WO2018227756A1 - 聚合物树脂组合物及其在高频电路板中的应用 - Google Patents

聚合物树脂组合物及其在高频电路板中的应用 Download PDF

Info

Publication number
WO2018227756A1
WO2018227756A1 PCT/CN2017/098524 CN2017098524W WO2018227756A1 WO 2018227756 A1 WO2018227756 A1 WO 2018227756A1 CN 2017098524 W CN2017098524 W CN 2017098524W WO 2018227756 A1 WO2018227756 A1 WO 2018227756A1
Authority
WO
WIPO (PCT)
Prior art keywords
weight
parts
vinyl
styrene
hydroxystyryl
Prior art date
Application number
PCT/CN2017/098524
Other languages
English (en)
French (fr)
Inventor
陈广兵
曾宪平
徐浩晟
关迟记
Original Assignee
广东生益科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广东生益科技股份有限公司 filed Critical 广东生益科技股份有限公司
Publication of WO2018227756A1 publication Critical patent/WO2018227756A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L25/00Compositions of, homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Compositions of derivatives of such polymers
    • C08L25/18Homopolymers or copolymers of aromatic monomers containing elements other than carbon and hydrogen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/14Layered products comprising a layer of metal next to a fibrous or filamentary layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/20Layered products comprising a layer of metal comprising aluminium or copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/02Layered products essentially comprising sheet glass, or glass, slag, or like fibres in the form of fibres or filaments
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/02Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by structural features of a fibrous or filamentary layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/22Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed
    • B32B5/24Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer
    • B32B5/26Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer another layer next to it also being fibrous or filamentary
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F212/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring
    • C08F212/02Monomers containing only one unsaturated aliphatic radical
    • C08F212/04Monomers containing only one unsaturated aliphatic radical containing one ring
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F212/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring
    • C08F212/02Monomers containing only one unsaturated aliphatic radical
    • C08F212/04Monomers containing only one unsaturated aliphatic radical containing one ring
    • C08F212/06Hydrocarbons
    • C08F212/08Styrene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F8/00Chemical modification by after-treatment
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/20Polysiloxanes containing silicon bound to unsaturated aliphatic groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/80Siloxanes having aromatic substituents, e.g. phenyl side groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • C08K3/36Silica
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/14Peroxides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/02Fibres or whiskers
    • C08K7/04Fibres or whiskers inorganic
    • C08K7/14Glass
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2260/00Layered product comprising an impregnated, embedded, or bonded layer wherein the layer comprises an impregnation, embedding, or binder material
    • B32B2260/02Composition of the impregnated, bonded or embedded layer
    • B32B2260/021Fibrous or filamentary layer
    • B32B2260/023Two or more layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2260/00Layered product comprising an impregnated, embedded, or bonded layer wherein the layer comprises an impregnation, embedding, or binder material
    • B32B2260/04Impregnation, embedding, or binder material
    • B32B2260/046Synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/10Inorganic fibres
    • B32B2262/101Glass fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/20Properties of the layers or laminate having particular electrical or magnetic properties, e.g. piezoelectric
    • B32B2307/206Insulating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/30Properties of the layers or laminate having particular thermal properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/558Impact strength, toughness
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • B32B2457/08PCBs, i.e. printed circuit boards
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2203/00Applications
    • C08L2203/20Applications use in electrical or conductive gadgets

Definitions

  • the present invention relates to the field of copper clad laminates, and in particular to a resin composition and its application in high frequency circuit boards, in particular to a vinyl benzyl ether modified poly(p-hydroxystyryl-styrene) polymer. Resin composition and its use in high frequency circuit boards.
  • dielectric constant on performance high-frequency circuits, signal transmission rate and the relationship between the insulating material is a dielectric constant D k: the lower the dielectric constant D k dielectric material, the faster the transmission rate of the signal. Therefore, in order to increase the speed of the signal transmission rate, it is necessary to develop a substrate having a low dielectric constant. As the frequency of the signal increases, the loss of the signal in the substrate can no longer be ignored.
  • the relationship between the signal loss and the frequency, the dielectric constant D k , and the dielectric loss D f is such that the smaller the substrate dielectric constant D k is, the smaller the dielectric loss D f is, and the smaller the signal loss is. Therefore, the development of a high-frequency circuit substrate having a low dielectric constant D k and a low dielectric loss D f has become a research and development direction common to CCL manufacturers.
  • An olefin resin such as polybutadiene or styrene-butadiene polymer, which contains a curable cross-linked vinyl double bond, does not contain a polar group, and has a good preparation process of the adhesive sheet and the substrate thereof, and can be widely applied to a high-frequency base. Preparation of materials. However, it also has the disadvantage that the prepared substrate has a large coefficient of thermal expansion.
  • the polypara-hydroxystyrene-based resin can synthesize an active group having a specific structure by modifying the group by modifying it with a reactive group phenolic hydroxyl group.
  • a reactive group phenolic hydroxyl group In particular, non-polar vinyl reactive groups.
  • the substrate prepared by the substrate has low dielectric constant and dielectric loss, small thermal expansion coefficient and good heat resistance, and can be used for the development of high-frequency circuit substrates.
  • CN87100741A discloses a thermosetting poly(p-hydroxystyryl) derivative resin having a vinyl reactive group which is an allyl group, an isobutenyl group, a vinyl group, an acryloyl group or a methacryloyl group.
  • the resin composition is used for preparing prepregs and laminates having a low dielectric constant, good heat resistance, and good flame retardancy.
  • the vinyl structure selected for the resin has the following problems: 1. For the allyl group, since the radical intermediate is conjugated, it does not have the activity of radical curing; 2.
  • the two vinyl reactive groups contain a certain polar carbonyl chemical structure, which leads to a large dielectric constant and dielectric loss of the prepared substrate. 3.
  • isobutenyl and vinyl groups although it does not contain a polar chemical structure, isobutylene
  • the base and vinyl need to initiate polymerization under the conditions of a peroxide free radical initiator, while the peroxide free radical initiator has a polarity which causes an increase in the dielectric constant and dielectric loss of the substrate.
  • the inventors synthesized a vinyl benzyl ether modified poly(p-hydroxystyrene-styrene) polymer resin which contains an active styrene group and can be self-cured under heating without The initiation of a peroxide radical initiator is required; the prepared substrate has a low dielectric constant and dielectric loss, and a small thermal expansion coefficient, and can be applied to the preparation of a high frequency circuit.
  • the composition prepared by the composition containing the vinyl benzyl ether modified poly(p-hydroxystyryl-styrene) polymer resin has high crosslink density and high brittleness, and cannot satisfy the requirements for toughness of the copper clad laminate, and therefore The brittleness of the vinyl benzyl ether modified poly(p-hydroxystyryl-styrene) polymer resin cured product needs to be improved.
  • the prepared substrate has a small area of "ten"-shaped falling marks and good toughness of the substrate under the falling weight impact load. It can meet the requirements of toughness of CCL.
  • composition comprising a vinyl benzyl ether modified poly(p-hydroxystyryl-styrene) polymer resin, comprising:
  • the substrate prepared by using the resin composition not only has the low dielectric constant, low dielectric loss, small thermal expansion coefficient and the like, and the toughness of the substrate is good, and the "ten"-shaped falling marks generated under the falling hammer impact load are generated.
  • the small area can meet the requirements of toughness of CCL.
  • the vinyl benzyl ether modified poly(p-hydroxystyryl-styrene) polymer resin provided by the invention has a chemical structure as shown in the formula (I):
  • R 1 is as shown in formula (II):
  • n is 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 18 or 20
  • n is 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 18, 20, 25, 30, 35 or 40.
  • the vinyl benzyl ether modified poly(p-hydroxystyryl-styrene) polymer resin having an active unsaturated styryl double bond which is obtainable relative to other vinyl group-containing reactive group resins Substrate with lower dielectric constant and lower dielectric loss.
  • the vinyl benzyl ether modified poly(p-hydroxystyryl-styrene) polymer resin wherein the relationship between m and n in the chemical structural formula (I) is:
  • m/(m+n) may be, for example, 15%, 20%, 25%, 30%, 35%, 40%, 45%, 50%, 55%, 60%, 65%, 70%, 75. %, 80%, 85%, 90%, 95% or 100%.
  • the vinyl benzyl ether modified poly(p-hydroxystyryl-styrene) polymer resin has a number average molecular weight of 1,000 to 20,000, and may be, for example, 1000, 2000, 3000, 4000, 5000, 6000, 7000, 8000, 9000, 10000, 11000, 12000, 13000, 14000, 15000, 16000, 17000, 18000, 19000 or 20000, preferably 2000-5000.
  • the vinyl benzyl ether modified poly(p-hydroxystyryl-styrene) polymer resin is a poly(p-hydroxystyryl-styrene) polymer and vinylbenzyl chloride is reacted by the following formula:
  • R 1 is: Both m and n are natural numbers, and m is not zero.
  • the substrate prepared by modifying the poly(p-hydroxystyryl-styrene) polymer resin with the above vinyl benzyl ether has a low dielectric constant and dielectric loss and a small thermal expansion coefficient, it has a high crosslinking density and a substrate. Under the impact load of the falling weight, the "ten"-shaped falling marks are large in area and brittle, which cannot meet the requirements of the toughness of the copper clad laminate. Therefore, the vinyl benzyl ether modified poly(p-hydroxystyrene group) is also required. The brittleness of the -styrene) polymer resin composition is improved.
  • the present invention adds a vinyl silicone resin to a vinyl benzyl ether-modified poly(p-hydroxystyryl-styrene) polymer resin, which not only makes the substrate prepared using the resin composition have a low dielectric constant, The low dielectric loss and low thermal expansion coefficient make the toughness of the substrate good. Under the impact load of the falling weight, the "ten" shape of the falling surface is small, which can meet the requirements of the toughness of the copper clad laminate.
  • the vinyl silicone resin is a linear vinyl silicone resin, a vinyl silicone resin of MQ unit structure, a vinyl silicone resin of MTQ unit structure, a vinyl silicone resin of MT unit structure, and an ethylene of MDQ unit structure.
  • Vinyl silicone tree based on silicone resin and MDT unit structure Any one or a mixture of at least two of the above, wherein a typical but non-limiting mixture is a mixture of a linear vinyl silicone resin and a vinyl silicone resin of a MQ unit structure, a vinyl silicone of an MTQ unit structure.
  • the structure of the three-dimensional random network structure MQ vinyl silicone resin is:
  • 1 ⁇ v ⁇ 100 for example, v is 1, 3, 5, 8, 10, 22, 31, 40, 52, 61, 70, 80, 92, 95 or 100, etc.
  • 1 ⁇ w ⁇ 100 for example w is 1, 3, 5, 7, 9, 15, 22, 32, 38, 48, 50, 61, 72, 81, 90, 92 or 100, etc.
  • 2 ⁇ v + w ⁇ 200 for example, 2 ⁇ v +w ⁇ 9, 10 ⁇ v+w ⁇ 25, 40 ⁇ v+w ⁇ 52, 55 ⁇ v+w ⁇ 68, 70 ⁇ v+w ⁇ 82, 89 ⁇ v+w ⁇ 105, 121 ⁇ xv+w ⁇ 153, 157 ⁇ v + w ⁇ 175, 182 ⁇ v + w ⁇ 193, 195 ⁇ v + w ⁇ 200, etc.
  • 0.1 ⁇ v / w ⁇ 4 for example, v / w is 0.1, 0.2, 0.3, 0.4 , 0.5, 0.6, 0.7,
  • the vinyl silicone resin of the MT unit structure may be selected from the following structures:
  • 1 ⁇ x ⁇ 100 for example, x is 1, 3, 5, 8, 10, 22, 31, 40, 52, 61, 70, 80, 92, 95 or 100, etc.
  • 1 ⁇ y ⁇ 100 for example, y is 1, 3, 5, 7, 9, 15, 22, 32, 38, 48, 50, 61, 72, 81, 90, 92 Or 100, etc.
  • 2 ⁇ x+y ⁇ 200 for example, 2 ⁇ x+y ⁇ 9, 10 ⁇ x+y ⁇ 25, 40 ⁇ x+y ⁇ 52, 55 ⁇ x+y ⁇ 68, 70 ⁇ x+ Y ⁇ 82, 89 ⁇ x+y ⁇ 105, 121 ⁇ x+y ⁇ 153, 157 ⁇ x+y ⁇ 175, 182 ⁇ x+y ⁇ 193, 195 ⁇ x+y ⁇ 200, etc.
  • 0.1 ⁇ x /y ⁇ 3 for example, x / y is 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 1.2, 1.5, 1.8, 2.0, 2.3
  • the vinyl silicone resin of the MTQ unit structure may be selected from the following structures:
  • 1 ⁇ a ⁇ 100 for example, a is 1, 3, 5, 8, 10, 22, 31, 40, 52, 61, 70, 80, 92, 95 or 100, etc.
  • 1 ⁇ b ⁇ 100 for example
  • b is 1, 3, 5, 7, 9, 15, 22, 32, 38, 48, 50, 61, 72, 81, 90, 92 or 100, etc.
  • 1 ⁇ c ⁇ 100 for example, c is 1, 3 , 5, 7, 9, 15, 22, 32, 38, 48, 50, 61, 72, 81, 90, 92 or 100, etc.
  • 3 ⁇ a + b + c ⁇ 300 for example, 3 ⁇ a + b +c ⁇ 10, 15 ⁇ a+b+c ⁇ 22, 31 ⁇ a+b+c ⁇ 50, 52 ⁇ a+b+c ⁇ 70, 72 ⁇ a+b+c ⁇ 85, 90 ⁇ a+b +c ⁇ 100, 124 ⁇ a+b+c ⁇ 150, 201 ⁇ a+b+c ⁇ 243, 280 ⁇ a+b+c ⁇ 300, etc.
  • the vinyl silicone resin of the MDT unit structure may be selected from the following structures:
  • 1 ⁇ d ⁇ 100 (for example, d is 1, 3, 5, 8, 10, 22, 31, 40, 52, 61, 70, 80, 92, 95 or 100, etc.)
  • 1 ⁇ e ⁇ 100 (for example e is 1, 3, 5, 8, 10, 22, 31, 40, 52, 61, 70, 80, 92, 95 or 100, etc.
  • 1 ⁇ f ⁇ 100 (for example, f is 1, 3, 5, 8 , 10, 22, 31, 40, 52, 61, 70, 80, 92, 95 or 100, etc.)
  • 3 ⁇ d + e + f ⁇ 300 (for example, 3 ⁇ d + e + f ⁇ 10, 15 ⁇ d +e+f ⁇ 22, 31 ⁇ d+e+f ⁇ 50, 52 ⁇ d+e+f ⁇ 70, 72 ⁇ d+e+f ⁇ 85, 90 ⁇ d+e+f ⁇ 100, 124 ⁇ d +e+f ⁇ 150, 201 ⁇ d+e+f ⁇ 243, 280 ⁇ d+e+f ⁇ 300, etc.
  • At least one of R 12 , R 13 , R 14 , R 15 , R 16 and R 17 is substituted or unsubstituted C 2 -C 10 (eg C 2 , C 3 , C 4 , C 5 , C 6 , C 7 , C 8 , C 9 or C 10 ) And the like, wherein the other five are independently selected from substituted or unsubstituted C1 to C8 (for example, C1, C2, C3, C4, C5, C6, C7 or C8, etc.) linear alkyl groups, Substituted or unsubstituted C1-C8 (eg, C1, C2, C3, C4, C5, C6, C7 or C8, etc.) branched alkyl, substituted or unsubstituted phenyl, substituted or unsubstituted C2 to C10 (eg Any one or a combination of at least two of C2-containing groups of C2, C3, C4, C5, C6, C7, C8, C9 or C10, and the
  • the vinyl silicone resin of the MDQ unit structure may be selected from the following structures:
  • 1 ⁇ g ⁇ 100 (for example, g is 1, 3, 5, 8, 10, 22, 31, 40, 52, 61, 70, 80, 92, 95 or 100, etc.)
  • 1 ⁇ h ⁇ 100 (for example) h is 1, 3, 5, 8, 10, 22, 31, 40, 52, 61, 70, 80, 92, 95 or 100, etc.
  • 1 ⁇ i ⁇ 100 (for example, i is 1, 3, 5, 7 , 9, 15, 22, 32, 38, 48, 50, 61, 72, 81, 90, 92 or 100, etc.
  • 3 ⁇ g + h + i ⁇ 300 (for example, 3 ⁇ g + h + i ⁇ 11 13 ⁇ g+h+i ⁇ 21, 32 ⁇ g+h+i ⁇ 51, 52 ⁇ g+h+i ⁇ 72, 75 ⁇ g+h+i ⁇ 82, 88 ⁇ g+h+i ⁇ 100 , 124 ⁇ g + h + i ⁇ 150, 201 ⁇ g + h + i ⁇
  • the vinyl silicone resin has a vinyl content of from 1 to 30% by weight, for example, may be 1% by weight, 5% by weight, 10% by weight, 15% by weight, 20% by weight, 25% by weight or 30% by weight, preferably 5 to 20% by weight, More preferably, it is 8 to 15% by weight.
  • the vinyl silicone resin has a weight of 10 to 50 parts by weight, for example, 10 parts by weight based on 100 parts by weight of the vinyl benzyl ether-modified poly(p-hydroxystyryl-styrene) polymer resin. Parts, 15 parts by weight, 20 parts by weight, 25 parts by weight, 30 parts by weight, 35 parts by weight, 40 parts by weight, 45 parts by weight or 50 parts by weight.
  • the substance may also include a free radical initiator.
  • the free radical initiator is a peroxide free radical initiator, specifically selected from the group consisting of dicumyl peroxide, dibenzoyl peroxide, tert-butyl peroxybenzoate or 4,4-di(tert-butyl) Any one or a mixture of at least two of oxidized n-butyl valerate, the typical but non-limiting mixture being: n-butyl 4,4-di(tert-butylperoxy)pentanoate and peroxidation a mixture of tert-butyl benzoate, a mixture of dibenzoyl peroxide and dicumyl peroxide, a mixture of n-butyl 4,4-di(tert-butylperoxy)pentanoate and dibenzoyl peroxide a mixture of tert-butyl peroxybenzoate and dicumyl peroxide, n-butyl 4,4-di(tert-butylperoxy)pentan
  • the weight of the radical initiator is from 1 to 3 parts by weight, such as 1 part by weight, 1.2 parts by weight, 1.5 parts by weight, 2 parts by weight, 2.2 parts by weight based on 100 parts by weight of the vinyl silicone resin. Parts, 2.5 parts by weight, 2.8 parts by weight or 3 parts by weight.
  • composition containing a vinyl benzyl ether modified poly(p-hydroxystyryl-styrene) polymer resin may further include a flame retardant.
  • the flame retardant is selected from any one or a mixture of at least two of a bromine-based flame retardant, a phosphorus-based flame retardant or a nitrogen-based flame retardant, wherein a typical but non-limiting mixture is: bromine-based flame retardant a mixture of a phosphorus-based flame retardant, a mixture of a phosphorus-based flame retardant and a nitrogen-based flame retardant, and a mixture of a bromine-based flame retardant and a nitrogen-based flame retardant.
  • the bromine-based flame retardant is selected from any one or a mixture of at least two of decabromodiphenyl ether, decabromodiphenylethane, ethylene bistetrabromophthalimide, wherein A typical but non-limiting mixture is a mixture of decabromodiphenyl ether and decabromodiphenylethane, a mixture of decabromodiphenylethane and ethylene bistetrabromophthalimide, decabromodiphenyl. A mixture of ether and ethylene bis-tetrabromophthalimide.
  • the phosphorus-based flame retardant is selected from the group consisting of tris(2,6-dimethylphenyl)phosphine and 10-(2,5-dihydroxybenzene) ,9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide, 2,6-bis(2,6-dimethylphenyl)phosphinobenzene or 10-phenyl- Any one or a mixture of at least two of 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide, wherein a typical but non-limiting mixture is: three (2,6-di Mixture of methylphenyl)phosphine and 10-(2,5-dihydroxyphenyl)-9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide, 10-(2,5 a mixture of -dihydroxyphenyl)-9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-
  • the nitrogen-based flame retardant is selected from any one or a mixture of at least two of melamine, melamine phosphate, strontium phosphate, cesium carbonate or bismuth sulfamate, wherein a typical but non-limiting mixture is: a mixture of melamine and melamine phosphate, a mixture of strontium phosphate and cesium carbonate, a mixture of cesium carbonate and bismuth sulfamate.
  • the weight of the flame retardant is 0 to 40 by weight based on 100 parts by weight of the total weight of the vinyl benzyl ether-modified poly(p-hydroxystyryl-styrene) polymer resin and the vinyl silicone resin.
  • the serving may be, for example, 1 part by weight, 5 parts by weight, 8 parts by weight, 10 parts by weight, 12 parts by weight, 15 parts by weight, 20 parts by weight, 25 parts by weight, 30 parts by weight, 35 parts by weight or 40 parts by weight.
  • the weight of the flame retardant is 0 parts by weight, meaning that the resin composition does not contain a flame retardant.
  • composition containing a vinyl benzyl ether modified poly(p-hydroxystyryl-styrene) polymer resin may further include a powder filler.
  • the powder filler is selected from the group consisting of crystalline silica, amorphous silica, spherical silica, fused silica, titanium dioxide, silicon carbide, glass fiber, alumina, aluminum nitride, boron nitride, Any one or a mixture of at least two of barium titanate or barium titanate, wherein a typical but non-limiting mixture is: a mixture of crystalline silica and amorphous silica, spherical silica and molten two a mixture of silica, a mixture of titanium dioxide and silicon carbide, a mixture of alumina and barium titanate, A mixture of glass fibers, aluminum nitride and barium titanate.
  • the powder filler functions to improve dimensional stability, lower thermal expansion coefficient, lower system cost, and the like.
  • the shape and particle diameter of the powder filler are not limited in the present invention, and the particle diameter generally used is 0.2 to 10 ⁇ m, for example, 0.2 ⁇ m, 0.5 ⁇ m, 1 ⁇ m, 2 ⁇ m, 3 ⁇ m, 5 ⁇ m, 8 ⁇ m, 9 ⁇ m or 10 ⁇ m, for example, Spherical silica having a particle diameter of 0.2 to 10 ⁇ m is selected.
  • the weight of the powder filler is 0 to 150 by weight based on 100 parts by weight of the total weight of the vinyl benzyl ether modified poly(p-hydroxystyryl-styrene) polymer resin, vinyl silicone resin and flame retardant. Parts may be, for example, 1 part by weight, 5 parts by weight, 15 parts by weight, 25 parts by weight, 35 parts by weight, 40 parts by weight, 45 parts by weight, 50 parts by weight, 55 parts by weight, 75 parts by weight, 90 parts by weight, 100 parts by weight. Parts by weight, 110 parts by weight, 120 parts by weight, 130 parts by weight, 140 parts by weight, 145 parts by weight or 150 parts by weight.
  • the weight of the powder filler is 0 parts by weight, meaning that the resin composition does not contain a powder filler.
  • the preparation method of the resin composition of the present invention can be prepared by a known method of formulating, stirring, and mixing the above-mentioned resin, flame retardant, powder filler, and various additives.
  • Another object of the present invention is to provide a resin glue obtained by dissolving or dispersing the composition as described above in a solvent.
  • the solvent in the present invention is not particularly limited, and specific examples thereof include alcohols such as methanol, ethanol, and butanol, ethyl cellosolve, butyl cellosolve, ethylene glycol-methyl ether, carbitol, and butyl.
  • Ethers such as carbitol, ketones such as acetone, methyl ethyl ketone, methyl ethyl ketone, methyl isobutyl ketone, and cyclohexanone; aromatic hydrocarbons such as toluene, xylene, and mesitylene; An ester such as ethyl acetate or ethyl acetate; a nitrogen-containing solvent such as N,N-dimethylformamide, N,N-dimethylacetamide or N-methyl-2-pyrrolidone. These solvents may be used alone or in combination of two or more.
  • aromatic hydrocarbon solvents such as toluene, xylene, and mesitylene, and acetone, methyl ethyl ketone, methyl ethyl ketone, and methyl group.
  • a ketone flux such as butyl ketone or cyclohexanone is used in combination.
  • the amount of the solvent used can be based on the person skilled in the art. The experience is chosen such that the resulting resin glue reaches a viscosity suitable for use.
  • An emulsifier may be added during the process of dissolving or dispersing the resin composition as described above in a solvent. By dispersing by an emulsifier, the powder filler or the like can be uniformly dispersed in the glue.
  • a third object of the present invention is to provide a prepreg obtained by dipping a glass fiber cloth in a resin glue as described above and drying it.
  • the glass fiber cloth is a reinforcing material, and functions to increase strength, improve dimensional stability, and reduce shrinkage of curing of the thermosetting resin in the composite material.
  • Different types of fiberglass cloth can be used depending on the thickness of the sheet and the like.
  • Exemplary glass fiber cloths are: 7628 fiberglass cloth, 2116 fiberglass cloth.
  • the weight of the glass fiber cloth is 100 parts by weight based on 100 parts by weight of the total weight of the poly(p-hydroxystyryl-styrene) polymer resin, the vinyl silicone resin, the flame retardant and the powder filler modified with vinyl benzyl ether.
  • 50 to 230 parts by weight may be 50 parts by weight, 70 parts by weight, 90 parts by weight, 110 parts by weight, 150 parts by weight, 180 parts by weight, 200 parts by weight, 210 parts by weight, 220 parts by weight or 230 parts by weight.
  • the drying temperature is 80-220 ° C, for example, 80 ° C, 90 ° C, 110 ° C, 150 ° C, 170 ° C, 190 ° C, 200 ° C or 220 ° C; the drying time is 1 ⁇ 30 min, for example, may be 1 min , 3 min, 5 min, 8 min, 13 min, 17 min, 21 min, 24 min, 28 min or 30 min.
  • a fourth object of the present invention is to provide a copper clad laminate comprising at least one prepreg as described above.
  • a fifth object of the present invention is to provide an insulating sheet comprising at least one prepreg as described above.
  • a sixth object of the present invention is to provide a high frequency circuit substrate comprising at least one prepreg as described above.
  • the substrate prepared by using the resin composition of the present invention has a low dielectric constant and a low dielectric loss.
  • the comprehensive performance of consumption, low thermal expansion coefficient, etc., and the substrate has a small area of "ten"-shaped drop marks under the action of falling weight impact load, which satisfies the requirements of the substrate for toughness.
  • the high frequency circuit substrate provided by the present invention may be prepared by the following steps:
  • At least one prepreg as described above is overlapped, and a copper foil is placed on the upper and lower sides of the overlapping prepreg, and is obtained by lamination molding.
  • the overlap preferably employs an automated stacking operation to make the process operation easier.
  • the laminate molding is preferably vacuum lamination molding, and the vacuum lamination molding can be carried out by a vacuum laminator.
  • the lamination time is 70-120 min, for example, 70 min, 75 min, 80 min, 85 min, 90 min, 95 min, 100 min, 105 min, 110 min, 115 min or 120 min;
  • the lamination temperature is 180-220 ° C, for example Is 180 ° C, 185 ° C, 190 ° C, 195 ° C, 200 ° C, 205 ° C, 210 ° C, 215 ° C or 220 ° C;
  • the pressure of the lamination is 40 ⁇ 60 kg / cm 2 , for example, may be 40 kg / cm 2 , 45kg / cm 2, 50kg / cm 2, 55kg / cm 2, 58kg / cm 2 or 60kg / cm 2.
  • a typical but non-limiting method for preparing a high frequency circuit substrate of the present invention is as follows:
  • each component is weighed, specifically: the weight of the poly(p-hydroxystyryl-styrene) polymer resin modified with vinyl benzyl ether is 100 parts by weight.
  • the vinyl silicone resin has a weight of 10 to 50 parts by weight; the total weight of the poly(p-hydroxystyryl-styrene) polymer resin and the vinyl silicone resin modified with vinyl benzyl ether is 100 parts by weight.
  • the weight of the flame retardant is 0 to 40 parts by weight; the total weight of the poly(p-hydroxystyryl-styrene) polymer resin, the vinyl silicone resin and the flame retardant modified with vinyl benzyl ether is 100 parts by weight, the weight of the powder filler is 0 to 150 parts by weight;
  • High frequency as used herein means that the frequency is greater than 100 MHz.
  • the present invention has at least the following beneficial effects:
  • the present invention is applied to a copper clad laminate by modifying a poly(p-hydroxystyryl-styrene) polymer resin with a vinyl benzyl ether, since the chemical structure does not contain a polar group, thereby Ensure that the prepared substrate has excellent low dielectric constant and low dielectric loss performance;
  • the present invention is applied to a copper clad laminate by modifying a poly(p-hydroxystyryl-styrene) polymer resin with a vinyl benzyl ether, which has a high crosslink density and a large amount of benzene.
  • the ring-rigid structure has a low coefficient of thermal expansion relative to the substrate prepared by the olefin resin;
  • the present invention can improve the brittleness of a vinyl benzyl ether-modified poly(p-hydroxystyryl-styrene) polymer resin cured product by using a vinyl silicone resin as a toughening agent, and the substrate is falling. Under the impact load of the hammer, the area of the "ten" shaped drop is small, which satisfies the requirements of the substrate for toughness.
  • the poly(p-hydroxystyrene-styrene) polymer resin composition modified with vinyl benzyl ether has a low dielectric constant, a low dielectric loss, a small thermal expansion coefficient, and a substrate.
  • the "ten"-shaped falling mark area is small, which can meet the requirements of the toughness of the copper clad laminate, and is very suitable for preparing the circuit substrate of the high-frequency electronic device.
  • Figure 1 is a schematic diagram of a test system for evaluating the toughness of a substrate using a drop hammer impact method
  • Figure 2 is an external view of the drop hammer, wherein Figure 2-1 is a visual view of the drop hammer, and Figure 2-2 is a bottom view of the drop hammer;
  • Figure 3 is the appearance of the drop of 0.50 kg of falling weight and the effect of samples A, B, C, D, E;
  • Figure 4 is a schematic view showing a standard square frame having a side length of 50 ⁇ 0.1 mm placed in the middle of a sample drop;
  • Figure 5 is a selection diagram of the effective area of the drop
  • Figure 6 is a scale view of the area of the drop and the standard frame.
  • test system diagram is shown in Figure 1; the front end of the drop hammer is a 10mm diameter ball head with a drop weight of 0.50kg, 0.75kg and 1.00kg respectively, the appearance of which is shown in Figure 2; under the action of the drop hammer impact load When the weight is 0.50 kg, the appearance of the "ten"-shaped falling marks produced by the substrate is as shown in FIG.
  • the "ten" shape of the falling area analysis method is shown in Fig. 4, Fig. 5 and Fig. 6, in which a standard square frame with a side length of 50 ⁇ 0.1 mm is placed in the middle of the sample drop, see Fig. 4, and photographed. Place the image in the CAD software and zoom in to the white spot that can be finely observed at the edge of the drop.
  • the function of the software use the mouse to select the "ten" pattern of the falling mark and the white point area around it, and obtain the Figure 5, and then select the standard square box area in Figure 4 to obtain Figure 6. Calculate the actual area of the selected area according to the function of the software.
  • Table 1 shows the materials used in the examples and comparative examples.
  • the CST15 containing 1 mol of phenolic hydroxyl group was dissolved in an ethanol solvent, mechanically stirred until completely dissolved, and the temperature was raised to 50 ° C, and nitrogen gas was introduced for 30 min; 1.2 mol of sodium methoxide was added for 1 hour; and 1.2 mol of vinylbenzyl chloride was added thereto. 8 hours; after the end of the reaction, the product is precipitated from ethanol, dissolved in toluene, washed once or twice with water; precipitated in ethanol, and the precipitated product is dissolved in toluene to obtain a vinyl benzyl ether modified poly(p-hydroxybenzene). Vinyl-styrene) polymer SY-2, ready for use.
  • the CST50 containing 1 mol of phenolic hydroxyl group was dissolved in an ethanol solvent, mechanically stirred until completely dissolved, and the temperature was raised to 50 ° C, and nitrogen gas was introduced for 30 min; 1.2 mol of sodium methoxide was added for 1 hour; and 1.2 mol of vinylbenzyl chloride was added thereto. 8 hours; after the end of the reaction, the product is precipitated from ethanol, dissolved in toluene, washed once or twice with water; precipitated in ethanol, and the precipitated product is dissolved in toluene to obtain a vinyl benzyl ether modified poly(p-hydroxybenzene). Vinyl-styrene) polymer SY-3, ready for use.
  • the CST70 containing 1 mol of phenolic hydroxyl group is dissolved in an ethanol solvent, mechanically stirred until completely dissolved, and the temperature is raised to 50 ° C, nitrogen gas was introduced for 30 min; 1.2 mol of sodium methoxide was added for 1 hour; 1.2 mol of vinylbenzyl chloride was added for 8 hours; after the reaction, the product was precipitated from ethanol, dissolved in toluene, washed once or 2 times. Then, it was precipitated by dropping into ethanol, and the precipitated product was dissolved in toluene to obtain a vinylbenzyl ether-modified poly(p-hydroxystyryl-styrene) polymer SY-4, which was used.
  • a three-necked flask was charged with a mixture of diethylenetetramethyldisiloxane, concentrated hydrochloric acid, deionized water and ethanol, and the mechanical stirrer was turned on, and then rapidly dropped into triethyl phenyl silicate under rapid stirring and heating under reflux. Hydrolyzed and condensed, after a certain period of time, toluene was added for extraction, and then the reaction liquid was poured into a separatory funnel, and the layer was allowed to stand.
  • M unit monofunctional vinyl group-containing siloxane unit
  • T unit trifunctional phenyl group-containing siloxane unit
  • a three-necked flask was charged with a mixture of diethylenetetramethyldisiloxane, concentrated hydrochloric acid, deionized water and ethanol, and the mechanical stirrer was turned on, and then rapidly dropped into triethyl phenyl silicate under rapid stirring and heating under reflux. Ethyl orthosilicate is hydrolyzed and condensed. After a certain period of time, toluene is added for extraction, and then the reaction liquid is poured into a separatory funnel, and the layer is allowed to stand.
  • M unit monofunctional vinyl group-containing siloxane unit having a three-dimensional network structure containing an unsaturated double bond
  • MTQ vinyl silicone resin A-30 obtained by hydrolytic condensation of a trifunctional phenyl group-containing siloxane unit (T unit) with a tetrafunctional siloxane unit (Q unit).
  • a three-necked flask was charged with a mixture of diethylenetetramethyldisiloxane, concentrated hydrochloric acid, deionized water and ethanol, and the mechanical stirrer was turned on, and then rapidly dropped into triethyl phenyl silicate under rapid stirring and heating under reflux.
  • the dimethyldiethoxysilane is hydrolyzed and condensed.
  • toluene is added for extraction, and then the reaction solution is poured into a separatory funnel and allowed to stand for stratification.
  • M unit monofunctional vinyl group-containing siloxane unit having a three-dimensional network structure containing an unsaturated double bond
  • MDT vinyl silicone resin A-40 obtained by hydrolysis-condensation of a difunctional methyl group-containing siloxane unit (D unit) and a trifunctional phenyl group-containing siloxane unit (T unit).
  • a three-necked flask was charged with a mixture of diethylenetetramethyldisiloxane, concentrated hydrochloric acid, deionized water and ethanol, and the mechanical stirrer was turned on, followed by rapid dropwise addition of diphenyldiethoxy group under rapid stirring and heating under reflux. Silane and ethyl orthosilicate are hydrolyzed and condensed. After a certain period of time, toluene is added for extraction, and then the reaction liquid is poured into a separatory funnel, and the layer is allowed to stand.
  • M unit monofunctional vinyl group-containing siloxane unit having a three-dimensional network structure containing an unsaturated double bond
  • MDQ vinyl silicone resin A-50 obtained by hydrolysis-condensation of a difunctional phenyl group-containing siloxane unit (D unit) with a tetrafunctional siloxane unit (Q unit).
  • the 2116 prepreg was prepared by infiltrating the resin glue with 2116 glass fiber cloth, controlling the single weight by the clamp shaft, drying in an oven, and removing the toluene solvent.
  • the overall performance of the substrate is shown in Table 2.
  • the silicon micropowder 525 is dissolved in a toluene solvent and adjusted to a suitable viscosity.
  • the 2116 prepreg was prepared by infiltrating the resin glue with 2116 glass fiber cloth, controlling the single weight by the clamp shaft, drying in an oven, and removing the toluene solvent.
  • BT-93w 80 parts by weight of vinyl benzyl ether modified poly(p-hydroxystyryl-styrene) polymer SY-1, 20 parts by weight of linear vinyl silicone resin PVV-3522, 0.2 parts by weight of DCP and 30 Parts by weight of BT-93w were dissolved in a toluene solvent and adjusted to a suitable viscosity.
  • the 2116 prepreg was prepared by infiltrating the resin glue with 2116 glass fiber cloth, controlling the single weight by the clamp shaft, drying in an oven, and removing the toluene solvent.
  • a vinylbenzyl ether-modified poly(p-hydroxystyryl-styrene) polymer SY-1 100 parts by weight of a vinylbenzyl ether-modified poly(p-hydroxystyryl-styrene) polymer SY-1 was dissolved in a toluene solvent and adjusted to a suitable viscosity.
  • the 2116 prepreg was prepared by infiltrating the resin glue with 2116 glass fiber cloth, controlling the single weight by the clamp shaft, drying in an oven, and removing the toluene solvent.
  • Four sheets of 2116 prepreg were overlapped, and the upper and lower sides were coated with a copper foil of 1 OZ thickness, vacuum laminated for 90 minutes in a press, a curing pressure of 50 kg/cm 2 , and a curing temperature of 200 ° C to obtain a high-frequency circuit substrate.
  • the overall performance of the substrate is shown in Table 2.
  • the 2116 prepreg was prepared by infiltrating the resin glue with 2116 glass fiber cloth, controlling the single weight by the clamp shaft, drying in an oven, and removing the toluene solvent.
  • a vinyl-modified poly(p-hydroxystyryl-styrene) polymer MT-2 20 parts by weight of a linear silicone resin PVV-3522, and 3.0 parts by weight of DCP were dissolved in a toluene solvent. And adjust to the appropriate viscosity.
  • the 2116 prepreg was prepared by infiltrating the resin glue with 2116 glass fiber cloth, controlling the single weight by the clamp shaft, drying in an oven, and removing the toluene solvent.
  • the high-frequency circuit substrate prepared in Example 1 has a small area of "ten"-shaped falling marks, and the high-frequency circuit prepared in Comparative Example 1 is compared with that of Comparative Example 1.
  • the area of the "ten"-shaped drop of the substrate is much larger, which illustrates the combination of the poly(p-hydroxystyryl-styrene) polymer and the vinyl silicone resin modified by the use of vinyl benzyl ether.
  • the prepared substrate Compared with vinyl benzyl ether modified poly(p-hydroxystyryl-styrene) polymer alone, the prepared substrate has good toughness and the "ten" word produced by the substrate under the impact of falling weight impact load.
  • the shape of the falling marks is small, which can meet the requirements of the toughness of the copper clad laminate. Comparing Example 2 with Comparative Example 2, the same results were obtained.
  • the present invention can be improved by using a vinyl benzyl ether modified poly(p-hydroxystyryl-styrene) polymer and a vinyl silicone resin, and the vinyl silicone resin as a toughening agent can be improved.
  • Brittleness of vinyl benzyl ether modified poly(p-hydroxystyryl-styrene) polymer resin cured product Under the action of falling weight impact load, the prepared substrate has a small area of "ten"-shaped falling marks and good toughness of the substrate, which can meet the requirements of the substrate for toughness.
  • Example 1 compared with Comparative Example 3, the high-frequency circuit substrate prepared in Example 1 had a high glass transition temperature, a low coefficient of thermal expansion, a low dielectric constant, and a low dielectric loss, Comparative Example 3 The prepared substrate has a low glass transition temperature, a high coefficient of thermal expansion, and a corresponding increase in dielectric constant and dielectric loss.
  • the SY-1 resin in Example 1 has a self-curable styryl group and has a high crosslinking density, so that the prepared substrate has a high glass transition temperature and a small coefficient of thermal expansion, and MT-2 in Comparative Example 3
  • the resin contains vinyl, the vinyl needs to initiate polymerization under the condition of peroxide initiator, and can not completely crosslink the vinyl group completely, resulting in low glass transition temperature, large thermal expansion coefficient and system use. A greater amount of peroxide initiator results in an increase in substrate dielectric constant and dielectric loss.
  • the 2116 prepreg was prepared by infiltrating the resin glue with 2116 glass fiber cloth, controlling the single weight by the clamp shaft, drying in an oven, and removing the toluene solvent.
  • the 2116 prepreg was prepared by infiltrating the resin glue with 2116 glass fiber cloth, controlling the single weight by the clamp shaft, and drying in an oven to remove the toluene solvent.
  • the 2116 prepreg was prepared by infiltrating the resin glue with 2116 glass fiber cloth, controlling the single weight by the clamp shaft, drying in an oven, and removing the toluene solvent.
  • the 2116 prepreg was prepared by infiltrating the resin glue with 2116 glass fiber cloth, controlling the single weight by the clamp shaft, drying in an oven, and removing the toluene solvent.
  • the present invention utilizes a combination of a vinyl benzyl ether modified poly(p-hydroxystyryl-styrene) polymer and a vinyl silicone resin to provide a substrate having a low dielectric constant. , low dielectric loss, low thermal expansion coefficient and other comprehensive performance, and the substrate under the impact of the drop hammer impact, the "ten"-shaped drop area is small, can meet the requirements of the copper-clad board toughness.
  • the present invention illustrates the detailed process equipment and process flow of the present invention by the above embodiments, but the present invention is not limited to the above detailed process equipment and process flow, that is, does not mean that the present invention must rely on the above detailed process equipment and The process can only be implemented. It should be apparent to those skilled in the art that any modifications of the present invention, equivalent substitution of the various materials of the products of the present invention, addition of auxiliary components, selection of specific means, and the like, are all within the scope of the present invention.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Laminated Bodies (AREA)
  • Macromonomer-Based Addition Polymer (AREA)

Abstract

本发明涉及一种乙烯基苄基醚改性聚(对羟基苯乙烯基-苯乙烯)聚合物树脂组合物,其包括:(1)乙烯基苄基醚改性聚(对羟基苯乙烯基-苯乙烯)聚合物树脂;(2)乙烯基有机硅树脂;本发明还涉及包含该树脂组合物的预浸料及其在高频电路板中的应用;利用该树脂组合物制备的基材除了具有低介质常数、低介质损耗、低热膨胀系数等综合性能,且基材在落锤冲击载荷作用下,产生的"十"字状的落痕面积小,基材的韧性好,可满足覆铜板对韧性的要求。

Description

聚合物树脂组合物及其在高频电路板中的应用 技术领域
本发明涉及覆铜板技术领域,具体涉及一种树脂组合物及其在高频电路板中的应用,尤其涉及一种乙烯基苄基醚改性聚(对羟基苯乙烯基-苯乙烯)聚合物树脂组合物及其在高频电路板中的应用。
背景技术
近年来,随着无线通讯技术、电子产品的迅速发展,电子电路步入信息处理高速化、信号传输高频化阶段;然而当频率大于300MHz,甚至达到GHz以上时,基板的电性能将严重影响电子电路的特征,对基板性能提出更高的要求。
就介质常数性能而言,在高频电路中,信号的传输速率与绝缘材料介质常数Dk的关系为:绝缘材料介质常数Dk越低,信号传输速率越快。因此要实现信号传输速率的高速化,必须开发低介质常数的基板。随着信号频率的高频化,基板中信号的损耗不能再忽略不计。信号损耗与频率、介质常数Dk、介质损耗Df的关系为:基板介质常数Dk越小、介质损耗Df越小,信号损失就越小。因此开发具有低的介质常数Dk及低的介质损耗Df的高频电路基板,成为CCL厂家共同关注的研发方向。
另外,随着传输信号的高容量化,电路设计的高密化,所制备的PCB板层数越来越高,半固化片及其基材可满足多次层压要求,要求通过多次无铅回流焊要求等,对基材树脂组合物耐热性、热膨胀系数提出更高的要求。
烯烃树脂如聚丁二烯或丁苯聚合物等,其含可固化交联的乙烯基双键,不含极性基团,且粘合片及其基材制备工艺良好,可大量应用于高频基材的制备。但其也存在所制备的基材热膨胀系数大的缺点。
聚对羟基苯乙烯基树脂由于其带有活性基团酚羟基,通过对该基团修饰改性,可合成出具有特定结构的活性基团。特别是非极性乙烯基活性基团。其所制备的基材介质常数和介质损耗低、热膨胀系数小、耐热性能好,可用于高频电路基材的开发。
CN87100741A公开了一种热固性聚对羟基苯乙烯基衍生物树脂,该树脂所带乙烯基活性基团为烯丙基、异丁烯基、乙烯基、丙烯酰基、甲基丙烯酰基。该树脂组合物用于制备介质常数低、耐热性好、阻燃性能好的半固化片和层压板。但是该树脂所选择的乙烯基结构存在以下问题:1.对于烯丙基,由于其自由基中间体共轭,不具备自由基固化的活性;2.对于丙烯酰基、甲基丙烯酰基,由于这两种乙烯基活性基团含有一定极性的羰基化学结构,会导致所制备的基材介质常数和介质损耗变大;3.对于异丁烯基、乙烯基,虽然不含极性化学结构,但异丁烯基、乙烯基需要在过氧化物自由基引发剂条件下引发聚合,而过氧化物自由基引发剂具有极性,会导致基材的介质常数和介质损耗升高。
因此针对以上问题,发明人合成了乙烯基苄基醚改性聚(对羟基苯乙烯-苯乙烯)聚合物树脂,其含活性的苯乙烯基团,在加热条件下可实现自固化,而不需要过氧化物自由基引发剂的引发;其所制备的基材介质常数和介质损耗低、热膨胀系数小,可应用于高频电路的制备。但是含有乙烯基苄基醚改性聚(对羟基苯乙烯基-苯乙烯)聚合物树脂的组合物所制备的基材交联密度高,脆性大,不能满足覆铜板对韧性的要求,因此还需对乙烯基苄基醚改性聚(对羟基苯乙烯基-苯乙烯)聚合物树脂固化物的脆性进行改进。
发明内容
针对现有技术存在的问题,本发明的目的之一在于提供一种含有乙烯基苄基醚改性聚(对羟基苯乙烯基-苯乙烯)聚合物树脂的组合物。应用该树脂组合物 制备的基材除了具有低介质常数、低介质损耗,热膨胀系数低等综合性能外,且基材在落锤冲击载荷下,产生的“十”字状的落痕面积小,基材的韧性好,可满足覆铜板对韧性的要求。
所述含有乙烯基苄基醚改性聚(对羟基苯乙烯基-苯乙烯)聚合物树脂的组合物,其包括:
(1)乙烯基苄基醚改性聚(对羟基苯乙烯基-苯乙烯)聚合物树脂;
(2)乙烯基有机硅树脂。
应用该树脂组合物制备的基材不仅具有低介质常数、低介质损耗,热膨胀系数小等综合性能,且基材的韧性好,在落锤冲击载荷下,产生的“十”字状的落痕面积小,可满足覆铜板对韧性的要求。
本发明提供的乙烯基苄基醚改性聚(对羟基苯乙烯基-苯乙烯)聚合物树脂,其化学结构如式(I)所示:
Figure PCTCN2017098524-appb-000001
其中,R1的化学结构如式(II)所示:
Figure PCTCN2017098524-appb-000002
其中,m和n均为自然数,且m不为0,例m为1、2、3、4、5、6、7、8、9、10、11、12、13、14、15、18或20,n为1、2、3、4、5、6、7、8、9、10、 11、12、13、14、15、18、20、25、30、35或40。
所述乙烯基苄基醚改性聚(对羟基苯乙烯基-苯乙烯)聚合物树脂,其带有活性的不饱和苯乙烯基双键,相对于其它含乙烯基活性基团树脂,可得到更低介质常数、更低介质损耗的基材。
所述乙烯基苄基醚改性聚(对羟基苯乙烯基-苯乙烯)聚合物树脂,其化学结构式(I)中m和n的关系为:
m/(m+n)=15%~100%。
具体地,m/(m+n)例如可以是15%、20%、25%、30%、35%、40%、45%、50%、55%、60%、65%、70%、75%、80%、85%、90%、95%或100%。
所述乙烯基苄基醚改性聚(对羟基苯乙烯基-苯乙烯)聚合物树脂,其数均分子量为1000~20000,例如可以是1000、2000、3000、4000、5000、6000、7000、8000、9000、10000、11000、12000、13000、14000、15000、16000、17000、18000、19000或20000,优选为2000~5000。
所述乙烯基苄基醚改性聚(对羟基苯乙烯基-苯乙烯)聚合物树脂为聚(对羟基苯乙烯基-苯乙烯)聚合物和乙烯基苄基氯由下式反应完成:
Figure PCTCN2017098524-appb-000003
其中,R1的化学结构为:
Figure PCTCN2017098524-appb-000004
m和n均为自然数,且m不为0。
尽管利用上述乙烯基苄基醚改性聚(对羟基苯乙烯基-苯乙烯)聚合物树脂所制备的基材介质常数和介质损耗低、热膨胀系数小,但是其存在交联密度高,基材在落锤冲击载荷下,产生的“十”字状的落痕面积大,脆性大,不能满足覆铜板对韧性的要求,因此还需要对乙烯基苄基醚改性聚(对羟基苯乙烯基-苯乙烯)聚合物树脂组合物的脆性进行改进。
本发明通过向乙烯基苄基醚改性聚(对羟基苯乙烯基-苯乙烯)聚合物树脂中添加乙烯基有机硅树脂,其不仅使利用该树脂组合物制备的基材具有低介质常数、低介质损耗,热膨胀系数低等综合性能,还使得基材的韧性好,在落锤冲击载荷下,产生的“十”字状的落痕面积小,可满足覆铜板对韧性的要求。
所述乙烯基有机硅树脂为线性乙烯基有机硅树脂、MQ单元结构的乙烯基有机硅树脂、MTQ单元结构的乙烯基有机硅树脂、MT单元结构的乙烯基有机硅树脂、MDQ单元结构的乙烯基有机硅树脂、MDT单元结构的乙烯基有机硅树 脂中的任意一种或至少两种的混合物,其中典型但非限制性的混合物为:线性乙烯基有机硅树脂和MQ单元结构的乙烯基有机硅树脂的混合物,MTQ单元结构的乙烯基有机硅树脂和MT单元结构的乙烯基有机硅树脂的混合物,线性乙烯基有机硅树脂和MDT单元结构的乙烯基有机硅树脂的混合物,MT单元结构的乙烯基有机硅树脂和MDQ单元结构的乙烯基有机硅树脂的混合物。
对于上述乙烯基有机硅树脂中各具体类型的结构,本发明不做特殊限定,本领域技术人员根据实际需要进行选择即可。
例如,所述三维无规网状结构MQ乙烯基有机硅树脂的结构为:
(R2R3R4SiO1/2)v(SiO4/2)w
其中,1≤v≤100,1≤w≤100,2≤v+w≤200,且0.1≤v/w≤4;
其中,1≤v≤100(例如v为1、3、5、8、10、22、31、40、52、61、70、80、92、95或100等),1≤w≤100(例如w为1、3、5、7、9、15、22、32、38、48、50、61、72、81、90、92或100等),2≤v+w≤200(例如2≤v+w≤9、10≤v+w≤25、40≤v+w≤52、55≤v+w≤68、70≤v+w≤82、89≤v+w≤105、121≤xv+w≤153、157≤v+w≤175、182≤v+w≤193、195≤v+w≤200等),且0.1≤v/w≤4(例如v/w为0.1、0.2、0.3、0.4、0.5、0.6、0.7、0.8、0.9、1.0、1.2、1.5、1.8、2.0、2.3、2.5、2.8、3.0、3.4、3.8或4.0等);
R1、R2、R3三者至少有一个为含不饱和双键的基团,其余两者均独立地选自取代或未取代的C1~C8直链烷基、取代或未取代的C1~C8支链烷基、取代或未取代的苯基、取代或未取代的含C=C的基团中的任意一种。
所述MT单元结构的乙烯基有机硅树脂可以选自具有如下结构:
(R4R5R6SiO1/2)x(R78iO3/2)y
其中,1≤x≤100(例如x为1、3、5、8、10、22、31、40、52、61、70、 80、92、95或100等),1≤y≤100(例如y为1、3、5、7、9、15、22、32、38、48、50、61、72、81、90、92或100等),2≤x+y≤200(例如2≤x+y≤9、10≤x+y≤25、40≤x+y≤52、55≤x+y≤68、70≤x+y≤82、89≤x+y≤105、121≤x+y≤153、157≤x+y≤175、182≤x+y≤193、195≤x+y≤200等),且0.1≤x/y≤3(例如x/y为0.1、0.2、0.3、0.4、0.5、0.6、0.7、0.8、0.9、1.0、1.2、1.5、1.8、2.0、2.3、2.5、2.8或3.0等);
其中,R4、R5、R6和R7四者至少有一个为取代或未取代的C2~C10(例如C2、C3、C4、C5、C6、C7、C8、C9或C10等)含C=C的基团,其余三者均独立地选自取代或未取代的C1~C8(例如C1、C2、C3、C4、C5、C6、C7或C8等)直链烷基、取代或未取代的C1~C8(例如C1、C2、C3、C4、C5、C6、C7或C8等)支链烷基、取代或未取代的苯基、取代或未取代的C2~C10(例如C2、C3、C4、C5、C6、C7、C8、C9或C10等)含C=C的基团中的任意一种或至少两种的组合。
所述MTQ单元结构的乙烯基有机硅树脂可以选自具有如下结构:
(R8R9R10SiO1/2)a(R11SiO3/2)b(SiO4/2)c
其中,1≤a≤100(例如a为1、3、5、8、10、22、31、40、52、61、70、80、92、95或100等),1≤b≤100(例如b为1、3、5、7、9、15、22、32、38、48、50、61、72、81、90、92或100等),1≤c≤100(例如c为1、3、5、7、9、15、22、32、38、48、50、61、72、81、90、92或100等),且3≤a+b+c≤300(例如3≤a+b+c≤10、15≤a+b+c≤22、31≤a+b+c≤50、52≤a+b+c≤70、72≤a+b+c≤85、90≤a+b+c≤100、124≤a+b+c≤150、201≤a+b+c≤243、280≤a+b+c≤300等);
R8、R9、R10和R11四者至少有一个为取代或未取代的C2~C10(例如C2、 C3、C4、C5、C6、C7、C8、C9或C10等)含C=C的基团,其余三者均独立地选自取代或未取代的C1~C8(例如C1、C2、C3、C4、C5、C6、C7或C8等)直链烷基、取代或未取代的C1~C8(例如C1、C2、C3、C4、C5、C6、C7或C8等)支链烷基、取代或未取代的苯基、取代或未取代的C2~C10(例如C2、C3、C4、C5、C6、C7、C8、C9或C10等)含C=C的基团中的任意一种或至少两种的组合。
所述MDT单元结构的乙烯基有机硅树脂可以选自具有如下结构:
(R12R13R14SiO1/2)d(R15R16SiO3/2)e(R17SiO3/2)f
其中,1≤d≤100(例如d为1、3、5、8、10、22、31、40、52、61、70、80、92、95或100等),1≤e≤100(例如e为1、3、5、8、10、22、31、40、52、61、70、80、92、95或100等),1≤f≤100(例如f为1、3、5、8、10、22、31、40、52、61、70、80、92、95或100等),且3≤d+e+f≤300(例如3≤d+e+f≤10、15≤d+e+f≤22、31≤d+e+f≤50、52≤d+e+f≤70、72≤d+e+f≤85、90≤d+e+f≤100、124≤d+e+f≤150、201≤d+e+f≤243、280≤d+e+f≤300等);
R12、R13、R14、R15、R16和R17六者至少有一个为取代或未取代的C2~C10(例如C2、C3、C4、C5、C6、C7、C8、C9或C10等)含C=C的基团,其余五者均独立地选自取代或未取代的C1~C8(例如C1、C2、C3、C4、C5、C6、C7或C8等)直链烷基、取代或未取代的C1~C8(例如C1、C2、C3、C4、C5、C6、C7或C8等)支链烷基、取代或未取代的苯基、取代或未取代的C2~C10(例如C2、C3、C4、C5、C6、C7、C8、C9或C10等)含C=C的基团中的任意一种或至少两种的组合。
所述MDQ单元结构的乙烯基有机硅树脂可以选自具有如下结构:
(R18R19R20SiO1/2)g(R21R22SiO3/2)h(SiO4/2)i
其中,1≤g≤100(例如g为1、3、5、8、10、22、31、40、52、61、70、80、92、95或100等),1≤h≤100(例如h为1、3、5、8、10、22、31、40、52、61、70、80、92、95或100等),1≤i≤100(例如i为1、3、5、7、9、15、22、32、38、48、50、61、72、81、90、92或100等),且3≤g+h+i≤300(例如3≤g+h+i≤11、13≤g+h+i≤21、32≤g+h+i≤51、52≤g+h+i≤72、75≤g+h+i≤82、88≤g+h+i≤100、124≤g+h+i≤150、201≤g+h+i≤243、280≤g+h+i≤300等);
R18、R19、R20、R21和R22五者至少有一个为取代或未取代的C2~C10(例如C2、C3、C4、C5、C6、C7、C8、C9或C10等)含C=C的基团;其余四者均独立地选自取代或未取代的C1~C8(例如C1、C2、C3、C4、C5、C6、C7或C8等)直链烷基、取代或未取代的C1~C8(例如C1、C2、C3、C4、C5、C6、C7或C8等)支链烷基、取代或未取代的苯基、取代或未取代的C2~C10(例如C2、C3、C4、C5、C6、C7、C8、C9或C10等)含C=C的基团中的任意一种或至少两种的组合。
优选地,所述乙烯基有机硅树脂的乙烯基含量为1~30wt%,例如可以是1wt%、5wt%、10wt%、15wt%、20wt%、25wt%或30wt%,优选5~20wt%,进一步优选8~15wt%。
优选地,以乙烯基苄基醚改性聚(对羟基苯乙烯基-苯乙烯)聚合物树脂的重量为100重量份计,乙烯基有机硅树脂的重量为10~50重量份,例如10重量份、15重量份、20重量份、25重量份、30重量份、35重量份、40重量份45重量份或50重量份。
所述含有乙烯基苄基醚改性聚(对羟基苯乙烯基-苯乙烯)聚合物树脂的组合 物,还可以包括自由基引发剂。
所述自由基引发剂为过氧化物自由基引发剂,具体选自过氧化二异丙苯、过氧化二苯甲酰、过氧化苯甲酸叔丁酯或4,4-二(叔丁基过氧化)戊酸正丁酯中的任意一种或至少两种的混合物,所述典型但非限制性的混合物为:4,4-二(叔丁基过氧化)戊酸正丁酯和过氧化苯甲酸叔丁酯的混合物,过氧化二苯甲酰和过氧化二异丙苯的混合物,4,4-二(叔丁基过氧化)戊酸正丁酯和过氧化二苯甲酰的混合物,过氧化苯甲酸叔丁酯和过氧化二异丙苯的混合物,4,4-二(叔丁基过氧化)戊酸正丁酯、过氧化苯甲酸叔丁酯和过氧化二苯甲酰的混合物。所述自由基引发剂可以单独使用,也可以混合使用,混合使用可以达到更好的协同效果。
优选地,以乙烯基有机硅树脂的重量和为100重量份计,自由基引发剂的重量为1~3重量份,例如1重量份、1.2重量份、1.5重量份、2重量份、2.2重量份、2.5重量份、2.8重量份或3重量份。
所述含有乙烯基苄基醚改性聚(对羟基苯乙烯基-苯乙烯)聚合物树脂的组合物,还可以包括阻燃剂。
所述阻燃剂选自溴系阻燃剂、磷系阻燃剂或氮系阻燃剂中的任意一种或至少两种的混合物,其中典型但非限制性的混合物为:溴系阻燃剂和磷系阻燃剂的混合物,磷系阻燃剂和氮系阻燃剂的混合物,溴系阻燃剂和氮系阻燃剂的混合物。
优选地,所述溴系阻燃剂选自十溴二苯醚、十溴二苯乙烷、乙撑双四溴邻苯二甲酰亚胺中的任意一种或至少两种的混合物,其中典型但非限制性的混合物为:十溴二苯醚和十溴二苯乙烷的混合物,十溴二苯乙烷和乙撑双四溴邻苯二甲酰亚胺的混合物,十溴二苯醚和乙撑双四溴邻苯二甲酰亚胺的混合物。
优选地,所述磷系阻燃剂选自三(2,6-二甲基苯基)膦、10-(2,5-二羟基苯 基)-9,10-二氢-9-氧杂-10-膦菲-10-氧化物、2,6-二(2,6-二甲基苯基)膦基苯或10-苯基-9,10-二氢-9-氧杂-10-膦菲-10-氧化物中的任意一种或至少两种的混合物,其中典型但非限制性的混合物为:三(2,6-二甲基苯基)膦和10-(2,5-二羟基苯基)-9,10-二氢-9-氧杂-10-膦菲-10-氧化物的混合物,10-(2,5-二羟基苯基)-9,10-二氢-9-氧杂-10-膦菲-10-氧化物和2,6-二(2,6-二甲基苯基)膦基苯的混合物,2,6-二(2,6-二甲基苯基)膦基苯和10-苯基-9,10-二氢-9-氧杂-10-膦菲-10-氧化物的混合物。
优选地,所述氮系阻燃剂选自三聚氰胺、三聚氰胺磷酸盐、磷酸胍、碳酸胍或氨基磺酸胍中的任意一种或至少两种的混合物,其中典型但非限制性的混合物为:三聚氰胺和三聚氰胺磷酸盐的混合物,磷酸胍和碳酸胍的混合物,碳酸胍和氨基磺酸胍的混合物。
优选地,以乙烯基苄基醚改性聚(对羟基苯乙烯基-苯乙烯)聚合物树脂和乙烯基有机硅树脂的总重量为100重量份计算,阻燃剂的重量为0~40重量份,例如可以是1重量份、5重量份、8重量份、10重量份、12重量份、15重量份、20重量份、25重量份、30重量份、35重量份或40重量份。所述阻燃剂的重量为0重量份,意指,所述树脂组合物中不含有阻燃剂。
所述含有乙烯基苄基醚改性聚(对羟基苯乙烯基-苯乙烯)聚合物树脂的组合物,还可以包括粉末填料。
优选地,所述粉末填料选自结晶型二氧化硅、无定形二氧化硅、球形二氧化硅、熔融二氧化硅、二氧化钛、碳化硅、玻璃纤维、氧化铝、氮化铝、氮化硼、钛酸钡或钛酸锶中的任意一种或至少两种的混合物,其中典型但非限制性的混合物为:结晶型二氧化硅和无定形二氧化硅的混合物,球形二氧化硅和熔融二氧化硅的混合物,二氧化钛和碳化硅的混合物,氧化铝和钛酸钡的混合物, 玻璃纤维、氮化铝和钛酸锶的混合物。
在本发明所述树脂组合物中,粉末填料起着提高尺寸稳定性、降低热膨胀系数、降低体系成本等作用。所述粉末填料的形状和粒径本发明对此不作限定,通常使用的粒径为0.2~10μm,例如0.2μm、0.5μm、1μm、2μm、3μm、5μm、8μm、9μm或10μm,例如,可选择粒径为0.2~10μm的球形二氧化硅。
以乙烯基苄基醚改性聚(对羟基苯乙烯基-苯乙烯)聚合物树脂、乙烯基有机硅树脂和阻燃剂的总重量为100重量份计,粉末填料的重量为0~150重量份,例如可以是1重量份、5重量份、15重量份、25重量份、35重量份、40重量份、45重量份、50重量份、55重量份、75重量份、90重量份、100重量份、110重量份、120重量份、130重量份、140重量份、145重量份或150重量份。所述粉末填料的重量为0重量份,意指,所述树脂组合物中不含有粉末填料。
作为本发明树脂组合物的制备方法,可以通过公知的方法进行配制、搅拌、混合所述的树脂、阻燃剂、粉末填料,以及各种添加剂来制备。
本发明的目的之二在于提供一种树脂胶液,其是将如上所述的组合物溶解或分散在溶剂中得到。
作为本发明中的溶剂,没有特别限定,作为具体例,可以举出甲醇、乙醇、丁醇等醇类,乙基溶纤剂、丁基溶纤剂、乙二醇-甲醚、卡必醇、丁基卡必醇等醚类,丙酮、丁酮、甲基乙基甲酮、甲基异丁基甲酮、环己酮等酮类,甲苯、二甲苯、均三甲苯等芳香族烃类,乙氧基乙基乙酸酯、醋酸乙酯等酯类,N,N-二甲基甲酰胺、N,N-二甲基乙酰胺、N-甲基-2-吡咯烷酮等含氮类溶剂。上述溶剂可以单独使用一种,也可以两种或者两种以上混合使用,优选甲苯、二甲苯、均三甲苯等芳香族烃类溶剂与丙酮、丁酮、甲基乙基甲酮、甲基异丁基甲酮、环己酮等酮类熔剂混合使用。所述溶剂的使用量本领域技术人员可以根据自己 的经验来选择,使得到的树脂胶液达到适于使用的粘度即可。
在如上所述的树脂组合物溶解或分散在溶剂的过程中,可以添加乳化剂。通过乳化剂进行分散,可以使粉末填料等在胶液中分散均匀。
本发明的目的之三在于提供一种预浸料,其是将玻璃纤维布浸润在如上所述的树脂胶液后,干燥得到。
在本发明中,玻璃纤维布为增强材料,在复合材料中起着提高强度、提高尺寸稳定性、降低热固性树脂固化的收缩等作用。根据板材厚度等要求不同,可选用不同类型的玻璃纤维布。示例性的玻璃纤维布如:7628玻纤布、2116玻纤布。
以乙烯基苄基醚改性聚(对羟基苯乙烯基-苯乙烯)聚合物树脂、乙烯基有机硅树脂、阻燃剂和粉末填料的总重量为100重量份计,玻璃纤维布的重量为50~230重量份,例如可以是50重量份、70重量份、90重量份、110重量份、150重量份、180重量份、200重量份、210重量份、220重量份或230重量份。
所述干燥温度为80~220℃,例如可以是80℃、90℃、110℃、150℃、170℃、190℃、200℃或220℃;所述干燥时间为1~30min,例如可以是1min、3min、5min、8min、13min、17min、21min、24min、28min或30min。
本发明的目的之四在于提供一种覆铜板,其含有至少一张如上所述的预浸料。
本发明的目的之五在于提供一种绝缘板,其含有至少一张如上所述的预浸料。
本发明的目的之六在于提供一种高频电路基板,其含有至少一种如上所述的预浸料。
采用本发明所述的树脂组合物制备得到的基材具有低介质常数、低介质损 耗,低热膨胀系数等综合性能,且基材在落锤冲击载荷作用下,产生的“十”字状的落痕面积小,满足基材对韧性的要求。
本发明提供的高频电路基板,其制备方法可以包括以下步骤:
重叠至少一张如上所述的预浸料,在重叠预浸料的上下两侧放置铜箔,进行层压成型制备得到。
所述重叠优选采用自动堆叠操作,使工艺操作更加简便。
所述层压成型优选真空层压成型,真空层压成型可以通过真空层压机实现。所述层压的时间为70~120min,例如可以是70min、75min、80min、85min、90min、95min、100min、105min、110min、115min或120min;所述层压的温度为180~220℃,例如可以是180℃、185℃、190℃、195℃、200℃、205℃、210℃、215℃或220℃;所述层压的压力为40~60kg/cm2,例如可以是40kg/cm2、45kg/cm2、50kg/cm2、55kg/cm2、58kg/cm2或60kg/cm2
本发明典型但非限制性的高频电路基板的制备方法如下:
(1)按如上所述树脂组合物配方,称取各组分,具体为:以乙烯基苄基醚改性聚(对羟基苯乙烯基-苯乙烯)聚合物树脂的重量为100重量份计算,乙烯基有机硅树脂的重量为10~50重量份;以乙烯基苄基醚改性聚(对羟基苯乙烯基-苯乙烯)聚合物树脂和乙烯基有机硅树脂的总重量为100重量份计算,阻燃剂的重量为0~40重量份;以乙烯基苄基醚改性聚(对羟基苯乙烯基-苯乙烯)聚合物树脂、乙烯基有机硅树脂和阻燃剂的总重量为100重量份计,粉末填料的重量为0~150重量份;
(2)将乙烯基苄基醚改性聚(对羟基苯乙烯基-苯乙烯)聚合物树脂、乙烯基有机硅树脂、阻燃剂和粉末填料混合,并加入适量溶剂,搅拌分散均匀,使粉末填料均匀分散在树脂胶液中,用制备的树脂胶液浸润玻璃纤维布,烘干,除 去溶剂,得到预浸料;
(3)重叠至少一张的预浸料,在预浸料的两侧放置铜箔,在真空层压机中层压固化,从而得到高频电路基板。
本发明所述“高频”意指频率大于100MHz。
与现有技术相比,本发明至少具有以下有益效果:
(1)本发明通过采用乙烯基苄基醚改性聚(对羟基苯乙烯基-苯乙烯)聚合物树脂,将其应用于覆铜板领域,由于其化学结构中不含极性基团,从而保证所制备的基材具有优异的低介质常数和低介质损耗性能;
(2)本发明通过采用乙烯基苄基醚改性聚(对羟基苯乙烯基-苯乙烯)聚合物树脂,将其应用于覆铜板领域,由于其固化物交联密度高,且含大量苯环刚性结构,相对于烯烃树脂所制备的基材,其所制备的基材热膨胀系数低;
(3)本发明通过采用乙烯基有机硅树脂作为增韧剂,可改善乙烯基苄基醚改性聚(对羟基苯乙烯基-苯乙烯)聚合物树脂固化物的脆性,且基材在落锤冲击载荷作用下,产生的“十”字状的落痕面积小,满足基材对韧性的要求。
总之,采用乙烯基苄基醚改性聚(对羟基苯乙烯-苯乙烯)聚合物树脂组合物,所制备的高频电路基板不仅介质常数低、介质损耗低、热膨胀系数小,且基材在落锤冲击载荷作用下,产生的“十”字状的落痕面积小,可满足覆铜板对韧性的要求,非常适合制备高频电子设备的电路基板。
附图说明
图1是采用落锤冲击方法评估基材韧性的测试系统简图;
图2是落锤的外观图,其中图2-1是落锤的直观图,图2-2是落锤的仰视图;
图3是0.50kg的落重与样品A、B、C、D、E作用的落痕外观;
图4是将边长为50±0.1mm的标准正方形框置于样品落痕中间的示意图;
图5是落痕有效面积的选择图;
图6是落痕面积与标准框的比例图。
下面对本发明进一步详细说明。但下述的实例仅仅是本发明的简易例子,并不代表或限制本发明的权利保护范围,本发明的保护范围以权利要求书为准。
具体实施方式
下面结合附图并通过具体实施方式来进一步说明本发明的技术方案。
基材在落锤冲击载荷作用下,产生的“十”字状的落痕面积越小,基材的韧性越好,采用落锤冲击方法评估基材韧性的测试原理如下:
其中,测试系统简图如图1所示;其中落锤前端为10mm直径球头,落重分别为0.50kg、0.75kg和1.00kg,其外观如图2所示;在落锤冲击载荷作用下,落重为0.50kg时,基材产生的“十”字状的落痕外观如图3所示。
“十”字状的落痕面积分析方法如图4、图5和图6所示,其中将边长为50±0.1mm的标准正方形框,置于样品落痕中间,见图4,拍照并将图片放入CAD软件中,放大图片到可以细入地观察落痕边缘的白色斑点。根据软件的功能,用鼠标选中落痕“十”纹及其周边的白点区域,得到图5,再选中图4中的标准正方形框区域,得到图6。根据软件的功能计算图5选中区域的实际面积。
为更好地说明本发明,便于理解本发明的技术方案,本发明的典型但非限制性的实施例如下:
表1所示为实施例及比较例所用原料。
表1
Figure PCTCN2017098524-appb-000005
Figure PCTCN2017098524-appb-000006
制备例1
乙烯基苄基醚改性聚(对羟基苯乙烯基-苯乙烯)聚合物SY-1的合成:
将含1mol酚羟基的S-1溶于乙醇溶剂中,机械搅拌至完全溶解,升温至50℃,通入氮气30min;加入1.2mol甲醇钠,反应1小时;加入1.2mol的乙烯 基苄基氯,反应8小时;反应结束后产物从乙醇中析出,加入甲苯溶解,水洗1次或2次;再滴入乙醇中析出,析出的产物用甲苯溶解,得到乙烯基苄基醚改性聚(对羟基苯乙烯基-苯乙烯)聚合物SY-1,待用。
制备例2
乙烯基苄基醚改性聚(对羟基苯乙烯基-苯乙烯)聚合物SY-2的合成:
将含1mol酚羟基的CST15溶于乙醇溶剂中,机械搅拌至完全溶解,升温至50℃,通入氮气30min;加入1.2mol甲醇钠,反应1小时;加入1.2mol的乙烯基苄基氯,反应8小时;反应结束后产物从乙醇中析出,加入甲苯溶解,水洗1次或2次;再滴入乙醇中析出,析出的产物用甲苯溶解,得到乙烯基苄基醚改性聚(对羟基苯乙烯基-苯乙烯)聚合物SY-2,待用。
制备例3
乙烯基苄基醚改性聚(对羟基苯乙烯基-苯乙烯)聚合物SY-3的合成:
将含1mol酚羟基的CST50溶于乙醇溶剂中,机械搅拌至完全溶解,升温至50℃,通入氮气30min;加入1.2mol甲醇钠,反应1小时;加入1.2mol的乙烯基苄基氯,反应8小时;反应结束后产物从乙醇中析出,加入甲苯溶解,水洗1次或2次;再滴入乙醇中析出,析出的产物用甲苯溶解,得到乙烯基苄基醚改性聚(对羟基苯乙烯基-苯乙烯)聚合物SY-3,待用。
制备例4
乙烯基苄基醚改性聚(对羟基苯乙烯基-苯乙烯)聚合物SY-4的合成:
将含1mol酚羟基的CST70溶于乙醇溶剂中,机械搅拌至完全溶解,升温至 50℃,通入氮气30min;加入1.2mol甲醇钠,反应1小时;加入1.2mol的乙烯基苄基氯,反应8小时;反应结束后产物从乙醇中析出,加入甲苯溶解,水洗1次或2次;再滴入乙醇中析出,析出的产物用甲苯溶解,得到乙烯基苄基醚改性聚(对羟基苯乙烯基-苯乙烯)聚合物SY-4,待用。
制备例5
在三口烧瓶中加入二乙烯四甲基二硅氧烷、浓盐酸、去离子水及乙醇的混合液,开启机械搅拌机,然后于快速搅拌和加热回流条件下快速滴入苯基硅酸三乙酯水解缩合,一定时间后,加入甲苯萃取,然后将反应液倒入分液漏斗,静置分层。将水层分去,油层用水洗至中性,蒸馏、干燥除去溶剂甲苯后得到含有不饱和双键的具有三维网状结构的由单官能度含乙烯基的硅氧烷单元(M单元)与三官能度含苯基的硅氧烷单元(T单元)水解缩合而成的MT乙烯基有机硅树脂A-20。
制备例6
在三口烧瓶中加入二乙烯四甲基二硅氧烷、浓盐酸、去离子水及乙醇的混合液,开启机械搅拌机,然后于快速搅拌和加热回流条件下快速滴入苯基硅酸三乙酯、正硅酸乙酯水解缩合,一定时间后,加入甲苯萃取,然后将反应液倒入分液漏斗,静置分层。将水层分去,油层用水洗至中性,蒸馏、干燥除去溶剂甲苯后得到含有不饱和双键的具有三维网状结构的由单官能度含乙烯基的硅氧烷单元(M单元)、三官能度含苯基的硅氧烷单元(T单元)与四官能度的硅氧烷单元(Q单元)水解缩合而成的MTQ乙烯基有机硅树脂A-30。
制备例7
在三口烧瓶中加入二乙烯四甲基二硅氧烷、浓盐酸、去离子水及乙醇的混合液,开启机械搅拌机,然后于快速搅拌和加热回流条件下快速滴入苯基硅酸三乙酯、二甲基二乙氧基硅烷水解缩合,一定时间后,加入甲苯萃取,然后将反应液倒入分液漏斗,静置分层。将水层分去,油层用水洗至中性,蒸馏、干燥除去溶剂甲苯后得到含有不饱和双键的具有三维网状结构的由单官能度含乙烯基的硅氧烷单元(M单元)、二官能度含甲基的硅氧烷单元(D单元)与三官能度含苯基的硅氧烷单元(T单元)水解缩合而成的MDT乙烯基有机硅树脂A-40。
制备例8
在三口烧瓶中加入二乙烯四甲基二硅氧烷、浓盐酸、去离子水及乙醇的混合液,开启机械搅拌机,然后于快速搅拌和加热回流条件下快速滴入二苯基二乙氧基硅烷、正硅酸乙酯水解缩合,一定时间后,加入甲苯萃取,然后将反应液倒入分液漏斗,静置分层。将水层分去,油层用水洗至中性,蒸馏、干燥除去溶剂甲苯后得到含有不饱和双键的具有三维网状结构的由单官能度含乙烯基的硅氧烷单元(M单元)、二官能度含苯基的硅氧烷单元(D单元)与四官能度的硅氧烷单元(Q单元)水解缩合而成的MDQ乙烯基有机硅树脂A-50。
制备例9
乙烯基改性聚(对羟基苯乙烯基-苯乙烯)聚合物MT-2的合成:
将含1mol酚羟基的S-1溶于乙醇溶剂中,机械搅拌至完全溶解,升温至50℃,通入氮气30min;加入1.2mol甲醇钠,反应1小时;加入1.2mol的乙烯 基氯,反应8小时;反应结束后产物从乙醇中析出,加入甲苯溶解,水洗1次或2次;再滴入乙醇中析出,析出的产物用甲苯溶解,得到乙烯基苄基醚改性聚(对羟基苯乙烯基-苯乙烯)聚合物MT-2,待用。
实施例1
将80重量份的乙烯基改性聚(对羟基苯乙烯基-苯乙烯)聚合物SY-1,20重量份的线性乙烯基有机硅树脂PVV-3522和0.2重量份的DCP,溶解于甲苯溶剂中,并调节至适合粘度。用2116玻纤布浸润树脂胶液,过夹轴控制适合单重,并在烘箱中干燥,除去甲苯溶剂,制得2116预浸料。将4张2116预浸料重叠,上下两面配以1OZ厚度的铜箔,在压机中真空层压固化90min,固化压力50kg/cm2,固化温度200°C,制得高频电路基板。基材综合性能如表2所示。
实施例2
将80重量份的乙烯基改性聚(对羟基苯乙烯基-苯乙烯)聚合物SY-1,20重量份的线性乙烯基有机硅树脂PVV-3522、0.2重量份的DCP和130重量份的硅微粉525,溶解于甲苯溶剂中,并调节至适合粘度。用2116玻纤布浸润树脂胶液,过夹轴控制适合单重,并在烘箱中干燥,除去甲苯溶剂,制得2116预浸料。将4张2116预浸料重叠,上下两面配以1OZ厚度的铜箔,在压机中真空层压固化90min,固化压力50kg/cm2,固化温度200℃,制得高频电路基板。基材综合性能如表2所示。
实施例3
将80重量份的乙烯基苄基醚改性聚(对羟基苯乙烯基-苯乙烯)聚合物SY-1、 20重量份的线性乙烯基有机硅树脂PVV-3522、0.2重量份的DCP和30重量份的BT-93w,溶解于甲苯溶剂中,并调节至适合粘度。用2116玻纤布浸润树脂胶液,过夹轴控制适合单重,并在烘箱中干燥,除去甲苯溶剂,制得2116预浸料。将4张2116预浸料重叠,上下两面配以1OZ厚度的铜箔,在压机中真空层压固化90min,固化压力50kg/cm2,固化温度200℃,制得高频电路基板。基材综合性能如表2所示。
实施例4
将80重量份的乙烯基苄基醚改性聚(对羟基苯乙烯基-苯乙烯)聚合物SY-1、20重量份的线性乙烯基有机硅树脂PVV-3522、0.2重量份的DCP、30重量份的BT-93w和130重量份的硅微粉525,溶解于甲苯溶剂中,并调节至适合粘度。用2116玻纤布浸润树脂胶液,过夹轴控制适合单重,并在烘箱中干燥,除去甲苯溶剂,制得2116预浸料。将4张2116预浸料重叠,上下两面配以1OZ厚度的铜箔,在压机中真空层压固化90min,固化压力50kg/cm2,固化温度200℃,制得高频电路基板。基材综合性能如表2所示。
实施例5
将80重量份的乙烯基苄基醚改性聚(对羟基苯乙烯基-苯乙烯)聚合物SY-1、20重量份的线性乙烯基有机硅树脂PVV-3522、0.2重量份的DCP、30重量份的XP-7866和130重量份的硅微粉525,溶解于甲苯溶剂中,并调节至适合粘度。用2116玻纤布浸润树脂胶液,过夹轴控制适合单重,并在烘箱中干燥,除去甲苯溶剂,制得2116预浸料。将4张2116预浸料重叠,上下两面配以1OZ厚度的铜箔,在压机中真空层压固化90min,固化压力50kg/cm2,固化温度200℃, 制得高频电路基板。基材综合性能如表2所示。
比较例1
将100重量份的乙烯基苄基醚改性聚(对羟基苯乙烯基-苯乙烯)聚合物SY-1溶解于甲苯溶剂中,并调节至适合粘度。用2116玻纤布浸润树脂胶液,过夹轴控制适合单重,并在烘箱中干燥,除去甲苯溶剂,制得2116预浸料。将4张2116预浸料重叠,上下两面配以1OZ厚度的铜箔,在压机中真空层压固化90min,固化压力50kg/cm2,固化温度200℃,制得高频电路基板。基材综合性能如表2所示。
比较例2
将100重量份的乙烯基苄基醚改性聚(对羟基苯乙烯基-苯乙烯)聚合物SY-1和130重量份的硅微粉525溶解于甲苯溶剂中,并调节至适合粘度。用2116玻纤布浸润树脂胶液,过夹轴控制适合单重,并在烘箱中干燥,除去甲苯溶剂,制得2116预浸料。将4张2116预浸料重叠,上下两面配以1OZ厚度的铜箔,在压机中真空层压固化90min,固化压力50kg/cm2,固化温度200℃,制得高频电路基板。基材综合性能如表2所示。
比较例3
将80重量份的乙烯基改性聚(对羟基苯乙烯基-苯乙烯)聚合物MT-2、20重量份的线性有机硅树脂PVV-3522和3.0重量份的DCP,溶解于甲苯溶剂中,并调节至适合粘度。用2116玻纤布浸润树脂胶液,过夹轴控制适合单重,并在烘箱中干燥,除去甲苯溶剂,制得2116预浸料。将4张2116预浸料重叠,上下 两面配以1OZ厚度的铜箔,在压机中真空层压固化90min,固化压力50kg/cm2,固化温度200℃,制得高频电路基板。基材综合性能如表2所示。
表2
Figure PCTCN2017098524-appb-000007
通过表2可以看出:将实施例1与比较例1相比,实施例1中制得的高频电路基材“十”字状落痕面积小,而比较例1制得的高频电路基板“十”字状落痕面积却大了许多,这说明实施例1通过采用乙烯基苄基醚改性聚(对羟基苯乙烯基-苯乙烯)聚合物与乙烯基有机硅树脂的组合,相比单独采用乙烯基苄基醚改性聚(对羟基苯乙烯基-苯乙烯)聚合物,其所制备的基材韧性好,基材在落锤冲击载荷作用下,产生的“十”字状的落痕面积小,可满足覆铜板对韧性的要求。将实施例2与比较例2相比,可以得到相同的结果。
由此可以说明,本发明通过采用乙烯基苄基醚改性聚(对羟基苯乙烯基-苯乙烯)聚合物与乙烯基有机硅树脂进行配合,乙烯基有机硅树脂作为增韧剂,可改善乙烯基苄基醚改性聚(对羟基苯乙烯基-苯乙烯)聚合物树脂固化物的脆性,其 所制备的基材在落锤冲击载荷作用下,产生的“十”字状的落痕面积小,基材韧性好,可满足基材对韧性的要求。
另外将实施例1与比较例3相比,实施例1中制得的高频电路基材具有高的玻璃化转变温度、低的热膨胀系数、低的介质常数和低的介质损耗,比较例3所制备的基材玻璃化转变温度低,热膨胀系数高、介质常数和介质损耗也相应的升高。实施例1中SY-1树脂具有可自固化的苯乙烯基基团,且交联密度高,使得所制备的基材玻璃化转变温度高、热膨胀系数小,而比较例3中的MT-2树脂含乙烯基,乙烯基需在过氧化物引发剂条件下引发聚合,且不能完全将乙烯基基团交联完全,导致所制备的基材玻璃化转变温度低,热膨胀系数大,且体系使用了更多量的过氧化物引发剂,导致基材介质常数和介质损耗的升高。
实施例6
将90重量份的乙烯基改性聚(对羟基苯乙烯基-苯乙烯)聚合物SY-2、10重量份的乙烯基有机硅树脂DY-VMQ102、0.1重量份的DCP,溶解于甲苯溶剂中,并调节至适合粘度。用2116玻纤布浸润树脂胶液,过夹轴控制适合单重,并在烘箱中干燥,除去甲苯溶剂,制得2116预浸料。将4张2116预浸料重叠,上下两面配以1OZ厚度的铜箔,在压机中真空层压固化90min,固化压力50kg/cm2,固化温度200℃,制得高频电路基板。基材综合性能如表3所示。
实施例7
将80重量份的乙烯基苄基醚改性聚(对羟基苯乙烯基-苯乙烯)聚合物SY-3、20重量份的乙烯基有机硅树脂A-20、0.2重量份的DCP,溶解于甲苯溶剂中,并调节至适合粘度。用2116玻纤布浸润树脂胶液,过夹轴控制适合单重,并在 烘箱中干燥,除去甲苯溶剂,制得2116预浸料。将4张2116预浸料重叠,上下两面配以1OZ厚度的铜箔,在压机中真空层压固化90min,固化压力50kg/cm2,固化温度200℃,制得高频电路基板。基材综合性能如表3所示。
实施例8
将75重量份的乙烯基苄基醚改性聚(对羟基苯乙烯基-苯乙烯)聚合物SY-4、25重量份的乙烯基有机硅树脂A-30、0.25重量份的DCP,溶解于甲苯溶剂中,并调节至适合粘度。用2116玻纤布浸润树脂胶液,过夹轴控制适合单重,并在烘箱中干燥,除去甲苯溶剂,制得2116预浸料。将4张2116预浸料重叠,上下两面配以1OZ厚度的铜箔,在压机中真空层压固化90min,固化压力50kg/cm2,固化温度200℃,制得高频电路基板。基材综合性能如表3所示。
实施例9
将75重量份的乙烯基苄基醚改性聚(对羟基苯乙烯基-苯乙烯)聚合物SY-3、25重量份的乙烯基有机硅树脂A-50、0.25重量份的DCP和130重量份的硅微粉525,溶解于甲苯溶剂中,并调节至适合粘度。用2116玻纤布浸润树脂胶液,过夹轴控制适合单重,并在烘箱中干燥,除去甲苯溶剂,制得2116预浸料。将4张2116预浸料重叠,上下两面配以1OZ厚度的铜箔,在压机中真空层压固化90min,固化压力50kg/cm2,固化温度200℃,制得高频电路基板。基材综合性能如表3所示。
实施例10
将80重量份的乙烯基苄基醚改性聚(对羟基苯乙烯基-苯乙烯)聚合物SY-2、 20重量份的乙烯基有机硅树脂A-20、0.2重量份的DCP、30重量份的阻燃剂BT-93W和130重量份的硅微粉SC-2300SVJ溶解于甲苯溶剂中,并调节至适合粘度。用2116玻纤布浸润树脂胶液,过夹轴控制适合单重,并在烘箱中干燥,除去甲苯溶剂,制得2116预浸料。将4张2116预浸料重叠,上下两面配以1OZ厚度的铜箔,在压机中真空层压固化90min,固化压力50kg/cm2,固化温度200℃,制得高频电路基板。基材综合性能如表3所示。
实施例11
将80重量份的乙烯基苄基醚改性聚(对羟基苯乙烯基-苯乙烯)聚合物SY-2、20重量份的乙烯基有机硅树脂A-50、0.2重量份的DCP、30重量份的阻燃剂XP-7866和185重量份的硅微粉SC-2300SVJ,溶解于甲苯溶剂中,并调节至适合粘度;用2116玻纤布浸润树脂胶液,过夹轴控制适合单重,并在烘箱中干燥,除去甲苯溶剂,制得2116预浸料;将4张2116预浸料重叠,上下两面配以1OZ厚度的铜箔,在压机中真空层压固化90min,固化压力50kg/cm2,固化温度200℃,制得高频电路基板。基材综合性能如表3所示。
实施例12
将75重量份的乙烯基苄基醚改性聚(对羟基苯乙烯基-苯乙烯)聚合物SY-3、25重量份的乙烯基有机硅树脂A-40、0.25重量份的DCP、20重量份的阻燃剂BT-93w和150重量份的硅微粉525,溶解于甲苯溶剂中,并调节至适合粘度;用2116玻纤布浸润树脂胶液,过夹轴控制适合单重,并在烘箱中干燥,除去甲苯溶剂,制得2116预浸料;将4张2116预浸料重叠,上下两面配以1OZ厚度的铜箔,在压机中真空层压固化90min,固化压力50kg/cm2,固化温度200℃, 制得高频电路基板。基材综合性能如表3所示。
实施例13
将75重量份的乙烯基苄基醚改性聚(对羟基苯乙烯基-苯乙烯)聚合物SY-4、25重量份的乙烯基有机硅树脂A-40、0.25重量份的DCP和233重量份的硅微粉525,溶解于甲苯溶剂中,并调节至适合粘度;用2116玻纤布浸润树脂胶液,过夹轴控制适合单重,并在烘箱中干燥,除去甲苯溶剂,制得2116预浸料;将4张2116预浸料重叠,上下两面配以1OZ厚度的铜箔,在压机中真空层压固化90min,固化压力50kg/cm2,固化温度200℃,制得高频电路基板。基材综合性能如表3所示。
表3
Figure PCTCN2017098524-appb-000008
Figure PCTCN2017098524-appb-000009
通过表3可以看出,本发明利用乙烯基苄基醚改性聚(对羟基苯乙烯基-苯乙烯)聚合物和乙烯基有机硅树脂二者的配合,使制备的基材具有低介质常数、低介质损耗、低热膨胀系数等综合性能,且基材在落锤冲击载荷作用下,产生的“十”字状的落痕面积小,可满足覆铜板对韧性的要求。
申请人声明,本发明通过上述实施例来说明本发明的详细工艺设备和工艺流程,但本发明并不局限于上述详细工艺设备和工艺流程,即不意味着本发明必须依赖上述详细工艺设备和工艺流程才能实施。所属技术领域的技术人员应该明了,对本发明的任何改进,对本发明产品各原料的等效替换及辅助成分的添加、具体方式的选择等,均落在本发明的保护范围和公开范围之内。

Claims (10)

  1. 一种含有乙烯基苄基醚改性聚(对羟基苯乙烯基-苯乙烯)聚合物树脂的组合物,其特征在于,包括:
    (1)乙烯基苄基醚改性聚(对羟基苯乙烯基-苯乙烯)聚合物树脂;
    (2)乙烯基有机硅树脂。
  2. 如权利要求1所述的组合物,其特征在于,所述乙烯基苄基醚改性聚(对羟基苯乙烯基-苯乙烯)聚合物树脂的化学结构如式(I)所示:
    Figure PCTCN2017098524-appb-100001
    其中,R1的化学结构如式(II)所示:
    Figure PCTCN2017098524-appb-100002
    其中,m和n均为自然数,且m不为0。
  3. 如权利要求1所述的组合物,其特征在于,所述式(I)中m和n的关系为:m/(m+n)=15%~100%。
  4. 如权利要求1-3之一所述的组合物,其特征在于,所述乙烯基苄基醚改性聚(对羟基苯乙烯基-苯乙烯)聚合物树脂的数均分子量为1000~20000,优选2000~5000。
  5. 如权利要求1-4之一所述的组合物,其特征在于,所述乙烯基有机硅树脂为线性乙烯基有机硅树脂、MQ单元结构的乙烯基有机硅树脂、MTQ单元结 构的乙烯基有机硅树脂、MT单元结构的乙烯基有机硅树脂、MDQ单元结构的乙烯基有机硅树脂、MDT单元结构的乙烯基有机硅树脂中的任意一种或至少两种的混合物;
    优选地,所述乙烯基有机硅树脂的乙烯基含量为1~60wt%,优选5~40wt%,进一步优选10~30wt%;
    优选地,以乙烯基苄基醚改性聚(对羟基苯乙烯基-苯乙烯)聚合物树脂的重量为100重量份计,乙烯基有机硅树脂的重量为10~50重量份。
  6. 如权利要求1-5之一所述的组合物,其特征在于,所述组合物还包括自由基引发剂;
    优选地,所述自由基引发剂选自过氧化二异丙苯、过氧化二苯甲酰、过氧化苯甲酸叔丁酯或4,4-二(叔丁基过氧化)戊酸正丁酯中的任意一种或至少两种的混合物;
    优选地,所述组合物还包括阻燃剂;
    优选地,所述阻燃剂选自溴系阻燃剂、磷系阻燃剂或氮系阻燃剂中的任意一种或至少两种的混合物;
    优选地,所述溴系阻燃剂选自十溴二苯醚、十溴二苯乙烷或乙撑双四溴邻苯二甲酰亚胺中的任意一种或至少两种的混合物;
    优选地,所述磷系阻燃剂选自三(2,6-二甲基苯基)膦、10-(2,5-二羟基苯基)-9,10-二氢-9-氧杂-10-膦菲-10-氧化物、2,6-二(2,6-二甲基苯基)膦基苯或10-苯基-9,10-二氢-9-氧杂-10-膦菲-10-氧化物中的任意一种或至少两种的混合物;
    优选地,所述氮系阻燃剂选自三聚氰胺、三聚氰胺磷酸盐、磷酸胍、碳酸胍或氨基磺酸胍中的任意一种或至少两种的混合物;
    优选地,以乙烯基苄基醚改性聚(对羟基苯乙烯基-苯乙烯)聚合物树脂和乙 烯基有机硅树脂的总重量为100重量份计算,阻燃剂的重量为0~40重量份。
  7. 如权利要求1-6之一所述的组合物,其特征在于,所述组合物还包括粉末填料;
    优选地,所述粉末填料选自结晶型二氧化硅、无定形二氧化硅、球形二氧化硅、熔融二氧化硅、二氧化钛、碳化硅、玻璃纤维、氧化铝、氮化铝、氮化硼、钛酸钡或钛酸锶中的任意一种或至少两种的混合物;
    优选地,以乙烯基苄基醚改性聚(对羟基苯乙烯基-苯乙烯)聚合物树脂、乙烯基有机硅树脂和阻燃剂的总重量为100重量份计,粉末填料的重量为0~150重量份。
  8. 一种树脂胶液,其特征在于,其是将如权利要求1-7之一所述的组合物溶解或分散在溶剂中得到。
  9. 一种预浸料,其特征在于,其是将玻璃纤维布浸润在如权利要求8所述的树脂胶液后,干燥得到;
    优选地,以乙烯基苄基醚改性聚(对羟基苯乙烯基-苯乙烯)聚合物树脂、乙烯基有机硅树脂、阻燃剂和粉末填料的总重量为100重量份计,玻璃纤维布的重量为50~230重量份。
  10. 一种覆铜板、绝缘板或高频电路基板,其特征在于,含有至少一张如权利要求9所述的预浸料。
PCT/CN2017/098524 2017-06-13 2017-08-22 聚合物树脂组合物及其在高频电路板中的应用 WO2018227756A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710444087.5 2017-06-13
CN201710444087.5A CN109082020A (zh) 2017-06-13 2017-06-13 聚合物树脂组合物及其在高频电路板中的应用

Publications (1)

Publication Number Publication Date
WO2018227756A1 true WO2018227756A1 (zh) 2018-12-20

Family

ID=64659565

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/098524 WO2018227756A1 (zh) 2017-06-13 2017-08-22 聚合物树脂组合物及其在高频电路板中的应用

Country Status (3)

Country Link
CN (1) CN109082020A (zh)
TW (1) TWI650363B (zh)
WO (1) WO2018227756A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62161846A (ja) * 1986-01-10 1987-07-17 Hitachi Ltd 熱硬化性樹脂組成物
CN87100741A (zh) * 1986-02-19 1987-12-16 株式会社日立制作所 热固性树脂及使用该树脂制备的半固化片和层压材料
US4784917A (en) * 1985-04-23 1988-11-15 Hitachi, Ltd. Thermosetting resin composition and laminate and process for the production thereof
CN1033065A (zh) * 1987-11-04 1989-05-24 株式会社日立制作所 热固性树脂组合物及由其制得的预浸料和层压板材
CN101544841A (zh) * 2009-04-10 2009-09-30 广东生益科技股份有限公司 复合材料及用其制作的高频电路基板
CN101643565A (zh) * 2009-08-24 2010-02-10 广东生益科技股份有限公司 复合材料、用其制作的高频电路基板及其制作方法
CN105542457A (zh) * 2014-10-30 2016-05-04 台光电子材料(昆山)有限公司 一种低介电耗损树脂组成物及其制品

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5260398A (en) * 1990-04-05 1993-11-09 The Dow Chemical Company Aromatic cyanate-siloxane
JP5240380B1 (ja) * 2011-07-05 2013-07-17 Jsr株式会社 樹脂組成物、重合体、硬化膜および電子部品
CN106467668B (zh) * 2015-08-19 2021-07-30 广东生益科技股份有限公司 一种有机硅树脂铝基覆铜板及其制备方法
CN106609030B (zh) * 2015-10-21 2018-12-25 广东生益科技股份有限公司 一种聚苯醚树脂组合物及其在高频电路基板中的应用
CN106609039B (zh) * 2015-10-21 2019-09-13 广东生益科技股份有限公司 一种聚苯醚树脂组合物及其在高频电路基板中的应用
TW201800437A (zh) * 2016-03-01 2018-01-01 新日鐵住金化學股份有限公司 聚(乙烯基芐基)醚化合物與其用途

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4784917A (en) * 1985-04-23 1988-11-15 Hitachi, Ltd. Thermosetting resin composition and laminate and process for the production thereof
JPS62161846A (ja) * 1986-01-10 1987-07-17 Hitachi Ltd 熱硬化性樹脂組成物
CN87100741A (zh) * 1986-02-19 1987-12-16 株式会社日立制作所 热固性树脂及使用该树脂制备的半固化片和层压材料
CN1033065A (zh) * 1987-11-04 1989-05-24 株式会社日立制作所 热固性树脂组合物及由其制得的预浸料和层压板材
CN101544841A (zh) * 2009-04-10 2009-09-30 广东生益科技股份有限公司 复合材料及用其制作的高频电路基板
CN101643565A (zh) * 2009-08-24 2010-02-10 广东生益科技股份有限公司 复合材料、用其制作的高频电路基板及其制作方法
CN105542457A (zh) * 2014-10-30 2016-05-04 台光电子材料(昆山)有限公司 一种低介电耗损树脂组成物及其制品

Also Published As

Publication number Publication date
CN109082020A (zh) 2018-12-25
TWI650363B (zh) 2019-02-11
TW201903026A (zh) 2019-01-16

Similar Documents

Publication Publication Date Title
WO2017067123A1 (zh) 一种聚苯醚树脂组合物及其在高频电路基板中的应用
JP6843194B2 (ja) 熱硬化性ビニル系樹脂組成物、プリプレグ、積層板及びプリント回路板
TWI615439B (zh) 一種聚苯醚樹脂組合物及其在高頻電路基板中的應用
US9890276B2 (en) Composite material, high-frequency circuit substrate made therefrom and making method thereof
JP6828097B2 (ja) 熱硬化性樹脂組成物、プリプレグ、積層板及びプリント回路板
WO2015169002A1 (zh) 一种树脂组合物及其在高频电路板中的应用
US20210070980A1 (en) Thermosetting resin composition, and prepreg and metal foil clad laminate made therefrom
JP2020516742A (ja) 熱硬化性樹脂組成物及びそれを用いて製造したプリプレグ及び金属箔張積層板
WO2017067140A1 (zh) 一种聚苯醚树脂组合物以及含有它的预浸料、层压板和印制电路板
US11390735B2 (en) Thermosetting resin composition and prepreg and metal foil-covered laminate made using same
TWI644983B (zh) Thermosetting vinyl organic enamel resin composition and application thereof in high frequency circuit board
WO2018227756A1 (zh) 聚合物树脂组合物及其在高频电路板中的应用
WO2018227746A1 (zh) 一种聚合物树脂及其在高频电路板中的应用
TWI644984B (zh) Thermosetting vinyl organic resin composition and its application in high frequency circuit boards
CN110452545B (zh) 树脂组合物、印刷电路用预浸片及覆金属层压板
WO2018227789A1 (zh) 一种聚合物树脂组合物及其在高频电路板中的应用
WO2018227745A1 (zh) 一种聚合物树脂及其在高频电路板中的应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17913489

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17913489

Country of ref document: EP

Kind code of ref document: A1