WO2017067124A1 - 一种聚苯醚树脂组合物及其在高频电路基板中的应用 - Google Patents

一种聚苯醚树脂组合物及其在高频电路基板中的应用 Download PDF

Info

Publication number
WO2017067124A1
WO2017067124A1 PCT/CN2016/075323 CN2016075323W WO2017067124A1 WO 2017067124 A1 WO2017067124 A1 WO 2017067124A1 CN 2016075323 W CN2016075323 W CN 2016075323W WO 2017067124 A1 WO2017067124 A1 WO 2017067124A1
Authority
WO
WIPO (PCT)
Prior art keywords
weight
unit
parts
substituted
unsubstituted
Prior art date
Application number
PCT/CN2016/075323
Other languages
English (en)
French (fr)
Inventor
陈广兵
曾宪平
关迟记
许永静
Original Assignee
广东生益科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广东生益科技股份有限公司 filed Critical 广东生益科技股份有限公司
Priority to EP16856571.1A priority Critical patent/EP3315560B1/en
Priority to US15/744,244 priority patent/US10645806B2/en
Priority to JP2018522837A priority patent/JP6912467B2/ja
Publication of WO2017067124A1 publication Critical patent/WO2017067124A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0313Organic insulating material
    • H05K1/0353Organic insulating material consisting of two or more materials, e.g. two or more polymers, polymer + filler, + reinforcement
    • H05K1/0373Organic insulating material consisting of two or more materials, e.g. two or more polymers, polymer + filler, + reinforcement containing additives, e.g. fillers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G65/34Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from hydroxy compounds or their metallic derivatives
    • C08G65/38Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from hydroxy compounds or their metallic derivatives derived from phenols
    • C08G65/44Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from hydroxy compounds or their metallic derivatives derived from phenols by oxidation of phenols
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G65/34Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from hydroxy compounds or their metallic derivatives
    • C08G65/48Polymers modified by chemical after-treatment
    • C08G65/485Polyphenylene oxides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/0008Organic ingredients according to more than one of the "one dot" groups of C08K5/01 - C08K5/59
    • C08K5/0066Flame-proofing or flame-retarding additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/49Phosphorus-containing compounds
    • C08K5/51Phosphorus bound to oxygen
    • C08K5/53Phosphorus bound to oxygen bound to oxygen and to carbon only
    • C08K5/5313Phosphinic compounds, e.g. R2=P(:O)OR'
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L71/00Compositions of polyethers obtained by reactions forming an ether link in the main chain; Compositions of derivatives of such polymers
    • C08L71/08Polyethers derived from hydroxy compounds or from their metallic derivatives
    • C08L71/10Polyethers derived from hydroxy compounds or from their metallic derivatives from phenols
    • C08L71/12Polyphenylene oxides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L71/00Compositions of polyethers obtained by reactions forming an ether link in the main chain; Compositions of derivatives of such polymers
    • C08L71/08Polyethers derived from hydroxy compounds or from their metallic derivatives
    • C08L71/10Polyethers derived from hydroxy compounds or from their metallic derivatives from phenols
    • C08L71/12Polyphenylene oxides
    • C08L71/126Polyphenylene oxides modified by chemical after-treatment
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L83/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
    • C08L83/04Polysiloxanes
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/20Polysiloxanes containing silicon bound to unsaturated aliphatic groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2203/00Applications
    • C08L2203/20Applications use in electrical or conductive gadgets

Definitions

  • the present invention relates to a polyphenylene ether resin composition, and in particular to a polyphenylene ether resin composition and its use in a high frequency circuit substrate.
  • the relationship between the signal transmission rate and the dielectric constant Dk of the insulating material is such that the lower the dielectric constant Dk of the insulating material, the faster the signal transmission rate. Therefore, in order to achieve high frequency of signal transmission rate, it is necessary to develop a substrate having a low dielectric constant. As the frequency of the signal increases, the loss of the signal in the substrate can no longer be ignored.
  • the relationship between the signal loss and the frequency, the dielectric constant Dk, and the dielectric loss Df is such that the smaller the dielectric constant Dk of the substrate is, the smaller the dielectric loss Df is, and the smaller the signal loss is. Therefore, the development of a high-frequency circuit substrate having a low dielectric constant Dk and a low dielectric loss Df and good heat resistance has become a research and development direction that CCL manufacturers are paying attention to.
  • the polyphenylene ether resin has a large amount of benzene ring structure and no strong polar groups, which gives the polyphenylene ether resin excellent properties, such as high glass transition temperature, good dimensional stability, small linear expansion coefficient, and water absorption. Low rate, especially excellent low dielectric constant, low dielectric loss.
  • polyphenylene ether has disadvantages such as high melting point of the resin, poor processability, and poor solvent resistance.
  • the excellent physical properties, heat resistance, chemical properties and electrical properties of polyphenylene ether have attracted many companies around the world to modify it and achieved certain results.
  • a reactive group such as a vinyl group is introduced at the chain end or side chain of the polyphenylene ether to make it a thermosetting resin.
  • the resin has excellent heat resistance, low dielectric constant and low dielectric loss after heat curing. Comprehensive performance, such as consumption, has become an ideal material for preparing high-frequency circuit substrates.
  • a cross-linking agent of an organosilicon compound containing an unsaturated double bond as a vinyl-reactive group-modified thermosetting polyphenylene ether is used for preparing a high-frequency electronic circuit substrate.
  • CN 102993683 Preparation of a crosslinking agent as a modified polyphenylene ether using an organosilicon compound containing an unsaturated double bond, the prepared high frequency circuit substrate having a high glass transition temperature, a high thermal decomposition temperature, and high interlayer adhesion. Force, low dielectric constant and low dielectric loss.
  • the organosilicon compound structure containing an unsaturated double bond employed in the prior art is a linear or cyclic organosilicon compound.
  • the linear organosilicon compound containing an unsaturated double bond has excellent flexibility, and the prepared high-frequency circuit substrate has a low bending strength.
  • the circuit substrate prepared by using the annular organosilicon compound containing an unsaturated double bond has good comprehensive performance, but due to its small molecular weight, there is a problem of volatilization during the baking process.
  • CN104650574A uses a polyphenylene ether, a polyperfluoroethylene emulsion, a silicone resin and an inorganic filler composition for the preparation of a high frequency electronic circuit substrate.
  • the substrate prepared has the advantages of low dielectric constant, low dielectric loss, good processing performance and the like.
  • the silicone resin used in the prior art is a methylphenyl DQ silicone resin, which does not contain a reactive group and cannot be used as a crosslinking agent for a vinyl-modified thermosetting polyphenylene ether.
  • one of the objects of the present invention is to provide a polyphenylene ether resin composition having a low dielectric constant Dk and a low dielectric loss Df, and having excellent properties.
  • the heat resistance and interlayer adhesion satisfy the requirements of dielectric constant, dielectric loss, heat resistance and interlayer adhesion of a high-frequency circuit substrate, and can be used for preparing a high-frequency circuit substrate.
  • a polyphenylene ether resin composition comprising a vinyl-modified polyphenylene ether resin and a silicone resin having a three-dimensional network structure containing an unsaturated double bond, wherein the unsaturated double bond has a three-dimensional network structure
  • Silicone resin is a monofunctional siloxane having a three-dimensional network structure containing unsaturated double bonds MT silicone resin obtained by hydrolytic condensation of a unit (M unit) with a trifunctional siloxane unit (T unit), a monofunctional siloxane unit having a three-dimensional network structure containing an unsaturated double bond (M unit) , a trifunctional siloxane unit (T unit) and a tetrafunctional siloxane unit (Q unit) hydrolytically condensed by an MTQ silicone resin, a monofunctional network having a three-dimensional network structure containing an unsaturated double bond MDT silicone resin obtained by hydrolysis condensation of a siloxane unit (M unit), a difunctional siloxane unit (D unit) and
  • a typical but non-limiting silicone resin having a three-dimensional network structure containing an unsaturated double bond is a combination of MT silicone resin, MTQ silicone resin, MDT silicone resin, MDQ silicone resin, MT and MTQ silicone resin.
  • combination of MT and MDT silicone resins, combination of MT and MDQ silicone resins, combination of MT, MTQ and MDT silicone resins, combination of MTQ, MDT and MDQ silicone resins, MT, MTQ, MDT and MDQ silicones A combination of resins.
  • the vinyl modified polyphenylene ether resin is a powdery solid thermosetting resin at room temperature, and has active unsaturated double bonds at both ends thereof, and can be subjected to radical polymerization and solidification in the presence of a curing initiator.
  • a thermosetting resin excellent in heat resistance, dimensional stability, low water absorption, low dielectric constant, and low dielectric loss is obtained.
  • a silicone resin having a three-dimensional network structure containing an unsaturated double bond is used as a crosslinking agent for a vinyl-modified polyphenylene ether, and the polyphenylene ether resin composition has a high crosslinking density after curing, and can provide a high-frequency circuit substrate. Glass transition temperature. Further, the silicone resin having a three-dimensional network structure containing an unsaturated double bond does not contain a polar group, and can ensure low water absorption, low dielectric constant, and low dielectric loss of the high-frequency circuit substrate. The silicone resin having a three-dimensional network structure containing an unsaturated double bond has a high thermal decomposition temperature and can provide excellent heat resistance of a high-frequency circuit substrate. Further, the prepared high-frequency circuit substrate has high interlayer adhesion and bending strength, and the reliability of the substrate can be improved.
  • the vinyl-modified polyphenylene ether resin has excellent properties such as low dielectric constant and low dielectric loss, and a silicone resin having a three-dimensional network structure containing an unsaturated double bond is used as a crosslinking agent for the modified polyphenylene ether resin.
  • the prepared high-frequency circuit substrate has a combination of low dielectric constant, low dielectric loss, low water absorption, high heat resistance, high interlayer adhesion, and high bending strength. With linear insufficiency The siliconeization of the double bond cooperates with the crosslinker to have a higher bending strength than the crosslinker.
  • a silicone resin having a three-dimensional network structure containing an unsaturated double bond does not have a problem of volatilization when a sizing sheet is used.
  • the vinyl modified polyphenylene ether resin has the following structure:
  • 0 ⁇ x ⁇ 100, 0 ⁇ y ⁇ 100, 2 ⁇ x+y ⁇ 100 0 ⁇ x ⁇ 100, 0 ⁇ y ⁇ 100, 2 ⁇ x+y ⁇ 100.
  • M is selected from:
  • N is selected from any one of -O-, -CO-, -SO-, -SC-, -SO 2 - or -C(CH 3 ) 2 - or a combination of at least two.
  • R 2 , R 4 , R 6 , R 8 , R 11 , R 13 , R 15 and R 17 are each independently selected from substituted or unsubstituted C1-C8 (eg C2, C3, C4, C5, C6 or C7) a straight-chain alkyl group, a substituted or unsubstituted C1-C8 (eg, C2, C3, C4, C5, C6 or C7) branched alkyl group or a substituted or unsubstituted phenyl group or a combination of at least two .
  • R 1 , R 3 , R 5 , R 7 , R 10 , R 12 , R 14 and R 16 are each independently selected from a hydrogen atom, a substituted or unsubstituted C1-C8 (eg C2, C3, C4, C5, C6). Or C7) a linear alkyl group, a substituted or unsubstituted C1-C8 (eg C2, C3, C4, C5, C6 or C7) branched alkyl group or a substituted or unsubstituted phenyl group or at least two Combination of species.
  • R 9 is selected from:
  • A is an arylene group, a carbonyl group or an alkylene group having 1 to 10 (for example, 2, 3, 4, 5, 6, 7, 8, or 9) carbon atoms
  • Z is an integer of 0 to 10, for example, 0. 1, 2, 3, 4, 5, 6, 7, 8, 9 or 10
  • R 21 , R 22 and R 23 are each independently selected from a hydrogen atom or have 1 to 10 carbon atoms (for example, 2, 3, An alkyl group of 4, 5, 6, 7, 8, or 9).
  • the vinyl modified polyphenylene ether resin has a number average molecular weight of from 500 to 10,000 g/mol, preferably from 800 to 8000 g/mol, further preferably from 1,000 to 4,000 g/mol.
  • the MT silicone resin obtained by hydrolytic condensation of a monofunctional siloxane unit (M unit) and a trifunctional siloxane unit (T unit) having a three-dimensional network structure containing an unsaturated double bond has the following structure:
  • 3 ⁇ x1 ⁇ 100, 1 ⁇ y1 ⁇ 100, 4 ⁇ x1+y1 ⁇ 200 for example, 10 ⁇ x1+y1 ⁇ 180, 20 ⁇ x1+y1 ⁇ 160, 40 ⁇ x1+y1 ⁇ 140, 50 ⁇ x1 +y1 ⁇ 150, 60 ⁇ x1+y1 ⁇ 120, 50 ⁇ x1+y1 ⁇ 100, 80 ⁇ x1+y1 ⁇ 120 or 100 ⁇ x1+y1 ⁇ 200, and 0.03 ⁇ x1/y1 ⁇ 10, for example 1 ⁇ x1/y1 ⁇ 10, 2 ⁇ x1/y1 ⁇ 9, 3 ⁇ x1/y1 ⁇ 8, 4 ⁇ x1/y1 ⁇ 7, 5 ⁇ x1/y1 ⁇ 10, 3 ⁇ x1/y1 ⁇ 10, 4 ⁇ X1/y1 ⁇ 10, 5 ⁇ x1/y1 ⁇ 9 or 6 ⁇ x1/y1 ⁇ 10;
  • the monofunctional siloxane unit (M unit), the trifunctional siloxane unit (T unit), and the tetrafunctional siloxane unit having a three-dimensional network structure containing an unsaturated double bond (SQ) hydrolytic condensation of the MTQ silicone resin has the following structure:
  • 5 ⁇ a ⁇ 100, 1 ⁇ b ⁇ 100, 1 ⁇ c ⁇ 100, and 7 ⁇ a+b+c ⁇ 100 for example, 10 ⁇ a+b+c ⁇ 100, 20 ⁇ a+b+c ⁇ 100, 30 ⁇ a+b+c ⁇ 100, 40 ⁇ a+b+c ⁇ 100, 10 ⁇ a+b+c ⁇ 90, 20 ⁇ a+b+c ⁇ 80, 30 ⁇ a+b+c ⁇ 70, 50 ⁇ a + b + c ⁇ 100, 60 ⁇ a + b + c ⁇ 100 or 70 ⁇ a + b + c ⁇ 100.
  • the monofunctional siloxane monomer having a three-dimensional network structure containing an unsaturated double bond has the following structure:
  • 3 ⁇ d ⁇ 100, 3 ⁇ e ⁇ 100, 1 ⁇ f ⁇ 100, and 7 ⁇ d+ e +f ⁇ 100 for example, 10 ⁇ d+e+f ⁇ 100, 20 ⁇ d+e+f ⁇ 100 30 ⁇ d+e+f ⁇ 100, 40 ⁇ d+e+f ⁇ 100, 10 ⁇ d+e+f ⁇ 90, 20 ⁇ d+e+f ⁇ 80, 30 ⁇ d+e+f ⁇ 70 , 50 ⁇ d + e + f ⁇ 100, 60 ⁇ d + e + f ⁇ 100 or 70 ⁇ d + e + f ⁇ 100;
  • C1-C8 eg C2, C
  • the monofunctional siloxane unit (M unit), the bifunctional siloxane unit (D unit) and the tetrafunctional siloxane unit having a three-dimensional network structure containing an unsaturated double bond (SQ) hydrolytic condensation of the MDQ silicone resin has the following structure:
  • 4 ⁇ m ⁇ 100, 4 ⁇ n ⁇ 100, 1 ⁇ w ⁇ 100, and 9 ⁇ m+n+w ⁇ 100 for example, 10 ⁇ m+n+w ⁇ 100, 20 ⁇ m+n+w ⁇ 100, 30 ⁇ m+n+w ⁇ 100, 40 ⁇ m+n+w ⁇ 100, 10 ⁇ m+n+w ⁇ 90, 20 ⁇ m+n+w ⁇ 80, 30 ⁇ m+n+w ⁇ 70, 50 ⁇ m + n + w ⁇ 100, 60 ⁇ m + n + w ⁇ 100 or 70 ⁇ m + n + w ⁇ 100;
  • C1-C8 eg C2, C3, C4, C5,
  • the silicone resin having a three-dimensional network structure containing an unsaturated double bond has a weight of 10 to 90 parts by weight, based on 100 parts by weight of the vinyl-modified polyphenylene ether resin, for example, 15 parts by weight, 20 parts by weight, 25 parts by weight, 30 parts by weight, 35 parts by weight, 40 parts by weight, 45 parts by weight, 50 parts by weight, 55 parts by weight, 60 parts by weight, 65 parts by weight, 70 parts by weight, 75 parts by weight Parts, 80 parts by weight or 85 parts by weight, preferably 25-90 parts by weight.
  • the preferred parts by weight of the corresponding resin system have a better glass transition temperature after curing and crosslinking.
  • the polyphenylene ether resin composition of the present invention further comprises a radical initiator.
  • the free radical initiator acts to initiate a polymerization crosslinked curing resin system. Under heating conditions, the free radical initiator decomposes to generate free radicals, which initiates the reaction cross-linking between the reactive groups in the resin system, and the cross-network structure of the three-dimensional structure of the formal space.
  • the weight of the radical initiator is 1-3, and the sum of the weight of the vinyl-modified polyphenylene ether resin and the silicone resin having a three-dimensional network structure containing an unsaturated double bond is 100 parts by weight. Parts by weight.
  • the weight of the radical initiator is, for example, 1.2 parts by weight, 1.4 parts by weight, 1.6 parts by weight, 1.8 parts by weight, 2.0 parts by weight, 2.2 parts by weight, 2.4 parts by weight, 2.6 parts by weight, 2.8 parts by weight or 2.9 parts by weight.
  • the radical initiator is selected from the group consisting of organic peroxide initiators, and more preferably from dicumyl peroxide, dibenzoyl peroxide, benzoyl peroxide, t-butyl peroxybenzoate or 4,4- Any one or a mixture of at least two of di(tert-butylperoxy)-n-butyl valerate.
  • the mixture is, for example, a mixture of n-butyl 4,4-di(tert-butylperoxy)pentanoate and t-butyl peroxybenzoate, a mixture of dibenzoyl peroxide and dicumyl peroxide, 4, a mixture of 4-di(tert-butylperoxy)p-butyl valerate and dibenzoyl peroxide, a mixture of tert-butyl peroxybenzoate and dicumyl peroxide, 4,4-di(tert-butyl) Base oxygen a mixture of n-butyl valerate, tert-butyl peroxybenzoate and dibenzoyl peroxide.
  • the radical initiators may be used singly or in combination, and a mixed effect may be used to achieve a better synergistic effect.
  • the polyphenylene ether resin composition of the present invention further comprises a flame retardant.
  • the weight of the flame retardant is from 0 to 40 parts by weight based on 100 parts by weight of the sum of the weight of the vinyl-modified polyphenylene ether resin and the silicone resin having a three-dimensional network structure containing an unsaturated double bond. It is preferably 0 to 40 parts by weight and does not include 0.
  • the parts by weight of the flame retardant are, for example, 1 part by weight, 3 parts by weight, 7 parts by weight, 11 parts by weight, 15 parts by weight, 19 parts by weight, 23 parts by weight, 27 parts by weight, 31 parts by weight, 35 parts by weight, 38 parts by weight. Parts by weight or 39 parts by weight.
  • the weight of the flame retardant is 0 parts by weight, meaning that the resin composition does not contain a flame retardant. The content of the flame retardant is too high, resulting in a decrease in heat resistance and interlayer adhesion.
  • the flame retardant of the present invention is selected from a halogen flame retardant, a phosphorus flame retardant or a nitrogen flame retardant, or a mixture of at least two, preferably a bromine flame retardant or a phosphorus system.
  • a flame retardant or a nitrogen-based flame retardant is selected from a halogen flame retardant, a phosphorus flame retardant or a nitrogen flame retardant, or a mixture of at least two, preferably a bromine flame retardant or a phosphorus system.
  • a flame retardant or a nitrogen-based flame retardant is selected from a halogen flame retardant, a phosphorus flame retardant or a nitrogen flame retardant, or a mixture of at least two, preferably a bromine flame retardant or a phosphorus system.
  • a flame retardant or a nitrogen-based flame retardant is selected from a halogen flame retardant, a phosphorus flame retardant or a nitrogen flame retardant, or a mixture of at least two
  • the bromine-based flame retardant is selected from any one or at least two of decabromodiphenyl ether, hexabromobenzene, decabromodiphenylethane or ethylene bis-tetrabromophthalimide. mixture.
  • the mixture is, for example, a mixture of decabromodiphenylethane and hexabromobenzene, a mixture of decabromodiphenyl ether and ethylene bistetrabromophthalimide, decabromodiphenylethane, hexabromobenzene and ten a mixture of brominated diphenyl ethers, a mixture of ethylene bistetrabromophthalimide, decabromodiphenylethane, hexabromobenzene and decabromodiphenyl ether.
  • the phosphorus-based flame retardant is selected from the group consisting of tris(2,6-dimethylphenyl)phosphine, 10-(2,5-dihydroxyphenyl)-9,10-dihydro-9-oxa -10-phosphinophen-10-oxide, 2,6-bis(2,6-dimethylphenyl)phosphinobenzene or 10-phenyl-9,10-dihydro-9-oxa-10- Any one or a mixture of at least two of phosphaphenanthrene-10-oxide.
  • the mixture is, for example, 10-phenyl-9,10-dihydro-9-oxa-10-phosphinophen-10-oxide and 2,6-bis(2,6-dimethylphenyl)phosphinobenzene Mixture, 10-(2,5-dihydroxyphenyl)-9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide and tris(2,6-dimethylphenyl) a mixture of phosphines, 10-phenyl-9,10-dihydro-9-oxa-10-phosphinophen-10-oxide, 2,6-bis(2,6-dimethylphenyl)phosphinobenzene And a mixture of 10-(2,5-dihydroxyphenyl)-9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide, tris(2,6-dimethylphenyl) a mixture of phosphine, 10-phenyl-9,10-dihydro
  • the nitrogen-based flame retardant is selected from the group consisting of melamine, melamine phosphate, strontium phosphate, and carbonic acid. Any one of cerium or sulfamic acid sulfamate or a mixture of at least two.
  • the mixture is, for example, a mixture of bismuth sulfamate and cesium carbonate, a mixture of strontium phosphate and melamine phosphate, a mixture of melamine and bismuth sulfamate, a mixture of cesium carbonate, strontium phosphate and melamine, melamine phosphate, bismuth sulfamate.
  • a mixture of melamine and strontium phosphate preferably melamine or/and melamine phosphate.
  • the polyphenylene ether resin composition of the present invention further comprises a powder filler.
  • the powder filler is selected from the group consisting of crystalline silica, amorphous silica, spherical silica, fused silica, titanium dioxide, silicon carbide, glass fiber, alumina, aluminum nitride, boron nitride, Any one or a mixture of at least two of barium titanate or barium titanate.
  • the mixture is, for example, a mixture of crystalline silica and amorphous silica, a mixture of spherical silica and titanium dioxide, a mixture of silicon carbide and glass fibers, a mixture of aluminum oxide and aluminum nitride, boron nitride and titanic acid.
  • the powder filler functions to improve dimensional stability, lower thermal expansion coefficient, and lower system cost.
  • the shape and particle diameter of the powder filler are not limited in the present invention, and the particle diameter generally used is 0.2 to 10 ⁇ m, for example, 0.5 ⁇ m, 1 ⁇ m, 2 ⁇ m, 3 ⁇ m, 5 ⁇ m, 8 ⁇ m or 9 ⁇ m, for example, the particle diameter can be selected to be 0.2. - 10 ⁇ m spherical silica.
  • the weight of the powder filler is 0, and the weight of the vinyl-modified polyphenylene ether resin, the silicone resin having a three-dimensional network structure containing an unsaturated double bond, and the flame retardant is 100 parts by weight. ⁇ 150 parts by weight, preferably 0 to 150 parts by weight and excluding 0.
  • the weight of the powder filler is, for example, 5 parts by weight, 15 parts by weight, 25 parts by weight, 35 parts by weight, 45 parts by weight, 55 parts by weight, 75 parts by weight, 90 parts by weight, 100 parts by weight, 110 parts by weight, and 120 parts by weight. 130 parts by weight, 140 parts by weight or 145 parts by weight.
  • the weight of the powder filler is 0 parts by weight, meaning that the resin composition does not contain a powder filler.
  • Comprising as used herein means that in addition to the components, it may include other components which impart different characteristics to the polyphenylene ether ester composition.
  • the "include” of the present invention may also be replaced by a closed “for” or “consisting of”.
  • the polyphenylene ether resin composition of the present invention may be added with a thermosetting resin, and specific examples thereof include an epoxy resin, a cyanate resin, a phenol resin, a urethane resin, and a melamine resin, and these may be added.
  • a curing agent or curing agent accelerator for a thermosetting resin include an epoxy resin, a cyanate resin, a phenol resin, a urethane resin, and a melamine resin, and these may be added.
  • a curing agent or curing agent accelerator for a thermosetting resin include an epoxy resin, a cyanate resin, a phenol resin, a urethane resin, and a melamine resin, and these may be added.
  • a curing agent or curing agent accelerator for a thermosetting resin include an epoxy resin, a cyanate resin, a phenol resin, a urethane resin, and a melamine resin, and these may be added.
  • the polyphenylene ether resin composition may further contain various additives, and specific examples thereof include a silane coupling agent, a titanate coupling agent, an antioxidant, a heat stabilizer, an antistatic agent, and ultraviolet absorption. Agents, pigments, colorants and lubricants. These thermosetting resins and various additives may be used singly or in combination of two or more kinds.
  • the vinyl-modified polyphenylene ether resin, a silicone resin having a three-dimensional network structure containing an unsaturated double bond, and the like may be blended, stirred, and mixed by a known method. It is prepared by a free radical initiator, a flame retardant, a powder filler, and various thermosetting resins and various additives.
  • Another object of the present invention is to provide a resin glue obtained by dissolving or dispersing a polyphenylene ether resin composition as described above in a solvent.
  • the solvent in the present invention is not particularly limited, and specific examples thereof include alcohols such as methanol, ethanol, and butanol, ethyl cellosolve, butyl cellosolve, ethylene glycol-methyl ether, carbitol, and butyl.
  • Ethers such as carbitol, ketones such as acetone, methyl ethyl ketone, methyl ethyl ketone, methyl isobutyl ketone, and cyclohexanone; aromatic hydrocarbons such as toluene, xylene, and mesitylene; An ester such as ethyl acetate or ethyl acetate; a nitrogen-containing solvent such as N,N-dimethylformamide, N,N-dimethylacetamide or N-methyl-2-pyrrolidone. These solvents may be used alone or in combination of two or more.
  • aromatic hydrocarbon solvents such as toluene, xylene, and mesitylene, and acetone, methyl ethyl ketone, methyl ethyl ketone, and methyl group.
  • a ketone flux such as butyl ketone or cyclohexanone is used in combination.
  • the amount of the solvent to be used can be selected by a person skilled in the art according to his own experience, so that the obtained resin glue can reach a viscosity suitable for use.
  • An emulsifier may be added during the process of dissolving or dispersing the resin composition as described above in a solvent. By dispersing by an emulsifier, the powder filler or the like can be uniformly dispersed in the glue.
  • a third object of the present invention is to provide a prepreg obtained by impregnating a reinforcing material such as a glass fiber cloth with a resin glue as described above and drying it.
  • the glass fiber cloth is a reinforcing material, and functions to increase strength, improve dimensional stability, and reduce shrinkage of curing of the thermosetting resin in the composite material.
  • Different types of fiberglass cloth can be used depending on the thickness of the sheet and the like.
  • Exemplary glass fiber cloths are: 7628 fiberglass cloth, 2116 fiberglass cloth.
  • the vinyl modified polyphenylene ether resin has a three-dimensional network structure containing unsaturated double bonds
  • the total weight of the silicone resin, the flame retardant and the powder filler is 100 parts by weight, and the weight of the reinforcing material such as glass fiber cloth is 50-230 parts by weight, for example, 70 parts by weight, 90 parts by weight, 110 parts by weight, 150 parts by weight. Parts, 180 parts by weight, 200 parts by weight, 210 parts by weight or 220 parts by weight.
  • the drying temperature is 80 to 220 ° C, such as 90 ° C, 110 ° C, 150 ° C, 170 ° C, 190 ° C or 200 ° C.
  • the drying time is from 1 to 30 min, such as 5 min, 8 min, 13 min, 17 min, 21 min, 24 min or 28 min.
  • a fourth object of the present invention is to provide a high-frequency circuit substrate which is made of the prepreg as described above.
  • An exemplary method for preparing a high frequency circuit substrate is:
  • At least one prepreg as described above is overlapped, and a copper foil is placed on the upper and lower sides of the overlapping prepreg, and is obtained by lamination molding.
  • the high-frequency circuit substrate having low dielectric constant performance, low dielectric loss, high heat resistance, low water absorption, high interlayer adhesion, and high bending strength can be prepared by the method of the present invention. .
  • the overlap preferably employs an automated stacking operation to make the process operation easier.
  • the laminate molding is preferably vacuum lamination molding, and the vacuum lamination molding can be carried out by a vacuum laminator.
  • the lamination time is from 70 to 120 min, such as 75 min, 80 min, 85 min, 90 min, 95 min, 100 min, 105 min, 110 min or 115 min.
  • the temperature of the lamination is 180 to 220 ° C, such as 185 ° C, 190 ° C, 195 ° C, 200 ° C, 205 ° C, 210 ° C or 215 ° C.
  • the pressure of the lamination is 40 to 60 kg/cm 2 , for example 45 kg/cm 2 , 50 kg/cm 2 , 55 kg/cm 2 or 58 kg/cm 2 .
  • a typical but non-limiting method for preparing a high frequency circuit substrate of the present invention is as follows:
  • each component is weighed: a silicone resin having a three-dimensional network structure containing an unsaturated double bond, calculated by weight of the vinyl-modified polyphenylene ether resin of 100 parts by weight
  • the weight is 10 to 90 parts by weight, and the sum of the weight of the vinyl-modified polyphenylene ether resin and the silicone resin having a three-dimensional network structure containing an unsaturated double bond is 100 parts by weight, the radical initiator
  • the weight is 1 to 3 parts by weight, the weight of the flame retardant is 0 to 40 parts by weight;
  • the weight of the powder is 100 parts by weight, the powder filler has a weight of 0 to 150 parts by weight;
  • High frequency as used herein means that the frequency is greater than 1 MHz.
  • the present invention has the following beneficial effects:
  • a silicone resin having a three-dimensional network structure containing an unsaturated double bond is used as a crosslinking agent of a vinyl-modified polyphenylene ether resin, and the resin composition has a high crosslinking density after curing, and can provide a high-frequency circuit substrate. High glass transition temperature;
  • the silicone resin having a three-dimensional network structure containing an unsaturated double bond does not contain a polar group, and can ensure low water absorption rate and low dielectric constant and dielectric loss of the high-frequency circuit substrate;
  • the silicone resin having a three-dimensional network structure containing an unsaturated double bond has a high thermal decomposition temperature and can provide excellent heat resistance of a high-frequency circuit substrate;
  • a silicone resin having a three-dimensional network structure containing an unsaturated double bond is used as a crosslinking agent of a vinyl-modified polyphenylene ether resin, and the prepared high-frequency circuit substrate has high interlayer adhesion and high bending strength. Improve the reliability of the substrate.
  • the silicone resin having a three-dimensional network structure containing an unsaturated double bond is not volatile, and there is no problem of volatilization during the baking sheet.
  • a high-frequency circuit substrate prepared by using a vinyl-modified polyphenylene ether resin and a silicone resin having a three-dimensional network structure containing an unsaturated double bond has a high glass transition temperature ( ⁇ 180 ° C) and good heat resistance (heat Decomposition temperature ⁇ 430 ° C), low water absorption (water absorption ⁇ 0.08%), high adhesion between layers ( ⁇ 1 N / mm), high bending strength ( ⁇ 450 MPa), low dielectric constant (10 GHz, ⁇ 3.85), medium Low loss (10GHz, ⁇ 0.0070), very suitable for the production of circuit boards for high-frequency electronic equipment.
  • Figure 1 Schematic diagram of the high frequency circuit substrate of the present invention.
  • 1 is a schematic view of a high frequency circuit substrate according to the present invention, wherein 2 is a copper foil, and the copper foil is preferably a high peeling reverse copper foil, a low profile copper foil or an ultra low profile copper foil.
  • the number of prepregs is nine. In practical applications, the number of sheets of the prepreg to be used, the type of the glass fiber cloth, and the weight fraction of the glass fiber cloth and the resin composition are determined according to the requirements of the thickness of the high-frequency circuit substrate to be practically applied.
  • a three-necked flask was charged with a mixture of diethylenetetramethyldisiloxane, concentrated hydrochloric acid, deionized water and ethanol, and the mechanical stirrer was turned on, and then rapidly dropped into triethyl phenyl silicate under rapid stirring and heating under reflux. Hydrolytic condensation, hydrolysis for a certain period of time, extraction with toluene, and then the reaction solution was poured into a separatory funnel, and allowed to stand for stratification.
  • the aqueous layer is separated, the oil layer is washed with water to neutrality, and the solvent toluene is removed by distillation and drying to obtain a monofunctional vinyl group-containing siloxane unit (M unit) having a three-dimensional network structure containing an unsaturated double bond and A vinylphenyl MT silicone resin V-10 obtained by hydrolysis-condensation of a trifunctional phenyl group-containing siloxane unit (T unit) having a molecular weight Mn of 2,000.
  • M unit monofunctional vinyl group-containing siloxane unit
  • T unit trifunctional phenyl group-containing siloxane unit having a molecular weight Mn of 2,000.
  • a vinylphenyl MTQ silicone resin V-20 obtained by hydrolysis-condensation of a trifunctional phenyl group-containing siloxane unit (T unit) with a tetrafunctional siloxane unit (Q unit) having a molecular weight Mn of 1900.
  • a three-necked flask was charged with a mixture of diethylenetetramethyldisiloxane, concentrated hydrochloric acid, deionized water and ethanol, and the mechanical stirrer was turned on, and then rapidly dropped into triethyl phenyl silicate under rapid stirring and heating under reflux.
  • the dimethyldiethoxysilane is hydrolyzed and condensed, and after hydrolysis for a certain period of time, toluene is added for extraction, and then the reaction solution is poured into a separatory funnel, and the layer is allowed to stand.
  • M unit monofunctional vinyl group-containing siloxane unit
  • D unit difunctional degree of methyl group-containing siloxane unit
  • T unit trifunctional phenyl group-containing siloxane unit
  • a three-necked flask was charged with a mixture of diethylenetetramethyldisiloxane, concentrated hydrochloric acid, deionized water and ethanol, and the mechanical stirrer was turned on, followed by rapid dropwise addition of dimethyldiethoxy group under rapid stirring and heating under reflux.
  • the silane and ethyl orthosilicate are hydrolyzed and condensed, and after hydrolysis for a certain period of time, toluene is added for extraction, and then the reaction liquid is poured into a separating funnel, and the layer is allowed to stand.
  • a vinylphenyl MDQ silicone resin V-40 obtained by hydrolyzing and condensing a difunctional phenyl group-containing siloxane unit (D unit) with a tetrafunctional siloxane unit (Q unit) having a molecular weight Mn of 1900.
  • a three-necked flask was charged with a mixture of concentrated hydrochloric acid, deionized water and ethanol, and the mechanical stirrer was turned on, and then rapidly poured into triethyl phenyl silicate and dimethyldiethoxysilane under rapid stirring and heating under reflux. After condensation and hydrolysis for a certain period of time, toluene was added for extraction, and then the reaction solution was poured into a separatory funnel and allowed to stand for stratification.
  • the aqueous layer is separated, the oil layer is washed with water to neutrality, and the solvent toluene is removed by distillation and drying to obtain a difunctional methyl group-containing siloxane unit (D unit) and a trifunctional phenyl group-containing siloxane unit (
  • the T unit is a methylphenyl DT silicone resin V-00 obtained by hydrolysis condensation, and has a molecular weight Mn of 2,000.
  • Table 1 shows the materials used in the examples and comparative examples.
  • the 2116 prepreg was prepared by infiltrating the resin glue with 2116 glass fiber cloth, controlling the single weight by the clamp shaft, drying in an oven, and removing the toluene solvent.
  • Four sheets of 2116 prepreg were overlapped, and the upper and lower sides were coated with a copper foil of 1 OZ thickness, vacuum laminated for 90 minutes in a press, a curing pressure of 50 kg/cm 2 , and a curing temperature of 200 ° C to obtain a high-frequency circuit substrate.
  • the overall performance of the substrate is shown in Table 2.
  • the 2116 prepreg was prepared by infiltrating the resin glue with 2116 glass fiber cloth, controlling the single weight by the clamp shaft, drying in an oven, and removing the toluene solvent.
  • Four sheets of 2116 prepreg were overlapped, and the upper and lower sides were coated with a copper foil of 1 OZ thickness, vacuum laminated for 90 minutes in a press, a curing pressure of 50 kg/cm 2 , and a curing temperature of 200 ° C to obtain a high-frequency circuit substrate.
  • the overall performance of the substrate is shown in Table 2.
  • the 2116 prepreg was prepared by infiltrating the resin glue with 2116 glass fiber cloth, controlling the single weight by the clamp shaft, drying in an oven, and removing the toluene solvent.
  • Four sheets of 2116 prepreg were overlapped, and the upper and lower sides were coated with a copper foil of 1 OZ thickness, vacuum laminated for 90 minutes in a press, a curing pressure of 50 kg/cm 2 , and a curing temperature of 200 ° C to obtain a high-frequency circuit substrate.
  • the overall performance of the substrate is shown in Table 2.
  • the 2116 prepreg was prepared by infiltrating the resin glue with 2116 glass fiber cloth, controlling the single weight by the clamp shaft, drying in an oven, and removing the toluene solvent.
  • Four sheets of 2116 prepreg were overlapped, and the upper and lower sides were coated with a copper foil of 1 OZ thickness, vacuum laminated for 90 minutes in a press, a curing pressure of 50 kg/cm 2 , and a curing temperature of 200 ° C to obtain a high-frequency circuit substrate.
  • the overall performance of the substrate is shown in Table 2.
  • the 2116 prepreg was prepared by infiltrating the resin glue with 2116 glass fiber cloth, controlling the single weight by the clamp shaft, drying in an oven, and removing the toluene solvent.
  • Four sheets of 2116 prepreg were overlapped, and the upper and lower sides were coated with a copper foil of 1 OZ thickness, vacuum laminated for 90 minutes in a press, a curing pressure of 50 kg/cm 2 , and a curing temperature of 200 ° C to obtain a high-frequency circuit substrate.
  • the overall performance of the substrate is shown in Table 2.
  • styrene-based modified polyphenylene ether resin powder St-PPE-1 100.0 parts by weight of styrene-based modified polyphenylene ether resin powder St-PPE-1, 10.0 parts by weight of a monofunctional vinyl group-containing siloxane unit having a three-dimensional network structure containing an unsaturated double bond ( M unit)
  • Vinylphenyl MT silicone resin V-10 obtained by hydrolysis condensation of a trifunctional phenyl group-containing siloxane unit (T unit), 3.0 parts by weight of a radical initiator dicumyl peroxide (DCP), dissolved in toluene solvent and adjusted to a suitable viscosity.
  • DCP radical initiator dicumyl peroxide
  • the 2116 prepreg was prepared by infiltrating the resin glue with 2116 glass fiber cloth, controlling the single weight by the clamp shaft, drying in an oven, and removing the toluene solvent.
  • Four sheets of 2116 prepreg were overlapped, and the upper and lower sides were coated with a copper foil of 1 OZ thickness, vacuum laminated for 90 minutes in a press, a curing pressure of 50 kg/cm 2 , and a curing temperature of 200 ° C to obtain a high-frequency circuit substrate.
  • the overall performance of the substrate is shown in Table 2.
  • styrene-based modified polyphenylene ether resin powder St-PPE-1 40.0 parts by weight of a monofunctional vinyl group-containing siloxane unit having a three-dimensional network structure containing an unsaturated double bond ( M unit)
  • Vinylphenyl MT silicone resin V-10 obtained by hydrolysis condensation of a trifunctional phenyl group-containing siloxane unit (T unit), 3.0 parts by weight of a radical initiator dicumyl peroxide (DCP), dissolved in toluene solvent and adjusted to a suitable viscosity.
  • DCP radical initiator dicumyl peroxide
  • the 2116 prepreg was prepared by infiltrating the resin glue with 2116 glass fiber cloth, controlling the single weight by the clamp shaft, drying in an oven, and removing the toluene solvent.
  • Four sheets of 2116 prepreg were overlapped, and the upper and lower sides were coated with a copper foil of 1 OZ thickness, vacuum laminated for 90 minutes in a press, a curing pressure of 50 kg/cm 2 , and a curing temperature of 200 ° C to obtain a high-frequency circuit substrate.
  • the overall performance of the substrate is shown in Table 2.
  • the 2116 prepreg was prepared by infiltrating the resin glue with 2116 glass fiber cloth, controlling the single weight by the clamp shaft, drying in an oven, and removing the toluene solvent.
  • Four sheets of 2116 prepreg were overlapped, and the upper and lower sides were coated with a copper foil of 1 OZ thickness, vacuum laminated for 90 minutes in a press, a curing pressure of 50 kg/cm 2 , and a curing temperature of 200 ° C to obtain a high-frequency circuit substrate.
  • the overall performance of the substrate is shown in Table 2.
  • the 2116 prepreg was prepared by infiltrating the resin glue with 2116 glass fiber cloth, controlling the single weight by the clamp shaft, drying in an oven, and removing the toluene solvent.
  • Four sheets of 2116 prepreg were overlapped, and the upper and lower sides were coated with a copper foil of 1 OZ thickness, vacuum laminated for 90 minutes in a press, a curing pressure of 50 kg/cm 2 , and a curing temperature of 200 ° C to obtain a high-frequency circuit substrate.
  • the overall performance of the substrate is shown in Table 3.
  • the 2116 prepreg was prepared by infiltrating the resin glue with 2116 glass fiber cloth, controlling the single weight by the clamp shaft, drying in an oven, and removing the toluene solvent.
  • Four sheets of 2116 prepreg were overlapped, and the upper and lower sides were coated with a copper foil of 1 OZ thickness, vacuum laminated for 90 minutes in a press, a curing pressure of 50 kg/cm 2 , and a curing temperature of 200 ° C to obtain a high-frequency circuit substrate.
  • the overall performance of the substrate is shown in Table 3.
  • the 2116 prepreg was prepared by infiltrating the resin glue with 2116 glass fiber cloth, controlling the single weight by the clamp shaft, drying in an oven, and removing the toluene solvent.
  • Four sheets of 2116 prepreg were overlapped, and the upper and lower sides were coated with a copper foil of 1 OZ thickness, vacuum laminated for 90 minutes in a press, a curing pressure of 50 kg/cm 2 , and a curing temperature of 200 ° C to obtain a high-frequency circuit substrate.
  • the overall performance of the substrate is shown in Table 3.
  • the 2116 prepreg was prepared by infiltrating the resin glue with 2116 glass fiber cloth, controlling the single weight by the clamp shaft, drying in an oven, and removing the toluene solvent.
  • Four sheets of 2116 prepreg were overlapped, and the upper and lower sides were coated with a copper foil of 1 OZ thickness, vacuum laminated for 90 minutes in a press, a curing pressure of 50 kg/cm 2 , and a curing temperature of 200 ° C to obtain a high-frequency circuit substrate.
  • the overall performance of the substrate is shown in Table 3.
  • the 2116 prepreg was prepared by infiltrating the resin glue with 2116 glass fiber cloth, controlling the single weight by the clamp shaft, drying in an oven, and removing the toluene solvent.
  • Four sheets of 2116 prepreg were overlapped, and the upper and lower sides were coated with a copper foil of 1 OZ thickness, vacuum laminated for 90 minutes in a press, a curing pressure of 50 kg/cm 2 , and a curing temperature of 200 ° C to obtain a high-frequency circuit substrate.
  • the overall performance of the substrate is shown in Table 3.
  • the 2116 prepreg was prepared by infiltrating the resin glue with 2116 glass fiber cloth, controlling the single weight by the clamp shaft, drying in an oven, and removing the toluene solvent.
  • Four sheets of 2116 prepreg were overlapped, and the upper and lower sides were coated with a copper foil of 1 OZ thickness, vacuum laminated for 90 minutes in a press, a curing pressure of 50 kg/cm 2 , and a curing temperature of 200 ° C to obtain a high-frequency circuit substrate.
  • the overall performance of the substrate is shown in Table 3.
  • the vinyl phenyl MT silicone resin V-10 obtained by hydrolysis condensation was replaced with a linear silicone resin RH-Vi306 containing an unsaturated double bond, and the rest was the same as in Example 7.
  • the overall performance of the substrate is shown in Table 3.
  • Example 7 The monofunctional ethylene-containing structure having a three-dimensional network structure containing an unsaturated double bond in Example 7
  • the vinyl phenyl MT silicone resin V-10 obtained by hydrolysis-condensation of a siloxane unit (M unit) with a trifunctional phenyl group-containing siloxane unit (T unit) is replaced by a cyclic unsaturated group.
  • the key silicone resin WD-V4 was the same as in Example 7.
  • the overall performance of the substrate is shown in Table 3.
  • the vinyl phenyl MT silicone resin V-10 obtained by hydrolysis condensation was replaced with methylphenyl DT silicone resin V-00, and the rest was the same as in Example 7.
  • the overall performance of the substrate is shown in Table 3.
  • the silicone resin having a structure as a crosslinking agent has a high-frequency circuit substrate having a higher bending strength.
  • the silicone resin having a structure as a crosslinking agent has no problem of volatilization during the sizing process.
  • a high-frequency circuit substrate prepared by using a silicone resin having a three-dimensional network structure as a crosslinking agent having an unsaturated double bond has a high glass transition temperature, a high thermal decomposition temperature, a low water absorption rate, and a high layer. Inter-adhesive strength, high flexural strength, low dielectric constant and low dielectric loss, so a silicone resin with a three-dimensional network structure containing unsaturated double bonds is a comprehensive cross-linking agent for high performance. Preparation of frequency circuit substrates.
  • the resin paste was impregnated with 120.0 parts by weight of 7628 glass fiber cloth, controlled by a pinch shaft, and dried in an oven to remove the solvent to obtain a 7628 prepreg.
  • Four 7628 prepregs were overlapped, and the upper and lower sides were coated with a copper foil of 1 OZ thickness, vacuum laminated and cured for 90 min in a press, a curing pressure of 50 kg/cm 2 , and a curing temperature of 200 ° C to obtain a high-frequency circuit substrate.
  • the molecular weight of the methacrylate-modified polyphenylene ether is 8000 g/mol.
  • R 1 , R 2 , R 3 and R 4 are each a vinyl group, a methyl group, a methyl group and an unsubstituted phenyl group.
  • the emulsifier is used for emulsification, and the powder filler and the flame retardant are uniformly dispersed in the mixed liquid to obtain a resin glue.
  • the resin paste was impregnated with 500.0 parts by weight of 2116 glass fiber cloth, controlled by a pinch shaft to be suitable for a single weight, and dried in an oven to remove the toluene solvent to obtain a 2116 prepreg.
  • Four sheets of 2116 prepreg were overlapped, and the upper and lower sides were coated with a copper foil of 1 OZ thickness, vacuum-laminated and solidified in a press for 90 min, a curing pressure of 50 kg/cm 2 , and a curing temperature of 200 ° C to obtain a high-frequency circuit substrate.
  • the molecular weight of the methacrylate-modified polyphenylene ether resin is 8000 g/mol
  • R 1 , R 2 , R 3 and R 4 are each a vinyl group, a methyl group, a methyl group and an unsubstituted phenyl group.
  • a styrene-based modified polyphenylene ether resin 100.0 parts by weight of a styrene-based modified polyphenylene ether resin, 50.0 parts by weight of a monofunctional vinyl group-containing siloxane unit (M unit) having a three-dimensional network structure containing an unsaturated double bond, and a trifunctional group a vinylphenyl MT silicone resin obtained by hydrolysis-condensation of a phenyl group-containing silicon oxygen unit (T unit), 1.0 part by weight of a radical initiator dibenzoyl peroxide (BPO), and 100.0 parts by weight of alumina 30.0 parts by weight of decabromodiphenyl ether was mixed, dissolved in a toluene solvent, and adjusted to a suitable viscosity.
  • M unit monofunctional vinyl group-containing siloxane unit having a three-dimensional network structure containing an unsaturated double bond
  • T unit a monofunctional vinylphenyl MT silicone resin obtained by hydrolysis-conden
  • the emulsifier is used for emulsification, and the powder filler and the flame retardant are uniformly dispersed in the mixed solution to obtain a resin glue.
  • the resin paste was impregnated with 230.0 parts by weight of 2116 glass fiber cloth, controlled by a clamp shaft to suit a single weight, and baked in an oven to remove the toluene solvent to obtain a 2116 prepreg.
  • Four sheets of 2116 prepreg were overlapped, and the upper and lower sides were coated with a copper foil having a thickness of 1 OZ, vacuum-laminated and solidified in a press for 120 minutes, a curing pressure of 40 kg/cm 2 , and a curing temperature of 180 ° C to obtain a high-frequency circuit substrate.
  • the structural formula of the styrene-based modified polyphenylene ether resin is:
  • the molecular weight of the styrene-based modified polyphenylene ether resin is 1000 g/mol.
  • R 1 , R 2 , R 3 and R 4 are each a vinyl group, a methyl group, a methyl group and an unsubstituted phenyl group.
  • a styrene-based modified polyphenylene ether resin 100.0 parts by weight of a styrene-based modified polyphenylene ether resin, 50.0 parts by weight of a monofunctional vinyl group-containing siloxane unit (M unit) having a three-dimensional network structure containing an unsaturated double bond, and a trifunctional group a vinylphenyl MT silicone resin obtained by hydrolysis-condensation of a phenyl group-containing siloxane unit (T unit), 1.5 parts by weight of a radical initiator dibenzoyl peroxide (BPO), and 125.0 parts by weight of nitrogen Boron was added, and 25.0 parts by weight of decabromodiphenyl ether was mixed, dissolved in a toluene solvent, and adjusted to a suitable viscosity.
  • M unit monofunctional vinyl group-containing siloxane unit having a three-dimensional network structure containing an unsaturated double bond, and a trifunctional group a vinylphenyl MT silicone resin obtained
  • the emulsifier is used for emulsification, and the powder filler and the emulsifier are uniformly dispersed in the mixed solution to obtain a resin glue.
  • the resin was impregnated with 450.0 parts by weight of 2116 glass fiber cloth, controlled by a pinch shaft to suit a single weight, and baked in an oven to remove the toluene solvent to obtain a 2116 prepreg.
  • Four sheets of 2116 prepreg were overlapped, and the upper and lower sides were coated with a copper foil having a thickness of 1 OZ, vacuum-laminated and cured in a press for 70 min, a curing pressure of 60 kg/cm 2 , and a curing temperature of 220 ° C to obtain a high-frequency circuit substrate.
  • the structural formula of the styrene-based modified polyphenylene ether resin is:
  • R 1 , R 2 , R 3 and R 4 are each a vinyl group, a methyl group, a methyl group and an unsubstituted phenyl group.
  • Table 4 shows the performance test results of the high frequency circuit substrate of Example 15-18.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Reinforced Plastic Materials (AREA)

Abstract

本发明涉及一种聚苯醚树脂组合物及其在高频电路基板中的应用。所述聚苯醚树脂组合物包括乙烯基改性聚苯醚树脂和含有不饱和双键的具有三维网状结构的有机硅树脂。本发明所述高频电路基板具有低的介质常数性能、低的介质损耗、高的耐热性能、低的吸水率、高的层间粘结力和高的弯曲强度的优点,非常适合作为高速电子设备的电路基板。

Description

一种聚苯醚树脂组合物及其在高频电路基板中的应用 技术领域
本发明涉及一种聚苯醚树脂组合物,具体地,本发明涉及一种聚苯醚树脂组合物及其在高频电路基板中的应用。
背景技术
近年来,随着电子信息技术的发展,电子设备安装的小型化、高密度化,信息的大容量化、高频化,对电路基板的耐热性、吸水性、耐化学性、机械性能、尺寸稳定性、介质常数、介质损耗等综合性能提出了更高的要求。
就介质常数性能而言,在高频电路中,信号的传输速率与绝缘材料介质常数Dk的关系为:绝缘材料介质常数Dk越低,信号传输速率越快。因此要实现信号传输速率的高频化,必须开发低介质常数的基板。随着信号频率的高频化,基板中信号的损耗不能再忽略不计。信号损耗与频率、介质常数Dk、介质损耗Df的关系为:基板介质常数Dk越小、介质损耗Df越小,信号损失就越小。因此开发具有低的介质常数Dk及低的介质损耗Df,且耐热性能良好的高频电路基板,成为CCL厂家共同关注的研发方向。
聚苯醚树脂分子结构中含有大量的苯环结构,且无强极性基团,赋予了聚苯醚树脂优异的性能,如玻璃化转变温度高、尺寸稳定性好、线性膨胀系数小、吸水率低,尤其是出色的低介电常数、低介电损耗。但聚苯醚作为热塑性的树脂,存在树脂熔点高,加工性能欠佳,耐溶剂性能差等缺点。聚苯醚出色的物理性能、耐热性能、化学性能及电性能等吸引着世界各大公司等对其进行改性,并取得了一定的成果。如在聚苯醚分子链端或侧链引入活性基团(如乙烯基),使之成为热固性树脂。该树脂热固化后具有优异的耐热、低介质常数和低介质损 耗等综合性能,成为制备高频电路基板的理想材料。
采用含有不饱和双键的有机硅化合物作为乙烯基活性基团改性的热固性聚苯醚的交联剂,用于制备高频电子电路基材。
CN 102993683采用含有不饱和双键的有机硅化合物制备作为改性聚苯醚的交联剂,所制备的高频电路基板具有高的玻璃化转变温度,高的热分解温度,高的层间粘合力,低介电常数及低介质损耗。但是该已有技术所采用的含有不饱和双键的有机硅化合物结构为线性或者环形的有机硅化合物。采用线性的含有不饱和双键的有机硅化合物具有很好的柔性,其所制备的高频电路基板弯曲强度偏低。采用环形的含有不饱和双键的有机硅化合物所制备的电路基材综合性能良好,但由于其分子量偏小,存在上胶烘片过程中挥发的问题。
CN104650574A采用聚苯醚、聚全氟乙烯乳液、有机硅树脂及无机填料组合物,用于高频电子电路基材的制备。其所制备的基材具有低的介质常数、低的介质损耗、良好的加工性能等优点。但是,该已有技术采用的有机硅树脂为甲基苯基DQ有机硅树脂,不含活性基团,不能作为乙烯基改性的热固性聚苯醚的交联剂。
发明内容
针对现有技术中存在的问题,本发明的目的之一在于提供一种聚苯醚树脂组合物,该聚苯醚树脂组合物具有低的介质常数Dk及低的介质损耗Df,以及具有优异的耐热性能和层间粘合力,满足了高频电路基板对介质常数、介质损耗、耐热性能以及层间粘合力等性能的要求,可用于制备高频电路基板。
为了达到上述目的,本发明采用了如下技术方案:
一种聚苯醚树脂组合物,包括乙烯基改性聚苯醚树脂和含有不饱和双键的具有三维网状结构的有机硅树脂,其中,所述含有不饱和双键的具有三维网状结构的有机硅树脂为含有不饱和双键的具有三维网状结构的由单官能度硅氧烷 单元(M单元)与三官能度硅氧烷单元(T单元)水解缩合而成的MT有机硅树脂、含有不饱和双键的具有三维网状结构的由单官能度硅氧烷单元(M单元)、三官能度硅氧烷单元(T单元)和四官能度硅氧烷单元(Q单元)水解缩合而成的MTQ有机硅树脂、含有不饱和双键的具有三维网状结构的由单官能度硅氧烷单元(M单元)、两官能度硅氧烷单元(D单元)和三官能度硅氧烷单元(T单元)水解缩合而成的MDT有机硅树脂或含有不饱和双键的具有三维网状结构的由单官能度硅氧烷单元(M单元)、两官能度硅氧烷单元(D单元)和四官能度硅氧烷单元(Q单元)水解缩合而成的MDQ有机硅树脂中的任意一种或至少两种的混合物。
典型但非限制性的含有不饱和双键的具有三维网状结构的有机硅树脂为MT有机硅树脂、MTQ有机硅树脂、MDT有机硅树脂、MDQ有机硅树脂、MT和MTQ有机硅树脂的组合,MT和MDT有机硅树脂的组合,MT和MDQ有机硅树脂的组合,MT、MTQ和MDT有机硅树脂的组合,MTQ、MDT和MDQ有机硅树脂的组合,MT、MTQ、MDT和MDQ有机硅树脂的组合。
所述乙烯基改性聚苯醚树脂,在室温状态下为粉末状的固体热固性树脂,其两端带有活性的不饱和双键,在固化引发剂存在条件下,可进行自由基聚合固化,得到耐热性、尺寸稳定性、低吸水率、低介质常数和低介质损耗等综合性能均十分优异的热固性树脂。
采用含有不饱和双键的具有三维网状结构的有机硅树脂作为乙烯基改性聚苯醚的交联剂,聚苯醚树脂组合物固化后交联密度大,可提供高频电路基板的高玻璃化转变温度。而且,含有不饱和双键的具有三维网状结构的有机硅树脂不含极性基团,可保证高频电路基板低的吸水率、低的介质常数及低的介质损耗。含有不饱和双键的具有三维网状结构的有机硅树脂热分解温度高,可提供高频电路基板优异的耐热性能。另外,所制备得到的高频电路基板层间粘合力与弯曲强度高,可提高基板的可靠性。
乙烯基改性聚苯醚树脂具有优异的低介电常数及低介质损耗等性能,采用含有不饱和双键的具有三维网状结构的有机硅树脂作为改性聚苯醚树脂的交联剂,所制备的高频电路基板具有低的介质常数、低的介质损耗、低的吸水性、高的耐热性、高的层间粘合力和高的弯曲强度等综合性能。与线性的含有不饱 和双键的有机硅化合作为交联剂相比,基板具有更高的弯曲强度。与环形的含有不饱和双键的有机硅化合物作为交联剂相比,含有不饱和双键的具有三维网状结构的有机硅树脂不存在上胶烘片时挥发的问题。
优选地,所述乙烯基改性聚苯醚树脂具有如下结构:
Figure PCTCN2016075323-appb-000001
其中,0≤x≤100,0≤y≤100,2≤x+y≤100。示例性的有15≤x+y≤30,25≤x+y≤40,30≤x+y≤55,60≤x+y≤85,80≤x+y≤98,10≤x+y≤20,35≤x+y≤45,65≤x+y≤75,85≤x+y≤95等。
M选自:
Figure PCTCN2016075323-appb-000002
N选自-O-、-CO-、-SO-、-SC-、-SO2-或-C(CH3)2-中的任意一种或者至少两种的组合。
R2、R4、R6、R8、R11、R13、R15和R17均独立地选自取代或未取代的C1-C8(例如C2、C3、C4、C5、C6或C7)直链烷基、取代或未取代的C1-C8(例如C2、C3、C4、C5、C6或C7)支链烷基或取代或未取代的苯基中的任意一种或者至少两种的组合。
R1、R3、R5、R7、R10、R12、R14和R16均独立地选自氢原子、取代或未取代的C1-C8(例如C2、C3、C4、C5、C6或C7)直链烷基、取代或未取代的C1-C8(例如C2、C3、C4、C5、C6或C7)支链烷基或取代或未取代的苯基中的任意一种或者至少两种的组合。
R9选自:
Figure PCTCN2016075323-appb-000003
其中,A为亚芳香基、羰基或碳原子数为1~10(例如2、3、4、5、6、7、8或9)的亚烷基,Z为0~10的整数,例如0、1、2、3、4、5、6、7、8、9或10,R21、R22和R23均独自地选自氢原子或碳原子数为1~10(例如2、3、4、5、6、7、8或9)的烷基。
优选地,所述乙烯基改性聚苯醚树脂的数均分子量为500-10000g/mol,优选800~8000g/mol,进一步优选1000~4000g/mol。
优选地,所述含有不饱和双键的具有三维网状结构的由单官能度硅氧烷单元(M单元)与三官能度硅氧烷单元(T单元)水解缩合而成的MT有机硅树脂具有如下结构:
(R24R25R26SiO1/2)x1(R27SiO3/2)y1
其中,3≤x1≤100,1≤y1≤100,4≤x1+y1≤200,例如10≤x1+y1≤180、20≤x1+y1≤160、40≤x1+y1≤140、50≤x1+y1≤150、60≤x1+y1≤120、50≤x1+y1≤100、80≤x1+y1≤120或100≤x1+y1≤200,且0.03≤x1/y1≤10,例如 1≤x1/y1≤10、2≤x1/y1≤9、3≤x1/y1≤8、4≤x1/y1≤7、5≤x1/y1≤10、3≤x1/y1≤10、4≤x1/y1≤10、5≤x1/y1≤9或6≤x1/y1≤10;
R24、R25、R26和R27均独立地选自取代或未取代的C1-C8(例如C2、C3、C4、C5、C6或C7)直链烷基、取代或未取代的C1-C8(例如C2、C3、C4、C5、C6或C7)支链烷基、取代或未取代的苯基或取代或未取代的C2-C10(例如C2、C3、C4、C5、C6、C7、C8或C9)含C=C的基团中的任意一种或者至少两种的组合,且R24、R25、R26和R27四者至少有一个为取代或未取代的C2-C10(例如C2、C3、C4、C5、C6、C7、C8或C9)含C=C的基团。
优选地,所述含有不饱和双键的具有三维网状结构的由单官能度硅氧烷单元(M单元)、三官能度硅氧烷单元(T单元)和四官能度硅氧烷单元(Q单元)水解缩合而成的MTQ有机硅树脂具有如下结构:
(R28R29R30SiO1/2)a(R31SiO3/2)b(SiO4/2)c
其中,5≤a≤100,1≤b≤100,1≤c≤100,且7≤a+b+c≤100,例如10≤a+b+c≤100、20≤a+b+c≤100、30≤a+b+c≤100、40≤a+b+c≤100、10≤a+b+c≤90、20≤a+b+c≤80、30≤a+b+c≤70、50≤a+b+c≤100、60≤a+b+c≤100或70≤a+b+c≤100。
R28、R29、R30和R31均独立地选自取代或未取代的C1-C8(例如C2、C3、C4、C5、C6或C7)直链烷基、取代或未取代的C1-C8(例如C2、C3、C4、C5、C6或C7)支链烷基、取代或未取代的苯基或取代或未取代的C2-C10(例如C2、C3、C4、C5、C6、C7、C8或C9)含C=C的基团中的任意一种或者至少两种的组合,且R28、R29、R30和R31四者至少有一个为取代或未取代的C2-C10(例如C2、C3、C4、C5、C6、C7、C8或C9)含C=C的基团。
优选地,所述含有不饱和双键的具有三维网状结构的由单官能度硅氧烷单 元(M单元)、两官能度硅氧烷单元(D单元)和三官能度硅氧烷单元(T单元)水解缩合而成的MDT有机硅树脂具有如下结构:
(R32R33R34SiO1/2)d(R35R36SiO3/2)e(R37SiO3/2)f
其中,3≤d≤100,3≤e≤100,1≤f≤100,且7≤d+e+f≤100,例如10≤d+e+f≤100、20≤d+e+f≤100、30≤d+e+f≤100、40≤d+e+f≤100、10≤d+e+f≤90、20≤d+e+f≤80、30≤d+e+f≤70、50≤d+e+f≤100、60≤d+e+f≤100或70≤d+e+f≤100;
R32、R33、R34、R35、R36和R37均独立地选自取代或未取代的C1-C8(例如C2、C3、C4、C5、C6或C7)直链烷基、取代或未取代的C1-C8(例如C2、C3、C4、C5、C6或C7)支链烷基、取代或未取代的苯基或取代或未取代的C2-C10(例如C2、C3、C4、C5、C6、C7、C8或C9)含C=C的基团中的任意一种或者至少两种的组合,且R32、R33、R34、R35、R36和R37六者至少有一个为取代或未取代的C2-C10(例如C2、C3、C4、C5、C6、C7、C8或C9)含C=C的基团。
优选地,所述含有不饱和双键的具有三维网状结构的由单官能度硅氧烷单元(M单元)、两官能度硅氧烷单元(D单元)和四官能度硅氧烷单元(Q单元)水解缩合而成的MDQ有机硅树脂具有如下结构:
(R38R39R40SiO1/2)m(R41R42SiO3/2)n(SiO4/2)w
其中,4≤m≤100,4≤n≤100,1≤w≤100,且9≤m+n+w≤100,例如10≤m+n+w≤100、20≤m+n+w≤100、30≤m+n+w≤100、40≤m+n+w≤100、10≤m+n+w≤90、20≤m+n+w≤80、30≤m+n+w≤70、50≤m+n+w≤100、60≤m+n+w≤100或70≤m+n+w≤100;
R38、R39、R40、R41和R42均独立地选自取代或未取代的C1-C8(例如C2、C3、C4、C5、C6或C7)直链烷基、取代或未取代的C1-C8(例如C2、C3、 C4、C5、C6或C7)支链烷基、取代或未取代的苯基或取代或未取代的C2-C10(例如C2、C3、C4、C5、C6、C7、C8或C9)含C=C的基团中的任意一种或者至少两种的组合;且R38、R39、R40、R41和R42五者至少有一个为取代或未取代的C2-C10(例如C2、C3、C4、C5、C6、C7、C8或C9)含C=C的基团。
在本发明中,优选地,以乙烯基改性聚苯醚树脂的重量为100重量份计,含有不饱和双键的具有三维网状结构的有机硅树脂的重量为10~90重量份,例如15重量份、20重量份、25重量份、30重量份、35重量份、40重量份、45重量份、50重量份、55重量份、60重量份、65重量份、70重量份、75重量份、80重量份或85重量份,优选25-90重量份。所优选的重量份对应的树脂体系固化交联后具有更好的玻璃化转变温度。
优选地,本发明所述聚苯醚树脂组合物还包括自由基引发剂。所述自由基引发剂起引发聚合交联固化树脂体系的作用。在加热条件下,自由基引发剂发生分解产生自由基,引发树脂体系中活性基团之间反应交联,形式空间三维结构的交联网状结构。
优选地,以乙烯基改性聚苯醚树脂和含有不饱和双键的具有三维网状结构的有机硅树脂的重量之和为100重量份计,所述自由基引发剂的重量为1~3重量份。所述自由基引发剂的重量例如1.2重量份、1.4重量份、1.6重量份、1.8重量份、2.0重量份、2.2重量份、2.4重量份、2.6重量份、2.8重量份或2.9重量份。选择本发明所述的自由基引发剂的含量,可以在固化过程中得到适当的反应速度,在制造预浸料或者高频电路基板的固化反应中,可以得到良好的固化性。
所述自由基引发剂选自有机过氧化物引发剂,进一步优选自过氧化二异丙苯、过氧化二苯甲酰、过氧化苯甲酰、过氧化苯甲酸叔丁酯或4,4-二(叔丁基过氧化)戊酸正丁酯中的任意一种或者至少两种的混合物。所述混合物例如4,4-二(叔丁基过氧化)戊酸正丁酯和过氧化苯甲酸叔丁酯的混合物,过氧化二苯甲酰和过氧化二异丙苯的混合物,4,4-二(叔丁基过氧化)戊酸正丁酯和过氧化二苯甲酰的混合物,过氧化苯甲酸叔丁酯和过氧化二异丙苯的混合物,4,4-二(叔丁基过氧 化)戊酸正丁酯、过氧化苯甲酸叔丁酯和过氧化二苯甲酰的混合物。所述自由基引发剂可以单独使用,也可以混合使用,混合使用可以达到更好的协同效果。
优选地,本发明所述聚苯醚树脂组合物还包括阻燃剂。
优选地,以乙烯基改性聚苯醚树脂和含有不饱和双键的具有三维网状结构的有机硅树脂的重量之和为100重量份计,阻燃剂的重量为0~40重量份,优选为0~40重量份且不包括0。所述阻燃剂的重量份例如1重量份、3重量份、7重量份、11重量份、15重量份、19重量份、23重量份、27重量份、31重量份、35重量份、38重量份或39重量份。所述阻燃剂的重量为0重量份,意指,所述树脂组合物中不含有阻燃剂。阻燃剂的含量太高,会导致耐热性和层间粘合力的降低。
优选地,本发明所述阻燃剂选自卤系阻燃剂、磷系阻燃剂或氮系阻燃剂中的任意一种或者至少两种的混合物,优选溴系阻燃剂、磷系阻燃剂或氮系阻燃剂中的一种或者至少两种的混合物。
优选地,所述溴系阻燃剂选自十溴二苯醚、六溴苯、十溴二苯乙烷或乙撑双四溴邻苯二甲酰亚胺中的任意一种或者至少两种的混合物。所述混合物例如十溴二苯乙烷和六溴苯的混合物,十溴二苯醚和乙撑双四溴邻苯二甲酰亚胺的混合物,十溴二苯乙烷、六溴苯和十溴二苯醚的混合物,乙撑双四溴邻苯二甲酰亚胺、十溴二苯乙烷、六溴苯和十溴二苯醚的混合物。
优选地,所述磷系阻燃剂选自三(2,6-二甲基苯基)膦、10-(2,5-二羟基苯基)-9,10-二氢-9-氧杂-10-膦菲-10-氧化物、2,6-二(2,6-二甲基苯基)膦基苯或10-苯基-9,10-二氢-9-氧杂-10-膦菲-10-氧化物中的任意一种或者至少两种的混合物。所述混合物例如10-苯基-9,10-二氢-9-氧杂-10-膦菲-10-氧化物和2,6-二(2,6-二甲基苯基)膦基苯的混合物,10-(2,5-二羟基苯基)-9,10-二氢-9-氧杂-10-膦菲-10-氧化物和三(2,6-二甲基苯基)膦的混合物,10-苯基-9,10-二氢-9-氧杂-10-膦菲-10-氧化物、2,6-二(2,6-二甲基苯基)膦基苯和10-(2,5-二羟基苯基)-9,10-二氢-9-氧杂-10-膦菲-10-氧化物的混合物,三(2,6-二甲基苯基)膦、10-苯基-9,10-二氢-9-氧杂-10-膦菲-10-氧化物和2,6-二(2,6-二甲基苯基)膦基苯的混合物。
优选地,所述氮系阻燃剂选自三聚氰胺、三聚氰胺磷酸盐、磷酸胍、碳酸 胍或氨基磺酸胍中的任意一种或者至少两种的混合物。所述混合物例如氨基磺酸胍和碳酸胍的混合物,磷酸胍和三聚氰胺磷酸盐的混合物,三聚氰胺和氨基磺酸胍的混合物,碳酸胍、磷酸胍和三聚氰胺的混合物,三聚氰胺磷酸盐、氨基磺酸胍、三聚氰胺和磷酸胍的混合物,优选三聚氰胺或/和三聚氰胺磷酸盐。
优选地,本发明所述聚苯醚树脂组合物还包括粉末填料。优选地,所述粉末填料选自结晶型二氧化硅、无定形二氧化硅、球形二氧化硅、熔融二氧化硅、二氧化钛、碳化硅、玻璃纤维、氧化铝、氮化铝、氮化硼、钛酸钡或钛酸锶中的任意一种或至少两种的混合物。所述混合物例如结晶型二氧化硅和无定形二氧化硅的混合物,球形二氧化硅和二氧化钛的混合物,碳化硅和玻璃纤维的混合物,氧化铝和氮化铝的混合物,氮化硼和钛酸钡的混合物,钛酸锶和碳化硅的混合物,球形二氧化硅、结晶型二氧化硅和无定形二氧化硅的混合物。
在本发明所述聚苯醚树脂组合物中,粉末填料起着提高尺寸稳定性、降低热膨胀系数和降低体系成本等作用。所述粉末填料的形状和粒径本发明对此不作限定,通常使用的粒径为0.2-10μm,例如0.5μm、1μm、2μm、3μm、5μm、8μm或9μm,例如,可选择粒径为0.2-10μm的球形二氧化硅。
优选地,以乙烯基改性聚苯醚树脂、含有不饱和双键的具有三维网状结构的有机硅树脂和阻燃剂的重量之和为100重量份计,所述粉末填料的重量为0~150重量份,优选0~150重量份且不包括0。
所述粉末填料的重量例如5重量份、15重量份、25重量份、35重量份、45重量份、55重量份、75重量份、90重量份、100重量份、110重量份、120重量份、130重量份、140重量份或145重量份。所述粉末填料的重量为0重量份,意指,所述树脂组合物中不含有粉末填料。
本发明所述的“包括”,意指其除所述组分外,还可以包括其他组分,这些其他组分赋予所述树聚苯醚脂组合物不同的特性。除此之外,本发明所述的“包括”,还可以替换为封闭式的“为”或“由……组成”。
例如,本发明所述聚苯醚树脂组合物可以添加配合的热固性树脂,作为具体例,可以举出环氧树脂、氰酸酯树脂、酚醛树脂、聚氨酯树脂和蜜胺树脂等,也可以添加这些热固性树脂的固化剂或者固化剂促进剂。
另外,所述聚苯醚树脂组合物还可以含有各种添加剂,作为具体例,可以举出硅烷偶联剂、钛酸酯偶联剂、抗氧剂、热稳定剂、抗静电剂、紫外线吸收剂、颜料、着色剂和润滑剂等。这些热固性树脂以及各种添加剂可以单独使用,也可以两种或者两种以上混合使用。
作为本发明树脂组合物之一的制备方法,可以通过公知的方法配合、搅拌、混合所述的乙烯基改性聚苯醚树脂、含有不饱和双键的具有三维网状结构的有机硅树脂、自由基引发剂、阻燃剂、粉末填料,以及各种热固性树脂和各种添加剂,来制备。
本发明的目的之二在于提供一种树脂胶液,其是将如上所述的聚苯醚树脂组合物溶解或分散在溶剂中得到。
作为本发明中的溶剂,没有特别限定,作为具体例,可以举出甲醇、乙醇、丁醇等醇类,乙基溶纤剂、丁基溶纤剂、乙二醇-甲醚、卡必醇、丁基卡必醇等醚类,丙酮、丁酮、甲基乙基甲酮、甲基异丁基甲酮、环己酮等酮类,甲苯、二甲苯、均三甲苯等芳香族烃类,乙氧基乙基乙酸酯、醋酸乙酯等酯类,N,N-二甲基甲酰胺、N,N-二甲基乙酰胺、N-甲基-2-吡咯烷酮等含氮类溶剂。上述溶剂可以单独使用一种,也可以两种或者两种以上混合使用,优选甲苯、二甲苯、均三甲苯等芳香族烃类溶剂与丙酮、丁酮、甲基乙基甲酮、甲基异丁基甲酮、环己酮等酮类熔剂混合使用。所述溶剂的使用量本领域技术人员可以根据自己的经验来选择,使得到的树脂胶液达到适于使用的粘度即可。
在如上所述的树脂组合物溶解或分散在溶剂的过程中,可以添加乳化剂。通过乳化剂进行分散,可以使粉末填料等在胶液中分散均匀。
本发明的目的之三在于提供一种预浸料,其是将玻璃纤维布等增强材料浸润如上所述的树脂胶液后,干燥得到。
在本发明中,玻璃纤维布为增强材料,在复合材料中起着提高强度、提高尺寸稳定性、降低热固性树脂固化的收缩等作用。根据板材厚度等要求不同,可选用不同类型的玻璃纤维布。示例性的玻璃纤维布如:7628玻纤布、2116玻纤布。
优选地,以乙烯基改性聚苯醚树脂、含有不饱和双键的具有三维网状结构 的有机硅树脂、阻燃剂和粉末填料的总重量为100重量份计,玻璃纤维布等增强材料的重量为50-230重量份,例如70重量份、90重量份、110重量份、150重量份、180重量份、200重量份、210重量份或220重量份。
所述干燥温度为80~220℃,例如90℃、110℃、150℃、170℃、190℃或200℃。所述干燥时间为1~30min,例如5min、8min、13min、17min、21min、24min或28min。
本发明的目的之四在于提供一种高频电路基板,所述高频电路基板由如上所述的预浸料制成。
示例性的一种高频电路基板的制备方法,所述方法为:
重叠至少一张如上所述的预浸料,在重叠预浸料的上下两侧放置铜箔,进行层压成型制备得到。采用本发明所述的方法可以制备得到具有低的介质常数性能、低的介质损耗、高的耐热性能、低的吸水率、高的层间粘结力、高的弯曲强度的高频电路基板。
所述重叠优选采用自动堆叠操作,使工艺操作更加简便。
所述层压成型优选真空层压成型,真空层压成型可以通过真空层压机实现。所述层压的时间为70~120min,例如75min、80min、85min、90min、95min、100min、105min、110min或115min。所述层压的温度为180~220℃,例如185℃、190℃、195℃、200℃、205℃、210℃或215℃。所述层压的压力为40~60kg/cm2,例如45kg/cm2、50kg/cm2、55kg/cm2或58kg/cm2
本发明典型但非限制性的高频电路基板的制备方法如下:
(1)按上述所述树脂组合物配方,称取各组分:以乙烯基改性聚苯醚树脂的重量为100重量份计算,含有不饱和双键的具有三维网状结构的有机硅树脂的重量为10~90重量份,以乙烯基改性聚苯醚树脂和含有不饱和双键的具有三维网状结构的有机硅树脂的重量之和为100重量份计,所述自由基引发剂的重量为1~3重量份,阻燃剂的重量为0~40重量份;以乙烯基改性聚苯醚树脂、含有不饱和双键的具有三维网状结构的有机硅树脂和阻燃剂的重量之和为100重量份计,所述粉末填料的重量为0~150重量份;
(2)将乙烯基改性聚苯醚树脂、含有不饱和双键的具有三维网状结构的有 机硅树脂、自由基引发剂、粉料填料和阻燃剂混合,并加入适量溶剂,搅拌分散均匀,使粉料填料与阻燃剂均匀分散在树脂胶液中。用制备的胶液浸润玻璃纤维布等增强材料,烘干,除去溶剂,得到预浸料;
(3)重叠至少一张的预浸料,在预浸料的两侧放置铜箔,在真空层压机中层压固化,从而得到高频电路基板。
本发明所述“高频”意指频率大于1MHz。
与已有技术相比,本发明具有如下有益效果:
(1)采用含有不饱和双键的具有三维网状结构的有机硅树脂作为乙烯基改性聚苯醚树脂的交联剂,树脂组合物固化后交联密度大,可提供高频电路基板的高玻璃化转变温度;
(2)含有不饱和双键的具有三维网状结构的有机硅树脂不含极性基团,可保证高频电路基板低的吸水率及低的介质常数和介质损耗;
(3)含有不饱和双键的具有三维网状结构的有机硅树脂热分解温度高,可提供高频电路基板优异的耐热性能;
(4)采用含有不饱和双键的具有三维网状结构的有机硅树脂作为乙烯基改性聚苯醚树脂的交联剂,所制备的高频电路基板层间粘合力高、弯曲强度高,提高了基板的可靠性。
(5)含有不饱和双键的具有三维网状结构的有机硅树脂不挥发,不存在上胶烘片过程中挥发的问题。
总之,采用乙烯基改性聚苯醚树脂和含有不饱和双键的具有三维网状结构的有机硅树脂制备的高频电路基板玻璃化转变温度高(≥180℃)、耐热性好(热分解温度≥430℃)、吸水率低(吸水率≤0.08%)、层间粘合力高(≥1N/mm)、弯曲强度高(≥450MPa)、介质常数低(10GHz,≤3.85)、介质损耗低(10GHz,≤0.0070),非常适合制备高频电子设备的电路基板。
附图说明
下面结合附图并通过具体实施方式来进一步说明本发明的技术方案。
图1:本发明所述高频电路基板的示意图。
本发明说明书附图中标记如下所示:
1-预浸料;2-铜箔。
具体实施方式
为更好地说明本发明,便于理解本发明的技术方案,本发明的典型但非限制性的实施例如下:
如本发明说明书附图1所示为本发明的高频电路基板示意图,其中2为铜箔,铜箔优选高剥离反转铜箔、低轮廓铜箔或超低轮廓铜箔。该图中,预浸料张数为9张。在实际应用中,采用的预浸料的张数、玻璃纤维布的种类、玻璃纤维布与树脂组合物的重量分数比需根据实际应用的高频电路基板的厚度等要求来决定。
制备例1
在三口烧瓶中加入二乙烯四甲基二硅氧烷、浓盐酸、去离子水及乙醇的混合液,开启机械搅拌机,然后于快速搅拌和加热回流条件下快速滴入苯基硅酸三乙酯水解缩合,水解一定时间后,加入甲苯萃取,然后将反应液倒入分液漏斗,静置分层。将水层分去,油层用水洗至中性,蒸馏、干燥除去溶剂甲苯后得到含有不饱和双键的具有三维网状结构的由单官能度含乙烯基的硅氧烷单元(M单元)与三官能度含苯基的硅氧烷单元(T单元)水解缩合而成的乙烯基苯基MT有机硅树脂V-10,分子量Mn为2000。
制备例2
在三口烧瓶中加入二乙烯四甲基二硅氧烷、浓盐酸、去离子水及乙醇的混合液,开启机械搅拌机,然后于快速搅拌和加热回流条件下快速滴入苯基硅酸三乙酯、正硅酸乙酯水解缩合,水解一定时间后,加入甲苯萃取,然后将反应液倒入分液漏斗,静置分层。将水层分去,油层用水洗至中性,蒸馏、干燥除去溶剂甲苯后得到含有不饱和双键的具有三维网状结构的由单官能度含乙烯基的硅氧烷单元(M单元)、三官能度含苯基的硅氧烷单元(T单元)与四官能度的硅氧烷单元(Q单元)水解缩合而成的乙烯基苯基MTQ有机硅树脂V-20,分子量Mn为1900。
制备例3
在三口烧瓶中加入二乙烯四甲基二硅氧烷、浓盐酸、去离子水及乙醇的混合液,开启机械搅拌机,然后于快速搅拌和加热回流条件下快速滴入苯基硅酸三乙酯、二甲基二乙氧基硅烷水解缩合,水解一定时间后,加入甲苯萃取,然后将反应液倒入分液漏斗,静置分层。将水层分去,油层用水洗至中性,蒸馏、干燥除去溶剂甲苯后得到含有不饱和双键的具有三维网状结构的由单官能度含乙烯基的硅氧烷单元(M单元)、二官能度含甲基的硅氧烷单元(D单元)与三官能度含苯基的硅氧烷单元(T单元)水解缩合而成的乙烯基苯基MDT有机硅树脂V-30,分子量Mn为1800。
制备例4
在三口烧瓶中加入二乙烯四甲基二硅氧烷、浓盐酸、去离子水及乙醇的混合液,开启机械搅拌机,然后于快速搅拌和加热回流条件下快速滴入二甲基二乙氧基硅烷、正硅酸乙酯水解缩合,水解一定时间后,加入甲苯萃取,然后将反应液倒入分液漏斗,静置分层。将水层分去,油层用水洗至中性,蒸馏、干燥除去溶剂甲苯后得到含有不饱和双键的具有三维网状结构的由单官能度含乙烯基的硅氧烷单元(M单元)、二官能度含苯基的硅氧烷单元(D单元)与四官能度的硅氧烷单元(Q单元)水解缩合而成的乙烯基苯基MDQ有机硅树脂V-40,分子量Mn为1900。
制备例5
在三口烧瓶中加入浓盐酸、去离子水及乙醇的混合液,开启机械搅拌机,然后于快速搅拌和加热回流条件下快速滴入苯基硅酸三乙酯、二甲基二乙氧基硅烷水解缩合,水解一定时间后,加入甲苯萃取,然后将反应液倒入分液漏斗,静置分层。将水层分去,油层用水洗至中性,蒸馏、干燥除去溶剂甲苯后得到由二官能度含甲基的硅氧烷单元(D单元)与三官能度含苯基的硅氧烷单元(T单元)水解缩合而成的甲基苯基DT有机硅树脂V-00,分子量Mn为2000。
为更好地说明本发明,便于理解本发明的技术方案,本发明的典型但非限制性的实施例如下:
表1所示为实施例及比较例所用原料。
表1实施例及比较例所用原料
制造厂商 产品名称或牌号 材料描述
Sabic SA9000 甲基丙烯酸酯基改性聚苯醚树脂
三菱化学公司 St-PPE-1 乙烯基苄基醚改性聚苯醚树脂
润禾化工 RH-Vi306 线性含不饱和双键的有机硅化合物
武大有机硅 WD-V4 环形含不饱和双键的有机硅化合物
自制 V-00 甲基苯基DT有机硅树脂
自制 V-10 乙烯基苯基MT有机硅树脂
自制 V-20 乙烯基苯基MTQ有机硅树脂
自制 V-30 乙烯基苯基MDT有机硅树脂
自制 V-40 乙烯基苯基MDQ有机硅树脂
上海高桥 DCP 过氧化二异丙苯
东莞芯威化工 BPO 过氧化二苯甲酰
Sibelco 525 熔融二氧化硅
美国雅宝 XP-7866 磷系阻燃剂
美国雅宝 XP-7866 磷系阻燃剂
上海宏和 2116 玻璃纤维布
实施例1
将100.0重量份的甲基丙烯酸酯基改性聚苯醚树脂粉末SA9000,10.0重量份的含有不饱和双键的具有三维网状结构的由单官能度含乙烯基的硅氧烷单元(M单元)与三官能度含苯基的硅氧烷单元(T单元)水解缩合而成的乙烯基苯基MT有机硅树脂V-10,3.0重量份的自由基引发剂过氧化二异丙苯(DCP),溶解于甲苯溶剂中,并调节至适合粘度。用2116玻纤布浸润树脂胶液,过夹轴控制适合单重,并在烘箱中干燥,除去甲苯溶剂,制得2116预浸料。将4张2116 预浸料重叠,上下两面配以1OZ厚度的铜箔,在压机中真空层压固化90min,固化压力50kg/cm2,固化温度200℃,制得高频电路基板。基材综合性能如表2所示。
实施例2
将100.0重量份的甲基丙烯酸酯基改性聚苯醚树脂粉末SA9000,25.0重量份的含有不饱和双键的具有三维网状结构的由单官能度含乙烯基的硅氧烷单元(M单元)与三官能度含苯基的硅氧烷单元(T单元)水解缩合而成的乙烯基苯基MT有机硅树脂V-10,3.0重量份的自由基引发剂过氧化二异丙苯(DCP),溶解于甲苯溶剂中,并调节至适合粘度。用2116玻纤布浸润树脂胶液,过夹轴控制适合单重,并在烘箱中干燥,除去甲苯溶剂,制得2116预浸料。将4张2116预浸料重叠,上下两面配以1OZ厚度的铜箔,在压机中真空层压固化90min,固化压力50kg/cm2,固化温度200℃,制得高频电路基板。基材综合性能如表2所示。
实施例3
将100.0重量份的甲基丙烯酸酯基改性聚苯醚树脂粉末SA9000,30.0重量份的含有不饱和双键的具有三维网状结构的由单官能度含乙烯基的硅氧烷单元(M单元)与三官能度含苯基的硅氧烷单元(T单元)水解缩合而成的乙烯基苯基MT有机硅树脂V-10,3.0重量份的自由基引发剂过氧化二异丙苯(DCP),溶解于甲苯溶剂中,并调节至适合粘度。用2116玻纤布浸润树脂胶液,过夹轴控制适合单重,并在烘箱中干燥,除去甲苯溶剂,制得2116预浸料。将4张2116预浸料重叠,上下两面配以1OZ厚度的铜箔,在压机中真空层压固化90min,固化压力50kg/cm2,固化温度200℃,制得高频电路基板。基材综合性能如表2所示。
实施例4
将100.0重量份的甲基丙烯酸酯基改性聚苯醚树脂粉末SA9000,40.0重量份的含有不饱和双键的具有三维网状结构的由单官能度含乙烯基的硅氧烷单元(M单元)与三官能度含苯基的硅氧烷单元(T单元)水解缩合而成的乙烯基苯基MT有机硅树脂V-10,3.0重量份的自由基引发剂过氧化二异丙苯(DCP),溶解 于甲苯溶剂中,并调节至适合粘度。用2116玻纤布浸润树脂胶液,过夹轴控制适合单重,并在烘箱中干燥,除去甲苯溶剂,制得2116预浸料。将4张2116预浸料重叠,上下两面配以1OZ厚度的铜箔,在压机中真空层压固化90min,固化压力50kg/cm2,固化温度200℃,制得高频电路基板。基材综合性能如表2所示。
实施例5
将100.0重量份的甲基丙烯酸酯基改性聚苯醚树脂粉末SA9000,90.0重量份的含有不饱和双键的具有三维网状结构的由单官能度含乙烯基的硅氧烷单元(M单元)与三官能度含苯基的硅氧烷单元(T单元)水解缩合而成的乙烯基苯基MT有机硅树脂V-10,3.0重量份的自由基引发剂过氧化二异丙苯(DCP),溶解于甲苯溶剂中,并调节至适合粘度。用2116玻纤布浸润树脂胶液,过夹轴控制适合单重,并在烘箱中干燥,除去甲苯溶剂,制得2116预浸料。将4张2116预浸料重叠,上下两面配以1OZ厚度的铜箔,在压机中真空层压固化90min,固化压力50kg/cm2,固化温度200℃,制得高频电路基板。基材综合性能如表2所示。
实施例6
将100.0重量份的苯乙烯基改性聚苯醚树脂粉末St-PPE-1,10.0重量份的含有不饱和双键的具有三维网状结构的由单官能度含乙烯基的硅氧烷单元(M单元)与三官能度含苯基的硅氧烷单元(T单元)水解缩合而成的乙烯基苯基MT有机硅树脂V-10,3.0重量份的自由基引发剂过氧化二异丙苯(DCP),溶解于甲苯溶剂中,并调节至适合粘度。用2116玻纤布浸润树脂胶液,过夹轴控制适合单重,并在烘箱中干燥,除去甲苯溶剂,制得2116预浸料。将4张2116预浸料重叠,上下两面配以1OZ厚度的铜箔,在压机中真空层压固化90min,固化压力50kg/cm2,固化温度200℃,制得高频电路基板。基材综合性能如表2所示。
实施例7
将100.0重量份的苯乙烯基改性聚苯醚树脂粉末St-PPE-1,40.0重量份的含有不饱和双键的具有三维网状结构的由单官能度含乙烯基的硅氧烷单元(M单元)与三官能度含苯基的硅氧烷单元(T单元)水解缩合而成的乙烯基苯基MT有机硅 树脂V-10,3.0重量份的自由基引发剂过氧化二异丙苯(DCP),溶解于甲苯溶剂中,并调节至适合粘度。用2116玻纤布浸润树脂胶液,过夹轴控制适合单重,并在烘箱中干燥,除去甲苯溶剂,制得2116预浸料。将4张2116预浸料重叠,上下两面配以1OZ厚度的铜箔,在压机中真空层压固化90min,固化压力50kg/cm2,固化温度200℃,制得高频电路基板。基材综合性能如表2所示。
实施例8
将100.0重量份的苯乙烯基改性聚苯醚树脂粉末St-PPE-1,90.0重量份的含有不饱和双键的具有三维网状结构的由单官能度含乙烯基的硅氧烷单元(M单元)与三官能度含苯基的硅氧烷单元(T单元)水解缩合而成的乙烯基苯基MT有机硅树脂V-10,3.0重量份的自由基引发剂过氧化二异丙苯(DCP),溶解于甲苯溶剂中,并调节至适合粘度。用2116玻纤布浸润树脂胶液,过夹轴控制适合单重,并在烘箱中干燥,除去甲苯溶剂,制得2116预浸料。将4张2116预浸料重叠,上下两面配以1OZ厚度的铜箔,在压机中真空层压固化90min,固化压力50kg/cm2,固化温度200℃,制得高频电路基板。基材综合性能如表2所示。
实施例9
将100.0重量份的甲基丙烯酸酯基改性聚苯醚树脂粉末SA9000,40.0重量份的含有不饱和双键的具有三维网状结构的由单官能度含乙烯基的硅氧烷单元(M单元)与三官能度含苯基的硅氧烷单元(T单元)水解缩合而成的乙烯基苯基MT有机硅树脂V-10,3.0重量份的自由基引发剂过氧化二异丙苯(DCP),60.0重量份的硅微粉525,30.0重量份的含溴阻燃剂BT-93W,溶解分散于甲苯溶剂中,并调节至适合粘度。用2116玻纤布浸润树脂胶液,过夹轴控制适合单重,并在烘箱中干燥,除去甲苯溶剂,制得2116预浸料。将4张2116预浸料重叠,上下两面配以1OZ厚度的铜箔,在压机中真空层压固化90min,固化压力50kg/cm2,固化温度200℃,制得高频电路基板。基材综合性能如表3所示。
实施例10
将100.0重量份的甲基丙烯酸酯基改性聚苯醚树脂粉末SA9000,40.0重量份的含有不饱和双键的具有三维网状结构的由单官能度含乙烯基的硅氧烷单元(M单元)、三官能度含苯基的硅氧烷单元(T单元)与四官能的硅氧烷单元(Q单元) 水解缩合而成的乙烯基苯基MTQ有机硅树脂V-20,3.0重量份的自由基引发剂过氧化二异丙苯(DCP),60.0重量份的硅微粉525,30.0重量份的含溴阻燃剂BT-93W,溶解分散于甲苯溶剂中,并调节至适合粘度。用2116玻纤布浸润树脂胶液,过夹轴控制适合单重,并在烘箱中干燥,除去甲苯溶剂,制得2116预浸料。将4张2116预浸料重叠,上下两面配以1OZ厚度的铜箔,在压机中真空层压固化90min,固化压力50kg/cm2,固化温度200℃,制得高频电路基板。基材综合性能如表3所示。
实施例11
将100.0重量份的甲基丙烯酸酯基改性聚苯醚树脂粉末SA9000,40.0重量份的含有不饱和双键的具有三维网状结构的由单官能度含乙烯基的硅氧烷单元(M单元)、二官能度含苯基的硅氧烷单元(D单元)与三官能度含苯基的硅氧烷单元(T单元)水解缩合而成的乙烯基苯基MDT有机硅树脂V-30,3.0重量份的自由基引发剂过氧化二异丙苯(DCP),60.0重量份的硅微粉525,30.0重量份的含溴阻燃剂BT-93W,溶解分散于甲苯溶剂中,并调节至适合粘度。用2116玻纤布浸润树脂胶液,过夹轴控制适合单重,并在烘箱中干燥,除去甲苯溶剂,制得2116预浸料。将4张2116预浸料重叠,上下两面配以1OZ厚度的铜箔,在压机中真空层压固化90min,固化压力50kg/cm2,固化温度200℃,制得高频电路基板。基材综合性能如表3所示。
实施例12
将100.0重量份的甲基丙烯酸酯基改性聚苯醚树脂粉末SA9000,40.0重量份的含有不饱和双键的具有三维网状结构的由单官能度含乙烯基的硅氧烷单元(M单元)、二官能度含苯基的硅氧烷单元(D单元)与四官能度的硅氧烷单元(Q单元)水解缩合而成的乙烯基苯基MDQ有机硅树脂V-40,3.0重量份的自由基引发剂过氧化二异丙苯(DCP),60.0重量份的硅微粉525,30.0重量份的含溴阻燃剂BT-93W,溶解分散于甲苯溶剂中,并调节至适合粘度。用2116玻纤布浸润树脂胶液,过夹轴控制适合单重,并在烘箱中干燥,除去甲苯溶剂,制得2116预浸料。将4张2116预浸料重叠,上下两面配以1OZ厚度的铜箔,在压机中真空层压固化90min,固化压力50kg/cm2,固化温度200℃,制得高频电路基板。 基材综合性能如表3所示。
实施例13
将100.0重量份的甲基丙烯酸酯基改性聚苯醚树脂粉末SA9000,40.0重量份的含有不饱和双键的具有三维网状结构的由单官能度含乙烯基的硅氧烷单元(M单元)与三官能度含苯基的硅氧烷单元(T单元)水解缩合而成的乙烯基苯基MT有机硅树脂V-10,3.0重量份的自由基引发剂过氧化二苯甲酰(BPO),60.0重量份的硅微粉525,30.0重量份的含溴阻燃剂BT-93W,溶解分散于甲苯溶剂中,并调节至适合粘度。用2116玻纤布浸润树脂胶液,过夹轴控制适合单重,并在烘箱中干燥,除去甲苯溶剂,制得2116预浸料。将4张2116预浸料重叠,上下两面配以1OZ厚度的铜箔,在压机中真空层压固化90min,固化压力50kg/cm2,固化温度200℃,制得高频电路基板。基材综合性能如表3所示。
实施例14
将100.0重量份的苯乙烯基改性聚苯醚树脂粉末St-PPE-1,40.0重量份的含有不饱和双键的具有三维网状结构的由单官能度含乙烯基的硅氧烷单元(M单元)与三官能度含苯基的硅氧烷单元(T单元)水解缩合而成的乙烯基苯基MT有机硅树脂V-10,3.0重量份的自由基引发剂过氧化二异丙苯(DCP),60.0重量份的硅微粉525,30.0重量份的含溴阻燃剂BT-93W,溶解分散于甲苯溶剂中,并调节至适合粘度。用2116玻纤布浸润树脂胶液,过夹轴控制适合单重,并在烘箱中干燥,除去甲苯溶剂,制得2116预浸料。将4张2116预浸料重叠,上下两面配以1OZ厚度的铜箔,在压机中真空层压固化90min,固化压力50kg/cm2,固化温度200℃,制得高频电路基板。基材综合性能如表3所示。
比较例1
将实施例7中的含有不饱和双键的具有三维网状结构的由单官能度含乙烯基的硅氧烷单元(M单元)与三官能度含苯基的硅氧烷单元(T单元)水解缩合而成的乙烯基苯基MT有机硅树脂V-10换为线性含不饱和双键的有机硅树脂RH-Vi306,其余与实施例7相同。基材综合性能如表3所示。
比较例2
将实施例7中的含有不饱和双键的具有三维网状结构的由单官能度含乙烯 基的硅氧烷单元(M单元)与三官能度含苯基的硅氧烷单元(T单元)水解缩合而成的乙烯基苯基MT有机硅树脂V-10换为环型含不饱和双键的有机硅树脂WD-V4,其余与实施例7相同。基材综合性能如表3所示。
比较例3
将实施例7中的含有不饱和双键的具有三维网状结构的由单官能度含乙烯基的硅氧烷单元(M单元)与三官能度含苯基的硅氧烷单元(T单元)水解缩合而成的乙烯基苯基MT有机硅树脂V-10换为甲基苯基DT有机硅树脂V-00,其余与实施例7相同。基材综合性能如表3所示。
表2
Figure PCTCN2016075323-appb-000004
Figure PCTCN2016075323-appb-000005
表3
Figure PCTCN2016075323-appb-000006
Figure PCTCN2016075323-appb-000007
从比较例1与实施例9、实施例10、实施例11、实施例12对比可知,与线性含不饱和双键的有机硅化合物RH-Vi306相比,采用含有不饱和双键的具有三维网状结构的有机硅树脂作为交联剂,得到的高频电路基板具有更高的弯曲强度。从比较例2与实施例9、实施例10、实施例11、实施例12对比可知,与环型含不饱和双键的有机硅化合物WD-V4相比,含有不饱和双键的具有三维网状结构的有机硅树脂作为交联剂在上胶烘片过程中不存在挥发的问题。采用含有不饱和双键的具有三维网状结构的有机硅树脂作为交联剂所制备的高频电路基材具有高的玻璃化转变温度、高的热分解温度、低的吸水率、高的层间粘合力、高的弯曲强度、低的介质常数及低的介质损耗,因此含有不饱和双键的具有三维网状结构的有机硅树脂是一种综合性能优异的交联剂,可用于高频电路基板的制备。
从比较例3与实施例9、实施例10、实施例11、实施例12对比可知,由于甲基苯基DT有机硅树脂不含有活性的乙烯基基团,不能固化含有乙烯基改性的热固性聚苯醚,所制备的板材玻璃化转变温度、耐浸焊性能、层间粘合力、弯曲强度等综合性能差,不能满足终端对高频电子电路基材综合性能的要求。
实施例15
将100.0重量份的甲基丙烯酸酯基改性聚苯醚树脂,40.0重量份的含有不饱和双键的具有三维网状结构的由单官能度含乙烯基的硅氧烷单元(M单元)与三官能度含苯基的硅氧烷单元(T单元)水解缩合而成的乙烯基苯基MT有机硅树脂,3.0重量份的自由基引发剂4,4-二(叔丁基过氧化)戊酸正丁酯,50.0重量份的碳化硅,40.0重量份的阻燃剂三(2,6-二甲基苯基)膦,溶解于甲苯和丁酮的混合溶剂中,并调节至适合粘度,制得树脂胶液。用120.0重量份的7628玻璃纤维布浸润树脂胶液,过夹轴控制适合单重,并在烘箱中干燥,除去溶剂,制得 7628预浸料。将4张7628预浸料重叠,上下两面配以1OZ厚度的铜箔,在压机中真空层压固化90min,固化压力50kg/cm2,固化温度200℃,制得高频电路基板。
所述甲基丙烯酸酯基改性聚苯醚的结构式为:
Figure PCTCN2016075323-appb-000008
其中,15<x<50,15<y<50,15<x+y<100;甲基丙烯酸酯基改性聚苯醚的分子量为8000g/mol。
所述含有不饱和双键的具有三维网状结构的由单官能度含乙烯基的硅氧烷单元(M单元)与三官能度含苯基的硅氧烷单元(T单元)水解缩合而成的乙烯基苯基MT有机硅树脂结构式为:
(R1R2R3SiO1/2)x1(R4SiO3/2)y1
其中,3≤x1≤100,1≤y1≤100,4≤x1+y1≤200,且x1/y1=0.5;
R1、R2、R3、R4分别为乙烯基、甲基、甲基和未取代的苯基。
实施例16
将100.0重量份的甲基丙烯酸酯基改性聚苯醚树脂,40.0重量份的含有不饱和双键的具有三维网状结构的由单官能度含乙烯基的硅氧烷单元(M单元)与三官能度含苯基的硅氧烷单元(T单元)水解缩合而成的乙烯基苯基MT有机硅树脂,1.5重量份的自由基引发剂过氧化二苯甲酰(BPO),125.0重量份的氮化铝,25.0重量份的十溴二苯醚混合,溶解分散于甲苯溶剂中,并调节至适合粘度。采用乳化剂进行乳化,使粉末填料和阻燃剂等均匀分散在混合液中,制得树脂胶液。用500.0重量份的2116玻璃纤维布浸润树脂胶液,过夹轴控制适合单重,并在烘箱中干燥,除去甲苯溶剂,制得2116预浸料。将4张2116预浸料重叠,上下两面配以1OZ厚度的铜箔,在压机中真空层压固化90min,固化压力 50kg/cm2,固化温度200℃,制得高频电路基板。
所述甲基丙烯酸酯基改性聚苯醚的结构式为:
Figure PCTCN2016075323-appb-000009
50<x<100,甲基丙烯酸酯基改性聚苯醚树脂的分子量为8000g/mol;
所述含有不饱和双键的具有三维网状结构的由单官能度含乙烯基的硅氧烷单元(M单元)与三官能度含苯基的硅氧烷单元(T单元)水解缩合而成的乙烯基苯基MT有机硅树脂结构式为:
(R1R2R3SiO1/2)x1(R4SiO3/2)y1
其中,3≤x1≤100,1≤y1≤100,4≤x1+y1≤200,且x1/y1=1.0;
R1、R2、R3、R4分别为乙烯基、甲基、甲基和未取代的苯基。
实施例17
将100.0重量份的苯乙烯基改性聚苯醚树脂,50.0重量份的含有不饱和双键的具有三维网状结构的由单官能度含乙烯基的硅氧烷单元(M单元)与三官能度含苯基的硅氧单元(T单元)水解缩合而成的乙烯基苯基MT有机硅树脂,1.0重量份的自由基引发剂过氧化二苯甲酰(BPO),100.0重量份的氧化铝,30.0重量份的十溴二苯醚混合,溶解于甲苯溶剂中,并调节至适合粘度。采用乳化剂进行乳化,使粉末填料和阻燃剂均匀分散在混合液中,制得树脂胶液。用230.0重量份的2116玻璃纤维布浸润树脂胶液,过夹轴控制适合单重,并在烘箱中烘片,除去甲苯溶剂,制得2116预浸料。将4张2116预浸料重叠,上下两面配以1OZ厚度的铜箔,在压机中真空层压固化120min,固化压力40kg/cm2,固化温度180℃,制得高频电路基板。
所述苯乙烯基改性聚苯醚树脂的结构式为:
Figure PCTCN2016075323-appb-000010
5<y<15,苯乙烯基改性聚苯醚树脂的分子量为1000g/mol。
所述含有不饱和双键的具有三维网状结构的由单官能度含乙烯基的硅氧烷单元(M单元)与三官能度含苯基的硅氧烷单元(T单元)水解缩合而成的乙烯基苯基MT有机硅树脂结构式为:
(R1R2R3SiO1/2)x1(R4SiO3/2)y1
其中,3≤x1≤100,1≤y1≤100,4≤x1+y1≤200,且x1/y1=2.0;
R1、R2、R3、R4分别为乙烯基、甲基、甲基和未取代的苯基。
实施例18
将100.0重量份的苯乙烯基改性聚苯醚树脂,50.0重量份的含有不饱和双键的具有三维网状结构的由单官能度含乙烯基的硅氧烷单元(M单元)与三官能度含苯基的硅氧烷单元(T单元)水解缩合而成的乙烯基苯基MT有机硅树脂,1.5重量份的自由基引发剂过氧化二苯甲酰(BPO),125.0重量份的氮化硼,25.0重量份的十溴二苯醚混合,溶解于甲苯溶剂中,并调节至适合粘度。采用乳化剂进行乳化,使粉末填料和乳化剂均匀分散在混合液中,制得树脂胶液。用450.0重量份的2116玻璃纤维布浸润树脂,过夹轴控制适合单重,并在烘箱中烘片,除去甲苯溶剂,制得2116预浸料。将4张2116预浸料重叠,上下两面配以1OZ厚度的铜箔,在压机中真空层压固化70min,固化压力60kg/cm2,固化温度220℃,制得高频电路基板。
所述苯乙烯基改性聚苯醚树脂的结构式为:
Figure PCTCN2016075323-appb-000011
50<x<60,25<y<45,75<x+y<100,苯乙烯基改性聚苯醚的分子量为9500g/mol。
所述含有不饱和双键的具有三维网状结构的由单官能度含乙烯基的硅氧烷单元(M单元)与三官能度含苯基的硅氧烷单元(T单元)水解缩合而成的乙烯基苯基MT有机硅树脂结构式为:
(R1R2R3SiO1/2)x1(R4SiO3/2)y1
其中,3≤x1≤100,1≤y1≤100,4≤x1+y1≤200,且x1/y1=3.0;
R1、R2、R3、R4分别为乙烯基、甲基、甲基和未取代的苯基。
表4所示为实施例15-18高频电路基板性能测试结果。
表4
Figure PCTCN2016075323-appb-000012
Figure PCTCN2016075323-appb-000013
申请人声明,本发明通过上述实施例来说明本发明的详细方法,但本发明并不局限于上述详细方法,即不意味着本发明必须依赖上述详细方法才能实施。所属技术领域的技术人员应该明了,对本发明的任何改进,对本发明产品各原料的等效替换及辅助成分的添加、具体方式的选择等,均落在本发明的保护范围和公开范围之内。

Claims (10)

  1. 一种聚苯醚树脂组合物,包括乙烯基改性聚苯醚树脂和含有不饱和双键的具有三维网状结构的有机硅树脂,其中,所述含有不饱和双键的具有三维网状结构的有机硅树脂为含有不饱和双键的具有三维网状结构的由单官能度硅氧烷单元(M单元)与三官能度硅氧烷单元(T单元)水解缩合而成的MT有机硅树脂、含有不饱和双键的具有三维网状结构的由单官能度硅氧烷单元(M单元)、三官能度硅氧烷单元(T单元)和四官能度硅氧烷单元(Q单元)水解缩合而成的MTQ有机硅树脂、含有不饱和双键的具有三维网状结构的由单官能度硅氧烷单元(M单元)、两官能度硅氧烷单元(D单元)和三官能度硅氧烷单元(T单元)水解缩合而成的MDT有机硅树脂或含有不饱和双键的具有三维网状结构的由单官能度硅氧烷单元(M单元)、两官能度硅氧烷单元(D单元)和四官能度硅氧烷单元(Q单元)水解缩合而成的MDQ有机硅树脂中的任意一种或至少两种的混合物。
  2. 如权利要求1所述的聚苯醚树脂组合物,其特征在于,所述乙烯基改性聚苯醚树脂具有如下结构:
    Figure PCTCN2016075323-appb-100001
    其中,0≤x≤100,0≤y≤100,2≤x+y≤100;
    M选自:
    Figure PCTCN2016075323-appb-100002
    Figure PCTCN2016075323-appb-100003
    N选自-O-、-CO-、-SO-、-SC-、-SO2-或-C(CH3)2-中的任意一种或者至少两种的组合;
    R2、R4、R6、R8、R11、R13、R15和R17均独立地选自取代或未取代的C1-C8直链烷基、取代或未取代的C1-C8支链烷基或取代或未取代的苯基中的任意一种或者至少两种的组合;
    R1、R3、R5、R7、R10、R12、R14和R16均独立地选自氢原子、取代或未取代的C1-C8直链烷基、取代或未取代的C1-C8支链烷基或取代或未取代的苯基中的任意一种或者至少两种的组合;
    R9选自:
    Figure PCTCN2016075323-appb-100004
    其中,A为亚芳香基、羰基或碳原子数为1~10的亚烷基,Z为0~10的整数,R21、R22和R23均独自地选自氢原子或碳原子数为1~10的烷基;
    优选地,所述乙烯基改性聚苯醚树脂的数均分子量为500-10000g/mol,优选800~8000g/mol,进一步优选1000~4000g/mol。
  3. 如权利要求1或2所述的聚苯醚树脂组合物,其特征在于,所述含有不饱和双键的具有三维网状结构的由单官能度硅氧烷单元(M单元)与三官能度硅 氧烷单元(T单元)水解缩合而成的MT有机硅树脂具有如下结构:
    (R24R25R26SiO1/2)x1(R27SiO3/2)y1
    其中,3≤x1≤100,1≤y1≤100,4≤x1+y1≤200,且0.03≤x1/y1≤10;
    R24、R25、R26和R27均独立地选自取代或未取代的C1-C8直链烷基、取代或未取代的C1-C8支链烷基、取代或未取代的苯基或取代或未取代的C2-C10含C=C的基团中的任意一种或者至少两种的组合,且R24、R25、R26和R27四者至少有一个为取代或未取代的C2-C10含C=C的基团;
    优选地,所述含有不饱和双键的具有三维网状结构的由单官能度硅氧烷单元(M单元)、三官能度硅氧烷单元(T单元)和四官能度硅氧烷单元(Q单元)水解缩合而成的MTQ有机硅树脂具有如下结构:
    (R28R29R30SiO1/2)a(R31SiO3/2)b(SiO4/2)c
    其中,5≤a≤100,1≤b≤100,1≤c≤100,且7≤a+b+c≤100;
    R28、R29、R30和R31均独立地选自取代或未取代的C1-C8直链烷基、取代或未取代的C1-C8支链烷基、取代或未取代的苯基或取代或未取代的C2-C10含C=C的基团中的任意一种或者至少两种的组合,且R28、R29、R30和R31四者至少有一个为取代或未取代的C2-C10含C=C的基团;
    优选地,所述含有不饱和双键的具有三维网状结构的由单官能度硅氧烷单元(M单元)、两官能度硅氧烷单元(D单元)和三官能度硅氧烷单元(T单元)水解缩合而成的MDT有机硅树脂具有如下结构:
    (R32R33R34SiO1/2)d(R35R36SiO3/2)e(R37SiO3/2)f
    其中,3≤d≤100,3≤e≤100,1≤f≤100,且7≤d+e+f≤100;
    R32、R33、R34、R35、R36和R37均独立地选自取代或未取代的C1-C8直链烷基、取代或未取代的C1-C8支链烷基、取代或未取代的苯基或取代或未取代的 C2-C10含C=C的基团中的任意一种或者至少两种的组合,且R32、R33、R34、R35、R36和R37六者至少有一个为取代或未取代的C2-C10含C=C的基团;
    优选地,所述含有不饱和双键的具有三维网状结构的由单官能度硅氧烷单元(M单元)、两官能度硅氧烷单元(D单元)和四官能度硅氧烷单元(Q单元)水解缩合而成的MDQ有机硅树脂具有如下结构:
    (R38R39R40SiO1/2)m(R41R42SiO3/2)n(SiO4/2)w
    其中,4≤m≤100,4≤n≤100,1≤w≤100,且9≤m+n+w≤100;
    R38、R39、R40、R41和R42均独立地选自取代或未取代的C1-C8直链烷基、取代或未取代的C1-C8支链烷基、取代或未取代的苯基或取代或未取代的C2-C10含C=C的基团中的任意一种或者至少两种的组合,且R38、R39、R40、R41和R42五者至少有一个为取代或未取代的C2-C10含C=C的基团。
  4. 如权利要求1-3之一所述的聚苯醚树脂组合物,其特征在于,以乙烯基改性聚苯醚树脂的重量为100重量份计,所述含有不饱和双键的具有三维网状结构的有机硅树脂的重量为10~90重量份,优选25-90重量份。
  5. 如权利要求1-4之一所述的聚苯醚树脂组合物,其特征在于,所述聚苯醚树脂组合物还包括自由基引发剂;
    优选地,以乙烯基改性聚苯醚树脂和含有不饱和双键的具有三维网状结构的有机硅树脂的重量之和为100重量份计,所述自由基引发剂的重量为1~3重量份;
    优选地,所述自由基引发剂选自有机过氧化物引发剂,进一步优选自过氧化二异丙苯、过氧化二苯甲酰、过氧化苯甲酰、过氧化苯甲酸叔丁酯或4,4-二(叔丁基过氧化)戊酸正丁酯中的任意一种或者至少两种的混合物。
  6. 如权利要求1-5之一所述的聚苯醚树脂组合物,其特征在于,所述聚苯 醚树脂组合物还包括阻燃剂;
    优选地,以乙烯基改性聚苯醚树脂和含有不饱和双键的具有三维网状结构的有机硅树脂的重量之和为100重量份计,阻燃剂的重量为0~40重量份,优选为0~40重量份且不包括0;
    优选地,所述阻燃剂选自卤系阻燃剂、磷系阻燃剂或氮系阻燃剂中的任意一种或者至少两种的混合物,优选溴系阻燃剂、磷系阻燃剂或氮系阻燃剂中的任意一种或者至少两种的混合物;
    优选地,所述溴系阻燃剂选自十溴二苯醚、六溴苯、十溴二苯乙烷或乙撑双四溴邻苯二甲酰亚胺中的任意一种或者至少两种的混合物;
    优选地,所述磷系阻燃剂选自三(2,6-二甲基苯基)膦、10-(2,5-二羟基苯基)-9,10-二氢-9-氧杂-10-膦菲-10-氧化物、2,6-二(2,6-二甲基苯基)膦基苯或10-苯基-9,10-二氢-9-氧杂-10-膦菲-10-氧化物中的任意一种或者至少两种的混合物;
    优选地,所述氮系阻燃剂选自三聚氰胺、三聚氰胺磷酸盐、磷酸胍、碳酸胍或氨基磺酸胍中的任意一种或者至少两种的混合物;
    优选地,所述聚苯醚树脂组合物还包括粉末填料;
    优选地,所述粉末填料选自结晶型二氧化硅、无定形二氧化硅、球形二氧化硅、熔融二氧化硅、二氧化钛、碳化硅、玻璃纤维、氧化铝、氮化铝、氮化硼、钛酸钡或钛酸锶中的任意一种或至少两种的混合物;
    优选地,以乙烯基改性聚苯醚树脂、含有不饱和双键的具有三维网状结构的有机硅树脂和阻燃剂的重量之和为100重量份计,所述粉末填料的重量为0~150重量份,优选0~150重量份且不包括0。
  7. 一种树脂胶液,其是将如权利要求1-6之一所述的聚苯醚树脂组合物溶解或分散在溶剂中得到。
  8. 一种预浸料,其是将增强材料浸润如权利要求7所述的树脂胶液后,干燥得到。
  9. 如权利要求8所述的预浸料,其特征在于,以乙烯基改性聚苯醚树脂、含有不饱和双键的具有三维网状结构的有机硅树脂、阻燃剂和粉末填料的重量之和为100重量份计,增强材料的重量为50~230重量份。
  10. 一种高频电路基板,所述高频电路基板由至少一张如权利要求8或9所述的预浸料制成。
PCT/CN2016/075323 2015-10-21 2016-03-02 一种聚苯醚树脂组合物及其在高频电路基板中的应用 WO2017067124A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP16856571.1A EP3315560B1 (en) 2015-10-21 2016-03-02 Polyphenyl ether resin composition and use thereof in high-frequency circuit substrate
US15/744,244 US10645806B2 (en) 2015-10-21 2016-03-02 Polyphenyl ether resin composition and use thereof in high-frequency circuit substrate
JP2018522837A JP6912467B2 (ja) 2015-10-21 2016-03-02 ポリフェニレンエーテル樹脂組成物及びそれを適用した高周波回路基板

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510689070.7 2015-10-21
CN201510689070.7A CN106609039B (zh) 2015-10-21 2015-10-21 一种聚苯醚树脂组合物及其在高频电路基板中的应用

Publications (1)

Publication Number Publication Date
WO2017067124A1 true WO2017067124A1 (zh) 2017-04-27

Family

ID=58556569

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/075323 WO2017067124A1 (zh) 2015-10-21 2016-03-02 一种聚苯醚树脂组合物及其在高频电路基板中的应用

Country Status (6)

Country Link
US (1) US10645806B2 (zh)
EP (1) EP3315560B1 (zh)
JP (1) JP6912467B2 (zh)
CN (1) CN106609039B (zh)
TW (1) TWI615439B (zh)
WO (1) WO2017067124A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019112920A1 (en) 2017-12-06 2019-06-13 Icl-Ip America Inc. Additive phosphorus-containing polysiloxane compound for thermosetting resins, flame retardant composition comprising same, and articles made therefrom
TWI732733B (zh) * 2021-01-13 2021-07-01 穗曄實業股份有限公司 漿料組成物及其製備方法
US11390735B2 (en) 2017-08-04 2022-07-19 Shengyi Technology Co., Ltd. Thermosetting resin composition and prepreg and metal foil-covered laminate made using same

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108727827B (zh) * 2017-04-17 2021-06-04 广东生益科技股份有限公司 热固性乙烯基有机硅树脂组合物及其在高频电路板中的应用
CN109082019B (zh) * 2017-06-13 2020-04-14 广东生益科技股份有限公司 一种聚合物树脂及其在高频电路板中的应用
CN109082020A (zh) * 2017-06-13 2018-12-25 广东生益科技股份有限公司 聚合物树脂组合物及其在高频电路板中的应用
US11523518B2 (en) * 2017-11-28 2022-12-06 Sumitomo Electric Printed Circuits, Inc. Method of making flexible printed circuit board and flexible printed circuit board
CN111819247A (zh) * 2019-02-22 2020-10-23 浙江三时纪新材科技有限公司 一种球形或角形粉体填料的制备方法、由此得到的球形或角形粉体填料及其应用
CN111909483A (zh) * 2020-08-17 2020-11-10 上海材料研究所 一种高导热含硅阻燃树脂组合物及其应用
CN112795169B (zh) * 2020-12-31 2022-07-19 广东生益科技股份有限公司 一种树脂组合物及包含其的树脂膜、预浸料、层压板、覆铜板和印刷电路板
EP4352130A1 (de) 2021-06-07 2024-04-17 Wacker Chemie AG Zusammensetzungen enthaltend polyorganosiloxane mit polyphenylenetherresten
KR20240055105A (ko) 2021-09-29 2024-04-26 와커 헤미 아게 저실라놀 폴리유기실록산의 제조 방법
CN113969503A (zh) * 2021-11-03 2022-01-25 宏和电子材料科技股份有限公司 一种高频高速板用电子级玻纤布表面处理剂及其制备方法
WO2023222203A1 (de) 2022-05-17 2023-11-23 Wacker Chemie Ag Silphenylenpolymere

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003012820A (ja) * 2001-06-28 2003-01-15 Asahi Kasei Corp 架橋性複合材料及びその積層体
CN102993683A (zh) * 2012-11-27 2013-03-27 广东生益科技股份有限公司 一种树脂组合物及其用途
JP2013082835A (ja) * 2011-10-12 2013-05-09 Kaneka Corp 硬化性組成物
CN103102484A (zh) * 2013-01-22 2013-05-15 广东生益科技股份有限公司 可交联性聚苯醚树脂、制备方法及其用途
CN105086417A (zh) * 2014-05-06 2015-11-25 广东生益科技股份有限公司 一种树脂组合物及其在高频电路板中的应用

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5895538A (ja) * 1981-11-30 1983-06-07 Mitsubishi Chem Ind Ltd 気体分離膜
JPH01113426A (ja) * 1987-10-27 1989-05-02 Asahi Chem Ind Co Ltd 二重結合を含む硬化性ポリフェニレンエーテルおよびその製造法
US6414091B2 (en) * 1999-12-15 2002-07-02 Sumitomo Chemical Company, Limited Thermoplastic resin, process for producing same and thermoplastic resin composition
CN101624467B (zh) * 2003-01-28 2011-09-14 松下电工株式会社 聚苯醚树脂组合物、半固化片和层压板
US7413791B2 (en) * 2003-01-28 2008-08-19 Matsushita Electric Works, Ltd. Poly (phenylene ether) resin composition, prepreg, and laminated sheet
DE10321555A1 (de) 2003-05-14 2004-12-02 Degussa Ag Transparente Masterbatches für thermoplastische Kunstsoffe
US7192651B2 (en) * 2003-08-20 2007-03-20 Mitsubishi Gas Chemical Company, Inc. Resin composition and prepreg for laminate and metal-clad laminate
CN104650574B (zh) * 2015-02-10 2017-02-22 郴州功田电子陶瓷技术有限公司 一种聚苯醚覆铜板组合物

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003012820A (ja) * 2001-06-28 2003-01-15 Asahi Kasei Corp 架橋性複合材料及びその積層体
JP2013082835A (ja) * 2011-10-12 2013-05-09 Kaneka Corp 硬化性組成物
CN102993683A (zh) * 2012-11-27 2013-03-27 广东生益科技股份有限公司 一种树脂组合物及其用途
CN103102484A (zh) * 2013-01-22 2013-05-15 广东生益科技股份有限公司 可交联性聚苯醚树脂、制备方法及其用途
CN105086417A (zh) * 2014-05-06 2015-11-25 广东生益科技股份有限公司 一种树脂组合物及其在高频电路板中的应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3315560A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11390735B2 (en) 2017-08-04 2022-07-19 Shengyi Technology Co., Ltd. Thermosetting resin composition and prepreg and metal foil-covered laminate made using same
WO2019112920A1 (en) 2017-12-06 2019-06-13 Icl-Ip America Inc. Additive phosphorus-containing polysiloxane compound for thermosetting resins, flame retardant composition comprising same, and articles made therefrom
TWI732733B (zh) * 2021-01-13 2021-07-01 穗曄實業股份有限公司 漿料組成物及其製備方法

Also Published As

Publication number Publication date
US10645806B2 (en) 2020-05-05
EP3315560B1 (en) 2020-02-19
JP6912467B2 (ja) 2021-08-04
CN106609039B (zh) 2019-09-13
TWI615439B (zh) 2018-02-21
EP3315560A4 (en) 2019-01-09
CN106609039A (zh) 2017-05-03
TW201716507A (zh) 2017-05-16
US20180220530A1 (en) 2018-08-02
JP2018521211A (ja) 2018-08-02
EP3315560A1 (en) 2018-05-02

Similar Documents

Publication Publication Date Title
WO2017067123A1 (zh) 一种聚苯醚树脂组合物及其在高频电路基板中的应用
WO2017067124A1 (zh) 一种聚苯醚树脂组合物及其在高频电路基板中的应用
JP7370310B2 (ja) 熱硬化性樹脂組成物及びこれを用いたプリプレグ、積層シート、並びに印刷回路基板
JP6216043B2 (ja) 樹脂組成物及びその高周波回路基板への応用
KR101754509B1 (ko) 수지 조성물 및 그 용도
WO2016138759A1 (zh) 一种树脂组合物以及使用它的预浸料和层压板
WO2012006776A1 (zh) 复合材料、用其制作的高频电路基板及其制作方法
JP2019529677A (ja) 難燃性ポリフェニレンエーテル樹脂組成物
WO2017067140A1 (zh) 一种聚苯醚树脂组合物以及含有它的预浸料、层压板和印制电路板
WO2018192106A1 (zh) 热固性乙烯基有机硅树脂组合物及其在高频电路板中的应用
TWI644984B (zh) Thermosetting vinyl organic resin composition and its application in high frequency circuit boards
WO2018227756A1 (zh) 聚合物树脂组合物及其在高频电路板中的应用
WO2018227746A1 (zh) 一种聚合物树脂及其在高频电路板中的应用
WO2018227745A1 (zh) 一种聚合物树脂及其在高频电路板中的应用
WO2018227789A1 (zh) 一种聚合物树脂组合物及其在高频电路板中的应用
JP2023120458A (ja) 樹脂組成物、プリプレグ、樹脂付き金属箔、樹脂付きフィルム、金属張積層板、及び配線基板、並びに、変性ポリフェニレンエーテルの製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16856571

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15744244

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2018522837

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE