature of 390 ° C. Cooling is performed at a second cooling rate of 0.02 ° C./second to 0.11 ° C./second to a temperature, and then is cooled at a third cooling rate of 30 ° C./second or more from the second temperature to room temperature.
  • the molten metal becomes supercooled.
  • dendrites dendritic crystals
  • the number density thereof is 1.6 pieces / cm 2 or more.
  • the dendrite number density is about 25.0 / cm 2 at most.
  • the finer the dendrite the less micro solidification segregation inside it.
  • the periphery of the dendrite is substantially Zn phase.
  • the first cooling rate is 10 ° C./second or more
  • the Mg 2 Si phase of the intermetallic compound that crystallizes as the primary crystal is refined to an equivalent circular diameter of 2 ⁇ m or less. Can do. For this reason, it is easy to suppress the ductility fall accompanying formation of an intermetallic compound.
  • the first cooling rate is preferably 40 ° C./second or less.
  • the second cooling rate exceeds 0.11 ° C./second, Zn atoms and Al atoms cannot be sufficiently diffused, and a large amount of Zn phase tends to remain. Therefore, the second cooling rate is set to 0.11 ° C./below.
  • the second cooling rate is set to 0.02 ° C./second or more.
  • the time taken for cooling from the first temperature to the second temperature is set to 180 seconds or more and 1000 seconds or less. This is because Zn atoms and Al atoms are sufficiently diffused and excessive formation of an intermetallic compound layer is suppressed.
  • Zn dissolved in Al finely precipitates, and is composed of an Al phase in which Zn is dissolved and a Zn phase dispersed in this Al phase.
  • a eutectoid structure composed of a structure and an Al phase and a Zn phase is obtained.
  • a Zn phase independent of the first structure and the eutectoid structure may precipitate, but the area fraction is 20% or less.
  • a second structure having a relatively high Al concentration Al: 37% to 50%
  • a third structure having a relatively low Al concentration between the second structure and the eutectoid structure (Al: 25% to 36%).
  • the third cooling rate is less than 30 ° C./second, the Zn phase may precipitate, grow and aggregate, and the area fraction of the Zn phase in the plating layer may be 20% or more. Accordingly, the third cooling rate is set to 30 ° C./second or more. Since the first structure remains as dendrite, for example, the number density of the first structure is 1.6 / cm 2 to 25.0 / cm 2 .
  • a plated steel sheet according to the present embodiment that is, a plated steel sheet provided with a plated layer containing the first structure and the eutectoid structure at a predetermined area fraction can be manufactured. Note that when the second tissue is generated, the third tissue is inevitably generated, but it is possible to generate the third tissue without generating the second tissue.
  • an intermetallic compound layer is inevitably formed between the plating layer and the steel plate. Due to the diffusion of Fe from the steel sheet, about 3% of Fe may be contained in the laminate of the plating layer and the intermetallic compound layer, but many of them are concentrated in the intermetallic compound layer and included in the plating layer. The amount of Fe contained is extremely small, and the characteristics of the plating layer are substantially unaffected by Fe.
  • the chemical composition of the plating layer and the intermetallic compound layer and the method for analyzing the phase of the plating layer will be described.
  • the sample is taken from the vicinity of the center in the plate width direction of the plated steel plate, and in particular within the range of 30 mm from the end in the rolling direction (longitudinal direction) and in the direction perpendicular to this (plate width direction ) Shall not be collected within or from 30 mm from the end.
  • the plated steel sheet is immersed in HCl having a concentration of 10% to which an inhibitor is added, and the stripping solution is analyzed by an inductively coupled plasma (ICP) method.
  • ICP inductively coupled plasma
  • the phase constituting the plating layer is analyzed by an X-ray diffraction method using a Cu target with respect to the surface of the plating layer.
  • Zn and Al peaks are detected as main peaks. Since Si is a trace amount, the Si peak is not detected as a main peak.
  • Mg is contained, a diffraction peak attributed to Mg 2 Si is also detected.
  • the area fraction of each structure contained in the plating layer can be calculated from an image analysis of a BSE image obtained by SEM and an element mapping image by energy dispersive X-ray analysis (EDS).
  • EDS energy dispersive X-ray analysis
  • Examples of the performance of the plating layer include post-coating corrosion resistance, plastic deformability, chipping resistance, powdering resistance, and seizure resistance.
  • a coated steel sheet is prepared by applying a zinc phosphate treatment and electrodeposition coating to a plated steel sheet sample, and a cross-cut scratch reaching the steel sheet which is the ground iron of the coated steel sheet is formed. Then, the coated plated steel sheet on which the cross cut flaw is formed is subjected to a combined cycle corrosion test, and the maximum swollen width around the cross cut flaw is measured. A plurality of combined cycle corrosion tests are performed under the same conditions, and an average value of their maximum blister widths is calculated. Corrosion resistance after painting can be evaluated by the average value of the maximum swollen width. The average value of the maximum swollen width is lower as the plating layer has better corrosion resistance after painting. Moreover, since the occurrence of red rust significantly deteriorates the appearance of the coated plated steel sheet, it is usually evaluated that the longer the period until the red rust occurs, the better the corrosion resistance after coating.
  • a 0T bending test, a 1T bending test or a 2T bending test is performed by bending a plated steel sheet sample 180 ° in the sheet width direction and counting cracks at the top of the bending.
  • the plastic deformability can be evaluated by the number of cracks. The number of cracks is counted using SEM. The better the plastic deformability and the better the ductility, the fewer cracks.
  • a coating film having a four-layer structure is formed by applying a zinc phosphate treatment and electrodeposition coating to a plated steel sheet sample, followed by intermediate coating, top coating, and clear coating. And a crushed stone is made to collide with the coating film kept constant temperature at predetermined temperature, and the degree of peeling is observed visually. Chipping resistance can be evaluated by the degree of peeling. The degree of peeling may be classified by image processing.
  • seizure resistance In the evaluation of seizure resistance, a draw bead process is applied to a plated steel sheet sample to cause sliding between the sample surface and the die shoulder and bead part of the mold, and the plated layer adhered to the mold is visually observed. To do.
  • the seizure resistance can be evaluated based on the presence or absence of adhesion of the plating layer and the degree of adhesion.
  • a plating bath having the chemical composition shown in Tables 1 to 4 was constructed. Tables 1 to 4 also show the melting point and temperature (plating bath temperature) of each plating bath. Further, a cold rolled steel sheet having a C concentration of 0.2% and a plate thickness of 0.8 mm was cut to obtain a plating original plate having a width of 100 mm and a length of 200 mm. Then, in a furnace having an oxygen concentration of 20 ppm or less and a temperature of 800 ° C., the surface of the plating original plate is reduced using a mixed gas of 95 volume% N 2 -5 volume% H 2 , and the plating original sheet is air-cooled with N 2 gas.
  • the plating original plate When the temperature of the plating original plate reached the plating bath temperature + 20 ° C., the plating original plate was immersed in the plating bath for about 3 seconds. After immersion in the plating bath, the plating original plate with the molten metal adhered was pulled up at a rate of 100 mm / second while adjusting the plating adhesion amount with N 2 wiping gas. The plate temperature was monitored using a thermocouple spot welded to the center of the plating plate.
  • the plating layer was cooled to room temperature under the conditions shown in Tables 1 to 4. That is, gas cooling is performed from the plating bath temperature to the first temperature at the first cooling rate, cooling is performed from the first temperature to the second temperature at the second cooling rate, and then, from the second temperature to room temperature. Cooled at a cooling rate of 3. In this way, various plated steel sheets were obtained.
  • the underline in Tables 1 to 4 indicates that the item is outside the desired range.
  • each plated steel sheet was immersed in HCl with a concentration of 10% to which an inhibitor was added, and the peeling solution was analyzed by the ICP method to identify the average chemical composition of the plating layer and the intermetallic compound layer.
  • Each plated steel sheet was cut to prepare five test pieces having a width of 15 mm and a length of 25 mm, and each test piece was embedded in a resin and polished. Then, about each test piece, the element mapping image by the SEM image and EDS of the cross section of a plating layer was obtained.
  • the second structure, the third structure, the eutectoid structure, the Zn phase, the intermetallic compound layer, the Mg 2 Si phase, Si in the laminated body of the plating layer and the intermetallic compound layer was measured. Specifically, one field of view was photographed per sample, that is, a total of five fields of view were photographed per plated steel sheet, and the area fraction was measured by image analysis. Each visual field includes an area having a size of 50 ⁇ m ⁇ 200 ⁇ m of the plating layer.
  • an EDS analysis is performed on a structure that can be recognized as one of the second structure, the third structure, or the eutectoid structure from the element mapping image by EDS.
  • the average Al concentration is specified, and when the average Al concentration is 37% to 50%, the second structure is determined, and when 25% to 36% is the third structure, 10% to 24% is determined as the eutectoid structure. did.
  • a structure composed of two phases of an Al phase and a Zn phase with an average crystal grain size of an equivalent circle radius of 1 ⁇ m or less is recognized as one of the second structure, the third structure, and the eutectoid structure. It was.
  • each plated steel sheet was evaluated for powdering resistance, chipping resistance, seizure resistance, plastic deformability, and post-coating corrosion resistance.
  • each plated steel sheet was cut to produce a test piece having a width of 40 mm, a length of 100 mm, and a thickness of 0.8 mm.
  • a 60 ° bending test was performed using the plate width direction as the bending axis direction and the radius of curvature of 5 mmR. Subsequently, the width (peeling width) of the plating layer peeled off by the adhesive tape at 5 points was measured, and the average value (average peeling width) was calculated.
  • an average peel width of 0.1 mm or less is “A”
  • an average peel width is more than 0.1 mm and 1.0 mm or less “B”
  • an average peel width is more than 1.0 mm and 2.0 mm or less
  • an average peel width of more than 2.0 mm was evaluated as “D”.
  • each plated steel sheet was cut to prepare two test pieces having a width of 80 mm and a length of 350 mm, and each test piece was drawn using a jig imitating a die and a bead. Processing was performed, and a slide having a length of 150 mm or more was generated between the surface of the test piece and the shoulder portion of the die and the bead portion.
  • the radius of curvature of the die shoulder portion and the bead portion of the jig was 2 mmR and 5 mmR, the die pressing pressure was 60 kN / m 2 , and the draw bead processing drawing speed was 2 m / min.
  • a lubricating oil (550F: manufactured by Nihon Parkerizing Co., Ltd.) was applied to both surfaces at 0.5 g / m 2 on the surface of the test piece. Then, by visually observing the plating layer adhered to the jig, “A” indicates that the plating layer has not adhered, “B” indicates that the plating layer has adhered to the powder, and the plating layer has a strip shape. The adhered one was evaluated as “C”, and the plated layer was peeled as a whole and adhered as “D”.
  • each plated steel sheet is cut to prepare a test piece having a width of 30 mm, a length of 60 mm, and a thickness of 0.8 mm, and each test piece is subjected to 0T bending test and 1T bending. Tests and 2T bend tests were performed. Subsequently, the area
  • test pieces were prepared for each of the 0T bending test, 1T bending test, and 2T bending test, and the average number of cracks was calculated.
  • “A” indicates that the average number of cracks is 0
  • “B” indicates that the average number of cracks is 1 to 20
  • 21 to 100 is the average number of cracks.
  • each plated steel sheet was cut to prepare a sample having a width of 50 mm and a length of 100 mm, and each sample was subjected to a zinc phosphate-based chemical conversion treatment solution (Surfyne SD5350 series: Nippon Paint). -Zinc phosphate treatment using Industrial Coating) was performed. Subsequently, electrodeposition coating using a paint (Powernics 110F system: manufactured by Nihon Parkerizing Co., Ltd.) was performed to form a 20 ⁇ m coating film, and baking was performed at a temperature of 150 ° C. for 20 minutes.
  • a paint Powernics 110F system: manufactured by Nihon Parkerizing Co., Ltd.
  • the intermediate coating, top coating and clear coating are performed, and the overall film thickness
  • the coating film was produced so that might be set to 40 micrometers.
  • 100 g of No. 7 crushed stone was applied to a coating film cooled to ⁇ 20 ° C. at an air pressure of 3.0 kg / cm 2 from a distance of 30 cm at an angle of 90 degrees. It was made to collide and the degree of peeling was observed visually.
  • A indicates that there is no peeling
  • B indicates that the peeling area is small and the peeling frequency is low
  • C indicates that the peeling area is large and the peeling frequency is low
  • C indicates that the peeling area is large and the peeling frequency is high.
  • D indicates that the peeling area is large and the peeling frequency is high.
  • Tables 9 to 12 show the evaluation results of powdering resistance, chipping resistance, seizure resistance, plastic deformability and post-coating corrosion resistance.
  • the MgZn 2 phase which is an intermetallic compound phase, was excessively contained in the plating layer, and sufficient powdering resistance, chipping resistance, and plastic deformation No performance was obtained.
  • test no. In No. 32 since the Al concentration of the plating bath was excessive, the intermetallic compound layer was formed thick, and sufficient powdering resistance, chipping resistance, plastic deformability, and corrosion resistance after coating could not be obtained.
  • Test No. In No. 40 since the Si concentration in the plating bath was insufficient, the intermetallic compound layer grew immediately after immersion in the plating bath, the intermetallic compound layer was formed thick, and sufficient chipping resistance and plastic deformability were not obtained. .
  • Test No. In No. 43 since the second cooling rate was excessive, the area fraction of the first structure was insufficient, and sufficient chipping resistance, plastic deformability and post-coating corrosion resistance were not obtained. Sample No. In No.
  • test no. In No. 50 since the time taken for cooling at the second cooling rate was too long, the intermetallic compound layer was formed thick, and sufficient post-coating corrosion resistance, plastic deformability, powdering resistance and chipping resistance could not be obtained. It was. Sample No. In No. 58, since the Al concentration of the plating bath was insufficient, the area fraction of the first structure was insufficient, the intermetallic compound layer was formed thick, and sufficient seizure resistance, plastic deformability, and corrosion resistance after coating could not be obtained. It was. Sample No. In No. 60, since the Si concentration in the plating bath was insufficient, the intermetallic compound layer grew immediately after being immersed in the plating bath, and the intermetallic compound layer was formed thick.
  • the MgZn 2 phase which is an intermetallic compound phase, was excessively contained in the plating layer, and sufficient chipping resistance and plastic deformability could not be obtained. It was.
  • test no. In No. 77 since the cooling after the plating treatment was performed at a cooling rate of 10 ° C./second to room temperature, the area fraction of the first structure was insufficient, the area fraction of the Zn phase was excessive, and sufficient chipping resistance was achieved. , Seizure resistance, plastic deformability and post-coating corrosion resistance were not obtained. Test No. In 86, since the Al concentration in the plating bath was excessive, the intermetallic compound layer was formed thick, and sufficient powdering resistance, chipping resistance, plastic deformability, and corrosion resistance after coating could not be obtained. Test No. In No.
  • FIG. 3 shows a test No. which is an invention example.
  • FIG. 4 shows the temperature change (heat pattern) of the plated steel sheet when the 16 plated steel sheet is manufactured.
  • the BSE image of 16 plated steel plates is shown.
  • the BSE image of 91 plated steel sheets is shown.
  • the test No. 1 in which the Al concentration of the plating layer is 22% is shown.
  • the first structure 11, the eutectoid structure 14, and the Zn phase 15 exist in appropriate area fractions as in the embodiment shown in FIG. 1, and the second structure is included in the first structure 11.
  • 12 and a third tissue 13 are included.
  • FIG. 6 shows a test No. as a comparative example.
  • FIG. 7 shows the change in temperature (heat pattern) of the plated steel sheet when the 20 plated steel sheet is manufactured. The BSE image of 20 plated steel plates is shown. As shown in FIG. 7, the first structure 11 did not exist, and the area fraction of the Zn phase 15 was high.
  • the present invention can be used, for example, in industries related to plated steel sheets suitable for automobile outer plates.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Coating With Molten Metal (AREA)

Abstract

めっき層(10)及び金属間化合物層(30)の平均の化学組成は、質量%で、Al:10%~40%、Si:0.05%~4%、Mg:0%~5%、かつ残部:Zn及び不純物で表される。めっき層(10)は、Znを固溶するAl相及びこのAl相中に分散するZn相から構成され、平均の化学組成が、質量%で、Al:25%~50%、Zn:50%~75%、かつ不純物:2%未満で表される第1の組織(11)と、Al相及びZn相から構成され、平均の化学組成が、質量%で、Al:10%~24%、Zn:76%~90%、不純物:2%未満で表される共析組織(14)と、を有する。めっき層(10)の断面において、第1の組織(11)の面積分率は5%~40%、第1の組織(11)及び共析組織(14)の合計の面積分率は50%以上であり、めっき層(10)に含まれる、Znを90%以上含む組織であるZn相(15)の面積分率が25%以下であり、めっき層(10)に含まれる、金属間化合物相の合計の面積分率が9%以下であり、金属間化合物層(30)の厚さが2μm以下である。

Description

めっき鋼板
 本発明は、少なくとも鋼板の表面の一部にAl含有Zn系のめっき層を有するめっき鋼板に関する。
 自動車の構造部材に、防錆の観点からめっき鋼板が使用されている。自動車用めっき鋼板として、例えば、合金化亜鉛めっき鋼板及び溶融亜鉛めっき鋼板が挙げられる。
 合金化亜鉛めっき鋼板には、溶接性及び塗装後耐食性が優れるという利点がある。合金化亜鉛めっき鋼板の一例が特許文献1に記載されている。しかしながら、合金化亜鉛めっき鋼板のめっき層は、合金化処理の際のFeの拡散により比較的硬質であるため、溶融亜鉛めっき鋼板のめっき層と比較して剥離しやすい。すなわち、外圧によってめっき層にクラックが発生しやすく、このクラックが下地鋼板との界面まで伝播し、めっき層が界面を起点に剥離しやすい。このため、自動車の外板に合金化亜鉛めっき鋼板が用いられた場合、走行車の石跳による小石の衝突(チッピング)によってめっき層が塗装と共に剥離し、下地鋼板がむき出しになって腐食されやすくなることがある。また、合金化亜鉛めっき鋼板のめっき層はFeを含有するため、チッピングにより塗装が剥がれると、めっき層自体が腐食され、赤褐色の錆が発生することもある。合金化亜鉛めっき鋼板のめっき層には、パウダリング及びフレーキングが生じることもある。
 合金化処理を施していない溶融亜鉛めっき鋼板のめっき層はFeを含まず、比較的軟質である。このため、溶融亜鉛めっき鋼板によれば、チッピングに伴う腐食を生じにくくすることができ、パウダリング及びフレーキングを抑制することもできる。溶融亜鉛めっき鋼板の一例が特許文献2~5に記載されている。しかしながら、溶融亜鉛めっき鋼板のめっき層の融点が低いため、プレス成形時に金型への焼付きが生じやすい。また、プレス成形や曲げ加工時にめっき層にクラックが生じることもある。
 このように、従来のめっき鋼板では、耐パウダリング性、耐焼付き性、耐クラック性及び耐チッピング性のすべてが自動車用途に適しているとはいえない。
特開2003-253416号公報 特開2006-348332号公報 特開2005-154856号公報 特開2005-336546号公報 特開2004-323974号公報
 本発明は、優れた耐チッピング性を得ることができ、プレス成形時のパウダリング及び金型への焼付き、並びに加工時のクラックの発生を抑制することができるめっき鋼板を提供することを目的とする。
 本発明者らは、上記課題を解決すべく鋭意検討を行った。この結果、めっき層が所定の化学組成及び所定の組織を備えている場合に、優れた耐チッピング性を得ることができ、プレス成形時のパウダリング及び金型への焼付き、並びに加工時のクラックの発生を抑制することができることを知見した。以下、塑性変形能、耐焼付き性及び耐パウダリング性を総称して加工性ということがある。また、上記の所定の組織は、従来のめっき鋼板の製造方法では得ることができず、従来の方法とは異なる方法でめっき鋼板を製造した場合に得られることも知見した。本発明者らは、このような知見に基づいて、以下に示す発明の諸態様に想到した。
 (1)
 少なくとも鋼板の表面の一部にAl含有Zn系のめっき層を有するめっき鋼板であって、
 前記めっき層、及び前記めっき層と前記鋼板との間の金属間化合物層の平均の化学組成は、質量%で、Al:10%~40%、Si:0.05%~4%、Mg:0%~5%、かつ残部:Zn及び不純物で表され、
 前記めっき層は、
  Znを固溶するAl相及びこのAl相中に分散するZn相から構成され、平均の化学組成が、質量%で、Al:25%~50%、Zn:50%~75%、かつ不純物:2%未満で表される第1の組織と、
  Al相及びZn相から構成され、平均の化学組成が、質量%で、Al:10%~24%、Zn:76%~90%、不純物:2%未満で表される共析組織と、
 を有し、
 前記めっき層の断面において、前記第1の組織の面積分率は5%~40%、前記第1の組織及び前記共析組織の合計の面積分率は50%以上であり、
 前記めっき層に含まれる、Znを90%以上含む組織であるZn相の面積分率が25%以下であり、
 前記めっき層に含まれる、金属間化合物相の合計の面積分率が9%以下であり、
 前記金属間化合物層の厚さが2μm以下である、
 ことを特徴とするめっき鋼板。
 (2)
 前記めっき層の表面において前記第1の組織の数密度が1.6個/cm~25.0個/cmである、
 ことを特徴とする(1)に記載のめっき鋼板。
 (3)
 前記第1の組織は、
  平均の化学組成が、質量%で、Al:37%~50%、Zn:50%~63%、不純物:2%未満で表される第2の組織と、
  平均の化学組成が、質量%で、Al:25%~36%、Zn:64%~75%、不純物:2%未満で表される第3の組織と、
 含むことを特徴とする(1)又は(2)に記載のめっき鋼板。
 (4)
 前記めっき層及び前記金属間化合物層の平均の化学組成は、質量%で、Al:20%~40%、Si:0.05%~2.5%、Mg:0%~2%、かつ残部:Zn及び不純物で表される、
 ことを特徴とする(1)~(3)のいずれかに記載のめっき鋼板。
 (5)
 前記金属間化合物層の厚さが100nm~1000nmである、
 ことを特徴とする(1)~(4)のいずれかに記載のめっき鋼板。
 (6)
 前記めっき層の断面において、前記第1の組織の面積分率は20%~40%、前記共析組織の面積分率は50%~70%、前記第1の組織及び前記共析組織の合計の面積分率は90%以上である、
 ことを特徴とする(1)~(5)のいずれかに記載のめっき鋼板。
 (7)
 前記めっき層の断面において、前記第1の組織の面積分率は30%~40%、前記共析組織の面積分率は55%~65%、前記第1の組織及び前記共析組織の合計の面積分率は95%以上である、
 ことを特徴とする(1)~(6)のいずれかに記載のめっき鋼板。
 (8)
 前記めっき層及び前記金属間化合物層の平均の化学組成において、Mg濃度が0.05%~5%であり、
 Mg濃度をMg%、Si濃度をSi%としたときに、「Mg%≦2×Si%」の関係が成り立ち、
 前記めっき層中に存在するMgSiの結晶が最大相当円直径で2μm以下である、
 ことを特徴とする(1)~(7)のいずれかに記載のめっき鋼板。
 (9)
 前記めっき層に含まれる、前記Zn相の体積分率が20%以下であることを特徴とする(1)~(8)のいずれかに記載のめっき鋼板。
 本発明によれば、めっき層が所定の化学組成及び組織を備えているため、優れた耐チッピング性を得ることができ、プレス成形時のパウダリング及び金型への焼付き、並びに加工時のクラックの発生を抑制することができる。
図1は、本発明の実施形態に係るめっき鋼板に含まれるめっき層の一例を示す断面図である。 図2Aは、2T曲げ試験の概要を示す図である。 図2Bは、1T曲げ試験の概要を示す図である。 図2Cは、0T曲げ試験の概要を示す図である。 図3は、発明例である試験No.16のめっき鋼板を製造する際のめっき鋼板の温度の変化(ヒートパターン)を示す図である。 図4は、試験No.16のめっき鋼板のBSE像を示す図である。 図5は、発明例である試験No.92のめっき鋼板のBSE像を示す図である。 図6は、比較例である試験No.20のめっき鋼板を製造する際のめっき鋼板の温度の変化(ヒートパターン)を示す図である。 図7は、試験No.20のめっき鋼板のBSE像を示す図である。
 以下、本発明の実施形態について説明する。本実施形態に係るめっき鋼板は、少なくとも鋼板の表面の一部にAl含有Zn系のめっき層を有するめっき鋼板に関する。
 先ず、めっき層、及びめっき層と鋼板との間の金属間化合物層の平均の化学組成について説明する。以下の説明において、各元素の濃度の単位である「%」は、特に断りがない限り「質量%」を意味する。本実施形態に係るめっき鋼板に含まれるめっき層及び金属間化合物層の平均の化学組成は、Al:10%~40%、Si:0.05%~4%、Mg:0%~5%、かつ残部:Zn及び不純物で表される。
 (Al:10%~40%)
 Alは、Al含有Zn系のめっき層の融点の上昇及び硬度の向上に寄与する。めっき層の融点が高いほど、プレス成形時の焼付きが生じにくい。Al濃度が10%未満では、めっき層の融点が純Znのめっき層の融点よりも高くならず、焼付きを十分に抑制できない。従って、Al濃度は10%以上とし、好ましくは20%以上とする。Al濃度が10%以上では、Al濃度が高いほどZn-Al合金の融点が高く、Al濃度が40%程度のZn-Al合金の融点は約540℃である。
 AlはAl含有Zn系のめっき層の延性の向上にも寄与し得る。本発明者らによる検討により、Al含有Zn系のめっき層の延性は、Al濃度が20%~40%の場合に特に優れているものの、Al濃度が5%未満又は40%超では、純Znのめっき層の延性より低いことが判明している。従って、Al濃度は40%以下とする。
 (Si:0.05%~4%)
 Siは、めっき層の形成時に、めっき浴に含まれるZn及びAlと、めっき原板である鋼板に含まれるFeとの反応を抑制し、めっき層と鋼板との間への金属間化合物層の生成を抑制する。詳細は後述するが、金属間化合物層は、例えばAl-Zn-Fe化合物を含み、界面合金層ともよばれ、めっき層と鋼板との間の密着性を低下させたり、加工性を低下させたりする。めっき浴に含まれるSiの濃度が0.05%未満では、めっき原板をめっき浴に浸漬すると直ちに金属間化合物層が成長し始め、過剰な金属間化合物層が形成されて加工性の低下が顕著となる。従って、めっき浴におけるSi濃度は0.05%以上とし、めっき層及び金属間化合物層における平均のSi濃度も0.05%以上とする。一方、Si濃度が4%超では、破壊の起点となるSi相がめっき層に残存しやすく、十分な延性が得られないことがある。従って、Si濃度は4%以下とし、好ましくは2%以下とする。
 (Mg:0%~5%)
 Mgは、塗装後耐食性の向上に寄与する。例えば、めっき層中にMgが含有されると、塗膜及びめっき層にカット傷があっても、カット傷からの腐食を抑制することができる。これは、腐食に伴ってMgが溶出することで、カット傷の周囲にMgを含む腐食生成物が生成し、自己修復作用のようにカット傷からの、水、酸素等の腐食因子の更なる侵入を防ぐためである。この腐食を抑制する効果は、Mg濃度が0.05%以上で顕著である。従って、Mg濃度は、好ましくは0.05%以上であり、より好ましくは1%以上である。一方、Mgは、MgZn又はMgSi等の加工性に乏しい金属間化合物を形成しやすい。Siがめっき層に含まれている場合、MgSiがMgZnよりも優先的に析出する傾向がある。これらの金属間化合物が多いほど加工性が低く、Mg濃度が5%超でめっき層の延性の低下が顕著である。従って、Mg濃度は5%以下とし、好ましくは2%以下とする。
 Mg濃度を「Mg%」、Si濃度を「Si%」としたときに「Mg%>2×Si%」の関係が成り立つと、MgSiよりも加工性が低いMgZnが優先的に生成する。従って、Mg濃度が5%以下であっても、「Mg%≦2×Si%」の関係が成り立つことが好ましい。MgSi相及びMgZn相はその他の金属間化合物相の例である。
 (残部:Zn及び不純物)
 Znは、めっき層の犠牲防食能、耐食性及び塗装下地の性能の向上に寄与する。Al及びZnでめっき層の大半を占めていることが好ましい。不純物としては、例えば、鋼板から拡散してきたFe、めっき浴に不可避的に含まれる元素が挙げられる。
 次に、めっき層の組織について説明する。図1は、本発明の実施形態に係るめっき鋼板に含まれるめっき層の一例を示す断面図である。本実施形態に係るめっき鋼板10に含まれるめっき層11は、Znを固溶するAl相及びこのAl相中に分散するZn相から構成され、平均の化学組成が、Al:25%~50%、Zn:50%~75%、かつ不純物:2%未満で表される第1の組織11と、Al相及びZn相から構成され、平均の化学組成が、Al:10%~24%、Zn:76%~90%、不純物:2%未満で表される共析組織14と、を有する。めっき層10の断面において、第1の組織11の面積分率は5%~40%、第1の組織11及び共析組織14の合計の面積分率は50%以上であり、めっき層10に含まれる、Znを90%以上含む組織であるZn相15の面積分率が25%以下であり、めっき層10に含まれる、金属間化合物相の合計の面積分率が9%以下であり、めっき層10と鋼板20との間の金属間化合物層30の厚さが2μm以下である。
 (第1の組織)
 第1の組織は、Znを固溶するAl相及びこのAl相中に分散するZn相から構成され、平均の化学組成が、Al:25%~50%、Zn:50%~75%、かつ不純物:2%未満で表される組織である。第1の組織は、塑性変形能、加工性及び耐チッピング性の向上に寄与する。めっき層の断面において、第1の組織の面積分率が5%未満では、十分な加工性が得られない。従って、第1の組織の面積分率は5%以上とし、好ましくは20%以上とし、より好ましくは30%以上とする。その一方で、後述の方法で形成できる第1の組織の面積分率は多くとも40%である。
 図1に示すように、第1の組織11には、例えば、第2の組織12及び第3の組織13が含まれる。第2の組織は、平均の化学組成が、Al:37%~50%、Zn:50%~63%、不純物:2%未満で表される組織である。第3の組織は、平均の化学組成が、Al:25%~36%、Zn:64%~75%、不純物:2%未満で表される組織である。第2の組織及び第3の組織は、いずれも、Znを固溶するAl相及びこのAl相中に分散するZn相から構成される。詳細は後述するが、第2の組織及び第3の組織のめっき層中の割合は走査型電子顕微鏡(scanning electron microscope:SEM)により得られる反射電子(backscattered electron:BSE)像から画像処理を利用して求めることができる。
 (共析組織)
 共析組織は、Al相及びZn相から構成され、平均の化学組成が、Al:10%~24%、Zn:76%~90%、不純物:2%未満で表される組織である。共析組織も、塑性変形能の向上に寄与する。めっき層の断面において、共析組織の面積分率が50%未満では、Zn相の割合が高くなり、十分なプレス成形性及び塗装後耐食性が得られないことがある。従って、共析組織の面積分率は、好ましくは50%以上とし、より好ましくは55%以上とする。その一方で、後述の方法で形成できる共析組織の面積分率は多くとも75%である。加工性の向上に共析組織よりも寄与しやすい第1の組織をより高い面積分率で得るために、共析組織の面積分率は、好ましくは70%以下とし、より好ましくは65%以下とする。
 めっき層の断面において、第1の組織及び共析組織の合計の面積分率が50%未満では、十分な塑性変形能が得られない。例えば、複雑なプレス成形が行われると、多くのクラックが発生することがある。従って、第1の組織及び共析組織の合計の面積分率は50%以上とする。また、第1の組織は共析組織より優れた塑性変形能を有するため、好ましくは第1の組織の面積分率が共析組織の面積分率より高い。
 第1の組織及び共析組織の合計の面積分率は、好ましくは55%以上である。合計の面積分率が55%以上であると、より優れた加工性が得られる。例えば、厚さが0.8mmのめっき鋼板を用いて2T曲げ試験において、曲げ頂上部にクラックがほとんど発生しない。合計の面積分率が55%以上の場合、例えば、共析組織の面積分率は50%~70%であり、第1の組織の面積分率は5%以上である。2T曲げ試験の概要を図2Aに示す。2T曲げ試験では、図2Aに示すように、厚さがtのめっき鋼板の試料を、間に4t分のスペースを設けて180°曲げし、曲げ頂上部51のクラックを観察する。
 第1の組織及び共析組織の合計の面積分率は、より好ましくは90%以上である。合計の面積分率が90%以上であると、更に優れた加工性が得られる。例えば、厚さが0.8mmのめっき鋼板を用いて1T曲げ試験において、曲げ頂上部にクラックがほとんど発生しない。合計の面積分率が90%以上の場合、例えば、共析組織の面積分率は50%~70%であり、第1の組織の面積分率は20%以上30%未満である。1T曲げ試験の概要を図2Bに示す。1T曲げ試験では、図2Bに示すように、厚さがtのめっき鋼板の試料を、間に2t分のスペースを設けて180°曲げし、曲げ頂上部52のクラックを観察する。
 第1の組織及び共析組織の合計の面積分率は、より好ましくは95%以上である。合計の面積分率が95%以上であると、極めて優れた加工性が得られる。例えば、厚さが0.8mmのめっき鋼板を用いて0T曲げ試験において、曲げ頂上部にクラックがほとんど発生しない。合計の面積分率が95%以上の場合、例えば、共析組織の面積分率は50%~65%であり、第1の組織の面積分率は30%以上である。0T曲げ試験の概要を図2Cに示す。0T曲げ試験では、図2Cに示すように、厚さがtのめっき鋼板の試料を、間にスペースを設けずに180°曲げし、曲げ頂上部53のクラックを観察する。
 (Zn相及び金属間化合物相等)
 Znを90%以上含む組織であるZn相は、加工性を低下させる。めっき層に、第1の組織、共析組織及びZn相以外の相、例えば、Si相及びMgSi相が含まれていてもよく、その他の金属間化合物相(MgZn相等)が含まれていてもよいが、これらも加工性を低下させる。従って、めっき層にZn相及び金属間化合物相が含まれないことが好ましい。そして、Zn相の面積分率は25%超で、加工性の低下が顕著であり、金属間化合物相の合計の面積分率が9%超で加工性の低下が顕著である。従って、Zn相の面積分率は25%以下とし、金属間化合物相の合計の面積分率は9%以下とする。耐食性の観点からも、好ましくはZn相の面積分率は20%以下である。また、より高い延性を確保する観点から、Si相の面積分率は、好ましくは3%以下である。
 また、めっき層と鋼板との間に、若干のSiを固溶したAl-Mn-Fe系金属間化合物等の金属間化合物層があってもよいが、金属間化合物層の厚さが2μm超で加工性が低下しやすい。従って、金属間化合物層の厚さは、2000nm以下であり、好ましくは1000nm以下である。後述の製造方法によると、金属間化合物層の厚さは100nm以上となる。
 次に、本発明の実施形態に係るめっき鋼板を製造する方法について説明する。この方法では、めっき原板として用いる鋼板を焼鈍しながらその表面を還元し、Zn-Al系めっき浴に浸漬し、めっき浴から引き上げて後述の条件下で冷却する。
 鋼板の材質は特に限定されない。例えば、Alキルド鋼、極低炭素鋼、高炭素鋼、各種高張力鋼、Ni及びCrを含有する鋼等を使用することができる。鋼の強度も特に限定されない。製鋼方法、熱間圧延方法、酸洗方法、冷延方法等の鋼板を製造する際の条件も特に限定されない。鋼の化学組成、例えばC含有量及びSi含有量も特に限定されない。鋼に、Ni、Mn、Cr、Mo、Ti若しくはB又はこれらの任意の組み合わせが含まれていてもよい。鋼板の焼鈍温度は、例えば800℃程度とする。
 めっき層の形成では、ゼンジミア法又はプレめっき法を採用してもよい。Niのプレめっきを行った場合は、金属間化合物層にNiが含有されることがある。
 Zn-Al系めっき浴の建浴では、例えば、純Zn、Al、Mg、及びAl-Si合金を用いて各成分が所定の濃度となるよう調合し、450℃~650℃で溶解させる。表面が十分に還元された鋼板を450℃~600℃のめっき浴に浸漬し、この鋼板をめっき浴から引き上げると、鋼板の表面に溶融金属が付着している。溶融金属を冷却することで、めっき層が形成される。溶融金属が凝固する前にNガスによるワイピングを実施することで、めっき層の付着量を調整することが好ましい。この製造方法では、めっき浴のAl濃度に応じて冷却方法を異ならせる。
 (めっき浴のAl濃度が20%以上40%以下の場合)
 Al濃度が20%以上40%以下の場合、めっき浴温から360℃~435℃の範囲内の第1の温度まで10℃/秒以上の第1の冷却速度で冷却し、第1の温度から280℃~310℃の範囲内の第2の温度まで0.02℃/秒~0.50℃/秒の第2の冷却速度で冷却し、その後、第2の温度から室温まで30℃/秒以上の第3の冷却速度で冷却する。
 10℃/秒以上の第1の冷却速度で、Zn-Al系状態図における固相線温度に相当する第1の温度まで冷却することで、溶融金属は過冷状態となる。このため、マクロな凝固組織であるデンドライト(樹枝状晶)が微細に発生し、その数密度は1.6個/cm以上となる。達成可能な冷却速度を考慮すると、デンドライトの数密度は多くても25.0個/cm程度である。デンドライト内では、中心に近づくほどAl濃度が高く、中心から離れるほどZn濃度が高い。デンドライトが微細であるほど、その内部のミクロ凝固偏析が緩和される。第1の温度では、デンドライトの周囲は実質的にZn相である。第1の冷却速度が10℃/秒以上であると、めっき浴にMgが含まれる場合、初晶として晶出する金属間化合物のMgSi相を2μm以下の相当円直径に微細化することができる。このため、金属間化合物の形成に伴う延性の低下を抑制しやすい。その後の第2の冷却速度での冷却を考慮すると、第1の冷却速度は好ましくは40℃/秒以下とする。
 第1の温度から第2の温度までの冷却中に、デンドライトのAl濃度が比較的高かった部分に、Znを固溶するAl相が生成し、デンドライトのAl濃度が比較的低かった部分及びZn相が存在していた部分ではAl原子及びZn原子が混ざり合い、Zn相の面積分率が低下する。第2の冷却速度が0.50℃/秒超では、Zn原子及びAl原子が十分に拡散することができず、Zn相が多量に残存しやすくなる。従って、第2の冷却速度は0.50℃/以下とする。一方、第2の冷却速度が0.02℃/秒未満では、金属間化合物層が過剰に形成され、十分な延性が得られなくなる。従って、第2の冷却速度は0.02℃/秒以上とする。また、第1の温度から第2の温度までの冷却にかける時間は180秒以上1000秒以下とする。Zn原子及びAl原子が十分に拡散し、かつ金属間化合物層の過剰な形成を抑制するためである。
 第2の温度から室温までの冷却中に、Alに固溶していたZnが微細に析出し、Znを固溶するAl相及びこのAl相中に分散するZn相から構成された第1の組織、並びにAl相及びZn相から構成された共析組織が得られる。第1の組織及び共析組織から独立したZn相が析出することもあるが、その面積分率は20%以下となる。第1の組織内では、Al濃度が比較的高い第2の組織(Al:37%~50%)が生成すると共に、第2の組織と共析組織の間にAl濃度が比較的低い第3の組織(Al:25%~36%)が生成する。デンドライト内のミクロ凝固偏析が緩和されているほど、第2の組織及び第3の組織が生成しやすい。第3の冷却速度が30℃/秒未満では、Zn相が析出、成長、凝集して、めっき層におけるZn相の面積分率が20%以上となることがある。従って、第3の冷却速度は30℃/秒以上とする。第1の組織はデンドライトとして残存するため、例えば、第1の組織の数密度は1.6個/cm~25.0個/cmとなる。
 (めっき浴のAl濃度が10%以上20%未満の場合)
 Al濃度が10%以上20%未満の場合、めっき浴温から410℃の第1の温度まで10℃/秒以上の第1の冷却速度で冷却し、第1の温度から390℃の第2の温度まで0.02℃/秒~0.11℃/秒の第2の冷却速度で冷却し、その後、第2の温度から室温まで30℃/秒以上の第3の冷却速度で冷却する。
 10℃/秒以上の第1の冷却速度で第1の温度まで冷却することで、溶融金属は過冷状態となる。このため、マクロな凝固組織であるデンドライト(樹枝状晶)が微細に発生し、その数密度は1.6個/cm以上となる。達成可能な冷却速度を考慮すると、デンドライトの数密度は多くても25.0個/cm程度である。デンドライト内では、中心に近づくほどAl濃度が高く、中心から離れるほどZn濃度が高い。デンドライトが微細であるほど、その内部のミクロ凝固偏析が緩和される。第1の温度では、デンドライトの周囲は実質的にZn相である。第1の冷却速度が10℃/秒以上であると、めっき浴にMgが含まれる場合、初晶として晶出する金属間化合物のMgSi相を2μm以下の相当円直径に微細化することができる。このため、金属間化合物の形成に伴う延性の低下を抑制しやすい。その後の第2の冷却速度での冷却を考慮すると、第1の冷却速度は好ましくは40℃/秒以下とする。
 第1の温度から第2の温度までの冷却中に、デンドライトのAl濃度が比較的高かった部分に、Znを固溶するAl相が生成し、デンドライトのAl濃度が比較的低かった部分及びZn相が存在していた部分ではAl原子及びZn原子が混ざり合い、Zn相の面積分率が低下する。第2の冷却速度が0.11℃/秒超では、Zn原子及びAl原子が十分に拡散することができず、Zn相が多量に残存しやすくなる。従って、第2の冷却速度は0.11℃/以下とする。一方、第2の冷却速度が0.02℃/秒未満では、金属間化合物層が過剰に形成され、十分な延性が得られなくなる。従って、第2の冷却速度は0.02℃/秒以上とする。また、第1の温度から第2の温度までの冷却にかける時間は180秒以上1000秒以下とする。Zn原子及びAl原子が十分に拡散し、かつ金属間化合物層の過剰な形成を抑制するためである。
 第2の温度から室温までの冷却中に、Alに固溶していたZnが微細に析出し、Znを固溶するAl相及びこのAl相中に分散するZn相から構成された第1の組織、並びにAl相及びZn相から構成された共析組織が得られる。第1の組織及び共析組織から独立したZn相が析出することもあるが、その面積分率は20%以下となる。第1の組織内では、Al濃度が比較的高い第2の組織(Al:37%~50%)が生成すると共に、第2の組織と共析組織の間にAl濃度が比較的低い第3の組織(Al:25%~36%)が生成する。デンドライト内のミクロ凝固偏析が緩和されているほど、第2の組織及び第3の組織が生成しやすい。第3の冷却速度が30℃/秒未満では、Zn相が析出、成長、凝集して、めっき層におけるZn相の面積分率が20%以上となることがある。従って、第3の冷却速度は30℃/秒以上とする。第1の組織はデンドライトとして残存するため、例えば、第1の組織の数密度は1.6個/cm~25.0個/cmとなる。
 この方法により、本実施形態に係るめっき鋼板、すなわち所定の面積分率で第1の組織及び共析組織を含むめっき層を備えためっき鋼板を製造することができる。なお、第2の組織が生成すると、必然的に第3の組織も生成するが、第2の組織を生成させずに第3の組織を生成させることは可能である。
 この方法では、必然的にめっき層と鋼板との間に金属間化合物層が形成される。鋼板からのFeの拡散により、めっき層及び金属間化合物層の積層体に3%程度のFeが含有されることがあるが、その多くは金属間化合物層に濃化しており、めっき層に含まれるFeは極めて微量であり、めっき層の特性は実質的にFeの影響を受けない。
 次に、めっき層及び金属間化合物層の化学組成並びにめっき層の相の分析方法について説明する。これらの分析では、原則として、試料はめっき鋼板の板幅方向の中心付近から採取することとし、特に圧延方向(長手方向)の端部から30mmの範囲内及びこれに直交する方向(板幅方向)の端部から30mmの範囲内及びからは採取しないこととする。
 めっき層及び金属間化合物層の化学組成の分析では、インヒビターを加えた濃度が10%のHClにめっき鋼板を浸漬し、剥離溶液を誘導結合プラズマ(inductively coupled plasma:ICP)法により分析する。この方法により、めっき層及び金属間化合物層の平均の化学組成を把握することができる。
 めっき層を構成する相は、めっき層の表面に対するCuターゲットを使用したX線回折法により分析する。本発明の実施形態におけるめっき層では、Zn及びAlのピークが主要ピークとして検出される。Siは微量であるため、Siのピークは主要ピークとしては検出されない。Mgが含まれる場合、MgSiに帰属する回折ピークも検出される。
 めっき層に含まれる各組織の面積分率は、SEMにより得られるBSE像及びエネルギー分散型X線分析(energy dispersive X-ray spectrometry:EDS)による元素マッピング像の画像解析から算出することができる。
 次に、めっき層の性能の評価方法について説明する。めっき層の性能として、例えば、塗装後耐食性、塑性変形能、耐チッピング性、耐パウダリング性、及び耐焼付き性が挙げられる。
 塗装後耐食性の評価では、めっき鋼板の試料にりん酸亜鉛処理及び電着塗装を施して塗装めっき鋼板を準備し、塗装めっき鋼板の地鉄である鋼板に到達するクロスカット傷を形成する。そして、クロスカット傷を形成した塗装めっき鋼板を複合サイクル腐食試験に供し、クロスカット傷の周囲の最大膨れ幅を測定する。同じ条件で複数回の複合サイクル腐食試験を行い、それらの最大膨れ幅の平均値を算出する。最大膨れ幅の平均値により塗装後耐食性を評価できる。塗装後耐食性が優れているめっき層ほど、最大膨れ幅の平均値が低い。また、赤錆の発生は塗装めっき鋼板の外観を著しく劣化させるため、通常、赤錆が発生するまでの期間が長いものほど、塗装後耐食性が優れると評価される。
 塑性変形能の評価では、0T曲げ試験、1T曲げ試験又は2T曲げ試験で、めっき鋼板の試料を板幅方向に180°曲げして、曲げ頂上部のクラックを計数する。クラックの数により塑性変形能を評価できる。クラックの数は、SEMを用いてカウントする。塑性変形能に優れ、延性が良好なものほど、クラックが少ない。180°曲げした試料をそのまま腐食促進試験にかけることで、曲げ加工部の耐食性を評価することもできる。
 耐チッピング性の評価では、めっき鋼板の試料にりん酸亜鉛処理及び電着塗装を施した後に、中塗り、上塗り塗装及びクリヤー塗装を施すことで4層構造の塗膜を形成する。そして、所定の温度に恒温保持した塗膜に砕石を衝突させ、剥離の程度を目視により観察する。剥離の程度により耐チッピング性を評価できる。画像処理により剥離の程度を分類してもよい。
 耐パウダリング性の評価では、めっき鋼板の試料に板幅方向を曲げ軸方向とする60°曲げ試験を行う。そして、複数点で粘着テープにより剥離するめっき層の幅(剥離幅)を測定する。剥離幅の平均値により耐パウダリング性を評価できる。
 耐焼付き性の評価では、めっき鋼板の試料にドロービード加工を施し、試料の表面と金型のダイス肩部及びビード部との間で摺動を発生させ、金型に凝着しためっき層を目視する。めっき層の凝着の有無及び凝着している場合は凝着の程度により耐焼付け性を評価できる。
 なお、上記実施形態は、何れも本発明を実施するにあたっての具体化の例を示したものに過ぎず、これらによって本発明の技術的範囲が限定的に解釈されてはならないものである。すなわち、本発明はその技術思想、又はその主要な特徴から逸脱することなく、様々な形で実施することができる。
 次に、本発明の実施例について説明する。実施例での条件は、本発明の実施可能性及び効果を確認するために採用した一条件例であり、本発明は、この一条件例に限定されるものではない。本発明は、本発明の要旨を逸脱せず、本発明の目的を達成する限りにおいて、種々の条件を採用し得るものである。
 表1~表4に示す化学組成のめっき浴を建浴した。表1~表4には、各めっき浴の融点及び温度(めっき浴温)も記載してある。また、C濃度が0.2%で板厚が0.8mmの冷延鋼板を切断して、幅が100mm、長さが200mmのめっき原板を得た。そして、酸素濃度が20ppm以下で温度が800℃の炉内において、95体積%N-5体積%Hの混合ガスを用いてめっき原板の表面を還元し、めっき原板をNガスで空冷し、めっき原板の温度がめっき浴温+20℃に到達したところで、めっき原板をめっき浴に約3秒浸漬した。めっき浴への浸漬後、Nワイピングガスでめっき付着量を調整しながら、溶融金属が付着しためっき原板を100mm/秒の速度で引き上げた。板温はめっき原板の中心部にスポット溶接した熱電対を用いてモニタリングした。
 めっき浴からの引き上げ後、表1~表4に示す条件でめっき層を室温まで冷却した。すなわち、めっき浴温から第1の温度まで第1の冷却速度でガス冷却し、第1の温度から第2の温度まで第2の冷却速度で冷却し、その後、第2の温度から室温まで第3の冷却速度で冷却した。このようにして、種々のめっき鋼板を得た。表1~表4中の下線は、その項目が望ましい範囲から外れていることを示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
 次いで、インヒビターを加えた濃度が10%のHClに各めっき鋼板を浸漬し、剥離溶液をICP法により分析することで、めっき層及び金属間化合物層の平均の化学組成を特定した。また、各めっき鋼板を切断して、幅が15mm、長さが25mmの5つの試験片を作製し、各試験片を樹脂に埋め込み、研磨した。その後、各試験片について、めっき層の断面のSEM像及びEDSによる元素マッピング像を得た。そして、EDSによる元素マッピング像から、めっき層及び金属間化合物層の積層体内での、第2の組織、第3の組織、共析組織、Zn相、金属間化合物層、MgSi相、Si相、及びその他の金属化合物の面積分率を測定した。具体的には、1つの試料につき1視野の撮影を行い、すなわち1つのめっき鋼板につき合計で5視野の撮影を行い、画像解析により面積分率を測定した。各視野には、めっき層の50μm×200μmの大きさの領域が含まれるようにした。また、この測定結果から、めっき層内での、第2の組織、第3の組織、共析組織、Zn相、MgSi相、Si相、及びその他の金属化合物の面積分率を算出した。更に、EDSによる元素マッピング像から、めっき層と鋼板との間に存在する金属間化合物層の厚さを測定した。これらの結果を表5~表8に示す。
 第2の組織、第3の組織及び共析組織の同定では、EDSによる元素マッピング像から、第2の組織、第3の組織又は共析組織のいずれかであると認識できる組織についてEDS分析により平均Al濃度を特定し、平均Al濃度が37%~50%のものを第2の組織、25%~36%のものを第3の組織、10%~24%のものを共析組織と判断した。ここでは、平均結晶粒径が相当円半径で1μm以下のAl相及びZn相の2相から構成される組織を、第2の組織、第3の組織又は共析組織のいずれかであると認識とした。
 また、光学顕微鏡像を用いて、30mm×30mmの視野内に存在する第1の組織を計数し、第1の組織の数密度を算出した。この結果も表5~表8に示す。表5~表8中の下線は、その数値が本発明の範囲から外れていることを示す。
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
 その後、各めっき鋼板について、耐パウダリング性、耐チッピング性、耐焼付き性、塑性変形能及び塗装後耐食性の評価を行った。
 めっき層の耐パウダリング性の評価では、各めっき鋼板を切断して、幅が40mm、長さが100mm、厚さが0.8mmの試験片を作製し、各試験片についてV曲げ試験機を用いて、板幅方向を曲げ軸方向とし、曲率半径を5mmRとして60°曲げ試験を行った。次いで、5点で粘着テープにより剥離するめっき層の幅(剥離幅)を測定し、その平均値(平均剥離幅)を算出した。そして、平均剥離幅が0.1mm以下のものを「A」、平均剥離幅が0.1mm超1.0mm以下のものを「B」、平均剥離幅が1.0mm超2.0mm以下のものを「C」、平均剥離幅が2.0mm超のものを「D」と評価した。
 めっき層の耐焼付き性の評価では、各めっき鋼板を切断して、幅が80mm、長さが350mmの2つの試験片を作製し、各試験片についてダイス及びビードを模した冶具を用いてドロービード加工を施し、試験片の表面とダイス肩部及びビード部との間で長さが150mm以上の摺動を発生させた。上記冶具のダイス肩部及びビード部の曲率半径はそれぞれ2mmR、5mmRとし、ダイスの押付け圧力は60kN/m、ドロービード加工の引き抜き速度は2m/minとした。ドロービード加工に際しては、試験片の表面に潤滑油(550F:日本パーカライジング社製)を両面で0.5g/m塗布した。そして、治具に凝着しためっき層を目視し、めっき層が凝着していないものを「A」、めっき層が粉末状に凝着しているものを「B」、めっき層が帯状に凝着しているものを「C」、めっき層が全体的に剥離して凝着しているものを「D」と評価した。
 めっき層の塑性変形能の評価では、各めっき鋼板を切断して、幅が30mm、長さが60mm、厚さが0.8mmの試験片を作製し、各試験片について0T曲げ試験、1T曲げ試験及び2T曲げ試験を行った。次いで、SEMを用いてめっき層の曲げ頂上部の幅が1.6mm、長さが30mmの領域を観察し、曲げ頂上部のクラックを計数した。めっき鋼板毎に、0T曲げ試験、1T曲げ試験、2T曲げ試験のいずれについても3以上の試験片を準備し、クラックの数の平均値を算出した。そして、0T曲げ試験、1T曲げ試験、2T曲げ試験のそれぞれについて、平均クラック数が0のものを「A」、平均クラック数が1~20のものを「B」、平均クラック数が21~100のものを「C」、平均クラック数が100超のものを「D」と評価した。
 めっき層の塗装後耐食性の評価では、各めっき鋼板を切断して、幅が50mm、長さが100mmのサンプルを作製し、各サンプルにりん酸亜鉛系化成処理液(サーフダインSD5350系:日本ペイント・インダストリアルコーティング社製)を用いたりん酸亜鉛処理を施した。次いで、塗料(パワーニクス110F系:日本パーカライジング社製)を用いた電着塗装を実施して20μmの塗膜を形成し、150℃の温度で20分間の焼付けを行った。その後、各サンプルについて、鋼板に到達するクロスカット傷を形成し、JASO M609-91に従った複合サイクル腐食試験を行い、60、90、120、150の各サイクル経過後にクロスカット周囲の8箇所の最大膨れ幅を測定し、平均値を求めた。クロスカット傷としては、長さが40×√2mmのものを2本形成した。そして、クロスカット傷からの膨れ幅が1mm以下のものを「A」、1mm超2mm以下のものを「B」、2mm超のものを「C」、膨れ幅に関係なく赤錆が発生したものを「D」とした。
 めっき層のチッピング耐性では、めっき層に塗装後耐食性を評価する場合と同様のりん酸亜鉛処理及び電着塗装を施した後、中塗り、上塗り塗装及びクリヤー塗装を実施し、全体としての膜厚が40μmになるように塗膜を作製した。次いで、グラベロ試験機(スガ試験機株式会社製)を用いて、7号砕石100gを30cmの距離から3.0kg/cmの空気圧で、-20℃に冷却した塗膜に90度の角度で衝突させ、剥離の程度を目視により観察した。そして、全く剥離がないものを「A」、剥離面積が小さく剥離頻度が低いものを「B」、剥離面積が大きく剥離頻度が低いものを「C」、剥離面積が大きく剥離頻度が高いものを「D」と評価した。
 耐パウダリング性、耐チッピング性、耐焼付き性、塑性変形能及び塗装後耐食性の評価結果を表9~表12に示す。
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000012
 表1、表5及び表9に示すように、試験No.1では、めっき浴のAl濃度が不足したため、第1の組織の面積分率が不足し、Zn相の面積分率が過剰であり、十分な耐焼付き性、塑性変形能及び塗装後耐食性が得られなかった。
 試験No.4では、めっき浴のSi濃度が不足したため、めっき浴への浸漬直後から金属間化合物層が成長し、金属間化合物層が厚く形成され、十分な耐パウダリング性、耐チッピング性、塑性変形能及び塗装後耐食性が得られなかった。
 試験No.7では、めっき浴のMg濃度がSi濃度に対して過剰であったため、金属間化合物相であるMgZn相がめっき層に過剰に含まれ、十分な耐チッピング性及び塑性変形能が得られなかった。
 試験No.11では、めっき浴のSi濃度が不足したため、めっき浴への浸漬直後から金属間化合物層が成長し、金属間化合物層が厚く形成され、十分な耐パウダリング性、耐チッピング性、塑性変形能及び塗装後耐食性が得られなかった。
 試験No.12では、第3の冷却速度が不足したため、第1の組織の面積分率が不足し、Zn相の面積分率が過剰であり、十分な耐パウダリング性、耐チッピング性、塑性変形能及び塗装後耐食性が得られなかった。
 試験No.19では、第2の冷却速度が過剰であったため、第1の組織の面積分率が不足し、1T曲げ試験及び0T曲げ試験にて多くのクラックが発生し、十分な塑性変形能が得られなかった。また、十分な耐チッピング性及び塗装後耐食性も得られなかった。
 試験No.20では、めっき処理後の冷却を室温まで10℃/秒の冷却速度で行ったため、第1の組織の面積分率が不足し、Zn相の面積分率が過剰であり、十分な耐チッピング性、塑性変形能及び塗装後耐食性が得られなかった。
 試験No.23では、第2の冷却速度での冷却にかけた時間が長すぎたため、金属間化合物層が厚く形成され、十分な塗装後耐食性、塑性変形能、耐パウダリング性及び耐チッピング性が得られなかった。
 試験No.24では、めっき浴のMg濃度がSi濃度に対して過剰であったため、金属間化合物相であるMgZn相がめっき層に過剰に含まれ、十分な耐パウダリング性、耐チッピング性及び塑性変形能が得られなかった。
 表2、表6及び表10に示すように、試験No.32では、めっき浴のAl濃度が過剰であったため、金属間化合物層が厚く形成され、十分な耐パウダリング性、耐チッピング性、塑性変形能及び塗装後耐食性が得られなかった。
 試験No.40では、めっき浴のSi濃度が不足したため、めっき浴への浸漬直後から金属間化合物層が成長し、金属間化合物層が厚く形成され、十分な耐チッピング性及び塑性変形能が得られなかった。
 試験No.43では、第2の冷却速度が過剰であったため、第1の組織の面積分率が不足し、十分な耐チッピング性、塑性変形能及び塗装後耐食性が得られなかった。
 試料No.44では、めっき処理後の冷却を室温まで10℃/秒の冷却速度で行ったため、第1の組織の面積分率が不足し、Zn相の面積分率が過剰であり、十分な耐チッピング性、耐焼付き性、塑性変形能及び塗装後耐食性が得られなかった。
 試料No.45では、めっき浴のMg濃度がSi濃度に対して過剰であったため、金属間化合物相であるMgZn相がめっき層に過剰に含まれ、十分な耐チッピング性及び塑性変形能が得られなかった。
 試料No.48では、めっき浴のMg濃度がSi濃度に対して過剰であったため、金属間化合物相であるMgZn相がめっき層に過剰に含まれ、十分な耐チッピング性及び塑性変形能が得られなかった。
 表3、表7及び表11に示すように、試験No.50では、第2の冷却速度での冷却にかけた時間が長すぎたため、金属間化合物層が厚く形成され、十分な塗装後耐食性、塑性変形能、耐パウダリング性及び耐チッピング性が得られなかった。
 試料No.58では、めっき浴のAl濃度が不足したため、第1の組織の面積分率が不足し、金属間化合物層が厚く形成され、十分な耐焼付き性、塑性変形能及び塗装後耐食性が得られなかった。
 試料No.60では、めっき浴のSi濃度が不足したため、めっき浴への浸漬直後から金属間化合物層が成長し、金属間化合物層が厚く形成され、十分な耐パウダリング性、耐チッピング性、塑性変形能及び塗装後耐食性が得られなかった。
 試料No.66では、第2の冷却速度が過剰であったため、第1の組織の面積分率が不足し、十分な耐チッピング性、塑性変形能及び塗装後耐食性が得られなかった。
 試料No.67では、めっき処理後の冷却を室温まで10℃/秒の冷却速度で行ったため、第1の組織の面積分率が不足し、Zn相の面積分率が過剰であり、十分な耐チッピング性、耐焼付き性、塑性変形能及び塗装後耐食性が得られなかった。
 試料No.69では、めっき浴のMg濃度がSi濃度に対して過剰であったため、金属間化合物相であるMgZn相がめっき層に過剰に含まれ、十分な耐チッピング性及び塑性変形能が得られなかった。
 表3、表7及び表11に示すように、試験No.77では、めっき処理後の冷却を室温まで10℃/秒の冷却速度で行ったため、第1の組織の面積分率が不足し、Zn相の面積分率が過剰であり、十分な耐チッピング性、耐焼付き性、塑性変形能及び塗装後耐食性が得られなかった。
 試験No.86では、めっき浴のAl濃度が過剰であったため、金属間化合物層が厚く形成され、十分な耐パウダリング性、耐チッピング性、塑性変形能及び塗装後耐食性が得られなかった。
 試験No.90では、めっき浴のMg濃度が過剰であったため、金属間化合物相であるMgZn相がめっき層に過剰に含まれ、十分な耐パウダリング性、耐チッピング性及び塑性変形能が得られなかった。
 試験No.92では、めっき浴のAl濃度が過剰であったため、金属間化合物層が厚く形成され、十分な耐パウダリング性、耐チッピング性、塑性変形能及び塗装後耐食性が得られなかった。
 試験No.93では、Si濃度が過剰であったため、めっき層にSi相が多く含まれ、十分な耐チッピング性、耐焼付き性及び塑性変形能が得られなかった。
 試験No.94の市販のZnめっき鋼板は、耐焼付き性及び長期の塗装後耐食性に劣っていた。
 試験No.95の合金化Znめっき鋼板では、耐パウダリング性、耐チッピング性、塑性変形能及び塗装後耐食性の全般にわたり、性能が劣っていた。
 試験No.96の電気Znめっき鋼板は、めっき層厚さが小さいこともあって、耐焼付き性及び塗装後耐食性に劣っていた。
 比較例である試験No.97~No.99では、第2の冷却速度が過剰であったため、第1の組織の面積分率が不足し、十分な耐パウダリング性、耐チッピング性、塑性変形能及び塗装後耐食性が得られなかった。
 一方、本発明の範囲内にある発明例においては、優れた耐パウダリング性、耐チッピング性、耐焼付き性、曲げ試験結果及び塗装後耐食性が得られた。このことから、めっき鋼板が、厳しい加工が施される自動車用鋼板の素材等として、非常に有効なものであることが理解できる。
 図3に、発明例である試験No.16のめっき鋼板を製造する際のめっき鋼板の温度の変化(ヒートパターン)を示し、図4に、試験No.16のめっき鋼板のBSE像を示す。図5に、発明例である試験No.91のめっき鋼板のBSE像を示す。図4及び図5に示すように、めっき層のAl濃度が22%の試験No.16、及びめっき層のAl濃度が40%の試験No.91のいずれにおいても、図1に示す実施形態と同様に、適切な面積分率で第1の組織11、共析組織14及びZn相15が存在し、第1の組織11に第2の組織12及び第3の組織13が含まれている。
 図6に、比較例である試験No.20のめっき鋼板を製造する際のめっき鋼板の温度の変化(ヒートパターン)を示し、図7に、試験No.20のめっき鋼板のBSE像を示す。図7に示すように、第1の組織11は存在せず、Zn相15の面積分率が高かった。
 本発明は、例えば、自動車の外板に好適なめっき鋼板に関連する産業に利用することができる。

Claims (9)

  1.  少なくとも鋼板の表面の一部にAl含有Zn系のめっき層を有するめっき鋼板であって、
     前記めっき層、及び前記めっき層と前記鋼板との間の金属間化合物層の平均の化学組成は、質量%で、Al:10%~40%、Si:0.05%~4%、Mg:0%~5%、かつ残部:Zn及び不純物で表され、
     前記めっき層は、
      Znを固溶するAl相及びこのAl相中に分散するZn相から構成され、平均の化学組成が、質量%で、Al:25%~50%、Zn:50%~75%、かつ不純物:2%未満で表される第1の組織と、
      Al相及びZn相から構成され、平均の化学組成が、質量%で、Al:10%~24%、Zn:76%~90%、不純物:2%未満で表される共析組織と、
     を有し、
     前記めっき層の断面において、前記第1の組織の面積分率は5%~40%、前記第1の組織及び前記共析組織の合計の面積分率は50%以上であり、
     前記めっき層に含まれる、Znを90%以上含む組織であるZn相の面積分率が25%以下であり、
     前記めっき層に含まれる、金属間化合物相の合計の面積分率が9%以下であり、
     前記金属間化合物層の厚さが2μm以下である、
     ことを特徴とするめっき鋼板。
  2.  前記めっき層の表面において前記第1の組織の数密度が1.6個/cm~25.0個/cmである、
     ことを特徴とする請求項1に記載のめっき鋼板。
  3.  前記第1の組織は、
      平均の化学組成が、質量%で、Al:37%~50%、Zn:50%~63%、不純物:2%未満で表される第2の組織と、
      平均の化学組成が、質量%で、Al:25%~36%、Zn:64%~75%、不純物:2%未満で表される第3の組織と、
     含むことを特徴とする請求項1又は2に記載のめっき鋼板。
  4.  前記めっき層及び前記金属間化合物層の平均の化学組成は、質量%で、Al:20%~40%、Si:0.05%~2.5%、Mg:0%~2%、かつ残部:Zn及び不純物で表される、
     ことを特徴とする請求項1乃至3のいずれか1項に記載のめっき鋼板。
  5.  前記金属間化合物層の厚さが100nm~1000nmである、
     ことを特徴とする請求項1乃至4のいずれか1項に記載のめっき鋼板。
  6.  前記めっき層の断面において、前記第1の組織の面積分率は20%~40%、前記共析組織の面積分率は50%~70%、前記第1の組織及び前記共析組織の合計の面積分率は90%以上である、
     ことを特徴とする請求項1乃至5のいずれか1項に記載のめっき鋼板。
  7.  前記めっき層の断面において、前記第1の組織の面積分率は30%~40%、前記共析組織の面積分率は55%~65%、前記第1の組織及び前記共析組織の合計の面積分率は95%以上である、
     ことを特徴とする請求項1乃至6のいずれか1項に記載のめっき鋼板。
  8.  前記めっき層及び前記金属間化合物層の平均の化学組成において、Mg濃度が0.05%~5%であり、
     Mg濃度をMg%、Si濃度をSi%としたときに、「Mg%≦2×Si%」の関係が成り立ち、
     前記めっき層中に存在するMgSiの結晶が最大相当円直径で2μm以下である、
     ことを特徴とする請求項1乃至7のいずれか1項に記載のめっき鋼板。
  9.  前記めっき層に含まれる、前記Zn相の体積分率が20%以下であることを特徴とする請求項1乃至8のいずれか1項に記載のめっき鋼板。
PCT/JP2016/081634 2015-10-26 2016-10-25 めっき鋼板 WO2017073579A1 (ja)

Priority Applications (9)

Application Number Priority Date Filing Date Title
EP16859809.2A EP3369837B1 (en) 2015-10-26 2016-10-25 Plated steel sheet
ES16859809T ES2778682T3 (es) 2015-10-26 2016-10-25 Lámina de acero enchapado
BR112018003781-8A BR112018003781A2 (ja) 2015-10-26 2016-10-25 Plating steel plate
MX2018002518A MX2018002518A (es) 2015-10-26 2016-10-25 Lamina de acero enchapada.
US15/753,150 US10655203B2 (en) 2015-10-26 2016-10-25 Plated steel sheet
PL16859809T PL3369837T4 (pl) 2015-10-26 2016-10-25 Blacha stalowa cienka powlekana galwanicznie
JP2017502901A JP6160793B1 (ja) 2015-10-26 2016-10-25 めっき鋼板
CN201680060755.8A CN108350554B (zh) 2015-10-26 2016-10-25 镀覆钢板
KR1020187007029A KR102085223B1 (ko) 2015-10-26 2016-10-25 도금 강판

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-209674 2015-10-26
JP2015209674 2015-10-26

Publications (1)

Publication Number Publication Date
WO2017073579A1 true WO2017073579A1 (ja) 2017-05-04

Family

ID=58630504

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/081634 WO2017073579A1 (ja) 2015-10-26 2016-10-25 めっき鋼板

Country Status (11)

Country Link
US (1) US10655203B2 (ja)
EP (1) EP3369837B1 (ja)
JP (1) JP6160793B1 (ja)
KR (1) KR102085223B1 (ja)
CN (1) CN108350554B (ja)
BR (1) BR112018003781A2 (ja)
ES (1) ES2778682T3 (ja)
MX (1) MX2018002518A (ja)
PL (1) PL3369837T4 (ja)
TW (1) TWI601853B (ja)
WO (1) WO2017073579A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3733917A4 (en) * 2017-12-28 2021-04-21 Nippon Steel Corporation SHEET STEEL COATED WITH MELTED ZINC BASED VENEER WITH SUPERIOR CORROSION RESISTANCE AFTER COATING
JP2021195563A (ja) * 2020-06-09 2021-12-27 日本製鉄株式会社 溶融Zn−Al−Mg系めっき鋼材
JP2021195564A (ja) * 2020-06-09 2021-12-27 日本製鉄株式会社 溶融Zn−Al−Mg系めっき鋼材
JP2021195562A (ja) * 2020-06-09 2021-12-27 日本製鉄株式会社 溶融Zn−Al−Mg系めっき鋼材

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102557220B1 (ko) * 2019-04-19 2023-07-19 닛폰세이테츠 가부시키가이샤 도금 강재
JP7127750B2 (ja) * 2020-04-21 2022-08-30 日本製鉄株式会社 溶融めっき鋼板、及びその製造方法
US20240002991A1 (en) * 2020-10-16 2024-01-04 Nippon Steel Corporation HOT-DIP Zn-BASED PLATED STEEL SHEET
WO2023037396A1 (ja) * 2021-09-07 2023-03-16 日本製鉄株式会社 溶融めっき鋼材

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002206156A (ja) * 2000-11-06 2002-07-26 Nippon Steel Corp 鉄塔用めっき鉄鋼製品とその製造方法および該製造方法で用いるフラックス
JP2003155549A (ja) * 2001-11-19 2003-05-30 Nippon Steel Corp 高耐食性を有し加工性に優れた亜鉛合金めっき鋼材とその製造方法
JP2003268517A (ja) * 2002-03-08 2003-09-25 Nippon Steel Corp 表面平滑性に優れる溶融めっき鋼材
JP2004323974A (ja) * 2003-04-11 2004-11-18 Jfe Steel Kk 溶融Zn−Al系合金めっき鋼板およびその製造方法
US20090004400A1 (en) * 2004-01-22 2009-01-01 Madhu Ranjan Effect of Ternary Additions on the Structure and Properties of Coatings Produced by a High Aluminum Galvanizing Bath
WO2010150537A1 (ja) * 2009-06-25 2010-12-29 新日本製鐵株式会社 耐食性と疲労特性に優れた橋梁用高強度Zn-Alめっき鋼線及びその製造方法

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003253416A (ja) 2002-02-27 2003-09-10 Jfe Steel Kk 合金化溶融亜鉛めっき鋼板
CN100540719C (zh) * 2002-03-08 2009-09-16 新日本制铁株式会社 表面平滑性优良的高耐蚀性热浸镀钢材
KR100808655B1 (ko) * 2002-10-28 2008-03-03 신닛뽄세이테쯔 카부시키카이샤 표면 평활성과 성형성이 우수한 고내식성 용융 도금 강재와용융 도금 강재의 제조 방법
JP4157491B2 (ja) * 2003-04-25 2008-10-01 新日本製鐵株式会社 加工性に優れた非脱膜型潤滑めっき鋼板
JP2005015834A (ja) * 2003-06-25 2005-01-20 Nippon Steel Corp 耐食性に優れ溶接可能な高耐食性塗装鋼板
JP4306426B2 (ja) 2003-11-27 2009-08-05 Jfeスチール株式会社 溶融亜鉛めっき鋼板
JP4374281B2 (ja) 2004-05-26 2009-12-02 新日本製鐵株式会社 加工部耐食性に優れる溶融めっき鋼材
JP4374289B2 (ja) * 2004-07-07 2009-12-02 新日本製鐵株式会社 加工部耐食性に優れた表面処理鋼板
JP4542434B2 (ja) 2005-01-14 2010-09-15 新日本製鐵株式会社 表面外観に優れた溶融Zn−Al−Mg−Siめっき鋼板及びその製造方法。
JP4542468B2 (ja) 2005-06-14 2010-09-15 日新製鋼株式会社 曲げ加工性に優れた溶融Zn−Al−Mg系めっき鋼板の製造方法
CN1804100A (zh) * 2006-01-20 2006-07-19 东南大学 钢或铁合金材料表面镀锌铝减振合金工艺
JP5404126B2 (ja) 2009-03-26 2014-01-29 日新製鋼株式会社 耐食性に優れたZn−Al系めっき鋼板およびその製造方法
AU2010267413B2 (en) 2009-06-30 2015-05-21 Nippon Steel Corporation Zn-Al-Mg coated steel sheet and producing method thereof

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002206156A (ja) * 2000-11-06 2002-07-26 Nippon Steel Corp 鉄塔用めっき鉄鋼製品とその製造方法および該製造方法で用いるフラックス
JP2003155549A (ja) * 2001-11-19 2003-05-30 Nippon Steel Corp 高耐食性を有し加工性に優れた亜鉛合金めっき鋼材とその製造方法
JP2003268517A (ja) * 2002-03-08 2003-09-25 Nippon Steel Corp 表面平滑性に優れる溶融めっき鋼材
JP2004323974A (ja) * 2003-04-11 2004-11-18 Jfe Steel Kk 溶融Zn−Al系合金めっき鋼板およびその製造方法
US20090004400A1 (en) * 2004-01-22 2009-01-01 Madhu Ranjan Effect of Ternary Additions on the Structure and Properties of Coatings Produced by a High Aluminum Galvanizing Bath
WO2010150537A1 (ja) * 2009-06-25 2010-12-29 新日本製鐵株式会社 耐食性と疲労特性に優れた橋梁用高強度Zn-Alめっき鋼線及びその製造方法

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3733917A4 (en) * 2017-12-28 2021-04-21 Nippon Steel Corporation SHEET STEEL COATED WITH MELTED ZINC BASED VENEER WITH SUPERIOR CORROSION RESISTANCE AFTER COATING
JP2021195563A (ja) * 2020-06-09 2021-12-27 日本製鉄株式会社 溶融Zn−Al−Mg系めっき鋼材
JP2021195564A (ja) * 2020-06-09 2021-12-27 日本製鉄株式会社 溶融Zn−Al−Mg系めっき鋼材
JP2021195562A (ja) * 2020-06-09 2021-12-27 日本製鉄株式会社 溶融Zn−Al−Mg系めっき鋼材
JP7417103B2 (ja) 2020-06-09 2024-01-18 日本製鉄株式会社 溶融Zn-Al-Mg系めっき鋼材
JP7417102B2 (ja) 2020-06-09 2024-01-18 日本製鉄株式会社 溶融Zn-Al-Mg系めっき鋼材
JP7436840B2 (ja) 2020-06-09 2024-02-22 日本製鉄株式会社 溶融Zn-Al-Mg系めっき鋼材

Also Published As

Publication number Publication date
BR112018003781A2 (ja) 2018-09-25
JP6160793B1 (ja) 2017-07-12
MX2018002518A (es) 2018-05-28
US20180245193A1 (en) 2018-08-30
EP3369837B1 (en) 2020-02-05
KR20180040157A (ko) 2018-04-19
ES2778682T3 (es) 2020-08-11
PL3369837T3 (pl) 2020-09-21
JPWO2017073579A1 (ja) 2017-11-02
CN108350554B (zh) 2020-01-21
KR102085223B1 (ko) 2020-03-05
CN108350554A (zh) 2018-07-31
TW201718941A (zh) 2017-06-01
TWI601853B (zh) 2017-10-11
EP3369837A4 (en) 2019-06-19
EP3369837A1 (en) 2018-09-05
US10655203B2 (en) 2020-05-19
PL3369837T4 (pl) 2020-09-21

Similar Documents

Publication Publication Date Title
JP6160793B1 (ja) めっき鋼板
JP6433960B2 (ja) 溶融Al−Zn−Mg−Siめっき鋼板とその製造方法
JP6394843B1 (ja) めっき鋼板
KR102516012B1 (ko) 도금 강판
JP6368730B2 (ja) 溶融Al−Zn−Mg−Siめっき鋼板とその製造方法
KR101636443B1 (ko) 용융 Al-Zn계 도금 강판 및 그의 제조 방법
JP6350780B1 (ja) 塗装後耐食性に優れた溶融Zn系めっき鋼板
WO2016072479A1 (ja) 溶融亜鉛めっき鋼板
JP6428975B1 (ja) めっき鋼板
WO2018221738A1 (ja) ホットスタンプ部材
TW201348512A (zh) 熱壓用鋼板、其製造方法、以及使用其的熱壓構件的製造方法
JP2006336097A (ja) 焼付硬化性に優れた合金化溶融亜鉛めっき用鋼板及び合金化溶融亜鉛めっき鋼板

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2017502901

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16859809

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15753150

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: MX/A/2018/002518

Country of ref document: MX

ENP Entry into the national phase

Ref document number: 20187007029

Country of ref document: KR

Kind code of ref document: A

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112018003781

Country of ref document: BR

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 112018003781

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20180226