WO2018227745A1 - 一种聚合物树脂及其在高频电路板中的应用 - Google Patents

一种聚合物树脂及其在高频电路板中的应用 Download PDF

Info

Publication number
WO2018227745A1
WO2018227745A1 PCT/CN2017/097336 CN2017097336W WO2018227745A1 WO 2018227745 A1 WO2018227745 A1 WO 2018227745A1 CN 2017097336 W CN2017097336 W CN 2017097336W WO 2018227745 A1 WO2018227745 A1 WO 2018227745A1
Authority
WO
WIPO (PCT)
Prior art keywords
weight
styrene
hydroxystyryl
parts
resin
Prior art date
Application number
PCT/CN2017/097336
Other languages
English (en)
French (fr)
Inventor
曾宪平
陈广兵
徐浩晟
关迟记
Original Assignee
广东生益科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广东生益科技股份有限公司 filed Critical 广东生益科技股份有限公司
Publication of WO2018227745A1 publication Critical patent/WO2018227745A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F212/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring
    • C08F212/02Monomers containing only one unsaturated aliphatic radical
    • C08F212/04Monomers containing only one unsaturated aliphatic radical containing one ring
    • C08F212/14Monomers containing only one unsaturated aliphatic radical containing one ring substituted by heteroatoms or groups containing heteroatoms
    • C08F212/22Oxygen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F8/00Chemical modification by after-treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/14Layered products comprising a layer of metal next to a fibrous or filamentary layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/20Layered products comprising a layer of metal comprising aluminium or copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/02Layered products essentially comprising sheet glass, or glass, slag, or like fibres in the form of fibres or filaments
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/061Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B33/00Layered products characterised by particular properties or particular surface features, e.g. particular surface coatings; Layered products designed for particular purposes not covered by another single class
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/10Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the pressing technique, e.g. using action of vacuum or fluid pressure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B38/00Ancillary operations in connection with laminating processes
    • B32B38/16Drying; Softening; Cleaning
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B38/00Ancillary operations in connection with laminating processes
    • B32B38/16Drying; Softening; Cleaning
    • B32B38/164Drying
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/02Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by structural features of a fibrous or filamentary layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/22Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed
    • B32B5/24Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer
    • B32B5/26Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer another layer next to it also being fibrous or filamentary
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/04Reinforcing macromolecular compounds with loose or coherent fibrous material
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/04Reinforcing macromolecular compounds with loose or coherent fibrous material
    • C08J5/0405Reinforcing macromolecular compounds with loose or coherent fibrous material with inorganic fibres
    • C08J5/043Reinforcing macromolecular compounds with loose or coherent fibrous material with inorganic fibres with glass fibres
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/02Fibres or whiskers
    • C08K7/04Fibres or whiskers inorganic
    • C08K7/14Glass
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D125/00Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Coating compositions based on derivatives of such polymers
    • C09D125/18Homopolymers or copolymers of aromatic monomers containing elements other than carbon and hydrogen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2260/00Layered product comprising an impregnated, embedded, or bonded layer wherein the layer comprises an impregnation, embedding, or binder material
    • B32B2260/02Composition of the impregnated, bonded or embedded layer
    • B32B2260/021Fibrous or filamentary layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2260/00Layered product comprising an impregnated, embedded, or bonded layer wherein the layer comprises an impregnation, embedding, or binder material
    • B32B2260/04Impregnation, embedding, or binder material
    • B32B2260/046Synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • B32B2457/08PCBs, i.e. printed circuit boards
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2325/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Derivatives of such polymers
    • C08J2325/02Homopolymers or copolymers of hydrocarbons
    • C08J2325/04Homopolymers or copolymers of styrene
    • C08J2325/08Copolymers of styrene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2325/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Derivatives of such polymers
    • C08J2325/18Homopolymers or copolymers of aromatic monomers containing elements other than carbon and hydrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2203/00Applications
    • C08L2203/20Applications use in electrical or conductive gadgets

Definitions

  • This invention relates to the use of vinyl benzyl ether modified poly(p-hydroxystyryl-styrene) polymer resins in high frequency circuit substrates.
  • the present invention relates to a vinyl benzyl ether modified poly(p-hydroxystyryl-styrene) polymer resin composition, and the use of the resin composition in a high frequency circuit substrate.
  • dielectric constant on performance high-frequency circuits, signal transmission rate and the relationship between the insulating material is a dielectric constant D k: the lower the dielectric constant D k dielectric material, the faster the transmission rate of the signal. Therefore, in order to increase the speed of the signal transmission rate, it is necessary to develop a substrate having a low dielectric constant. As the frequency of the signal increases, the loss of the signal in the substrate can no longer be ignored.
  • the relationship between the signal loss and the frequency, the dielectric constant D k , and the dielectric loss D f is such that the smaller the substrate dielectric constant D k is, the smaller the dielectric loss D f is, and the smaller the signal loss is. Therefore, the development of a high-frequency circuit substrate having a low dielectric constant D k and a low dielectric loss D f has become a research and development direction common to CCL manufacturers.
  • the prepreg and its substrate can meet the multiple lamination requirements, and it is required to pass multiple lead-free reflow soldering. It is required to put forward higher requirements on the low thermal expansion coefficient and high heat resistance of the base resin composition.
  • An olefin resin such as polybutadiene or styrene-butadiene polymer, which contains a curable cross-linked vinyl double bond, does not contain a polar group, and has a low dielectric constant and dielectric loss, and can be used in a large amount in a high frequency group. Preparation of materials. However, it also exists in the presence of an olefin resin such as polybutadiene or styrene-butadiene polymer in the initiator-initiated polymerization curing strip.
  • the crosslink density of the cured product is low, the glass transition temperature is low, the prepared substrate has a large thermal expansion coefficient, and the polymerization is initiated by using a peroxide radical initiator, which causes the dielectric constant and dielectric loss of the substrate. Raise.
  • the polypara-hydroxystyrene-based resin can synthesize an active group having a specific structure by modifying the group by modifying it with a reactive group phenolic hydroxyl group.
  • a reactive group phenolic hydroxyl group In particular, non-polar vinyl reactive groups.
  • the substrate prepared by the substrate has low dielectric constant and dielectric loss, small thermal expansion coefficient and good heat resistance, and can be used for the development of high-frequency circuit substrates.
  • CN87100741A discloses a thermosetting poly(p-hydroxystyryl) derivative resin having a vinyl reactive group which is an allyl group, an isobutenyl group, a vinyl group, an acryloyl group or a methacryloyl group.
  • the resin composition is used for preparing prepregs and laminates having a low dielectric constant, good heat resistance, and good flame retardancy.
  • the vinyl structure selected for the resin has the following problems: 1. For the allyl group, since the radical intermediate is conjugated, it does not have the activity of radical curing; 2.
  • the two vinyl reactive groups contain a certain polar carbonyl chemical structure, which leads to a large dielectric constant and dielectric loss of the prepared substrate.
  • isobutenyl and vinyl groups although it does not contain a polar chemical structure, isobutylene
  • the base and the vinyl need to initiate polymerization under the conditions of the initiator, the crosslink density of the cured product is low, the glass transition temperature is low, the coefficient of thermal expansion is high, and the polymerization is initiated by using a peroxide radical initiator, which causes the dielectric constant of the substrate and An increase in dielectric loss.
  • the initiation of the substrate has a high glass transition temperature, a low dielectric constant and dielectric loss, and a small thermal expansion coefficient, which can be applied to the preparation of high-frequency circuits, and is now a major technology development of high-frequency circuit substrate manufacturers.
  • the substrate prepared by using the resin has a combination of high glass transition temperature, low dielectric constant, low dielectric loss, and low thermal expansion coefficient.
  • the vinyl benzyl ether modified poly(p-hydroxystyryl-styrene) polymer resin provided by the invention has a chemical structure as shown in the formula (I):
  • R 1 is as shown in formula (II):
  • n is 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 18 or 20
  • n is 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 18, 20, 25, 30, 35 or 40.
  • the agent initiates cross-linking) to complete the curing cross-linking.
  • a substrate having a lower dielectric constant and a lower dielectric loss can be obtained with respect to the vinyl-containing reactive group resin and the peroxide radical initiator resin composition.
  • the vinyl benzyl ether modified poly(p-hydroxystyryl-styrene) polymer resin wherein the relationship between m and n in the chemical structural formula (I) is:
  • m/(m+n) may be, for example, 15%, 20%, 25%, 30%, 35%, 40%, 45%, 50%, 55%, 60%, 65%, 70%, 75. %, 80%, 85%, 90%, 95% or 100%.
  • the vinyl benzyl ether modified poly(p-hydroxystyryl-styrene) polymer resin has a number average molecular weight of 1,000 to 20,000, and may be, for example, 1000, 2000, 3000, 4000, 5000, 6000, 7000, 8000, 9000, 10000, 11000, 12000, 13000, 14000, 15000, 16000, 17000, 18000, 19000 or 20000, preferably 2000-5000.
  • the vinyl benzyl ether modified poly(p-hydroxystyryl-styrene) polymer resin is a poly(p-hydroxystyryl-styrene) polymer and vinylbenzyl chloride is reacted by the following formula:
  • R 1 is: Both m and n are natural numbers, and m is not zero.
  • Another object of the present invention is to provide a composition comprising a vinylbenzyl ether-modified poly(p-hydroxystyryl-styrene) polymer resin as described in one of the objects.
  • the substrate prepared by using the resin composition has a high glass transition temperature, a low dielectric constant, and a low medium Comprehensive performance such as mass loss and low thermal expansion coefficient.
  • composition comprising a vinyl benzyl ether modified poly(p-hydroxystyryl-styrene) polymer resin, comprising:
  • the flame retardant is selected from any one or a mixture of at least two of a bromine-based flame retardant, a phosphorus-based flame retardant or a nitrogen-based flame retardant, wherein a typical but non-limiting mixture is: bromine-based flame retardant a mixture of a phosphorus-based flame retardant, a mixture of a phosphorus-based flame retardant and a nitrogen-based flame retardant, and a mixture of a bromine-based flame retardant and a nitrogen-based flame retardant.
  • the bromine-based flame retardant is selected from any one or a mixture of at least two of decabromodiphenyl ether, decabromodiphenylethane or ethylene bis-tetrabromophthalimide, wherein A typical but non-limiting mixture is a mixture of decabromodiphenyl ether and decabromodiphenylethane, a mixture of decabromodiphenylethane and ethylene bistetrabromophthalimide, decabromodiphenyl. A mixture of ether and ethylene bis-tetrabromophthalimide.
  • the phosphorus-based flame retardant is selected from the group consisting of tris(2,6-dimethylphenyl)phosphine, 10-(2,5-dihydroxyphenyl)-9,10-dihydro-9-oxa -10-phosphinophen-10-oxide, 2,6-bis(2,6-dimethylphenyl)phosphinobenzene or 10-phenyl-9,10-dihydro-9-oxa-10- Any one or a mixture of at least two of phosphaphenanthrene-10-oxides, wherein a typical but non-limiting mixture is: tris(2,6-dimethylphenyl)phosphine and 10-(2,5- a mixture of dihydroxyphenyl)-9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide, 10-(2,5-dihydroxyphenyl)-9,10-dihydro- a mixture of 9-oxa-10-phosphaphenanthrene
  • the nitrogen-based flame retardant is selected from the group consisting of melamine, melamine phosphate, strontium phosphate, and carbonic acid. Any one or a mixture of at least two of cerium or sulfamate, wherein a typical but non-limiting mixture is: a mixture of melamine and melamine phosphate, a mixture of cerium phosphate and cerium carbonate, cerium carbonate and sulfamic acid a mixture of cockroaches.
  • the powder filler is selected from the group consisting of crystalline silica, amorphous silica, spherical silica, fused silica, titanium dioxide, silicon carbide, glass fiber, alumina, aluminum nitride, boron nitride, Any one or a mixture of at least two of barium titanate or barium titanate, wherein a typical but non-limiting mixture is: a mixture of crystalline silica and amorphous silica, spherical silica and molten two a mixture of silica, a mixture of titanium dioxide and silicon carbide, a mixture of alumina and barium titanate, a mixture of glass fibers, aluminum nitride and barium titanate.
  • the powder filler functions to improve dimensional stability, lower thermal expansion coefficient, lower system cost, and the like.
  • the shape and particle diameter of the powder filler are not particularly limited in the invention, and the particle diameter generally used is 0.2 to 10 ⁇ m, for example, 0.2 ⁇ m, 0.5 ⁇ m, 1 ⁇ m, 2 ⁇ m, 3 ⁇ m, 5 ⁇ m, 8 ⁇ m, 9 ⁇ m or 10 ⁇ m, for example, Spherical silica having a particle diameter of 0.2 to 10 ⁇ m is selected.
  • the weight of the flame retardant is 0 to 40 parts by weight, for example, 1 part by weight, based on 100 parts by weight of the vinyl benzyl ether-modified poly(p-hydroxystyryl-styrene) polymer resin. Parts by weight, 8 parts by weight, 10 parts by weight, 12 parts by weight, 15 parts by weight, 20 parts by weight, 25 parts by weight, 30 parts by weight, 35 parts by weight or 40 parts by weight.
  • the weight of the flame retardant is 0 parts by weight, meaning that the resin composition does not contain a flame retardant.
  • the weight of the powder filler is 0 to 150 parts by weight, based on 100 parts by weight of the total weight of the polyvinyl benzyl ether-modified poly(p-hydroxystyryl-styrene) polymer resin and the flame retardant, and may be, for example, 1 Parts by weight, 5 parts by weight, 15 parts by weight, 25 parts by weight, 35 parts by weight, 40 parts by weight, 45 parts by weight, 50 parts by weight, 55 parts by weight, 75 parts by weight, 90 parts by weight, 100 parts by weight, 110 parts by weight 120 parts by weight, 130 parts by weight, 140 parts by weight, 145 parts by weight or 150 parts by weight.
  • the weight of the powder filler is 0 By weight, it means that the resin composition does not contain a powder filler.
  • the preparation method of the resin composition of the present invention can be prepared by a known method of formulating, stirring, and mixing the above-mentioned resin, flame retardant, powder filler, and various additives.
  • a third object of the present invention is to provide a resin glue obtained by dissolving or dispersing a resin composition as described above in a solvent.
  • the solvent in the present invention is not particularly limited, and specific examples thereof include alcohols such as methanol, ethanol, and butanol, ethyl cellosolve, butyl cellosolve, ethylene glycol-methyl ether, carbitol, and butyl.
  • Ethers such as carbitol, ketones such as acetone, methyl ethyl ketone, methyl ethyl ketone, methyl isobutyl ketone, and cyclohexanone; aromatic hydrocarbons such as toluene, xylene, and mesitylene; An ester such as ethyl acetate or ethyl acetate; a nitrogen-containing solvent such as N,N-dimethylformamide, N,N-dimethylacetamide or N-methyl-2-pyrrolidone. These solvents may be used alone or in combination of two or more.
  • aromatic hydrocarbon solvents such as toluene, xylene, and mesitylene, and acetone, methyl ethyl ketone, methyl ethyl ketone, and methyl group.
  • a ketone flux such as butyl ketone or cyclohexanone is used in combination.
  • the amount of the solvent to be used can be selected by a person skilled in the art according to his own experience, so that the obtained resin glue can reach a viscosity suitable for use.
  • An emulsifier may be added during the process of dissolving or dispersing the resin composition as described above in a solvent. By dispersing by an emulsifier, the powder filler or the like can be uniformly dispersed in the glue.
  • a fourth object of the present invention is to provide a prepreg obtained by dipping a glass fiber cloth in a resin glue as described above and drying it.
  • the glass fiber cloth is a reinforcing material, and functions to increase strength, improve dimensional stability, and reduce shrinkage of curing of the thermosetting resin in the composite material.
  • the thickness of the sheet, etc. Different types of fiberglass cloth are available. Exemplary glass fiber cloths are: 7628 fiberglass cloth, 2116 fiberglass cloth.
  • the weight of the glass fiber cloth is 50 to 230 parts by weight based on 100 parts by weight of the total weight of the polyvinyl benzyl ether-modified poly(p-hydroxystyryl-styrene) polymer resin, the flame retardant, and the powder filler.
  • it may be 50 parts by weight, 70 parts by weight, 90 parts by weight, 110 parts by weight, 150 parts by weight, 180 parts by weight, 200 parts by weight, 210 parts by weight, 220 parts by weight or 230 parts by weight.
  • the drying temperature is 80-220 ° C, for example, 80 ° C, 90 ° C, 110 ° C, 150 ° C, 170 ° C, 190 ° C, 200 ° C or 220 ° C; the drying time is 1 ⁇ 30 min, for example, may be 1 min , 3 min, 5 min, 8 min, 13 min, 17 min, 21 min, 24 min, 28 min or 30 min.
  • a fifth object of the present invention is to provide a copper clad laminate comprising at least one prepreg as described above.
  • a sixth object of the present invention is to provide an insulating sheet comprising at least one prepreg as described above.
  • a seventh object of the present invention is to provide a high frequency circuit substrate containing at least one prepreg as described above.
  • a high-frequency circuit substrate having a low dielectric constant, a low dielectric loss, a low thermal expansion coefficient, and excellent heat resistance can be obtained.
  • the high frequency circuit substrate provided by the present invention may be prepared by the following steps:
  • At least one prepreg as described above is overlapped, and a copper foil is placed on the upper and lower sides of the overlapping prepreg, and is obtained by lamination molding.
  • the overlap preferably employs an automated stacking operation to make the process operation easier.
  • the laminate molding is preferably vacuum lamination molding, and the vacuum lamination molding can be carried out by a vacuum laminator.
  • the lamination time is 70-120 min, for example, 70 min, 75 min, 80 min, 85 min, 90 min, 95 min, 100 min, 105 min, 110 min, 115 min or 120 min;
  • the lamination temperature is 180-220 ° C, for example Is 180 ° C, 185 ° C, 190 ° C, 195 ° C, 200 ° C, 205 ° C, 210 ° C, 215 ° C or 220 ° C;
  • the pressure of the lamination is 40 ⁇ 60 kg / cm 2 , for example, may be 40 kg / cm 2 , 45kg / cm 2, 50kg / cm 2, 55kg / cm 2, 58kg / cm 2 or 60kg / cm 2.
  • a typical but non-limiting method for preparing a high frequency circuit substrate of the present invention is as follows:
  • each component is weighed, specifically: the weight of the poly(p-hydroxystyryl-styrene) polymer resin modified with vinyl benzyl ether is 100 parts by weight. , the weight of the flame retardant is 0 to 40 parts by weight; based on 100 parts by weight of the total weight of the vinyl benzyl ether modified poly(p-hydroxystyryl-styrene) polymer resin and the flame retardant, the powder filler The weight is 0 to 150 parts by weight;
  • High frequency as used herein means that the frequency is greater than 100 MHz.
  • the present invention has at least the following beneficial effects:
  • the present invention is applied to a copper clad laminate by modifying a poly(p-hydroxystyryl-styrene) polymer resin with a vinyl benzyl ether, since it has a highly reactive self-curable styryl group.
  • the reactive group, the cured resin has a high glass transition temperature, and contains a large amount of a rigid structure of a benzene ring, and has a low coefficient of thermal expansion;
  • the present invention is applied to a copper clad laminate by modifying a poly(p-hydroxystyryl-styrene) polymer resin with a vinyl benzyl ether, since the chemical structure does not contain a polar group, thereby The substrate prepared is guaranteed to have excellent low dielectric constant and low dielectric loss properties.
  • the poly(p-hydroxystyryl-styrene) polymer modified with the vinyl benzyl ether of the present invention has a high glass transition temperature, a low dielectric constant, a low dielectric loss, and a low thermal expansion coefficient, and is very suitable for preparing a circuit substrate of a high-frequency electronic device.
  • Table 1 shows the materials used in the examples and comparative examples.
  • the CST15 containing 1 mol of phenolic hydroxyl group was dissolved in an ethanol solvent, mechanically stirred until completely dissolved, and the temperature was raised to 50 ° C, and nitrogen gas was introduced for 30 min; 1.2 mol of sodium methoxide was added for 1 hour; and 1.2 mol of vinylbenzyl chloride was added thereto. 8 hours; after the end of the reaction, the product is precipitated from ethanol, dissolved in toluene, washed once or twice with water; precipitated in ethanol, and the precipitated product is dissolved in toluene to obtain a vinyl benzyl ether modified poly(p-hydroxybenzene). Vinyl-styrene) polymer SY-2, ready for use.
  • the CST50 containing 1 mol of phenolic hydroxyl group was dissolved in an ethanol solvent, mechanically stirred until completely dissolved, heated to 50 ° C, and nitrogen gas was introduced for 30 min; 1.2 mol of sodium methoxide was added for 1 hour; 1.2 mol of ethylene was added.
  • the benzyl chloride is reacted for 8 hours; after the reaction, the product is precipitated from ethanol, dissolved in toluene, washed once or twice with water; precipitated in ethanol, and the precipitated product is dissolved in toluene to obtain vinyl benzyl ether.
  • Poly(p-hydroxystyryl-styrene) polymer SY-3 to be used.
  • the CST70 containing 1 mol of phenolic hydroxyl group was dissolved in an ethanol solvent, mechanically stirred until completely dissolved, and the temperature was raised to 50 ° C, and nitrogen gas was introduced for 30 min; 1.2 mol of sodium methoxide was added for 1 hour; and 1.2 mol of vinylbenzyl chloride was added thereto. 8 hours; after the end of the reaction, the product is precipitated from ethanol, dissolved in toluene, washed once or twice with water; precipitated in ethanol, and the precipitated product is dissolved in toluene to obtain a vinyl benzyl ether modified poly(p-hydroxybenzene). Vinyl-styrene) polymer SY-4, to be used.
  • the copper foil was vacuum laminated and cured in a press for 90 min, a curing pressure of 50 kg/cm 2 , and a curing temperature of 200 ° C to prepare a high-frequency circuit substrate.
  • the overall performance of the substrate is shown in Table 2.
  • Example 1 (1) Comparing Example 1 with Comparative Examples 1 and 2, respectively, in Example 1, curing was not required to initiate crosslinking by a peroxide radical initiator, and in Comparative Examples 1 to 2, it was necessary to add peroxidation.
  • the free radical initiator can complete the curing.
  • the high-frequency circuit substrate prepared in Example 1 has a higher glass transition temperature, a lower dielectric constant and dielectric loss, and a lower coefficient of thermal expansion, which indicates that Example 1 uses vinyl benzyl ether to modify poly(pair).
  • Hydroxystyryl-styrene polymer compared to methacrylate modified poly(p-hydroxystyryl-styrene) polymer or vinyl modified poly(p-hydroxystyryl-styrene) It does not require the addition of a peroxide radical initiator, and the resulting high frequency circuit substrate has a higher glass transition temperature, a lower dielectric constant and dielectric loss, and a lower coefficient of thermal expansion.
  • Example 2 Comparing Example 2 with Comparative Examples 3 to 4, in Example 1, it was not necessary to initiate crosslinking by a peroxide radical initiator, and in Comparative Examples 3 to 4, it was necessary to add a peroxide.
  • the free radical initiator can be cured.
  • the high-frequency circuit substrate prepared in Example 1 has a higher glass transition temperature, a lower dielectric constant and dielectric loss, and a lower coefficient of thermal expansion, which indicates that Example 1 uses vinyl benzyl ether to modify poly(pair).
  • a hydroxystyryl-styrene polymer which does not require the addition of a peroxide radical initiator compared to an olefin resin such as polybutadiene or styrene-butadiene polymer, and has a higher frequency circuit substrate. Glass transition temperature, lower dielectric constant and dielectric loss, lower coefficient of thermal expansion.
  • the high-frequency circuit substrate was prepared by pressure curing for 90 minutes, curing pressure of 50 kg/cm 2 , and curing temperature of 200 ° C. The overall performance of the substrate is shown in Table 3.
  • the present invention has a high glass transition temperature and a low dielectric constant by using a vinyl benzyl ether modified poly(p-hydroxystyryl-styrene) polymer. Low dielectric loss and low thermal expansion coefficient, suitable for the preparation of circuit boards for high frequency electronic equipment.
  • the present invention illustrates the detailed process equipment and process flow of the present invention by the above embodiments, but the present invention is not limited to the above detailed process equipment and process flow, that is, does not mean the present invention. It must be implemented in accordance with the detailed process equipment and process described above. It should be apparent to those skilled in the art that any modifications of the present invention, equivalent substitution of the various materials of the products of the present invention, addition of auxiliary components, selection of specific means, and the like, are all within the scope of the present invention.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Fluid Mechanics (AREA)
  • Manufacturing & Machinery (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Emergency Medicine (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Inorganic Chemistry (AREA)
  • Laminated Bodies (AREA)
  • Reinforced Plastic Materials (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Macromonomer-Based Addition Polymer (AREA)

Abstract

本发明涉及一种乙烯基苄基醚改性聚(对羟基苯乙烯基-苯乙烯)聚合物树脂,其化学结构如式(I)所示;本发明还涉及一种包含该树脂的组合物及其在高频电路板中的应用;利用该树脂制备的基材具有高玻璃化转变温度、低介质常数、低介质损耗、低热膨胀系数等综合性能,适合制备高频电子设备的电路基板。

Description

一种聚合物树脂及其在高频电路板中的应用 技术领域
本发明涉及乙烯基苄基醚改性聚(对羟基苯乙烯基-苯乙烯)聚合物树脂在高频电路基板中的应用。具体的,本发明涉及一种乙烯基苄基醚改性聚(对羟基苯乙烯基-苯乙烯)聚合物树脂组合物,以及该树脂组合物在高频电路基板中的应用。
背景技术
近年来,随着无线通讯技术、电子产品的迅速发展,电子电路步入信息处理高速化、信号传输高频化阶段;然而当频率大于300MHz,甚至达到GHz以上时,基板的电性能将严重影响电子电路的特征,对基板性能提出更高的要求。
就介质常数性能而言,在高频电路中,信号的传输速率与绝缘材料介质常数Dk的关系为:绝缘材料介质常数Dk越低,信号传输速率越快。因此要实现信号传输速率的高速化,必须开发低介质常数的基板。随着信号频率的高频化,基板中信号的损耗不能再忽略不计。信号损耗与频率、介质常数Dk、介质损耗Df的关系为:基板介质常数Dk越小、介质损耗Df越小,信号损失就越小。因此开发具有低的介质常数Dk及低的介质损耗Df的高频电路基板,成为CCL厂家共同关注的研发方向。
另外,随着传输信号的高容量化,电路设计的高密化,所制备的PCB板层数越来越高,半固化片及其基材可满足多次层压要求,要求通过多次无铅回流焊要求等,对基材树脂组合物低热膨胀系数、高耐热性提出更高的要求。
烯烃树脂如聚丁二烯或丁苯聚合物等,其含可固化交联的乙烯基双键,不含极性基团,所制备的基材介质常数和介质损耗低,可大量应用于高频基材的制备。但其也存在烯烃树脂如聚丁二烯或丁苯聚合物在引发剂引发聚合固化条 件下,固化物交联密度低,玻璃化转变温度低,所制备的基材热膨胀系数大的缺点,且采用过氧化物自由基引发剂引发聚合,会导致基材的介质常数和介质损耗的升高。
聚对羟基苯乙烯基树脂由于其带有活性基团酚羟基,通过对该基团修饰改性,可合成出具有特定结构的活性基团。特别是非极性乙烯基活性基团。其所制备的基材介质常数和介质损耗低、热膨胀系数小、耐热性能好,可用于高频电路基材的开发。
CN87100741A公开了一种热固性聚对羟基苯乙烯基衍生物树脂,该树脂所带乙烯基活性基团为烯丙基、异丁烯基、乙烯基、丙烯酰基、甲基丙烯酰基。该树脂组合物用于制备介质常数低、耐热性好、阻燃性能好的半固化片和层压板。但是该树脂所选择的乙烯基结构存在以下问题:1.对于烯丙基,由于其自由基中间体共轭,不具备自由基固化的活性;2.对于丙烯酰基、甲基丙烯酰基,由于这两种乙烯基活性基团含有一定极性的羰基化学结构,会导致所制备的基材介质常数和介质损耗变大;3.对于异丁烯基、乙烯基,虽然不含极性化学结构,但异丁烯基、乙烯基需要在引发剂条件下引发聚合,固化物交联密度低,玻璃化转变温度低,热膨胀系数高,且采用过氧化物自由基引发剂引发聚合,会导致基材的介质常数和介质损耗的升高。
因此如何开发出热固化的乙烯基改性的聚对羟基苯乙烯基树脂,其所带乙烯基活性基团不含极性化学结构,且能实现自固化而不需要过氧化物自由基引发剂的引发,其所制备的基材玻璃化转变温度高、介质常数和介质损耗更低、热膨胀系数小,可应用于高频电路的制备,是现在高频电路基材制造商技术开发的一大发展方向。
发明内容
针对现有技术存在的问题,本发明的目的之一在于提供一种乙烯基苄基醚改性聚(对羟基苯乙烯基-苯乙烯)聚合物树脂。应用该树脂制备的基材具有高玻璃化转变温度、低介质常数、低介质损耗、低热膨胀系数等综合性能。
本发明提供的乙烯基苄基醚改性聚(对羟基苯乙烯基-苯乙烯)聚合物树脂,其化学结构如式(I)所示:
Figure PCTCN2017097336-appb-000001
其中,R1的化学结构如式(II)所示:
Figure PCTCN2017097336-appb-000002
其中,m和n均为自然数,且m不为0,例m为1、2、3、4、5、6、7、8、9、10、11、12、13、14、15、18或20,n为1、2、3、4、5、6、7、8、9、10、11、12、13、14、15、18、20、25、30、35或40。
所述乙烯基苄基醚改性聚(对羟基苯乙烯基-苯乙烯)聚合物树脂,其带有活性的不饱和苯乙烯基双键,在加热条件下(不需要过氧化物自由基引发剂引发交联)完成固化交联。相对于含乙烯基活性基团树脂与过氧化物自由基引发剂树脂组合物,可得到更低介质常数、更低介质损耗的基材。
所述乙烯基苄基醚改性聚(对羟基苯乙烯基-苯乙烯)聚合物树脂,其化学结构式(I)中m和n的关系为:
m/(m+n)=15%~100%。
具体地,m/(m+n)例如可以是15%、20%、25%、30%、35%、40%、45%、50%、55%、60%、65%、70%、75%、80%、85%、90%、95%或100%。
所述乙烯基苄基醚改性聚(对羟基苯乙烯基-苯乙烯)聚合物树脂,其数均分子量为1000~20000,例如可以是1000、2000、3000、4000、5000、6000、7000、8000、9000、10000、11000、12000、13000、14000、15000、16000、17000、18000、19000或20000,优选为2000~5000。
所述乙烯基苄基醚改性聚(对羟基苯乙烯基-苯乙烯)聚合物树脂为聚(对羟基苯乙烯基-苯乙烯)聚合物和乙烯基苄基氯由下式反应完成:
Figure PCTCN2017097336-appb-000003
其中,R1的化学结构为:
Figure PCTCN2017097336-appb-000004
m和n均为自然数,且m不为0。
本发明的目的之二在于提供一种含有目的之一所述的乙烯基苄基醚改性聚(对羟基苯乙烯基-苯乙烯)聚合物树脂的组合物。
应用该树脂组合物制备的基材具有高玻璃化转变温度、低介质常数、低介 质损耗,低热膨胀系数等综合性能。
所述含有乙烯基苄基醚改性聚(对羟基苯乙烯基-苯乙烯)聚合物树脂的组合物,其包括:
(1)如前所述的乙烯基苄基醚改性聚(对羟基苯乙烯基-苯乙烯)聚合物树脂;
(2)阻燃剂;
(3)粉末填料。
所述阻燃剂选自溴系阻燃剂、磷系阻燃剂或氮系阻燃剂中的任意一种或至少两种的混合物,其中典型但非限制性的混合物为:溴系阻燃剂和磷系阻燃剂的混合物,磷系阻燃剂和氮系阻燃剂的混合物,溴系阻燃剂和氮系阻燃剂的混合物。
优选地,所述溴系阻燃剂选自十溴二苯醚、十溴二苯乙烷或乙撑双四溴邻苯二甲酰亚胺中的任意一种或至少两种的混合物,其中典型但非限制性的混合物为:十溴二苯醚和十溴二苯乙烷的混合物,十溴二苯乙烷和乙撑双四溴邻苯二甲酰亚胺的混合物,十溴二苯醚和乙撑双四溴邻苯二甲酰亚胺的混合物。
优选地,所述磷系阻燃剂选自三(2,6-二甲基苯基)膦、10-(2,5-二羟基苯基)-9,10-二氢-9-氧杂-10-膦菲-10-氧化物、2,6-二(2,6-二甲基苯基)膦基苯或10-苯基-9,10-二氢-9-氧杂-10-膦菲-10-氧化物中的任意一种或至少两种的混合物,其中典型但非限制性的混合物为:三(2,6-二甲基苯基)膦和10-(2,5-二羟基苯基)-9,10-二氢-9-氧杂-10-膦菲-10-氧化物的混合物,10-(2,5-二羟基苯基)-9,10-二氢-9-氧杂-10-膦菲-10-氧化物和2,6-二(2,6-二甲基苯基)膦基苯的混合物,2,6-二(2,6-二甲基苯基)膦基苯和10-苯基-9,10-二氢-9-氧杂-10-膦菲-10-氧化物的混合物。
优选地,所述氮系阻燃剂选自三聚氰胺、三聚氰胺磷酸盐、磷酸胍、碳酸 胍或氨基磺酸胍中的任意一种或至少两种的混合物,其中典型但非限制性的混合物为:三聚氰胺和三聚氰胺磷酸盐的混合物,磷酸胍和碳酸胍的混合物,碳酸胍和氨基磺酸胍的混合物。
优选地,所述粉末填料选自结晶型二氧化硅、无定形二氧化硅、球形二氧化硅、熔融二氧化硅、二氧化钛、碳化硅、玻璃纤维、氧化铝、氮化铝、氮化硼、钛酸钡或钛酸锶中的任意一种或至少两种的混合物,其中典型但非限制性的混合物为:结晶型二氧化硅和无定形二氧化硅的混合物,球形二氧化硅和熔融二氧化硅的混合物,二氧化钛和碳化硅的混合物,氧化铝和钛酸钡的混合物,玻璃纤维、氮化铝和钛酸锶的混合物。
在本发明所述树脂组合物中,粉末填料起着提高尺寸稳定性、降低热膨胀系数、降低体系成本等作用。对于所述粉末填料的形状和粒径本发明不作特殊限定,通常使用的粒径为0.2~10μm,例如0.2μm、0.5μm、1μm、2μm、3μm、5μm、8μm、9μm或10μm,例如,可选择粒径为0.2~10μm的球形二氧化硅。
以乙烯基苄基醚改性聚(对羟基苯乙烯基-苯乙烯)聚合物树脂的重量为100重量份计算,阻燃剂的重量为0~40重量份,例如可以是1重量份、5重量份、8重量份、10重量份、12重量份、15重量份、20重量份、25重量份、30重量份、35重量份或40重量份。所述阻燃剂的重量为0重量份,意指,所述树脂组合物中不含有阻燃剂。
以乙烯基苄基醚改性聚(对羟基苯乙烯基-苯乙烯)聚合物树脂和阻燃剂的总重量为100重量份计,粉末填料的重量为0~150重量份,例如可以是1重量份、5重量份、15重量份、25重量份、35重量份、40重量份、45重量份、50重量份、55重量份、75重量份、90重量份、100重量份、110重量份、120重量份、130重量份、140重量份、145重量份或150重量份。所述粉末填料的重量为0 重量份,意指,所述树脂组合物中不含有粉末填料。
本发明所述的“包括”,意指其除所述组份外,还可以包括其他组份,这些其他组份赋予所述树脂组合物不同的特性。除此之外,本发明所述的“包括”,还可以替换为封闭式的“为”或“由……组成”。
作为本发明树脂组合物的制备方法,可以通过公知的方法进行配制、搅拌、混合所述的树脂、阻燃剂、粉末填料,以及各种添加剂来制备。
本发明的目的之三在于提供一种树脂胶液,其是将如上所述的树脂组合物溶解或分散在溶剂中得到。
作为本发明中的溶剂,没有特别限定,作为具体例,可以举出甲醇、乙醇、丁醇等醇类,乙基溶纤剂、丁基溶纤剂、乙二醇-甲醚、卡必醇、丁基卡必醇等醚类,丙酮、丁酮、甲基乙基甲酮、甲基异丁基甲酮、环己酮等酮类,甲苯、二甲苯、均三甲苯等芳香族烃类,乙氧基乙基乙酸酯、醋酸乙酯等酯类,N,N-二甲基甲酰胺、N,N-二甲基乙酰胺、N-甲基-2-吡咯烷酮等含氮类溶剂。上述溶剂可以单独使用一种,也可以两种或者两种以上混合使用,优选甲苯、二甲苯、均三甲苯等芳香族烃类溶剂与丙酮、丁酮、甲基乙基甲酮、甲基异丁基甲酮、环己酮等酮类熔剂混合使用。所述溶剂的使用量本领域技术人员可以根据自己的经验来选择,使得到的树脂胶液达到适于使用的粘度即可。
在如上所述的树脂组合物溶解或分散在溶剂的过程中,可以添加乳化剂。通过乳化剂进行分散,可以使粉末填料等在胶液中分散均匀。
本发明的目的之四在于提供一种预浸料,其是将玻璃纤维布浸润在如上所述的树脂胶液后,干燥得到。
在本发明中,玻璃纤维布为增强材料,在复合材料中起着提高强度、提高尺寸稳定性、降低热固性树脂固化的收缩等作用。根据板材厚度等要求不同, 可选用不同类型的玻璃纤维布。示例性的玻璃纤维布如:7628玻纤布、2116玻纤布。
以乙烯基苄基醚改性聚(对羟基苯乙烯基-苯乙烯)聚合物树脂、阻燃剂和粉末填料的总重量为100重量份计,玻璃纤维布的重量为50~230重量份,例如可以是50重量份、70重量份、90重量份、110重量份、150重量份、180重量份、200重量份、210重量份、220重量份或230重量份。
所述干燥温度为80~220℃,例如可以是80℃、90℃、110℃、150℃、170℃、190℃、200℃或220℃;所述干燥时间为1~30min,例如可以是1min、3min、5min、8min、13min、17min、21min、24min、28min或30min。
本发明的目的之五在于提供一种覆铜板,其含有至少一张如上所述的预浸料。
本发明的目的之六在于提供一种绝缘板,其含有至少一张如上所述的预浸料。
本发明的目的之七在于提供一种高频电路基板,其含有至少一种如上所述的预浸料。
采用本发明所述的树脂组合物可以制备得到具有低介质常数、低介质损耗,热膨胀系数低、耐热性能优异的高频电路基板。
本发明提供的高频电路基板,其制备方法可以包括以下步骤:
重叠至少一张如上所述的预浸料,在重叠预浸料的上下两侧放置铜箔,进行层压成型制备得到。
所述重叠优选采用自动堆叠操作,使工艺操作更加简便。
所述层压成型优选真空层压成型,真空层压成型可以通过真空层压机实现。所述层压的时间为70~120min,例如可以是70min、75min、80min、85min、90min、 95min、100min、105min、110min、115min或120min;所述层压的温度为180~220℃,例如可以是180℃、185℃、190℃、195℃、200℃、205℃、210℃、215℃或220℃;所述层压的压力为40~60kg/cm2,例如可以是40kg/cm2、45kg/cm2、50kg/cm2、55kg/cm2、58kg/cm2或60kg/cm2
本发明典型但非限制性的高频电路基板的制备方法如下:
(1)按如上所述树脂组合物配方,称取各组分,具体为:以乙烯基苄基醚改性聚(对羟基苯乙烯基-苯乙烯)聚合物树脂的重量为100重量份计算,阻燃剂的重量为0~40重量份;以乙烯基苄基醚改性聚(对羟基苯乙烯基-苯乙烯)聚合物树脂和阻燃剂的总重量为100重量份计,粉末填料的重量为0~150重量份;
(2)将乙烯基苄基醚改性聚(对羟基苯乙烯基-苯乙烯)聚合物树脂、阻燃剂和粉末填料混合,并加入适量溶剂,搅拌分散均匀,使粉末填料均匀分散在树脂胶液中,用制备的树脂胶液浸润玻璃纤维布,烘干,除去溶剂,得到预浸料;
(3)重叠至少一张的预浸料,在预浸料的两侧放置铜箔,在真空层压机中层压固化,从而得到高频电路基板。
本发明所述“高频”意指频率大于100MHz。
与现有技术相比,本发明至少具有以下有益效果:
(1)本发明通过采用乙烯基苄基醚改性聚(对羟基苯乙烯基-苯乙烯)聚合物树脂,将其应用于覆铜板领域,由于含反应活性高的可自固化的苯乙烯基活性基团,树脂固化物玻璃化转变温度高,且含大量苯环刚性结构,热膨胀系数低;
(2)本发明通过采用乙烯基苄基醚改性聚(对羟基苯乙烯基-苯乙烯)聚合物树脂,将其应用于覆铜板领域,由于其化学结构中不含极性基团,从而保证所制备的基材具有优异的低介质常数和低介质损耗性能。
总之,采用本发明的乙烯基苄基醚改性聚(对羟基苯乙烯基-苯乙烯)聚合物 树脂,所制备的高频电路基板具有高玻璃化转变温度、低介质常数、低介质损耗,低热膨胀系数,非常适合制备高频电子设备的电路基板。
具体实施方式
为便于理解本发明,本发明列举实施例如下。本领域技术人员应该明了,所述实施例仅仅是帮助理解本发明,不应视为对本发明的具体限制。
表1所示为实施例及比较例所用原料。
表1
Figure PCTCN2017097336-appb-000005
Figure PCTCN2017097336-appb-000006
制备例1
乙烯基苄基醚改性聚(对羟基苯乙烯基-苯乙烯)聚合物SY-1的合成:
将含1mol酚羟基的S-1溶于乙醇溶剂中,机械搅拌至完全溶解,升温至50℃,通入氮气30min;加入1.2mol甲醇钠,反应1小时;加入1.2mol的乙烯基苄基氯,反应8小时;反应结束后产物从乙醇中析出,加入甲苯溶解,水洗1次或2次;再滴入乙醇中析出,析出的产物用甲苯溶解,得到乙烯基苄基醚改性聚(对羟基苯乙烯基-苯乙烯)聚合物SY-1,待用。
制备例2
乙烯基苄基醚改性聚(对羟基苯乙烯基-苯乙烯)聚合物SY-2的合成:
将含1mol酚羟基的CST15溶于乙醇溶剂中,机械搅拌至完全溶解,升温至50℃,通入氮气30min;加入1.2mol甲醇钠,反应1小时;加入1.2mol的乙烯基苄基氯,反应8小时;反应结束后产物从乙醇中析出,加入甲苯溶解,水洗1次或2次;再滴入乙醇中析出,析出的产物用甲苯溶解,得到乙烯基苄基醚改性聚(对羟基苯乙烯基-苯乙烯)聚合物SY-2,待用。
制备例3
乙烯基苄基醚改性聚(对羟基苯乙烯基-苯乙烯)聚合物SY-3的合成:
将含1mol酚羟基的CST50溶于乙醇溶剂中,机械搅拌至完全溶解,升温至50℃,通入氮气30min;加入1.2mol甲醇钠,反应1小时;加入1.2mol的乙烯 基苄基氯,反应8小时;反应结束后产物从乙醇中析出,加入甲苯溶解,水洗1次或2次;再滴入乙醇中析出,析出的产物用甲苯溶解,得到乙烯基苄基醚改性聚(对羟基苯乙烯基-苯乙烯)聚合物SY-3,待用。
制备例4
乙烯基苄基醚改性聚(对羟基苯乙烯基-苯乙烯)聚合物SY-4的合成:
将含1mol酚羟基的CST70溶于乙醇溶剂中,机械搅拌至完全溶解,升温至50℃,通入氮气30min;加入1.2mol甲醇钠,反应1小时;加入1.2mol的乙烯基苄基氯,反应8小时;反应结束后产物从乙醇中析出,加入甲苯溶解,水洗1次或2次;再滴入乙醇中析出,析出的产物用甲苯溶解,得到乙烯基苄基醚改性聚(对羟基苯乙烯基-苯乙烯)聚合物SY-4,待用。
制备例5
甲基丙烯酸酯改性聚(对羟基苯乙烯基-苯乙烯)聚合物MT-1的合成:
将含1mol酚羟基的S-1溶于乙醇溶剂中,机械搅拌至完全溶解,升温至100℃,加入1.2mol的甲基丙烯酸酐,反应8小时;反应结束后产物从乙醇中析出,加入甲苯溶解,水洗1次或2次;再滴入乙醇中析出,析出的产物用甲苯溶解,得到乙烯基苄基醚改性聚(对羟基苯乙烯基-苯乙烯)聚合物MT-1,待用。
制备例6
乙烯基改性聚(对羟基苯乙烯基-苯乙烯)聚合物MT-2的合成:
将含1mol酚羟基的S-1溶于乙醇溶剂中,机械搅拌至完全溶解,升温至50℃,通入氮气30min;加入1.2mol甲醇钠,反应1小时;加入1.2mol的乙烯基氯, 反应8小时;反应结束后产物从乙醇中析出,加入甲苯溶解,水洗1次或2次;再滴入乙醇中析出,析出的产物用甲苯溶解,得到乙烯基苄基醚改性聚(对羟基苯乙烯基-苯乙烯)聚合物MT-2,待用。
实施例1
将100重量份的乙烯基苄基醚改性聚(对羟基苯乙烯基-苯乙烯)聚合物SY-1溶解于甲苯溶剂中,并调节至适合粘度;用2116玻纤布浸润树脂胶液,过夹轴控制适合单重,并在烘箱中干燥,除去甲苯溶剂,制得2116预浸料;将4张2116预浸料重叠,上下两面配以1OZ厚度的铜箔,在压机中真空层压固化90min,固化压力50kg/cm2,固化温度200℃,制得高频电路基板。基材综合性能如表2所示。
实施例2
将100重量份的乙烯基苄基醚改性聚(对羟基苯乙烯基-苯乙烯)聚合物SY-1和130重量份的硅微粉525,溶解于甲苯溶剂中,并调节至适合粘度;用2116玻纤布浸润树脂胶液,过夹轴控制适合单重,并在烘箱中干燥,除去甲苯溶剂,制得2116预浸料;将4张2116预浸料重叠,上下两面配以1OZ厚度的铜箔,在压机中真空层压固化90min,固化压力50kg/cm2,固化温度200℃,制得高频电路基板。基材综合性能如表2所示。
实施例3
将100重量份的乙烯基苄基醚改性聚(对羟基苯乙烯基-苯乙烯)聚合物SY-1、30重量份的BT-93w和130重量份的硅微粉525,溶解于甲苯溶剂中,并调节至 适合粘度;用2116玻纤布浸润树脂胶液,过夹轴控制适合单重,并在烘箱中干燥,除去甲苯溶剂,制得2116预浸料;将4张2116预浸料重叠,上下两面配以1OZ厚度的铜箔,在压机中真空层压固化90min,固化压力50kg/cm2,固化温度200℃,制得高频电路基板。基材综合性能如表2所示。
实施例4
将100重量份的乙烯基苄基醚改性聚(对羟基苯乙烯基-苯乙烯)聚合物SY-1、30重量份的XP7866和130重量份的硅微粉525,溶解于甲苯溶剂中,并调节至适合粘度;用2116玻纤布浸润树脂胶液,过夹轴控制适合单重,并在烘箱中干燥,除去甲苯溶剂,制得2116预浸料;将4张2116预浸料重叠,上下两面配以1OZ厚度的铜箔,在压机中真空层压固化90min,固化压力50kg/cm2,固化温度200℃,制得高频电路基板。基材综合性能如表2所示。
比较例1
将100重量份的甲基丙烯酸酯改性聚(对羟基苯乙烯基-苯乙烯)聚合物MT-1和3重量份的自由基引发剂DCP,溶解于甲苯溶剂中,并调节至适合粘度;用2116玻纤布浸润树脂胶液,过夹轴控制适合单重,并在烘箱中干燥,除去甲苯溶剂,制得2116预浸料;将4张2116预浸料重叠,上下两面配以1OZ厚度的铜箔,在压机中真空层压固化90min,固化压力50kg/cm2,固化温度200℃,制得高频电路基板。基材综合性能如表2所示。
比较例2
将100重量份的乙烯基改性聚(对羟基苯乙烯基-苯乙烯)聚合物MT-2和3重 量份的自由基引发剂DCP,溶解于甲苯溶剂中,并调节至适合粘度;用2116玻纤布浸润树脂胶液,过夹轴控制适合单重,并在烘箱中干燥,除去甲苯溶剂,制得2116预浸料;将4张2116预浸料重叠,上下两面配以1OZ厚度的铜箔,在压机中真空层压固化90min,固化压力50kg/cm2,固化温度200℃,制得高频电路基板。基材综合性能如表2所示。
比较例3
将100重量份的丁二烯-苯乙烯聚合物Ricon100、3重量份的自由基引发剂DCP和130重量份的硅微粉525,溶解于甲苯溶剂中,并调节至适合粘度;用2116玻纤布浸润树脂胶液,过夹轴控制适合单重,并在烘箱中干燥,除去甲苯溶剂,制得2116预浸料;将4张2116预浸料重叠,上下两面配以1OZ厚度的铜箔,在压机中真空层压固化90min,固化压力50kg/cm2,固化温度200℃,制得高频电路基板。基材综合性能如表2所示。
比较例4
将100重量份的聚丁二烯B-3000、3重量份的自由基引发剂DCP和130重量份的硅微粉525,溶解于甲苯溶剂中,并调节至适合粘度;用2116玻纤布浸润树脂胶液,过夹轴控制适合单重,并在烘箱中干燥,除去甲苯溶剂,制得2116预浸料;将4张2116预浸料重叠,上下两面配以1OZ厚度的铜箔,在压机中真空层压固化90min,固化压力50kg/cm2,固化温度200℃,制得高频电路基板。基材综合性能如表2所示。
表2
Figure PCTCN2017097336-appb-000007
通过表2可以看出以下几点:
(1)将实施例1分别与比较例1~2相比,实施例1中不需要过氧化物自由基引发剂引发交联即可完成固化,而比较例1~2中则需要添加过氧化物自由基引发剂才能完成固化。实施例1所制备的高频电路基板具有更高的玻璃化转变温度、更低的介质常数和介质损耗、更低的热膨胀系数,这说明实施例1采用乙烯基苄基醚改性聚(对羟基苯乙烯基-苯乙烯)聚合物,相比采用甲基丙烯酸酯改性聚(对羟基苯乙烯基-苯乙烯)聚合物或乙烯基改性聚(对羟基苯乙烯基-苯乙烯)聚合物,其无需添加过氧化物自由基引发剂,并且制得的高频电路基板具有更高的玻璃化转变温度、更低的介质常数和介质损耗、更低的热膨胀系数。将实施例2与比较例3~4相比,在添加填料的情况下,采用乙烯基苄基醚改性聚(对 羟基苯乙烯基-苯乙烯)聚合物,相比采用甲基丙烯酸酯改性聚(对羟基苯乙烯基-苯乙烯)聚合物或乙烯基改性聚(对羟基苯乙烯基-苯乙烯)聚合物,所制得的高频电路基板同样具有更高的玻璃化转变温度、更低的介质常数和介质损耗、更低的热膨胀系数。
(2)将实施例2与比较例3~4相比,实施例1中不需要过氧化物自由基引发剂引发交联即可完成固化,而比较例3~4中则需要添加过氧化物自由基引发剂才能完成固化。实施例1所制备的高频电路基板具有更高的玻璃化转变温度、更低的介质常数和介质损耗、更低的热膨胀系数,这说明实施例1采用乙烯基苄基醚改性聚(对羟基苯乙烯基-苯乙烯)聚合物,相比采用烯烃树脂如聚丁二烯或丁苯聚合物,其无需添加过氧化物自由基引发剂,并且制得的高频电路基板具有更高的玻璃化转变温度、更低的介质常数和介质损耗、更低的热膨胀系数。
实施例5
将100重量份的乙烯基苄基醚改性聚(对羟基苯乙烯基-苯乙烯)聚合物SY-1和185重量份的硅微粉SC-2300SVJ,溶解于甲苯溶剂中,并调节至适合粘度;用2116玻纤布浸润树脂胶液,过夹轴控制适合单重,并在烘箱中干燥,除去甲苯溶剂,制得2116预浸料;将4张2116预浸料重叠,上下两面配以1OZ厚度的铜箔,在压机中真空层压固化90min,固化压力50kg/cm2,固化温度200℃,制得高频电路基板。基材综合性能如表3所示。
实施例6
将100重量份的乙烯基苄基醚改性聚(对羟基苯乙烯基-苯乙烯)聚合物SY-2溶解于甲苯溶剂中,并调节至适合粘度;用2116玻纤布浸润树脂胶液,过夹轴 控制适合单重,并在烘箱中干燥,除去甲苯溶剂,制得2116预浸料;将4张2116预浸料重叠,上下两面配以1OZ厚度的铜箔,在压机中真空层压固化90min,固化压力50kg/cm2,固化温度200℃,制得高频电路基板。基材综合性能如表3所示。
实施例7
将100重量份的乙烯基苄基醚改性聚(对羟基苯乙烯基-苯乙烯)聚合物SY-3溶解于甲苯溶剂中,并调节至适合粘度;用2116玻纤布浸润树脂胶液,过夹轴控制适合单重,并在烘箱中干燥,除去甲苯溶剂,制得2116预浸料;将4张2116预浸料重叠,上下两面配以1OZ厚度的铜箔,在压机中真空层压固化90min,固化压力50kg/cm2,固化温度200℃,制得高频电路基板。基材综合性能如表3所示。
实施例8
将100重量份的乙烯基苄基醚改性聚(对羟基苯乙烯基-苯乙烯)聚合物SY-4溶解于甲苯溶剂中,并调节至适合粘度;用2116玻纤布浸润树脂胶液,过夹轴控制适合单重,并在烘箱中干燥,除去甲苯溶剂,制得2116预浸料;将4张2116预浸料重叠,上下两面配以1OZ厚度的铜箔,在压机中真空层压固化90min,固化压力50kg/cm2,固化温度200℃,制得高频电路基板。基材综合性能如表3所示。
实施例9
将100重量份的乙烯基苄基醚改性聚(对羟基苯乙烯基-苯乙烯)聚合物SY-2 和185重量份的硅微粉SC-2300SVJ,溶解于甲苯溶剂中,并调节至适合粘度;用2116玻纤布浸润树脂胶液,过夹轴控制适合单重,并在烘箱中干燥,除去甲苯溶剂,制得2116预浸料;将4张2116预浸料重叠,上下两面配以1OZ厚度的铜箔,在压机中真空层压固化90min,固化压力50kg/cm2,固化温度200℃,制得高频电路基板。基材综合性能如表3所示。
实施例10
将100重量份的乙烯基苄基醚改性聚(对羟基苯乙烯基-苯乙烯)聚合物SY-3、20重量份的BT-93w和150重量份的硅微粉525,溶解于甲苯溶剂中,并调节至适合粘度;用2116玻纤布浸润树脂胶液,过夹轴控制适合单重,并在烘箱中干燥,除去甲苯溶剂,制得2116预浸料;将4张2116预浸料重叠,上下两面配以1OZ厚度的铜箔,在压机中真空层压固化90min,固化压力50kg/cm2,固化温度200℃,制得高频电路基板。基材综合性能如表3所示。
实施例11
将100重量份的乙烯基苄基醚改性聚(对羟基苯乙烯基-苯乙烯)聚合物SY-3、25重量份的XP-7866和185重量份的硅微粉525,溶解于甲苯溶剂中,并调节至适合粘度;用2116玻纤布浸润树脂胶液,过夹轴控制适合单重,并在烘箱中干燥,除去甲苯溶剂,制得2116预浸料;将4张2116预浸料重叠,上下两面配以1OZ厚度的铜箔,在压机中真空层压固化90min,固化压力50kg/cm2,固化温度200℃,制得高频电路基板。基材综合性能如表3所示。
实施例12
将100重量份的乙烯基苄基醚改性聚(对羟基苯乙烯基-苯乙烯)聚合物SY-4和233重量份的硅微粉525,溶解于甲苯溶剂中,并调节至适合粘度;用2116玻纤布浸润树脂胶液,过夹轴控制适合单重,并在烘箱中干燥,除去甲苯溶剂,制得2116预浸料;将4张2116预浸料重叠,上下两面配以1OZ厚度的铜箔,在压机中真空层压固化90min,固化压力50kg/cm2,固化温度200℃,制得高频电路基板。基材综合性能如表3所示。
表3
Figure PCTCN2017097336-appb-000008
通过表3可以看出,本发明通过采用乙烯基苄基醚改性聚(对羟基苯乙烯基-苯乙烯)聚合物,其制得的高频电路基板具有高玻璃化转变温度、低介质常数、低介质损耗,热膨胀系数低,适合制备高频电子设备的电路基板。
申请人声明,本发明通过上述实施例来说明本发明的详细工艺设备和工艺流程,但本发明并不局限于上述详细工艺设备和工艺流程,即不意味着本发明 必须依赖上述详细工艺设备和工艺流程才能实施。所属技术领域的技术人员应该明了,对本发明的任何改进,对本发明产品各原料的等效替换及辅助成分的添加、具体方式的选择等,均落在本发明的保护范围和公开范围之内。

Claims (10)

  1. 一种乙烯基苄基醚改性聚(对羟基苯乙烯基-苯乙烯)聚合物树脂,其特征在于,该树脂的化学结构如式(I)所示:
    Figure PCTCN2017097336-appb-100001
    其中,R1的化学结构如式(II)所示:
    Figure PCTCN2017097336-appb-100002
    其中,m和n均为自然数,且m不为0。
  2. 如权利要求1所述的乙烯基苄基醚改性聚(对羟基苯乙烯基-苯乙烯)聚合物树脂,其特征在于,所述式(I)中m和n的关系为:
    m/(m+n)=15%~100%。
  3. 如权利要求1或2所述的乙烯基苄基醚改性聚(对羟基苯乙烯基-苯乙烯)聚合物树脂,其特征在于,该树脂的数均分子量为1000~20000,优选为2000~5000。
  4. 如权利要求1-3之一所述的乙烯基苄基醚改性聚(对羟基苯乙烯基-苯乙烯)聚合物树脂,其特征在于,该树脂为聚(对羟基苯乙烯基-苯乙烯)聚合物和乙烯基苄基氯由下式反应完成:
    Figure PCTCN2017097336-appb-100003
    其中,R1的化学结构为:
    Figure PCTCN2017097336-appb-100004
    m和n均为自然数,且m不为0。
  5. 一种树脂组合物,其特征在于,该树脂组合物包括:
    (1)如权利要求1-4之一所述的乙烯基苄基醚改性聚(对羟基苯乙烯基-苯乙烯)聚合物树脂;
    (2)阻燃剂;
    (3)粉末填料。
  6. 如权利要求5所述的树脂组合物,其特征在于,所述阻燃剂选自溴系阻燃剂、磷系阻燃剂或氮系阻燃剂中的任意一种或至少两种的混合物;
    优选地,所述溴系阻燃剂选自十溴二苯醚、十溴二苯乙烷或乙撑双四溴邻苯二甲酰亚胺中的任意一种或至少两种的混合物;
    优选地,所述磷系阻燃剂选自三(2,6-二甲基苯基)膦、10-(2,5-二羟基苯基)-9,10-二氢-9-氧杂-10-膦菲-10-氧化物、2,6-二(2,6-二甲基苯基)膦基苯或10-苯基-9,10-二氢-9-氧杂-10-膦菲-10-氧化物中的任意一种或至少两种的混合物;
    优选地,所述氮系阻燃剂选自三聚氰胺、三聚氰胺磷酸盐、磷酸胍、碳酸胍或氨基磺酸胍中的任意一种或至少两种的混合物;
    优选地,所述粉末填料选自结晶型二氧化硅、无定形二氧化硅、球形二氧化硅、熔融二氧化硅、二氧化钛、碳化硅、玻璃纤维、氧化铝、氮化铝、氮化硼、钛酸钡或钛酸锶中的任意一种或至少两种的混合物。
  7. 如权利要求5或6所述的树脂组合物,其特征在于,该树脂组合物包括:
    以乙烯基苄基醚改性聚(对羟基苯乙烯基-苯乙烯)聚合物树脂的重量为100重量份计,阻燃剂的重量为0~40重量份;
    以乙烯基苄基醚改性聚(对羟基苯乙烯基-苯乙烯)聚合物树脂和阻燃剂的总重量为100重量份计,粉末填料的重量为0~150重量份。
  8. 一种树脂胶液,其特征在于,其是将如权利要求5-7之一所述的树脂组合物溶解或分散在溶剂中得到。
  9. 一种预浸料,其特征在于,其是将玻璃纤维布浸润在如权利要求8所述的树脂胶液后,干燥得到;
    优选地,以乙烯基苄基醚改性聚(对羟基苯乙烯基-苯乙烯)聚合物树脂、阻燃剂和粉末填料的总重量为100重量份计,玻璃纤维布的重量为50~230重量份。
  10. 一种覆铜板、绝缘板或高频电路基板,其特征在于,含有至少一张如权利要求9所述的预浸料。
PCT/CN2017/097336 2017-06-13 2017-08-14 一种聚合物树脂及其在高频电路板中的应用 WO2018227745A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710443608.5A CN109053944B (zh) 2017-06-13 2017-06-13 一种聚合物树脂及其在高频电路板中的应用
CN201710443608.5 2017-06-13

Publications (1)

Publication Number Publication Date
WO2018227745A1 true WO2018227745A1 (zh) 2018-12-20

Family

ID=64659794

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/097336 WO2018227745A1 (zh) 2017-06-13 2017-08-14 一种聚合物树脂及其在高频电路板中的应用

Country Status (3)

Country Link
CN (1) CN109053944B (zh)
TW (1) TW201902949A (zh)
WO (1) WO2018227745A1 (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6071836A (en) * 1994-10-13 2000-06-06 World Properties, Inc. Polybutadiene and polyisoprene thermosetting compositions and method of manufacture thereof
US20080132131A1 (en) * 2006-12-05 2008-06-05 Nan Ya Plastics Corporation Polybutadiene thermosetting resin printed circuit board composition and the process thereof
CN101643565A (zh) * 2009-08-24 2010-02-10 广东生益科技股份有限公司 复合材料、用其制作的高频电路基板及其制作方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2010345325B2 (en) * 2010-07-14 2013-09-26 Guangdong Shengyi Sci. Tech Co., Ltd. Composite material, high-frequency circuit substrate made therefrom and making method thereof
EP2690117A1 (en) * 2012-07-24 2014-01-29 ALLNEX AUSTRIA GmbH Aqueously Dispersible Polyurethane

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6071836A (en) * 1994-10-13 2000-06-06 World Properties, Inc. Polybutadiene and polyisoprene thermosetting compositions and method of manufacture thereof
US20080132131A1 (en) * 2006-12-05 2008-06-05 Nan Ya Plastics Corporation Polybutadiene thermosetting resin printed circuit board composition and the process thereof
CN101643565A (zh) * 2009-08-24 2010-02-10 广东生益科技股份有限公司 复合材料、用其制作的高频电路基板及其制作方法

Also Published As

Publication number Publication date
CN109053944B (zh) 2020-03-17
TW201902949A (zh) 2019-01-16
CN109053944A (zh) 2018-12-21

Similar Documents

Publication Publication Date Title
WO2017067123A1 (zh) 一种聚苯醚树脂组合物及其在高频电路基板中的应用
WO2017067124A1 (zh) 一种聚苯醚树脂组合物及其在高频电路基板中的应用
JP6843194B2 (ja) 熱硬化性ビニル系樹脂組成物、プリプレグ、積層板及びプリント回路板
US9890276B2 (en) Composite material, high-frequency circuit substrate made therefrom and making method thereof
WO2016138759A1 (zh) 一种树脂组合物以及使用它的预浸料和层压板
JP6828097B2 (ja) 熱硬化性樹脂組成物、プリプレグ、積層板及びプリント回路板
WO2014082386A1 (zh) 一种树脂组合物及其用途
WO2016138760A1 (zh) 一种树脂组合物以及使用它的预浸料和层压板
CN112679936B (zh) 一种热固性树脂组合物及包含其的树脂胶液、预浸料、层压板、覆铜板和印刷电路板
WO2019024255A1 (zh) 一种热固性树脂组合物及使用其制作的半固化片与覆金属箔层压板
WO2017067140A1 (zh) 一种聚苯醚树脂组合物以及含有它的预浸料、层压板和印制电路板
WO2019024254A1 (zh) 一种热固性树脂组合物及使用其制作的半固化片与覆金属箔层压板
CN114085525A (zh) 一种低热膨胀系数树脂组合物及其应用
CN112111176A (zh) 一种氮化硼包覆聚四氟乙烯复合填料及其制备的半固化片和高导热型碳氢覆铜板
WO2018192106A1 (zh) 热固性乙烯基有机硅树脂组合物及其在高频电路板中的应用
CN115198563B (zh) 一种无纺布及其制备方法和应用
WO2018227746A1 (zh) 一种聚合物树脂及其在高频电路板中的应用
WO2018227745A1 (zh) 一种聚合物树脂及其在高频电路板中的应用
CN115651335A (zh) 一种树脂组合物及包含其的预浸料、覆铜板
WO2018227789A1 (zh) 一种聚合物树脂组合物及其在高频电路板中的应用
TWI644984B (zh) Thermosetting vinyl organic resin composition and its application in high frequency circuit boards
WO2018227756A1 (zh) 聚合物树脂组合物及其在高频电路板中的应用
CN114656771B (zh) 一种树脂组合物及其应用
JP2023120458A (ja) 樹脂組成物、プリプレグ、樹脂付き金属箔、樹脂付きフィルム、金属張積層板、及び配線基板、並びに、変性ポリフェニレンエーテルの製造方法
CN114456502A (zh) 基于三元乙丙橡胶-聚苯醚树脂的组合物、半固化片及制备方法、积层板

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17913518

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17913518

Country of ref document: EP

Kind code of ref document: A1