WO2017057556A1 - Film conducteur transmettant la lumière et procédé de fabrication de film conducteur transmettant la lumière recuit - Google Patents

Film conducteur transmettant la lumière et procédé de fabrication de film conducteur transmettant la lumière recuit Download PDF

Info

Publication number
WO2017057556A1
WO2017057556A1 PCT/JP2016/078794 JP2016078794W WO2017057556A1 WO 2017057556 A1 WO2017057556 A1 WO 2017057556A1 JP 2016078794 W JP2016078794 W JP 2016078794W WO 2017057556 A1 WO2017057556 A1 WO 2017057556A1
Authority
WO
WIPO (PCT)
Prior art keywords
conductive layer
light
conductive film
layer
film
Prior art date
Application number
PCT/JP2016/078794
Other languages
English (en)
Japanese (ja)
Inventor
健史 小山
健二 増澤
淳之介 村上
崇志 福田
Original Assignee
積水化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 積水化学工業株式会社 filed Critical 積水化学工業株式会社
Priority to CN201680027950.0A priority Critical patent/CN107533883B/zh
Priority to JP2016567867A priority patent/JP6159490B1/ja
Publication of WO2017057556A1 publication Critical patent/WO2017057556A1/fr

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B5/00Non-insulated conductors or conductive bodies characterised by their form
    • H01B5/14Non-insulated conductors or conductive bodies characterised by their form comprising conductive layers or films on insulating-supports
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B9/00Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B13/00Apparatus or processes specially adapted for manufacturing conductors or cables
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering

Definitions

  • the present invention relates to a light-transmitting conductive film having light transmittance and conductivity.
  • the present invention also relates to a method for producing an annealed light transmissive conductive film comprising a step of annealing the light transmissive conductive film.
  • touch panel type liquid crystal display devices have been widely used in electronic devices such as smartphones, mobile phones, notebook computers, tablet PCs, copiers, and car navigation systems.
  • a liquid crystal display device a light transmissive conductive film in which a transparent conductive layer is laminated on a substrate is used.
  • the transparent conductive thin film is formed of an indium / tin composite oxide.
  • the transparent conductive layer is usually used with an increased crystallinity by annealing the entire light-transmitting conductive film. Conventionally, since it is necessary to perform this annealing process for a long time, there is a problem that the production efficiency of the transparent conductive film is deteriorated and the cost of the transparent conductive film is increased.
  • the resistance value is unlikely to be sufficiently low.
  • An object of the present invention is to provide a light-transmitting conductive film capable of reducing the resistance value even when annealing is performed in a short time. Moreover, this invention is providing the manufacturing method of the light-transmitting conductive film annealed using the said light-transmitting conductive film.
  • the total content of In atoms and Sn atoms in the conductive layer is 100% by weight
  • the content of Sn atoms is 7% by weight or more
  • the carrier density of the conductive layer is 4 ⁇ .
  • a light-transmitting conductive film which is 10 20 / cm 3 or more and 6 ⁇ 10 20 / cm 3 or less
  • the hole mobility of the conductive layer is 20 cm 2 / V ⁇ s or more and 28 cm 2 / V ⁇ s or less.
  • the carrier density of the said conductive layer after heating for 10 minutes at 150 degreeC is 7.0 * 10 ⁇ 20 > / cm ⁇ 3 > or more, 2.0 * 10 ⁇ 21 > /. cm 3 or less
  • the hole mobility of the conductive layer after heating 10 minutes at 0.99 ° C. is 20cm 2 / V ⁇ s or more, or less 30cm 2 / V ⁇ s.
  • the thickness of the conductive layer is 16 nm or more and 19.9 nm or less.
  • a method for producing an annealed light transmissive conductive film comprising the step of annealing the light transmissive conductive film described above.
  • the light-transmitting conductive film according to the present invention includes a light-transmitting and conductive layer and a base material disposed on one surface side of the conductive layer, and the conductive layer is made of indium tin. It is an amorphous layer of an oxide, and the content of Sn atoms is 7% by weight or more in the total content of In atoms and Sn atoms in the conductive layer of 100% by weight. Since 4 ⁇ 10 20 / cm 3 or more and 6 ⁇ 10 20 / cm 3 or less and the hole mobility of the conductive layer is 20 cm 2 / V ⁇ s or more and 28 cm 2 / V ⁇ s or less, annealing treatment is performed. Even if it is performed in a short time, the resistance value can be lowered.
  • FIG. 1 is a cross-sectional view showing a light-transmitting conductive film according to the first embodiment of the present invention.
  • FIG. 2 is a sectional view showing a light transmissive conductive film according to the second embodiment of the present invention.
  • FIG. 3 is a cross-sectional view showing a light transmissive conductive film obtained by annealing the light transmissive conductive film according to the first embodiment of the present invention.
  • the light transmissive conductive film according to the present invention includes a conductive layer and a base material.
  • the conductive layer has light transmittance and conductivity.
  • the base material is disposed on one surface side of the conductive layer.
  • the conductive layer is an amorphous layer of indium tin oxide.
  • the content of Sn atoms is 7% by weight or more in the total content of 100% by weight of In atoms and Sn atoms in the conductive layer.
  • the carrier density of the conductive layer is 4 ⁇ 10 20 / cm 3 or more and 6 ⁇ 10 20 / cm 3 or less.
  • the hole mobility of the conductive layer is 20 cm 2 / V ⁇ s or more and 28 cm 2 / V ⁇ s or less.
  • the resistance value can be lowered even if the annealing process is performed in a short time.
  • the inventors of the present invention have studied to provide the light-transmitting conductive film itself before the annealing treatment with a property that makes it possible to reduce the resistance value of the light-transmitting conductive film after the annealing treatment.
  • the conductive layer satisfies the above configuration in the light-transmitting conductive film before annealing, the resistance value is lowered even if annealing is performed in a short time. I found that I can do it.
  • the light-transmitting conductive film before the annealing process is obtained.
  • the inventors have found that the conductive layer only needs to satisfy the above-described configuration.
  • the light-transmitting conductive film according to the present invention can be used for obtaining a light-transmitting conductive film that has been annealed for a long time and has been annealed for a long time. If the annealing process is performed for a long time, the resistance value can be further reduced.
  • the carrier density of the conductive layer before the annealing treatment is preferably 4.5 ⁇ 10 20 / cm 3 or more, preferably 5.5 ⁇ 10 20 / cm 3 or less. .
  • the hole mobility of the conductive layer before the annealing treatment is preferably 22 cm 2 / V ⁇ s or more, and preferably 26 cm 2 / V ⁇ s or less.
  • the substrate preferably includes a substrate film, preferably includes a hard coat layer, and preferably includes an undercoat layer.
  • the light-transmitting conductive film according to the present invention includes a protective film, the conductive layer is disposed on the first surface of the base material, and the second opposite to the first surface of the base material. It is preferable that the said protective film is arrange
  • the resistance value of the annealed light-transmitting conductive film can be lowered. Therefore, when the annealed light-transmitting conductive film is used for a liquid crystal display device , Can improve the display quality. Therefore, the light-transmitting conductive film subjected to the annealing treatment can be suitably used for a liquid crystal display device, and can be suitably used for a touch panel.
  • the carrier density of the conductive layer after annealing is preferably 7.0 ⁇ 10 20 / cm 3 or more, preferably 2.0 ⁇ 10 21 / cm 3 or less.
  • the hole mobility of the conductive layer after annealing is preferably 20 cm 2 / V ⁇ s or more, preferably 30 cm 2 / V ⁇ s. It is as follows.
  • FIG. 1 is a cross-sectional view showing a light-transmitting conductive film according to the first embodiment of the present invention.
  • the light transmissive conductive film 1 shown in FIG. 1 is a light transmissive conductive film before annealing.
  • the light transmissive conductive film 1 includes a substrate 2, a conductive layer 3, and a protective film 4.
  • the substrate 2 has a first surface 2a and a second surface 2b.
  • the first surface 2a and the second surface 2b are opposed to each other.
  • a conductive layer 3 is laminated on the first surface 2 a of the substrate 2.
  • the first surface 2a is a surface on the side where the conductive layer 3 is laminated.
  • the substrate 2 is a member disposed between the conductive layer 3 and the protective film 4 and is a support member for the conductive layer 3.
  • the conductive layer 3 is an amorphous layer of indium tin oxide, and the content of Sn atoms is 7% in the total content of 100% by weight of In atoms and Sn atoms in the conductive layer 3.
  • the carrier density of the conductive layer 3 is 4 ⁇ 10 20 / cm 3 or more and 6 ⁇ 10 20 / cm 3 or less, and the hole mobility of the conductive layer 3 is 20 cm 2 / V ⁇ s or more and 28 cm. 2 / V ⁇ s or less.
  • the conductive layer may be provided partially or may be a patterned conductive layer.
  • the protective film 4 is laminated on the second surface 2b of the substrate 2.
  • the second surface 2b is a surface on the side where the protective film 4 is laminated.
  • the base material 2 has a base film 11, first and second hard coat layers 12 and 13, and an undercoat layer 14.
  • the base film 11 is made of a material having high light transmittance.
  • a second hard coat layer 13 and an undercoat layer 14 are laminated in this order.
  • the undercoat layer 14 is in contact with the conductive layer 3.
  • a first hard coat layer 12 is laminated on the surface of the base film 11 on the protective film 4 side.
  • the first hard coat layer 12 is in contact with the protective film 4.
  • the conductive layer 3 is made of a material having high light transmittance and high conductivity.
  • the protective film may be laminated on the second surface of the base material by an adhesive layer. It is preferable that the 2nd surface of a base material is in contact with the said adhesive layer of a protective film.
  • FIG. 2 is a cross-sectional view showing a light-transmitting conductive film according to the second embodiment of the present invention.
  • the light transmissive conductive film 1A shown in FIG. 2 is a light transmissive conductive film before annealing.
  • the first hard coat layer 12 is not provided.
  • the light transmissive conductive film 1A has a base 2A in which an undercoat layer 14, a second hard coat layer 13, and a base film 11 are laminated in this order.
  • the protective film 4 is laminated directly on the surface of the base film 11 opposite to the conductive layer 3.
  • the first hard coat layer may not be provided like the light transmissive conductive film 1A.
  • a protective film may be directly laminated on the surface of the base film. Further, at least one of the second hard coat layer and the undercoat layer may not be provided.
  • the undercoat layer and the conductive layer may be laminated in this order, or the conductive layer may be laminated directly on the base film.
  • the undercoat layer may be a single layer or a multilayer.
  • the light transmissive conductive film 1 can be produced, for example, by the following method.
  • 1st hard coat layer 12 is formed on one surface of substrate film 11. Specifically, when an ultraviolet curable resin is used as the resin, a photocurable monomer and a photoinitiator are stirred in a diluent to prepare a coating solution. The obtained coating liquid is applied onto the base film 11 and the resin is cured by irradiating with ultraviolet rays to form the first hard coat layer 12.
  • the protective film 4 is formed on the first hard coat layer 12.
  • a protective film provided with a pressure-sensitive adhesive layer on a base sheet is used as the protective film 4
  • the adhesive surface is bonded to the surface of the first hard coat layer 12, and the first hard coat layer 12 is then bonded.
  • the protective film 4 can be formed.
  • a second hard coat layer 13 is formed on the surface of the base film 11 opposite to the first hard coat layer 12.
  • a photocurable monomer and a photoinitiator are stirred in a diluent to prepare a coating solution.
  • the obtained coating liquid is applied on the surface of the base film 11 opposite to the first hard coat layer 12 side, and the resin is cured by irradiating ultraviolet rays to form the second hard coat layer 13. .
  • the undercoat layer 14 is formed on the second hard coat layer 13. Specifically, when SiO 2 is used, the undercoat layer 14 can be formed on the second hard coat layer 13 by vapor deposition or sputtering.
  • the first and second hard coat layers 12 and 13 and the undercoat layer 14 are formed on the base film 11.
  • the first and second hard coat layers 12 and 13 and the undercoat layer 14 may not be provided.
  • the surface of the base film 11 on the conductive layer 3 side is the first surface 2 a of the base material 2
  • the surface of the base film 11 on the protective film 4 side is the second surface of the base material 2. It is the surface 2b.
  • the light transmissive conductive film 1 can be produced by forming the conductive layer 3 on the undercoat layer 14.
  • the method for forming the conductive layer is not particularly limited. For example, a method of etching a metal film formed by vapor deposition or sputtering, various printing methods such as screen printing or inkjet printing, and a known patterning method such as a photolithography method using a resist can be used.
  • the formed conductive layer can be used with its crystallinity enhanced by an annealing treatment to be described later.
  • the light-transmitting conductive film 1 is suitably used for obtaining a light-transmitting conductive film 1X that has been annealed as shown in FIG. 3 by annealing.
  • a step of annealing the light-transmitting conductive film 1 can be performed.
  • the conductive layer 3 before the annealing treatment is not in a pattern shape, a resist layer is partially formed on the surface of the conductive layer 3 opposite to the base film 11 side, and etching treatment is performed.
  • the conductive layer 3X can be formed. After the etching process, washing with water is performed.
  • the annealed light-transmitting conductive film 1X has a patterned conductive layer 3X.
  • the patterned conductive layer 3 ⁇ / b> X is partially stacked on the first surface 2 a of the substrate 2.
  • the light-transmitting conductive film 1X that has been subjected to the annealing treatment has a portion where the patterned conductive layer 3X is present and a portion where the patterned conductive layer 3X is not present on the first surface 2a of the substrate 2.
  • the temperature of the annealing treatment is preferably 120 ° C. or higher, more preferably 140 ° C. or higher, preferably 170 ° C. or lower, more preferably 160 ° C. or lower.
  • the treatment time for the annealing treatment is preferably 5 minutes or more, more preferably 10 minutes or more, preferably 60 minutes or less, more preferably 30 minutes or less.
  • the resistance value can be lowered even if annealing is performed in a short time.
  • the annealed light-transmitting conductive film 1X may be used with the protective film 4 laminated, or may be used after the protective film 4 is peeled off.
  • the total thickness of the substrate is preferably 23 ⁇ m or more, more preferably 50 ⁇ m or more, preferably 300 ⁇ m or less, more preferably 200 ⁇ m or less.
  • the base film preferably has high light transmittance.
  • the material of the base film is not particularly limited.
  • examples include phthalate, triacetylcellulose, and cellulose nanofiber.
  • the material for the base film may be used alone or in combination.
  • the thickness of the base film is preferably 5 ⁇ m or more, more preferably 20 ⁇ m or more, preferably 190 ⁇ m or less, more preferably 125 ⁇ m or less.
  • the pattern of the conductive layer can be made even less visible.
  • the average transmittance in the visible light region with a wavelength of 380 to 780 nm is preferably 85% or more, more preferably 90% or more.
  • the base film may contain various stabilizers, ultraviolet absorbers, plasticizers, lubricants, or colorants.
  • First and second hard coat layers are preferably composed of a binder resin.
  • the binder resin is preferably a cured resin.
  • the curable resin a thermosetting resin, an active energy ray curable resin, or the like can be used. From the viewpoint of improving productivity and economy, the curable resin is preferably an ultraviolet curable resin.
  • Examples of the photocurable monomer for forming the ultraviolet curable resin include 1,6-hexanediol diacrylate, 1,4-butanediol diacrylate, ethylene glycol diacrylate, diethylene glycol diacrylate, and tetraethylene glycol diacrylate.
  • triacrylate compounds such as trimethylolpropane triacrylate, trimethylolpropane trimethacrylate, pentaerythritol monohydroxytriacrylate and trimethylolpropane triethoxytriacrylate; such as pentaerythritol tetraacrylate and di-trimethylolpropane tetraacrylate Tetraacrylate compounds
  • pentaacrylate compounds such as dipentaerythritol (monohydroxy) pentaacrylate.
  • a polyfunctional acrylate compound having five or more functional groups may be used as the ultraviolet curable resin.
  • the said polyfunctional acrylate compound may be used independently and may use multiple together. Moreover, you may add a photoinitiator, a photosensitizer, a leveling agent, a diluent, etc. to the said polyfunctional acrylate compound.
  • the first hard coat layer may be composed of a resin portion and a filler.
  • the pattern of the conductive layer can be made even less visible.
  • the first hard coat layer does not contain a filler and is constituted only by the resin portion from the viewpoint of making it difficult to produce the yuzu skin.
  • the average particle diameter of a filler is smaller than the thickness of a 1st hard-coat layer, and the filler does not protrude in the surface of a 1st hard-coat layer.
  • the filler is not particularly limited.
  • metal oxide such as silica, iron oxide, aluminum oxide, zinc oxide, titanium oxide, silicon dioxide, antimony oxide, zirconium oxide, tin oxide, cerium oxide, and indium-tin oxide.
  • Product particles resin particles such as silicone, (meth) acryl, styrene, melamine, and the like. More specifically, resin particles such as crosslinked poly (meth) methyl acrylate can be used.
  • the said filler may be used independently and may use multiple together.
  • each of the first and second hard coat layers may contain various stabilizers, ultraviolet absorbers, plasticizers, lubricants or colorants.
  • the undercoat layer is, for example, a refractive index adjustment layer.
  • the undercoat layer By providing the undercoat layer, the difference in refractive index between the conductive layer and the second hard coat layer or substrate film can be reduced, so that the light transmissive conductive film can be made more transparent. Can be increased.
  • the material constituting the undercoat layer is not particularly limited as long as it has a refractive index adjustment function, inorganic materials such as SiO 2 , MgF 2 , Al 2 O 3 , acrylic resin, urethane resin, melamine resin, alkyd resin, and the like Organic materials such as siloxane polymers can be mentioned.
  • the undercoat layer can be formed by a vacuum deposition method, a sputtering method, an ion plating method, or a coating method.
  • the conductive layer is made of a light-transmitting conductive material. Indium tin oxide (ITO) is used as the conductive material.
  • the conductive layer is an amorphous layer.
  • the conductive layer before annealing is formed so that the carrier density and the hole mobility satisfy the above ranges.
  • the carrier density and the hole mobility can be adjusted by the type of introduced gas at the time of forming the conductive layer, the partial pressure thereof, and the input power amount of the cathode.
  • a desired partial pressure is obtained by combining a rare gas such as Ar, Ne, or He and a gas such as O 2 , H 2 O, or H 2 as the process gas.
  • the carrier density and the hole mobility are adjusted by mixing and using.
  • the thickness of the conductive layer is preferably 12 nm or more, more preferably 16 nm or more, still more preferably 17 nm or more, preferably 50 nm or less, more preferably 30 nm or less, and even more preferably 19.9 nm or less.
  • the thickness of the conductive layer is not less than the above lower limit, the resistance value of the light-transmitting conductive film can be effectively reduced, and the conductivity can be further increased.
  • the thickness of the conductive layer is less than or equal to the above upper limit, the pattern of the conductive layer can be made less visible and the light transmissive conductive film can be made even thinner.
  • the average transmittance in the visible light region is preferably 85% or more, more preferably 90% or more.
  • the conductive layer contains In atoms and Sn atoms.
  • the Sn atom content is 7% by weight or more in the total content of 100% by weight of In atoms and Sn atoms in the conductive layer. When the Sn atom content is less than 7% by weight, the carrier density does not increase and the resistance value deteriorates.
  • the content of Sn atoms may be 30% by weight or less, may be 20% by weight or less, and may be 10% by weight or less. It may be.
  • the protective film is comprised by the base material sheet and the adhesive layer.
  • the base sheet preferably has high light transmittance.
  • the material of the base sheet is not particularly limited, but for example, polyolefin, polyethersulfone, polysulfone, polycarbonate, cycloolefin polymer, polyarylate, polyamide, polymethyl methacrylate, polyethylene terephthalate, polybutylene terephthalate, polyethylene naphthalate , Triacetyl cellulose, and cellulose nanofibers.
  • the pressure-sensitive adhesive layer can be composed of a (meth) acrylic pressure-sensitive adhesive, a rubber-based pressure-sensitive adhesive, a urethane-based adhesive, or an epoxy-based adhesive. From the viewpoint of suppressing an increase in adhesive force due to heat treatment, the adhesive layer is preferably composed of a (meth) acrylic adhesive.
  • the above (meth) acrylic pressure-sensitive adhesive is a pressure-sensitive adhesive obtained by adding a crosslinking agent, a tackifying resin, various stabilizers and the like to a (meth) acrylic polymer as necessary.
  • the (meth) acrylic polymer is not particularly limited, but (meth) acrylic copolymer obtained by copolymerizing a mixed monomer containing a (meth) acrylic acid ester monomer and another copolymerizable monomer. A polymer is preferred.
  • the (meth) acrylic acid ester monomer is not particularly limited, and is obtained by an esterification reaction between a primary or secondary alkyl alcohol having 1 to 12 carbon atoms in the alkyl group and (meth) acrylic acid (
  • a (meth) acrylic acid ester monomer is preferred, and specific examples include ethyl (meth) acrylate, butyl (meth) acrylate, and 2-ethylhexyl (meth) acrylate.
  • the said (meth) acrylic acid ester monomer may be used independently and may use multiple together.
  • Examples of the other copolymerizable polymerizable monomer include hydroxyalkyl (meth) acrylates such as 2-hydroxyethyl (meth) acrylate, hydroxypropyl (meth) acrylate, and hydroxybutyl (meth) acrylate; Isobornyl (meth) acrylate, hydroxyalkyl (meth) acrylate, glycerin dimethacrylate, glycidyl (meth) acrylate, 2-methacryloyloxyethyl isocyanate, (meth) acrylic acid, itaconic acid, maleic anhydride, crotonic acid, malein Examples thereof include functional monomers such as acid and fumaric acid.
  • the other copolymerizable polymerizable monomers may be used alone or in combination.
  • the crosslinking agent is not particularly limited, and for example, an isocyanate crosslinking agent, an epoxy crosslinking agent, a melamine crosslinking agent, a peroxide crosslinking agent, a urea crosslinking agent, a metal alkoxide crosslinking agent, a metal chelate crosslinking agent.
  • the above crosslinking agents may be used alone or in combination.
  • the tackifying resin is not particularly limited, and examples thereof include petroleum resins such as aliphatic copolymers, aromatic copolymers, aliphatic / aromatic copolymers, and alicyclic copolymers.
  • petroleum resins such as aliphatic copolymers, aromatic copolymers, aliphatic / aromatic copolymers, and alicyclic copolymers.
  • the tackifying resin may be a hydrogenated resin.
  • the tackifying resins may be used alone or in combination.
  • the thickness of the protective film is preferably 25 ⁇ m or more, more preferably 50 ⁇ m or more, preferably 300 ⁇ m or less, more preferably 200 ⁇ m or less.
  • the thickness of the protective film is not less than the above lower limit and not more than the above upper limit, the pattern of the conductive layer can be made even less visible.
  • Example 1 Production of light-transmitting conductive film Content of tin atoms in a total of 100% by weight of indium atoms and tin atoms on a PET film (thickness: 125 ⁇ m) as a base film using a DC magnetron sputtering apparatus A conductive layer (indium tin oxide layer) having a thickness of 17.00 nm was formed so that the light-transmitting conductive film was obtained.
  • Examples 2 to 8 and Comparative Examples 1 to 4 A light transmissive conductive film and an annealed light transmissive conductive film in the same manner as in Example 1 except that the hole mobility, carrier density and thickness of the conductive layer were set as shown in Table 1 below. Got. The hole mobility and carrier density of the conductive layer were adjusted by changing the type of gas introduced during the formation of the conductive layer and the amount of partial pressure thereof.
  • Example 9 to 16 and Comparative Examples 5 to 8 In the same manner as in Example 1 except that the Sn atom content in the conductive layer, the hole mobility, the carrier density and the thickness of the conductive layer were set as shown in Table 1 below, An annealed light-transmitting conductive film was obtained.
  • the hole mobility and carrier density of the conductive layer were adjusted by changing the types of gases introduced during the formation of the conductive layer, their partial pressure amount, and the input power amount of the cathode.
  • the thickness of the conductive layer in the light-transmitting conductive film before the annealing treatment is measured using a fluorescent X-ray analyzer ZSX Primus III + (manufactured by Rigaku Corporation). It was determined by measuring the amount of In per area.
  • the carrier density of the conductive layer in the light transmissive conductive film before and after the annealing treatment is It measured using the Hall effect measuring apparatus (made by Seinan Kogyo Co., Ltd.).
  • the measurement method is the van der pauw method (DC measurement).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Laminated Bodies (AREA)
  • Non-Insulated Conductors (AREA)
  • Manufacturing Of Electric Cables (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

L'invention concerne un film conducteur transmettant la lumière qui peut présenter une faible valeur de résistance même si le film conducteur transmettant la lumière est soumis à un recuit pendant une courte durée. Le film conducteur transmettant la lumière selon la présente invention comprend : une couche conductrice possédant des propriétés de transmission de lumière et de conductivité ; et un substrat disposé sur un côté de surface de la couche conductrice. La couche conductrice est une couche amorphe d'un oxyde d'indium-étain. Parmi la teneur totale de 100 % en poids d'atomes d'In et d'atomes de Sn dans la couche conductrice, la teneur en atomes de Sn est supérieure ou égale à 7 % en poids. La densité des porteurs dans la couche conductrice est de 4 x 1020/cm3 à 6 x 1020/cm3. La mobilité des trous dans la couche conductrice est de 20 cm2/V·s à 28 cm2/V·s.
PCT/JP2016/078794 2015-09-30 2016-09-29 Film conducteur transmettant la lumière et procédé de fabrication de film conducteur transmettant la lumière recuit WO2017057556A1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201680027950.0A CN107533883B (zh) 2015-09-30 2016-09-29 透光性导电膜、及经退火处理的透光性导电膜的制造方法
JP2016567867A JP6159490B1 (ja) 2015-09-30 2016-09-29 光透過性導電フィルム、及び、アニール処理された光透過性導電フィルムの製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015195414 2015-09-30
JP2015-195414 2015-09-30

Publications (1)

Publication Number Publication Date
WO2017057556A1 true WO2017057556A1 (fr) 2017-04-06

Family

ID=58423928

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/078794 WO2017057556A1 (fr) 2015-09-30 2016-09-29 Film conducteur transmettant la lumière et procédé de fabrication de film conducteur transmettant la lumière recuit

Country Status (3)

Country Link
JP (2) JP6159490B1 (fr)
CN (1) CN107533883B (fr)
WO (1) WO2017057556A1 (fr)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017092033A (ja) * 2015-11-09 2017-05-25 日東電工株式会社 光透過性導電フィルムおよび調光フィルム
WO2018207622A1 (fr) * 2017-05-09 2018-11-15 日東電工株式会社 Film doté d'une couche conductrice transmettant la lumière, film de commande de lumière et dispositif de commande de lumière
JP2019029335A (ja) * 2017-05-09 2019-02-21 日東電工株式会社 光透過性導電層付きフィルム、調光フィルムおよび調光装置
WO2020095814A1 (fr) * 2018-11-07 2020-05-14 日東電工株式会社 Film d'écran tactile pourvu d'une couche conductrice transmettant la lumière, film de polarisation pourvu d'une couche conductrice transmettant la lumière et dispositif d'affichage à écran tactile
JP2020096185A (ja) * 2018-12-12 2020-06-18 日東電工株式会社 電波吸収体用インピーダンス整合膜、電波吸収体用インピーダンス整合膜付フィルム、電波吸収体、及び電波吸収体用積層体
JP2020123475A (ja) * 2019-01-30 2020-08-13 日東電工株式会社 透明導電性フィルム
JP2020123476A (ja) * 2019-01-30 2020-08-13 日東電工株式会社 透明導電性フィルム
JP2020136148A (ja) * 2019-02-22 2020-08-31 日東電工株式会社 光透過性導電フィルム
JP2020136147A (ja) * 2019-02-22 2020-08-31 日東電工株式会社 光透過性導電フィルム
WO2023042844A1 (fr) * 2021-09-17 2023-03-23 日東電工株式会社 Film électroconducteur transparent

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220156826A (ko) * 2020-03-19 2022-11-28 닛토덴코 가부시키가이샤 투명 도전층 및 투명 도전성 필름

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09286070A (ja) * 1995-12-20 1997-11-04 Mitsui Toatsu Chem Inc 透明導電性積層体及びそれを用いたエレクトロルミネッセンス発光素子
JP2004207221A (ja) * 2002-10-04 2004-07-22 Sumitomo Metal Mining Co Ltd 酸化物透明電極膜とその製造方法、透明導電性基材、太陽電池および光検出素子
JP2004247060A (ja) * 2003-02-10 2004-09-02 Sumitomo Metal Mining Co Ltd 透明導電性酸化物複合体とこれを用いた太陽電池および表示装置
WO2011043235A1 (fr) * 2009-10-06 2011-04-14 Jx日鉱日石金属株式会社 Corps fritté en oxyde d'indium, film conducteur transparent en oxyde d'indium et son procédé de fabrication
JP2013152827A (ja) * 2012-01-24 2013-08-08 Kaneka Corp 透明電極付き基板およびその製造方法
JP2013229283A (ja) * 2007-05-23 2013-11-07 National Institute Of Advanced Industrial & Technology 酸化物透明導電膜、およびそれを用いた光電変換素子、光検出素子
WO2013172055A1 (fr) * 2012-05-17 2013-11-21 株式会社カネカ Substrat ayant une électrode transparente, procédé de fabrication de ce dernier et écran tactile
WO2014034575A1 (fr) * 2012-08-31 2014-03-06 株式会社カネカ Procédé de fabrication d'un substrat ayant une électrode transparente, et substrat ayant une électrode transparente
JP2014148734A (ja) * 2013-02-04 2014-08-21 Kaneka Corp 透明電極付き基板の製造方法及び透明電極付き基板
WO2014157312A1 (fr) * 2013-03-29 2014-10-02 株式会社カネカ Film stratifié conducteur et transparent, ainsi que procédé de fabrication de celui-ci

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3749531B2 (ja) * 2003-08-29 2006-03-01 日東電工株式会社 透明導電積層体の製造方法
US20110094577A1 (en) * 2009-10-28 2011-04-28 Dilip Kumar Chatterjee Conductive metal oxide films and photovoltaic devices
JP5543907B2 (ja) * 2010-12-24 2014-07-09 日東電工株式会社 透明導電性フィルムおよびその製造方法
JP5881501B2 (ja) * 2012-03-29 2016-03-09 株式会社Neomaxマテリアル 発光素子用基板および発光モジュール
US20150086789A1 (en) * 2012-06-07 2015-03-26 Nitto Denko Corporation Transparent conductive film

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09286070A (ja) * 1995-12-20 1997-11-04 Mitsui Toatsu Chem Inc 透明導電性積層体及びそれを用いたエレクトロルミネッセンス発光素子
JP2004207221A (ja) * 2002-10-04 2004-07-22 Sumitomo Metal Mining Co Ltd 酸化物透明電極膜とその製造方法、透明導電性基材、太陽電池および光検出素子
JP2004247060A (ja) * 2003-02-10 2004-09-02 Sumitomo Metal Mining Co Ltd 透明導電性酸化物複合体とこれを用いた太陽電池および表示装置
JP2013229283A (ja) * 2007-05-23 2013-11-07 National Institute Of Advanced Industrial & Technology 酸化物透明導電膜、およびそれを用いた光電変換素子、光検出素子
WO2011043235A1 (fr) * 2009-10-06 2011-04-14 Jx日鉱日石金属株式会社 Corps fritté en oxyde d'indium, film conducteur transparent en oxyde d'indium et son procédé de fabrication
JP2013152827A (ja) * 2012-01-24 2013-08-08 Kaneka Corp 透明電極付き基板およびその製造方法
WO2013172055A1 (fr) * 2012-05-17 2013-11-21 株式会社カネカ Substrat ayant une électrode transparente, procédé de fabrication de ce dernier et écran tactile
WO2014034575A1 (fr) * 2012-08-31 2014-03-06 株式会社カネカ Procédé de fabrication d'un substrat ayant une électrode transparente, et substrat ayant une électrode transparente
JP2014148734A (ja) * 2013-02-04 2014-08-21 Kaneka Corp 透明電極付き基板の製造方法及び透明電極付き基板
WO2014157312A1 (fr) * 2013-03-29 2014-10-02 株式会社カネカ Film stratifié conducteur et transparent, ainsi que procédé de fabrication de celui-ci

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190122784A1 (en) * 2015-11-09 2019-04-25 Nitto Denko Corporation Light transmitting conductive film and light control film
JP2018081928A (ja) * 2015-11-09 2018-05-24 日東電工株式会社 光透過性導電フィルムおよび調光フィルム
JP2017092033A (ja) * 2015-11-09 2017-05-25 日東電工株式会社 光透過性導電フィルムおよび調光フィルム
JP2019025915A (ja) * 2015-11-09 2019-02-21 日東電工株式会社 調光フィルム
US10720264B2 (en) 2015-11-09 2020-07-21 Nitto Denko Corporation Light transmitting conductive film and light control film
JP2019033088A (ja) * 2015-11-09 2019-02-28 日東電工株式会社 光透過性導電フィルム
CN110637343A (zh) * 2017-05-09 2019-12-31 日东电工株式会社 带透光性导电层的薄膜、调光薄膜和调光装置
JP2019123243A (ja) * 2017-05-09 2019-07-25 日東電工株式会社 光透過性導電層付きフィルム
CN110637343B (zh) * 2017-05-09 2021-04-27 日东电工株式会社 带透光性导电层的薄膜、调光薄膜和调光装置
KR20200003806A (ko) * 2017-05-09 2020-01-10 닛토덴코 가부시키가이샤 광 투과성 도전층 형성 필름, 조광 필름 및 조광 장치
KR102518569B1 (ko) 2017-05-09 2023-04-05 닛토덴코 가부시키가이샤 광 투과성 도전층 형성 필름, 조광 필름 및 조광 장치
JP2019029335A (ja) * 2017-05-09 2019-02-21 日東電工株式会社 光透過性導電層付きフィルム、調光フィルムおよび調光装置
WO2018207622A1 (fr) * 2017-05-09 2018-11-15 日東電工株式会社 Film doté d'une couche conductrice transmettant la lumière, film de commande de lumière et dispositif de commande de lumière
JP7039506B2 (ja) 2017-05-09 2022-03-22 日東電工株式会社 光透過性導電層付きフィルム
WO2020095814A1 (fr) * 2018-11-07 2020-05-14 日東電工株式会社 Film d'écran tactile pourvu d'une couche conductrice transmettant la lumière, film de polarisation pourvu d'une couche conductrice transmettant la lumière et dispositif d'affichage à écran tactile
JP7469043B2 (ja) 2018-11-07 2024-04-16 日東電工株式会社 タッチパネル用光透過性導電層付きフィルム、光透過性導電層付き偏光フィルムおよびタッチパネル表示装置
JPWO2020095814A1 (ja) * 2018-11-07 2021-09-24 日東電工株式会社 タッチパネル用光透過性導電層付きフィルム、光透過性導電層付き偏光フィルムおよびタッチパネル表示装置
EP3895888A4 (fr) * 2018-12-12 2022-10-05 Nitto Denko Corporation Film d'adaptation d'impédance pour absorbeur d'ondes radio, film avec film d'adaptation d'impédance pour absorbeur d'ondes radio, absorbeur d'ondes radio, et stratifié pour absorbeur d'ondes radio
WO2020122150A1 (fr) * 2018-12-12 2020-06-18 日東電工株式会社 Film d'adaptation d'impédance pour absorbeur d'ondes radio, film avec film d'adaptation d'impédance pour absorbeur d'ondes radio, absorbeur d'ondes radio, et stratifié pour absorbeur d'ondes radio
JP2020096185A (ja) * 2018-12-12 2020-06-18 日東電工株式会社 電波吸収体用インピーダンス整合膜、電波吸収体用インピーダンス整合膜付フィルム、電波吸収体、及び電波吸収体用積層体
US11991871B2 (en) 2018-12-12 2024-05-21 Nitto Denko Corporation Impedance matching film for radio wave absorber, impedance matching film-attached film for radio wave absorber, radio wave absorber, and laminate for radio wave absorber
JP2020123476A (ja) * 2019-01-30 2020-08-13 日東電工株式会社 透明導電性フィルム
JP2020123475A (ja) * 2019-01-30 2020-08-13 日東電工株式会社 透明導電性フィルム
JP7198097B2 (ja) 2019-01-30 2022-12-28 日東電工株式会社 透明導電性フィルム
JP7198096B2 (ja) 2019-01-30 2022-12-28 日東電工株式会社 透明導電性フィルム
JP2020136147A (ja) * 2019-02-22 2020-08-31 日東電工株式会社 光透過性導電フィルム
JP2020136148A (ja) * 2019-02-22 2020-08-31 日東電工株式会社 光透過性導電フィルム
JP7378937B2 (ja) 2019-02-22 2023-11-14 日東電工株式会社 光透過性導電フィルム
WO2023042844A1 (fr) * 2021-09-17 2023-03-23 日東電工株式会社 Film électroconducteur transparent

Also Published As

Publication number Publication date
JP6159490B1 (ja) 2017-07-05
JP2017160545A (ja) 2017-09-14
JPWO2017057556A1 (ja) 2017-10-05
CN107533883A (zh) 2018-01-02
CN107533883B (zh) 2021-09-28

Similar Documents

Publication Publication Date Title
JP6159490B1 (ja) 光透過性導電フィルム、及び、アニール処理された光透過性導電フィルムの製造方法
US10353520B2 (en) Display device with capacitive touch panel, capacitive touch panel
JP2015212923A (ja) アンチニュートンリング積層体およびそのアンチニュートンリング積層体を用いた静電容量式タッチパネル
JP2017121696A (ja) 光透過性導電フィルム積層体の製造方法
WO2016080201A1 (fr) Film multicouche transparent et écran tactile
JP2017121744A (ja) 光透過性導電フィルム積層体
JP2013083903A (ja) 反射防止体、静電容量式タッチパネルおよび静電容量式タッチパネル付き表示装置
JP6669468B2 (ja) 光透過性導電フィルム、及び、アニール処理された光透過性導電フィルムの製造方法
JP7144318B2 (ja) 調光フィルム用透明導電フィルム及び調光フィルム
JP7074510B2 (ja) 調光フィルム用透明導電フィルム及び調光フィルム
JP6269304B2 (ja) 貼りつき防止機能を有した全光線透過率向上フィルム。
JP7107775B2 (ja) 調光フィルム用透明導電フィルム、及び、調光フィルム
JP6166828B1 (ja) 光透過性導電フィルム及びパターン状の導電層を有する光透過性導電フィルムの製造方法
JPWO2016051247A1 (ja) アンチニュートンリング積層体およびそのアンチニュートンリング積層体を用いた静電容量式タッチパネル
JP2018164985A (ja) 保護フィルム付き光透過性導電フィルム
JP6849490B2 (ja) 光透過性導電フィルム及び光透過性導電フィルムの製造方法
JP6745177B2 (ja) 光透過性導電フィルム
JP6718344B2 (ja) 光透過性導電フィルム及び光透過性導電フィルムの製造方法
JP6453755B2 (ja) ハードコート積層体およびその製造方法
JP2017174807A (ja) 光透過性導電フィルム及び光透過性導電フィルムの製造方法
JP6696866B2 (ja) 光透過性導電フィルムの製造方法及び光透過性導電フィルム製造用積層体
JP6718343B2 (ja) 光透過性導電フィルム及び光透過性導電フィルムの製造方法
JP2022008590A (ja) 光透過性導電フィルム、及び、アニール処理された光透過性導電フィルムの製造方法
JP7176950B2 (ja) 光透過性導電フィルムの可視化の分析方法、及び光透過性導電フィルム
JP2017181622A (ja) 光透過性導電フィルム

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2016567867

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16851727

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16851727

Country of ref document: EP

Kind code of ref document: A1