WO2017064979A1 - 光学素子製造装置の制御方法、光学素子の製造方法及び光学素子製造装置 - Google Patents

光学素子製造装置の制御方法、光学素子の製造方法及び光学素子製造装置 Download PDF

Info

Publication number
WO2017064979A1
WO2017064979A1 PCT/JP2016/077515 JP2016077515W WO2017064979A1 WO 2017064979 A1 WO2017064979 A1 WO 2017064979A1 JP 2016077515 W JP2016077515 W JP 2016077515W WO 2017064979 A1 WO2017064979 A1 WO 2017064979A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical element
element material
temperature
pair
lower molds
Prior art date
Application number
PCT/JP2016/077515
Other languages
English (en)
French (fr)
Inventor
生典 廣瀬
Original Assignee
オリンパス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by オリンパス株式会社 filed Critical オリンパス株式会社
Priority to CN201680057641.8A priority Critical patent/CN108137366A/zh
Publication of WO2017064979A1 publication Critical patent/WO2017064979A1/ja
Priority to US15/946,222 priority patent/US20180222784A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B11/00Pressing molten glass or performed glass reheated to equivalent low viscosity without blowing
    • C03B11/12Cooling, heating, or insulating the plunger, the mould, or the glass-pressing machine; cooling or heating of the glass in the mould
    • C03B11/122Heating
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B11/00Pressing molten glass or performed glass reheated to equivalent low viscosity without blowing
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B11/00Pressing molten glass or performed glass reheated to equivalent low viscosity without blowing
    • C03B11/12Cooling, heating, or insulating the plunger, the mould, or the glass-pressing machine; cooling or heating of the glass in the mould
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B11/00Pressing molten glass or performed glass reheated to equivalent low viscosity without blowing
    • C03B11/12Cooling, heating, or insulating the plunger, the mould, or the glass-pressing machine; cooling or heating of the glass in the mould
    • C03B11/125Cooling
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2215/00Press-moulding glass
    • C03B2215/40Product characteristics
    • C03B2215/46Lenses, e.g. bi-convex
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2215/00Press-moulding glass
    • C03B2215/40Product characteristics
    • C03B2215/46Lenses, e.g. bi-convex
    • C03B2215/48Convex-concave
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2215/00Press-moulding glass
    • C03B2215/69Controlling the pressure applied to the glass via the dies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P40/00Technologies relating to the processing of minerals
    • Y02P40/50Glass production, e.g. reusing waste heat during processing or shaping
    • Y02P40/57Improving the yield, e-g- reduction of reject rates

Definitions

  • the present invention relates to a method of controlling an optical element manufacturing apparatus, a method of manufacturing an optical element, and an optical element manufacturing apparatus.
  • a method of manufacturing an optical element by so-called press molding in which a thermoplastic optical element material such as glass is heated and pressed by a mold to transfer the molding surface of the mold to the optically functional surface of the optical element material.
  • the method for manufacturing an optical element according to the press forming type, displacement or inclination may occur in the optical element material at the start of press-molding of the optical element material via the upper and lower molds, gold by the inclination between the upper and lower molds
  • the transfer may not be symmetrical about the central axis by starting transfer from a position shifted from the center of the molding surface of the mold.
  • JP 2007-91554 A Japanese Patent Application Publication No. 08-337428
  • the present invention has been made in view of the above, and in optical element molding, a control method of an optical element manufacturing apparatus capable of realizing symmetrical transfer with respect to the center of a mold molding surface, and optical element manufacturing It aims at providing a method and an optical element manufacturing device.
  • an optical element material softens a cavity for forming an optical element formed by a pair of upper and lower molds.
  • a first heating step of heating to a first temperature which can be molded by the pair of upper and lower molds, and a second temperature higher than the first temperature at which the optical element material is deformed by its own weight A second heating step of heating to a temperature of 45 ° C., and a pressing step of pressing the upper and lower molds to transfer the molding surfaces of the upper and lower molds to the optical element material in the cavity; It is characterized by including.
  • the cavity is softened by the optical element material after the second heating step and before the pressing step, so that the pair of upper and lower molds
  • the method further includes a temperature adjustment step of adjusting to a third temperature between the first temperature and the second temperature which can be molded but does not deform by its own weight.
  • the load on the pair of upper and lower molds is made lower than the load applied in the pressing step, and the first cooling step cools the cavity.
  • a second cooling step of cooling the cavity by applying a load higher than the load in the first cooling step to the pair of upper and lower molds is characterized by including.
  • an optical element material placed in a cavity for forming an optical element formed of a pair of upper and lower molds is heated to a first temperature to make the optical element material
  • a softening step of softening heating the optical element material to a second temperature higher than the first temperature, and at least a portion including a top of a molding surface of a lower mold of the pair of upper and lower molds
  • a secondary deformation process of transferring the molding surface by pressing the optical element material with the pair of upper and lower molds.
  • the method of manufacturing an optical element according to the present invention further includes a first viscosity adjustment step of increasing the viscosity of the optical element material after the primary deformation step and before the secondary deformation step. Do.
  • the viscosity of the optical element material is increased after the secondary deformation step, while the load on the pair of upper and lower molds is made lower than the load applied in the secondary deformation step.
  • the viscosity of the optical element material is increased, while the load on the pair of upper and lower molds is higher than the load in the first viscosity adjusting step And a third viscosity adjusting step.
  • the optical element manufacturing apparatus presses a pair of upper and lower molds, heating means for heating a cavity for forming an optical element formed by the upper and lower molds, and presses the upper and lower molds.
  • the optical element material is softened by the pressing means, the cooling means for cooling the cavity, and the heating means, and the optical element material is softened so that the cavity can be formed by the pair of upper and lower molds.
  • After heating to a first temperature the optical element material is heated to a second temperature higher than the first temperature which is deformed by its own weight, and then the molding surfaces of the pair of upper and lower molds are placed in the cavity
  • a control unit configured to cause the pressing unit to press the pair of upper and lower molds in order to transfer the optical element material.
  • the temperature is higher than the first temperature at which the optical element material is deformed by its own weight.
  • At least a portion of the lower mold surface including the top of the lower mold is transferred by heating to a high second temperature, and then the molding surfaces of the upper and lower molds are transferred to the optical element material. Symmetrical transfer can be realized with respect to the center of the molding surface.
  • FIG. 1 is a schematic view showing a configuration example of an optical element manufacturing apparatus according to Embodiment 1 of the present invention.
  • FIG. 2 is a flowchart showing the procedure of control by the control unit in the optical element manufacturing apparatus shown in FIG.
  • FIG. 3 shows the time dependency of the temperature detected by the temperature sensor provided on the upper and lower molds shown in FIG. 1 and the time dependency of the pressure applied by the press mechanism to the upper and lower molds.
  • FIG. FIG. 4 is a cross-sectional view of the upper mold, the lower mold and the optical element material during the second heating step shown in FIG.
  • FIG. 5 is a cross-sectional view of the upper mold, the lower mold and the optical element material in the pressing step shown in FIG. FIG.
  • FIG. 6 is a diagram for explaining the processing procedure of control in the conventional optical element manufacturing apparatus.
  • FIG. 7 is a cross-sectional view of an optical element material and a lower mold housed in a cavity in a conventional optical element manufacturing apparatus.
  • FIG. 8 is a flowchart of the control procedure of the optical element manufacturing apparatus according to the second embodiment.
  • FIG. 9 shows the time dependency of the temperature detected by the temperature sensor provided on the upper mold and the lower mold in Embodiment 2, and the time dependency of the pressure applied by the press mechanism to the upper mold and the lower mold.
  • FIG. FIG. 10 shows the time dependency of the temperature detected by the temperature sensor provided on the upper mold and the lower mold in Embodiment 3, and the time dependency of the pressure applied by the press mechanism to the upper mold and the lower mold.
  • FIG. 11 is a flowchart of the control procedure of the optical element manufacturing apparatus according to the fourth embodiment.
  • FIG. 12 shows the time dependency of the temperature detected by the temperature sensor provided on the upper mold and the lower mold in the fourth embodiment, and the time dependency of the pressure applied by the press mechanism to the upper mold and the lower mold.
  • FIG. 13 shows the time dependency of the temperature detected by the temperature sensor provided on the upper mold and the lower mold when the second embodiment and the fourth embodiment are combined, and the press mechanism is the upper mold and the lower metal. It is a figure which shows the time dependence of the pressure applied to a type
  • FIG. 1 is a schematic view showing a configuration example of an optical element manufacturing apparatus according to Embodiment 1 of the present invention.
  • An optical element manufacturing apparatus 1 shown in FIG. 1 is an apparatus for manufacturing an optical element by so-called press molding in which a thermoplastic optical element material such as glass is pressed while being heated using a mold.
  • the optical element manufacturing apparatus 1 applies a pressing load to the upper mold 11 and the lower mold 12 (a pair of upper and lower molds) and the upper mold 11 and the lower mold 12 forming a pair for pressing the optical element material 100.
  • Pressing mechanisms 13 and 14 pressing means for pressing the upper mold 11 and the lower mold 12, and heaters 15 and 16 (heating means) for independently heating the upper mold 11 and the lower mold 12, respectively.
  • Heaters 17 and 18 heating means provided around the upper mold 11 and the lower mold 12, cooling means 19 and 20 provided for the upper mold 11 and the lower mold 12, and a pressing mechanism 13 , 14, heaters 15 to 18 and a control unit 30 for controlling the processing operation of the cooling means 19 and 20.
  • the upper mold 11 and the lower mold 12 are each provided with a temperature sensor (not shown) such as a thermocouple.
  • optical element material 100 a glass material for press molding in which both end surfaces are polished in advance is used.
  • An optical element material 100 for molding an optical element is accommodated in a cavity formed by the upper mold 11 and the lower mold 12.
  • the optical element manufacturing apparatus 1 transfers the shape of the transfer surface of the upper mold 11 and the lower mold 12 on both surfaces of the optical element material 100 to form an optical element having an optical functional surface that exhibits a lens function.
  • the optically functional surface is an area of an optical element such as a lens that actually passes a light beam when used in an optical system.
  • the upper mold 11 and the lower mold 12 are made of cemented carbide such as tungsten carbide (WC) or high hardness ceramics such as silicon carbide (SiC), and have transfer surfaces finished by grinding and polishing, respectively. .
  • the method for finishing the transfer surface is, for example, the following method, which is preferably selected according to the required mold surface roughness and shape accuracy, but is not particularly limited.
  • polishing step as described in JP-A-2006-05596, smoothing that can selectively remove only the convex portion out of the corrugations, cracks, etc. existing on the surface of the mold.
  • polishing using a hard spherical tool is likely to cause deterioration of mold surface roughness and shape undulation with a minute width.
  • a method of polishing using an abrasive tool through an elastic body as described in Japanese Patent No.
  • Japanese Patent No. 5399167 describes a method of polishing the entire surface while keeping the polishing tool through an elastic body at a specific angle, but if the shape accuracy of the central portion is degraded, or the outermost periphery of the mold The shape accuracy of may be degraded. Therefore, instead of keeping the polishing tool at a specific angle through the elastic body, the polishing may be carried out using a method of switching the inclination direction between the outermost periphery and the central portion. The rotational direction may be set to increase the relative velocity at the contact position.
  • the optical element manufacturing apparatus 1 is an example of a fixed mold type molding machine in which the pressing mechanism 13 is always in contact with the upper mold 11 and the pressing mechanism 14 is always in contact with the lower mold 12.
  • FIG. 2 is a flowchart showing the procedure of control by the control unit 30 in the optical element manufacturing apparatus 1 shown in FIG.
  • FIG. 3 shows the time dependency of the temperature detected by the temperature sensor provided on the upper mold 11 and the lower mold 12 ((1) in FIG. 3), and the press mechanisms 13 and 14 are the upper mold 11 and the lower mold. It is a figure which shows the time dependency ((2) of FIG. 3) of the pressure applied to 12.
  • FIG. FIG. 4 is a cross-sectional view of the upper mold 11, the lower mold 12, and the optical element material 100 at the time of a second heating step described later.
  • FIG. 5 is a cross-sectional view of the upper mold 11, the lower mold 12, and the optical element material 100 at the time of the pressing step described later.
  • the control unit 30 holds the upper mold 11 in a non-contacting state with the optical element material 100, while maintaining the heater Heating the cavity to the first temperature T1 (see (1) in FIG. 3) at which the optical element material 100 is softened by energization to 15 to 18 and can be molded by the upper mold 11 and the lower mold 12. Do. Along with this, a softening process of heating the optical element material 100 placed in the cavity to the first temperature T1 to soften the optical element material 100 is performed.
  • the first temperature T1 is a temperature higher than the glass transition temperature T0 of the optical element material 100.
  • the control unit 30 applies a current to the heaters 15 to 18 while holding the upper mold 11 in a non-contact state with the optical element material 100 to make the cavity an optical element material.
  • 100 is heated to a second temperature T2 (> T1) (see FIG. 3) which is deformed by its own weight.
  • T2 a second temperature
  • the optical element material 100 becomes soft enough to be deformed by its own weight, and is deformed so as to contact at least a part including the top of the forming surface of the lower mold 12
  • the gap Rs between the optical element material 100 and the molding surface of the lower mold 12 generated in the first heating step S1 disappears.
  • the optical element material 100 is heated to the second temperature T2 to at least a part of the surface top of the molding surface of the lower mold 12 as the optical element material 100.
  • a primary deformation process is performed to transfer to the
  • the control unit 30 applies a pressing load P1 (see (2) in FIG. 3 and FIG. 5) to the pressing mechanisms 13 and 14, and forms the molding surface of the upper mold 11 and the lower mold 12.
  • the upper mold 11 and the lower mold 12 are pressed to transfer the surface to the optical element material 100 in the cavity.
  • a secondary deformation process is performed in which the optical element material 100 is pressed by the upper mold 11 and the lower mold 12 and the molding surface is transferred to the optical element material 100.
  • the press load P1 can be set as appropriate.
  • the control unit 30 applies the press load P2 (> P1) (see (2) in FIG. 3) to the upper die 11 and the lower die 12 to the press mechanisms 13, 14 while cooling
  • the means 19 and 20 are energized to cool the cavity (see (1) in FIG. 3).
  • the cooling step S4 is started when the press proceeds to a predetermined thickness thicker than the final center thickness in the pressing step S3. In order to obtain a good optical surface, it is necessary to continue applying a press load even during cooling of the mold, and in order to allow for the thickness of the portion to be deformed at that time, the cooling step S4 is thicker than the final thickness. To start.
  • the control unit 30 ends the cooling step S4 and operates the press mechanism 13 to operate the upper mold 11 is raised, the press-formed optical element is released from the upper mold 11 and the lower mold 12 and taken out.
  • the optical element is subjected to heat treatment in a heat treatment furnace to adjust the refractive index. In the case of this heat treatment, it is preferable that the mounting surface of the optical element be uniform.
  • the optical element may be mounted on a flexible member made of alumina fiber or the like, or a depth at which a sufficient mounting surface flexibility can be obtained for a granular member such as alumina ball, for example, ⁇ 2 mm
  • the optical element may be placed on the surface of the particles of a size of 5 mm or more.
  • FIG. 6 is a diagram for explaining the processing procedure of control in the conventional optical element manufacturing apparatus.
  • FIG. 7 is a cross-sectional view of an optical element material and a lower mold housed in a cavity in a conventional optical element manufacturing apparatus.
  • the control unit heats the cavity to the first temperature T1 (see FIG. 6) as the heating step S1P, and maintains the first temperature T1 in the subsequent pressing step S2P.
  • a cooling step S3P is performed to cool the cavity while pressing the upper and lower molds with the press load P2'.
  • the pressing step S2P when the pressing step S2P starts, transfer starts from a position shifted or tilted from the optical element material 100P (see FIG. 7) or a position shifted from the central axis A1 of the molding surface of the lower mold 12P,
  • the progress of transcription may not be central axis symmetric. If the pressing step S2P is executed as it is, a place where the gas Ra is trapped between the optical element material 100P and the molding surface of the lower mold 12P is generated around the top of the surface, and an air stagnation occurs on the surface of the optical element.
  • the surface of the molding surface of the lower mold 12 is deformed by gravity of the optical element material 100. Even if the upper mold 11 contacts the optical element material 100 in order to execute the subsequent pressing step S3 in a state in which the gap Rs is eliminated by contacting at least a part including the top, positional deviation or inclination of the optical element material 100 Does not occur and no air accumulation occurs.
  • the second heating the cavity to the second temperature T2 at which the optical element material 100 is deformed by its own weight By performing the heating step S2, it is possible to realize symmetrical transfer with respect to the center of the molding surface of the mold in optical element molding.
  • the second temperature T2 may be set as long as the optical element material 100 can be deformed by its own weight, and may be set according to the type of glass and the shape of the material.
  • the second heating step S2 in order to secure the amount of deformation in the weight, by holding isothermally at the second temperature T2 for a predetermined time, the amount of deformation in the weight is obtained without raising the mold temperature unreasonably Can improve the durability of the mold.
  • the temperature of the cavity may be gradually lowered after heating to the second temperature T2.
  • the second temperature T2 may be obtained in advance according to the type, weight, and the like of the optical element material 100, in advance of the temperature at which its own weight starts.
  • the start of the self-weight deformation of the optical element material 100 is detected visually and the start of the self-weight deformation of the optical element material 100 is detected while the heating is continued as it is after the first heating step S1.
  • the temperature at the time of charging may be set as the second temperature T2.
  • FIG. 3 shows an example in which the heating rate in the first heating step S1 and the heating rate in the second heating step S2 are the same, but of course the first heating step S1 and the second heating The heating rate may be different in step S2.
  • FIG. 8 is a flowchart of the control procedure of the optical element manufacturing apparatus according to the second embodiment.
  • FIG. 9 shows the time dependency of the temperature detected by the temperature sensor provided on the upper mold 11 and the lower mold 12 according to the second embodiment ((1) in FIG. 9), and the press mechanisms 13 and 14 are upper molds It is a figure which shows the time dependence ((2) of FIG. 9) of the pressure applied to 11 and the lower metal mold
  • FIG. 9 shows the time dependence of FIG. 9 of the pressure applied to 11 and the lower metal mold
  • the first heating step S11, the second heating step S12, the pressing step S14 and the cooling step S15 shown in FIGS. 8 and 9 are the first heating step S1 and the second heating step S2 shown in FIG. S3 and the cooling step S4.
  • the optical element material 100 is softened so that the cavity can be formed by the upper mold 11 and the lower mold 12.
  • a temperature adjustment step is performed to adjust to a third temperature T3 (see (1) in FIG. 9) between the first temperature T1 and the second temperature T2 which is not deformed by its own weight.
  • a first viscosity adjustment step of increasing the viscosity of the optical element material 100 is performed after the first deformation step and before the second deformation step.
  • the optical element material 100 is compared with the case of the first embodiment. Is hard, so even if high load is continued after the start of cooling, the room for deformation can be small, and the final thickness of the optical element can be easily stabilized without controlling the amount of deformation after the start of cooling. It will be possible.
  • FIG. 10 shows the time dependency of the temperature detected by the temperature sensor provided on the upper mold 11 and the lower mold 12 according to the third embodiment ((1) in FIG. 10), and the press mechanisms 13 and 14 are upper molds It is a figure which shows the time dependency ((2) of FIG. 10) of the pressure applied to 11 and the lower metal mold
  • FIG. 10 shows the time dependency of the temperature detected by the temperature sensor provided on the upper mold 11 and the lower mold 12 according to the third embodiment ((1) in FIG. 10), and the press mechanisms 13 and 14 are upper molds It is a figure which shows the time dependency ((2) of FIG. 10) of the pressure applied to 11 and the lower metal mold
  • the viscosity adjustment step may be performed after the second heating step S2 and before the start of the cooling step S4, as in the viscosity adjustment step S3 ′ shown in FIG. It may be performed by lowering the temperature of the cavity after the upper mold 11 contacts the optical element material 100. By this, the time required for the viscosity adjustment of the optical element material 100 can be reduced. Further, this makes it possible to reduce the pressing amount in the state where the optical element material 100 is hard and the deformation speed is slow, and it is possible to shorten the time required for manufacturing the optical element and to improve the productivity.
  • FIG. 11 is a flowchart of the control procedure of the optical element manufacturing apparatus according to the fourth embodiment.
  • FIG. 12 shows the time dependency of the temperature detected by the temperature sensor provided on the upper mold 11 and the lower mold 12 in the fourth embodiment ((1) in FIG. 12), and the press mechanisms 13 and 14 are upper molds. It is a figure which shows the time dependence ((2) of FIG. 12) of the pressure applied to 11 and the lower metal mold
  • FIG. 12 shows the time dependence of FIG. 12 of the pressure applied to 11 and the lower metal mold
  • the first heating step S21, the second heating step S22 and the pressing step S23 shown in FIGS. 11 and 12 are the first heating step S1, the second heating step S2 and the pressing step S3 shown in FIG.
  • the first cooling step S24 for cooling the cavity while reducing the pressing load on the upper mold 11 and the lower mold 12 than the pressing load P1 applied in the pressing step S23 is performed.
  • the press load is removed.
  • a second viscosity is obtained in which the press load on the upper mold 11 and the lower mold 12 is lower than the press load applied in the secondary deformation process. An adjustment process is performed.
  • the optical element manufacturing apparatus cools the cavity by applying a press load P2 higher than the press load in the first cooling step S24 to the upper mold 11 and the lower mold 12 as a subsequent second cooling step S25. .
  • the press load on the upper mold 11 and the lower mold 12 is made higher than the press load in the first viscosity adjustment step Three viscosity adjustment steps are performed.
  • the first cooling which suppresses the deformation of the optical element material 100 by reducing the press load simultaneously with the start of cooling of the cavity and increasing the viscosity of the optical element material 100.
  • Step S24 and a second cooling step S25 in which the press load P2 is applied again after the cavity temperature is lowered to increase the viscosity of the optical element material 100 in a range where a good optical surface can be obtained may be performed. .
  • the room for deformation after the start of cooling of the cavity can be made smaller, and the final thickness can be easily stabilized without managing the amount of deformation after the start of cooling.
  • FIG. 13 shows the time dependency of the temperature detected by the temperature sensor provided on the upper mold 11 and the lower mold 12 ((1) in FIG. 13) in the case where the second embodiment and the fourth embodiment are combined.
  • FIG. 14 is a view showing the time dependency ((2) of FIG. 13) of the pressure applied by the press mechanisms 13 and 14 to the upper mold 11 and the lower mold 12;
  • the temperature adjustment step S13 in the second embodiment between the second heating step S22 in the fourth embodiment and the pressing step S23
  • the viscosity of the material 100 may be adjusted, and the deformation room in the pressing step S23 may be reduced to further stabilize the final thickness of the optical element.
  • Embodiments 1 to 4 described above the so-called uniaxial optical element manufacturing apparatus in which the heating step, the pressing step, and the cooling step are sequentially performed on one stage has been described as an example.
  • the forming die in which the optical element material is set is sequentially transported to a plurality of stages, and the heating process, the pressing process, and the cooling process are performed on the transport destination stage.
  • the present invention may be applied to a so-called circulation type optical element manufacturing apparatus (see, for example, JP-A-2005-126325).
  • a deformation promoting member may be provided separately from the upper mold 11 for applying a static load to the optical element material 100 to promote deformation of its own weight.
  • a ring-shaped member is placed on the outer periphery of the optical element material 100.
  • the upper mold is provided with a member to which an additional load is applied.
  • the first to fourth embodiments exemplify molding of a concave meniscus aspheric surface optical element, but this is merely an example and is not limited.
  • the first to fourth embodiments can be applied to the formation of an optical element including a biconcave shape, a biconvex shape, a Fresnel surface, and an inflection point.
  • the present invention described above is not limited to the first to fourth embodiments, and can be variously modified according to the specification and the like.
  • all the constituent elements shown in the first to fourth embodiments can be used. Some components may be excluded. It is obvious from the above description that various other embodiments are possible within the scope of the present invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Casting Or Compression Moulding Of Plastics Or The Like (AREA)

Abstract

光学素子の製造方法は、上下一対の金型で形成されてなる光学素子成形用のキャビティーを、光学素子材料が軟化して上下一対の金型により成形可能になる第一の温度に加熱する第一の加熱工程S1と、キャビティーを、光学素子材料が自重により変形する第一の温度より高い第二の温度に加熱する第二の加熱工程S2と、上下一対の金型の成形面をキャビティー内の光学素子材料に転写するために、上下一対の金型を押圧する押圧工程S3と、を含む。

Description

光学素子製造装置の制御方法、光学素子の製造方法及び光学素子製造装置
 本発明は、光学素子製造装置の制御方法、光学素子の製造方法及び光学素子製造装置に関する。
 近年、ガラス等の熱可塑性の光学素子材料を成形型により加熱及び押圧し、成形型の成形面を光学素子材料の光学機能面に転写する、所謂プレス成形による光学素子の製造方法が知られている。このプレス成による光学素子の製造方法では、上下金型を介した光学素子材料のプレス成形を開始する際に光学素子材料の位置ずれや傾きが発生したり、上下金型間の傾きによって金型成形面の中心からずれた位置から転写が開始したりすることによって、転写の進行が中心軸対称にならない場合がある。そのような場合、特に非球面形状の金型成形面と球面形状の光学素子材料の組み合わせや、曲率が近い金型成形面と光学素子材料の組み合わせにおいて、光学素子材料と金型成形面との間に気体が閉じ込められる箇所が面頂部の周辺に生じ、光学素子表面にエア溜まりが発生する問題があった。
 従来、プレス成形前には上型を光学素子材料に接触しないように保持しておくことで、下型上の光学素子材料が成形面の中心からずれたとしても重力によって中心に戻ることを可能にし、光学素子材料が成形面の中心からずれた状態で成形されることを防ぐ構成(例えば、特許文献1参照)が提案されている。また、光学素子材料と成形面の間に空気が閉じ込められたとしても成形面に設けた凸形状の溝へと気体を逃がすことでエア溜まりの発生を防ぐ構成(例えば、特許文献2参照)が提案されている。
特開2007-91554号公報 特開平08-337428号公報
 しかしながら、特許文献1の構成の場合、プレス開始時に上型が光学素子材料に接触することによって生じる光学素子材料の位置ズレや傾き、上型が下型に対して持つ傾きによって面頂部付近の転写の進行が中心軸対称にならないという問題点は残ったままである。また、特許文献2の構成の場合、金型成形面に凹形状の溝を設けることによって光学素子表面に凸形状が発生する。したがって、特許文献2に基づいて、特に面頂部付近で発生するエア溜まりを防止するために面頂部付近にこの溝を適用する構成を採用すると、光学素子の面頂部表面に凸形状が発生してしまうため、光学素子の光学性能上望ましくない。
 本発明は、上記に鑑みてなされたものであって、光学素子成形において、金型成形面の中心に対して対称な転写を実現することができる光学素子製造装置の制御方法、光学素子の製造方法及び光学素子製造装置を提供することを目的とする。
 上述した課題を解決し、目的を達成するために、本発明に係る光学素子製造装置の制御方法は、上下一対の金型で形成される光学素子成形用のキャビティーを、光学素子材料が軟化して前記上下一対の金型により成形可能になる第一の温度に加熱する第一の加熱工程と、前記キャビティーを、前記光学素子材料が自重により変形する前記第一の温度より高い第二の温度に加熱する第二の加熱工程と、前記上下一対の金型の成形面を前記キャビティー内の前記光学素子材料に転写するために、前記上下一対の金型を押圧する押圧工程と、を含むことを特徴とする。
 本発明に係る光学素子製造装置の制御方法は、前記第二の加熱工程の後であって前記押圧工程の前に、前記キャビティーを、前記光学素子材料が軟化して前記上下一対の金型により成形可能であるが自重変形しない、前記第一の温度と前記第二の温度との間の第三の温度に調整する温度調整工程をさらに含むことを特徴とする。
 本発明に係る光学素子製造装置の制御方法は、前記押圧工程の後に、前記上下一対の金型に対する荷重を前記押圧工程で加えた荷重より低める一方、前記キャビティーを冷却する第一の冷却工程と、前記第一の冷却工程の後に、前記第一の冷却工程における荷重よりも高い荷重を前記上下一対の金型に対して加え、前記キャビティーを冷却する第二の冷却工程と、をさらに含むことを特徴とする。
 本発明に係る光学素子の製造方法は、上下一対の金型で形成されてなる光学素子成形用のキャビティー内に設置された光学素子材料を第一の温度に加熱して前記光学素子材料を軟化させる軟化工程と、前記光学素子材料を前記第一の温度より高い第二の温度に加熱して、前記上下一対の金型のうちの下金型の成形面の面頂部を含む少なくとも一部を転写する一次変形工程と、前記光学素子材料を前記上下一対の金型で押圧して成形面を転写する二次変形工程と、を含むことを特徴とする。
 本発明に係る光学素子の製造方法は、前記一次変形工程の後であって前記二次変形工程の前に、前記光学素子材料の粘度を高める第一の粘度調整工程をさらに含むことを特徴とする。
 本発明に係る光学素子の製造方法は、前記二次変形工程の後に、前記光学素子材料の粘度を高める一方、前記上下一対の金型に対する荷重を前記二次変形工程で加えた荷重より低めた第二の粘度調整工程と、前記第二の粘度調整工程の後に、前記光学素子材料の粘度を高める一方、前記上下一対の金型に対する荷重を前記第一の粘度調整工程における荷重より高めた第三の粘度調整工程と、をさらに含むことを特徴とする。
 本発明に係る光学素子製造装置は、上下一対の金型と、前記上下一対の金型で形成される光学素子成形用のキャビティーを加熱する加熱手段と、前記上下一対の金型を押圧する押圧手段と、前記キャビティーを冷却する冷却手段と、前記加熱手段に、光学素子材料が収容された前記キャビティーを前記光学素子材料が軟化して前記上下一対の金型により成形可能になる第一の温度に加熱させた後に、前記光学素子材料が自重により変形する前記第一の温度より高い第二の温度に加熱させてから、前記上下一対の金型の成形面を前記キャビティー内の前記光学素子材料に転写するために前記押圧手段に前記上下一対の金型を押圧させる制御部と、を備えたことを特徴とする。
 本発明によれば、キャビティーを、光学素子材料が軟化して上下一対の金型により成形可能になる第一の温度に加熱した後に、光学素子材料が自重により変形する第一の温度よりも高い第二の温度に加熱することによって下金型の面頂部を含む少なくとも一部を転写してから、上下一対の金型の成形面を光学素子材料に転写するため、光学素子成形において、金型成形面の中心に対して対称な転写を実現することができる。
図1は、本発明の実施の形態1に係る光学素子製造装置の構成例を示す模式図である。 図2は、図1に示す光学素子製造装置における制御部による制御の処理手順を示すフローチャートである。 図3は、図1に示す上金型及び下金型に設けられた温度センサによる検出温度の時間依存性と、プレス機構が上金型及び下金型に印加する圧力の時間依存性とを示す図である。 図4は、図2に示す第二の加熱工程時の上金型、下金型及び光学素子材料の断面図である。 図5は、図2に示す押圧工程時の上金型、下金型及び光学素子材料の断面図である。 図6は、従来の光学素子製造装置における制御の処理手順を説明する図である。 図7は、従来の光学素子製造装置におけるキャビティーに収容された光学素子材料と下金型との断面図である。 図8は、実施の形態2に係る光学素子製造装置による制御の処理手順を示すフローチャートである。 図9は、実施の形態2における上金型及び下金型に設けられた温度センサによる検出温度の時間依存性と、プレス機構が上金型及び下金型に印加する圧力の時間依存性とを示す図である。 図10は、実施の形態3における上金型及び下金型に設けられた温度センサによる検出温度の時間依存性と、プレス機構が上金型及び下金型に印加する圧力の時間依存性とを示す図である。 図11は、実施の形態4に係る光学素子製造装置による制御の処理手順を示すフローチャートである。 図12は、実施の形態4における上金型及び下金型に設けられた温度センサによる検出温度の時間依存性と、プレス機構が上金型及び下金型に印加する圧力の時間依存性とを示す図である。 図13は、実施の形態2と実施の形態4とを組み合わせた場合における上金型及び下金型に設けられた温度センサによる検出温度の時間依存性と、プレス機構が上金型及び下金型に印加する圧力の時間依存性とを示す図である。
 以下に、本発明の実施の形態に係る光学素子製造装置、光学素子製造装置の制御方法及び光学素子の製造方法について、図面を参照しながら説明する。なお、これらの実施の形態により本発明が限定されるものではない。また、各図面の記載において、同一部分には同一の符号を付して示している。
(実施の形態1)
 図1は、本発明の実施の形態1に係る光学素子製造装置の構成例を示す模式図である。図1に示す光学素子製造装置1は、ガラス等の熱可塑性の光学素子材料を、成形型を用いて加熱しながら押圧する、所謂プレス成形により光学素子を製造する装置である。
 光学素子製造装置1は、光学素子材料100をプレスする対をなす上金型11及び下金型12(上下一対の金型)と、上金型11及び下金型12にプレス荷重を付与して上金型11及び下金型12を押圧するプレス機構13,14(押圧手段)と、上金型11及び下金型12をそれぞれ独立して加熱するヒータ15,16(加熱手段)と、上金型11及び下金型12の周囲にそれぞれ設けられたヒータ17,18(加熱手段)と、上金型11及び下金型12にそれぞれ設けられた冷却手段19,20と、プレス機構13,14、ヒータ15~18及び冷却手段19,20の処理動作を制御する制御部30と、を備える。上金型11、下金型12にはそれぞれ、熱電対等の温度センサ(図示せず)が設けられている。
 光学素子材料100としては、予め両端面が研磨されたプレス成形用のガラス材料が用いられる。光学素子成形用の光学素子材料100は、上金型11及び下金型12で形成されるキャビティーに収容される。光学素子製造装置1は、光学素子材料100の両面に、上金型11及び下金型12の転写面の形状を転写することにより、レンズ機能を発揮する光学機能面が形成された光学素子を製造する。光学機能面とは、レンズ等の光学素子のうち、光学系において使用される際に実際に光線を通過させる範囲のことである。
 上金型11及び下金型12は、タングステンカーバイド(WC)等の超硬合金やシリコンカーバイド(SiC)等の高硬度のセラミックスによって形成され、それぞれ、研削及び研磨により仕上げられた転写面を有する。転写面の仕上げ加工方法については、例えば以下の方法があり、求められる金型表面粗さや形状精度によって選択することが望ましいが特に限定されない。
 研削工程においては、特開2002-131510号公報に記載の砥石の一点を金型の法線方向に制御して行う研削方法や、特開2002-254280号公報に記載の砥石と金型の接触点を移動させながら行う研削方法により、研削仕上げを行う方法がある。
 次に、研磨工程においては、特開2006-055964号公報に記載されているように、金型の表面に存在するうねりやクラック等のうち、凸部のみを選択的に除去することができるスムージング工程を行う方法、或いは、特開2011-36973号公報に記載されているような硬質な球状工具を用いて、面形状の修正研磨を行い、所望の形状に仕上げ研磨を行う方法、それらを組み合わせた方法がある。ただし、硬質な球状工具による研磨では、金型表面粗さの悪化や、微小幅の形状うねりを発生させやすい。それらを抑制したい場合には、特許第5399167号公報に記載されているような、弾性体を介した研磨工具を使用して研磨する方法が有効である。特許第5399167号公報には、弾性体を介した研磨工具を特定角度に保ちながら全面を研磨する方法が記載されているが、それでは中心部の形状精度が悪化する場合、または、金型最外周の形状精度が悪化する場合がある。そこで、弾性体を介した研磨工具を特定角度に保つのではなく、最外周部と中心部で傾斜方向を切り替える方法を用いて研磨を実施してもよく、その際の研磨工具及び金型の回転方向は、接触位置における相対速度が高まる方向に設定するとよい。
 光学素子製造装置1は、上金型11にはプレス機構13が常に接触し、下金型12にはプレス機構14が常に接触する固定金型方式の成形機の一例である。
 次に、図1に示す光学素子製造装置1における制御部30による制御方法、及び、光学素子の製造方法について説明する。図2は、図1に示す光学素子製造装置1における制御部30による制御の処理手順を示すフローチャートである。図3は、上金型11及び下金型12に設けられた温度センサによる検出温度の時間依存性(図3の(1))と、プレス機構13,14が上金型11及び下金型12に印加する圧力の時間依存性(図3の(2))とを示す図である。図4は、後述する第二の加熱工程時の上金型11、下金型12及び光学素子材料100の断面図である。図5は、後述する押圧工程時の上金型11、下金型12及び光学素子材料100の断面図である。
 キャビティーに光学素子材料100が収容された後、図2に示す第一の加熱工程S1において、制御部30は、上金型11を光学素子材料100に非接触の状態で保持しながら、ヒータ15~18に通電することにより、光学素子材料100が軟化して上金型11,下金型12により成形可能になる第一の温度T1(図3の(1)参照)にキャビティーを加熱する。これに伴い、キャビティー内に設置された光学素子材料100を第一の温度T1に加熱して光学素子材料100を軟化する軟化工程が実行される。第一の温度T1は、光学素子材料100のガラス転移点T0よりも高い温度である。
 続く第二の加熱工程S2において、制御部30は、上金型11を光学素子材料100に非接触の状態で保持したまま、ヒータ15~18に通電することにより、キャビティーを、光学素子材料100が自重により変形する第二の温度T2(>T1)(図3参照)に加熱する。第二の温度T2までキャビティーが加熱されることによって、光学素子材料100は、自重変形できる柔らかさになり、下金型12の成形面の面頂部を含む少なくとも一部に接触するように変形することで(図4の矢印Y1参照)、第一の加熱工程S1で生じていた光学素子材料100と下金型12の成形面との間の隙間Rsがなくなる。制御部30による第二の加熱工程S2の実行に伴い、光学素子材料100を第二の温度T2に加熱して、下金型12の成形面の面頂部を含む少なくとも一部を光学素子材料100に転写する一次変形工程が行なわれる。
 続く押圧工程S3において、制御部30は、プレス機構13,14にプレス荷重P1(図3の(2)及び図5参照)を付与し、上金型11の成形面及び下金型12の成形面をキャビティー内の光学素子材料100に転写するために、上金型11及び下金型12を押圧する。これに伴い、光学素子材料100を上金型11及び下金型12で押圧して成形面を光学素子材料100に転写する二次変形工程が実行される。プレス荷重P1は、適宜設定可能である。
 続く冷却工程S4において、制御部30は、プレス機構13,14に上金型11及び下金型12に対するプレス荷重P2(>P1)(図3の(2)参照)を付与する一方で、冷却手段19,20に通電してキャビティーを冷却する(図3の(1)参照)。これに伴い、光学素子材料100及び金型11、12の温度が室温に向けて徐々に低下し、光学素子材料100の粘度が高まる。なお、冷却工程S4は、押圧工程S3において、最終の中心肉厚よりも厚い所定の肉厚までプレスが進んだところで開始する。良好な光学面を得るためには金型の冷却中にもプレス荷重をかけ続ける必要があり、その際に変形する分の肉厚を見込んでおくため、最終肉厚より厚いところから冷却工程S4を開始する。
 制御部30は、光学素子材料100が変形しない温度、即ちガラス転移点T0未満に至ると(図3の(1)参照)、冷却工程S4を終了し、プレス機構13を作動させて上金型11を上昇させ、プレス成形済みの光学素子を上金型11及び下金型12から離型し、取り出す。この結果、両面に光学機能面が形成された光学素子を得ることができる。続いて、この光学素子を熱処理炉で加熱処理して屈折率の調整を行う。この加熱処理の際には光学素子の載置面が均一になるようにするとよい。例えば、アルミナ繊維等からなる柔軟性を有した部材の上に光学素子を載置してもよいし、アルミナボール等の粒状部材を十分な載置面の柔軟性が得られる深さ、例えばΦ2mmの粒を5mm以上の深さに敷き詰めた上に光学素子を載置してもよい。
 ここで、従来の光学素子製造装置について説明する。図6は、従来の光学素子製造装置における制御の処理手順を説明する図である。図7は、従来の光学素子製造装置におけるキャビティーに収容された光学素子材料と下金型との断面図である。従来の光学素子製造装置では、制御部は、加熱工程S1Pとして、第一の温度T1(図6参照)にキャビティーを加熱し、続く押圧工程S2Pにおいて、第一の温度T1を維持しながらプレス機構にプレス荷重P1´を付与して上下一対の金型を押圧した後に、プレス荷重P2´で上下一対の金型を押圧させながらキャビティーを冷却する冷却工程S3Pを行う。従来では、押圧工程S2Pが開始する際に、光学素子材料100P(図7参照)の位置ずれや傾き、下金型12Pの成形面の中心軸A1からずれた位置から転写が開始することによって、転写の進行が中心軸対称にならない場合がある。このまま押圧工程S2Pを実行すると、光学素子材料100Pと下金型12Pの成形面との間に気体Raが閉じ込められる箇所が面頂部の周辺に生じ、光学素子表面にエア溜まりが発生する。
 これに対し、実施の形態1では、上述したように、第一の加熱工程S1後に第二の加熱工程S2を行うことによって、光学素子材料100を自重変形で下金型12の成形面の面頂部を含む少なくとも一部に接触させて隙間Rsをなくした状態で、続く押圧工程S3を実行するため、上金型11が光学素子材料100に接触しても光学素子材料100の位置ズレや傾きが起こることもなく、エア溜まりも発生しない。
 以上により、本実施の形態1によれば、第一の加熱工程S1と押圧工程S3との間に、光学素子材料100が自重により変形する第二の温度T2にキャビティーを加熱する第二の加熱工程S2を行うことによって、光学素子成形において、金型成形面の中心に対して対称な転写を実現することができるという効果を奏する。
 なお、第二の温度T2は、光学素子材料100が自重変形できればよく、硝種や材料形状に応じて設定すればよい。また、第二の加熱工程S2では、自重変形量を確保するために、第二の温度T2のまま等温で所定時間保持することによって、むやみに金型温度を高くすることなく自重変形量を得ることができ、金型の耐久性を高めることができる。もちろん、第二の加熱工程S2では、第二の温度T2まで加熱した後に、徐々にキャビティーの温度を下げていってもよい。
 また、第二の温度T2は、光学素子材料100の種別や重さ等に応じて、自重が始まる温度を予め求めておけばよい。或いは、光学素子製造時に、第一の加熱工程S1以降もそのまま加熱を継続させた状態で、目視等で光学素子材料100の自重変形の開始を検出し、光学素子材料100の自重変形開始を検出した際の温度を第二の温度T2として設定してもよい。また、図3では、第一の加熱工程S1における加熱速度と、第二の加熱工程S2における加熱速度とが同一である例を示したが、もちろん、第一の加熱工程S1と第二の加熱工程S2とで加熱速度は異なっていてもよい。
(実施の形態2)
 次に、実施の形態2について説明する。実施の形態2に係る光学素子製造装置の構成は、光学素子製造装置1と同様である。図8は、実施の形態2に係る光学素子製造装置による制御の処理手順を示すフローチャートである。図9は、実施の形態2における上金型11及び下金型12に設けられた温度センサによる検出温度の時間依存性(図9の(1))と、プレス機構13,14が上金型11及び下金型12に印加する圧力の時間依存性(図9の(2))とを示す図である。
 図8及び図9に示す第一の加熱工程S11、第二の加熱工程S12、押圧工程S14及び冷却工程S15は、図2に示す第一の加熱工程S1、第二の加熱工程S2、押圧工程S3及び冷却工程S4である。実施の形態2では、第二の加熱工程S12の後であって、押圧工程S14の前に、キャビティーを、光学素子材料100が軟化して上金型11及び下金型12により成形可能であるが自重変形しない、第一の温度T1と第二の温度T2との間の第三の温度T3(図9の(1)参照)に調整する温度調整工程を行う。これによって、一次変形工程の後であって二次変形工程の前に、光学素子材料100の粘度を高める第一の粘度調整工程が実行される。
 本実施の形態2では、温度調整工程S13を実行することによって、上金型11が光学素子材料100に接触してプレスが行われるときには、実施の形態1の場合と比較して光学素子材料100が硬くなっているので、冷却開始後に高荷重をかけ続けたとしても変形余地が小さい状態にでき、冷却開始以降の変形量を管理することなく簡単に光学素子の最終肉厚を安定させることが可能になる。
(実施の形態3)
 次に、実施の形態3について説明する。実施の形態3に係る光学素子製造装置の構成は、光学素子製造装置1と同様である。図10は、実施の形態3における上金型11及び下金型12に設けられた温度センサによる検出温度の時間依存性(図10の(1))と、プレス機構13,14が上金型11及び下金型12に印加する圧力の時間依存性(図10の(2))とを示す図である。
 粘度調整工程は、図10に示す粘度調整工程S3´のように、第二の加熱工程S2の後であって冷却工程S4の開始前であればよく、プレス機構13,14による押圧開始後、上金型11が光学素子材料100に接触した後にキャビティーの温度を下げることで行ってもよい。これによって、光学素子材料100の粘度調整に要する時間を削減できる。また、これによって、光学素子材料100が硬く変形速度が遅い状態でのプレス量を小さくでき、光学素子製造にかかる所要時間を短縮して生産性を高めることができる。
(実施の形態4)
 次に、実施の形態4について説明する。実施の形態4に係る光学素子製造装置の構成は、光学素子製造装置1と同様である。図11は、実施の形態4に係る光学素子製造装置による制御の処理手順を示すフローチャートである。図12は、実施の形態4における上金型11及び下金型12に設けられた温度センサによる検出温度の時間依存性(図12の(1))と、プレス機構13,14が上金型11及び下金型12に印加する圧力の時間依存性(図12の(2))とを示す図である。
 図11及び図12に示す第一の加熱工程S21、第二の加熱工程S22及び押圧工程S23は、図2に示す第一の加熱工程S1、第二の加熱工程S2及び押圧工程S3である。実施の形態4では、押圧工程S23の後に、上金型11及び下金型12に対するプレス荷重を押圧工程S23で加えたプレス荷重P1より低める一方、キャビティーを冷却する第一の冷却工程S24を実行する。例えば、第一の冷却工程S24では、プレス荷重を除去する。これに伴い、二次変形工程の後に、光学素子材料100の粘度を高める一方、上金型11及び下金型12に対するプレス荷重を二次変形工程で加えたプレス荷重より低めた第二の粘度調整工程が実行される。
 光学素子製造装置は、続く第二の冷却工程S25として、第一の冷却工程S24におけるプレス荷重よりも高いプレス荷重P2を上金型11及び下金型12に対して加え、キャビティーを冷却する。これに伴い、第二の粘度調整工程の後に、光学素子材料100の粘度をさらに高める一方、上金型11及び下金型12に対するプレス荷重を第一の粘度調整工程におけるプレス荷重より高めた第三の粘度調整工程が実行される。
 この実施の形態4のように、押圧工程S23の後に、キャビティーの冷却開始と同時にプレス荷重を低めて光学素子材料100の粘度を高めることで光学素子材料100の変形を抑制する第一の冷却工程S24と、良好な光学面が得られる範囲でキャビティー温度が低下して光学素子材料100の粘度が高まってから再度プレス荷重P2をかける第二の冷却工程S25と、を実行してもよい。これによって、キャビティーの冷却開始以降の変形余地をより小さくでき、冷却開始以降の変形量を管理することなく簡単に最終肉厚を安定させることが可能になる。
 なお、実施の形態1~4は、それぞれ組み合わせ可能である。図13は、実施の形態2と実施の形態4とを組み合わせた場合における上金型11及び下金型12に設けられた温度センサによる検出温度の時間依存性(図13の(1))と、プレス機構13,14が上金型11及び下金型12に印加する圧力の時間依存性(図13の(2))とを示す図である。図13に示すように、実施の形態4における第二の加熱工程S22と、押圧工程S23との間に、実施の形態2における温度調整工程S13を実行することによって、押圧工程S23前の光学素子材料100の粘度を調整し、押圧工程S23での変形余地を小さくして、光学素子の最終肉厚のさらなる安定化を図ってもよい。
 以上説明した実施の形態1~4においては、1つのステージ上で加熱工程、押圧工程、冷却工程、を順次行う、所謂一軸型の光学素子製造装置を例示して説明した。しかし、上記実施の形態1~4及び変形例は、光学素子材料がセットされた成形型を複数のステージに順次搬送し、搬送先のステージにおいて、加熱工程、押圧工程、冷却工程をそれぞれ行う、所謂循環型の光学素子製造装置に適用してもよい(例えば特開2005-126325号公報参照)。
 実施の形態1~4においては、光学素子材料100に静荷重を付与して自重変形を促進する変形促進部材を上金型11とは別に設けてもよい。例えば、光学素子材料100の外周部にリング状の部材を載置する。また、循環型の光学素子製造装置に適用した例では、上金型に追加の荷重がかかる部材を設ける。
 実施の形態1~4は、凹メニスカス非球面形状光学素子の成形を例にしたが、あくまで一例であり限定されない。例えば、両凹形状や両凸形状、フレネル面や変曲点を含む光学素子の成形においても本実施の形態1~4は適用可能である。
 以上説明した本発明は、実施の形態1~4に限定されるものではなく、仕様等に応じて種々変形することが可能であり、例えば上記実施の形態1~4に示される全構成要素からいくつかの構成要素を除外して形成してもよい。本発明の範囲内において、他の様々な実施の形態が可能であることは、上記記載から自明である。
 1 光学素子製造装置
 11 上金型
 12 下金型
 13,14 プレス機構
 15~18 ヒータ
 19,20 冷却手段
 30 制御部
 100 光学素子材料

Claims (7)

  1.  上下一対の金型で形成される光学素子成形用のキャビティーを、光学素子材料が軟化して前記上下一対の金型により成形可能になる第一の温度に加熱する第一の加熱工程と、
     前記キャビティーを、前記光学素子材料が自重により変形する前記第一の温度より高い第二の温度に加熱する第二の加熱工程と、
     前記上下一対の金型の成形面を前記キャビティー内の前記光学素子材料に転写するために、前記上下一対の金型を押圧する押圧工程と、
     を含むことを特徴とする光学素子製造装置の制御方法。
  2.  前記第二の加熱工程の後であって前記押圧工程の前に、前記キャビティーを、前記光学素子材料が軟化して前記上下一対の金型により成形可能であるが自重変形しない、前記第一の温度と前記第二の温度との間の第三の温度に調整する温度調整工程をさらに含むことを特徴とする請求項1に記載の光学素子製造装置の制御方法。
  3.  前記押圧工程の後に、前記上下一対の金型に対する荷重を前記押圧工程で加えた荷重より低める一方、前記キャビティーを冷却する第一の冷却工程と、
     前記第一の冷却工程の後に、前記第一の冷却工程における荷重よりも高い荷重を前記上下一対の金型に対して加え、前記キャビティーを冷却する第二の冷却工程と、
     をさらに含むことを特徴とする請求項1または2に記載の光学素子製造装置の制御方法。
  4.  上下一対の金型で形成されてなる光学素子成形用のキャビティー内に設置された光学素子材料を第一の温度に加熱して前記光学素子材料を軟化させる軟化工程と、
     前記光学素子材料を前記第一の温度より高い第二の温度に加熱して、前記上下一対の金型のうちの下金型の成形面の面頂部を含む少なくとも一部を転写する一次変形工程と、
     前記光学素子材料を前記上下一対の金型で押圧して成形面を転写する二次変形工程と、
     を含むことを特徴とする光学素子の製造方法。
  5.  前記一次変形工程の後であって前記二次変形工程の前に、前記光学素子材料の粘度を高める第一の粘度調整工程をさらに含むことを特徴とする請求項4に記載の光学素子の製造方法。
  6.  前記二次変形工程の後に、前記光学素子材料の粘度を高める一方、前記上下一対の金型に対する荷重を前記二次変形工程で加えた荷重より低めた第二の粘度調整工程と、
     前記第二の粘度調整工程の後に、前記光学素子材料の粘度を高める一方、前記上下一対の金型に対する荷重を前記第一の粘度調整工程における荷重より高めた第三の粘度調整工程と、
     をさらに含むことを特徴とする請求項4または5に記載の光学素子の製造方法。
  7.  上下一対の金型と、
     前記上下一対の金型で形成される光学素子成形用のキャビティーを加熱する加熱手段と、
     前記上下一対の金型を押圧する押圧手段と、
     前記キャビティーを冷却する冷却手段と、
     前記加熱手段に、光学素子材料が収容された前記キャビティーを前記光学素子材料が軟化して前記上下一対の金型により成形可能になる第一の温度に加熱させた後に、前記光学素子材料が自重により変形する前記第一の温度より高い第二の温度に加熱させてから、前記上下一対の金型の成形面を前記キャビティー内の前記光学素子材料に転写するために前記押圧手段に前記上下一対の金型を押圧させる制御部と、
     を備えたことを特徴とする光学素子製造装置。
PCT/JP2016/077515 2015-10-13 2016-09-16 光学素子製造装置の制御方法、光学素子の製造方法及び光学素子製造装置 WO2017064979A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201680057641.8A CN108137366A (zh) 2015-10-13 2016-09-16 光学元件制造装置的控制方法、光学元件的制造方法和光学元件制造装置
US15/946,222 US20180222784A1 (en) 2015-10-13 2018-04-05 Method of controlling optical element manufacturing apparatus, mehtod of manufacturing optical element, and optical element manufacturing apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015201911A JP2017075060A (ja) 2015-10-13 2015-10-13 光学素子製造装置の制御方法、光学素子の製造方法及び光学素子製造装置
JP2015-201911 2015-10-13

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/946,222 Continuation US20180222784A1 (en) 2015-10-13 2018-04-05 Method of controlling optical element manufacturing apparatus, mehtod of manufacturing optical element, and optical element manufacturing apparatus

Publications (1)

Publication Number Publication Date
WO2017064979A1 true WO2017064979A1 (ja) 2017-04-20

Family

ID=58518056

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/077515 WO2017064979A1 (ja) 2015-10-13 2016-09-16 光学素子製造装置の制御方法、光学素子の製造方法及び光学素子製造装置

Country Status (4)

Country Link
US (1) US20180222784A1 (ja)
JP (1) JP2017075060A (ja)
CN (1) CN108137366A (ja)
WO (1) WO2017064979A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019150844A1 (ja) * 2018-02-01 2019-08-08 オリンパス株式会社 光学素子の成形方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108689590A (zh) * 2018-06-26 2018-10-23 中国建筑材料科学研究总院有限公司 硫系玻璃精密模压成形的方法
JP6964050B2 (ja) * 2018-07-20 2021-11-10 オリンパス株式会社 光学素子の製造方法
CN112479572A (zh) * 2020-12-25 2021-03-12 安徽金龙浩光电科技有限公司 一种3d玻璃热弯机伺服转置成型调试方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0692656A (ja) * 1992-05-21 1994-04-05 Canon Inc 光学素子の成形法
JPH09295817A (ja) * 1996-04-26 1997-11-18 Canon Inc 光学素子の成形方法
JPH1036131A (ja) * 1996-07-26 1998-02-10 Olympus Optical Co Ltd 光学素子の成形方法
JP2007169080A (ja) * 2005-12-19 2007-07-05 Toshiba Mach Co Ltd 成形装置
JP2010006639A (ja) * 2008-06-27 2010-01-14 Fujinon Corp 光学素子成形方法
JP2011116632A (ja) * 2009-10-29 2011-06-16 Asahi Glass Co Ltd 光学素子の成形方法及び成形装置
JP2012236758A (ja) * 2011-04-27 2012-12-06 Hoya Corp 精密プレス成形用ガラスプリフォームの製造方法および光学素子の製造方法
JP2014051420A (ja) * 2012-09-10 2014-03-20 Hoya Corp ガラス成形装置及びガラス成形方法
WO2015037488A1 (ja) * 2013-09-10 2015-03-19 Hoya株式会社 ガラス成形体の製造装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2783713B2 (ja) * 1990-12-28 1998-08-06 キヤノン株式会社 光学素子のプレス成形法およびその装置
JP2790262B2 (ja) * 1991-07-19 1998-08-27 キヤノン株式会社 光学素子のプレス成形方法
CN102757168B (zh) * 2011-04-27 2016-01-27 Hoya株式会社 精密冲压成型用玻璃预型件制造方法及光学元件制造方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0692656A (ja) * 1992-05-21 1994-04-05 Canon Inc 光学素子の成形法
JPH09295817A (ja) * 1996-04-26 1997-11-18 Canon Inc 光学素子の成形方法
JPH1036131A (ja) * 1996-07-26 1998-02-10 Olympus Optical Co Ltd 光学素子の成形方法
JP2007169080A (ja) * 2005-12-19 2007-07-05 Toshiba Mach Co Ltd 成形装置
JP2010006639A (ja) * 2008-06-27 2010-01-14 Fujinon Corp 光学素子成形方法
JP2011116632A (ja) * 2009-10-29 2011-06-16 Asahi Glass Co Ltd 光学素子の成形方法及び成形装置
JP2012236758A (ja) * 2011-04-27 2012-12-06 Hoya Corp 精密プレス成形用ガラスプリフォームの製造方法および光学素子の製造方法
JP2014051420A (ja) * 2012-09-10 2014-03-20 Hoya Corp ガラス成形装置及びガラス成形方法
WO2015037488A1 (ja) * 2013-09-10 2015-03-19 Hoya株式会社 ガラス成形体の製造装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019150844A1 (ja) * 2018-02-01 2019-08-08 オリンパス株式会社 光学素子の成形方法

Also Published As

Publication number Publication date
JP2017075060A (ja) 2017-04-20
US20180222784A1 (en) 2018-08-09
CN108137366A (zh) 2018-06-08

Similar Documents

Publication Publication Date Title
JP6086954B2 (ja) 光学用曲げガラス板及びその製造方法
WO2017064979A1 (ja) 光学素子製造装置の制御方法、光学素子の製造方法及び光学素子製造装置
JP5042032B2 (ja) 成形品の製造方法、ガラス素材、ならびにガラス素材および成形型の面形状決定方法
JP4495842B2 (ja) ガラス成形品の製造方法及び製造装置、並びにガラス製品の製造方法
JP5042033B2 (ja) 成形品の製造方法、保持部材および成形装置
JP2007119280A (ja) ガラス光学素子成形方法
JP6374951B2 (ja) 光学素子成形用型セット、及び、光学素子の製造方法
JP2016138008A (ja) ガラス光学素子成形用型セット、及び、ガラス光学素子の製造方法
JP4223967B2 (ja) ガラス光学素子の製造方法
JP2010208873A (ja) 光学素子の成形用型及び光学素子の製造方法
JP2011132096A (ja) 光学素子の成形装置及び成形方法
JPWO2010122844A1 (ja) ガラス成形体の製造装置
JP5233745B2 (ja) 素子成形用部材および素子の製造方法
JP2003063832A (ja) 光学素子成形用型
JP2000296448A (ja) 光学素子の製造方法
JP5198347B2 (ja) 精密プレス成形用プリフォームの製造方法、及びガラス製光学素子の製造方法。
JP2001010831A (ja) ガラス光学素子用成形型及び該成形型を用いたガラス光学素子の製造方法
JP3618937B2 (ja) 光学素子の成形方法及び精密素子の成形方法
JP2016124767A (ja) 光学素子の製造方法
JP4508501B2 (ja) 光学ガラス素子の成形型
JP2005231933A (ja) 光学素子用成形金型および光学素子の成形方法
JP2001226129A (ja) 光学素子の成形方法
JP6653135B2 (ja) 光学素子の製造方法及び製造装置
JP2006206394A (ja) 光学素子成形型およびその製造方法、並びにこれを用いた光学素子の製造方法
JP2006298668A (ja) 光学素子の成形方法とその装置、及び光学素子

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16855233

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16855233

Country of ref document: EP

Kind code of ref document: A1