WO2017047787A1 - 蓄電素子及び蓄電素子の製造方法 - Google Patents

蓄電素子及び蓄電素子の製造方法 Download PDF

Info

Publication number
WO2017047787A1
WO2017047787A1 PCT/JP2016/077542 JP2016077542W WO2017047787A1 WO 2017047787 A1 WO2017047787 A1 WO 2017047787A1 JP 2016077542 W JP2016077542 W JP 2016077542W WO 2017047787 A1 WO2017047787 A1 WO 2017047787A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode body
lid plate
container
spacer
electrode
Prior art date
Application number
PCT/JP2016/077542
Other languages
English (en)
French (fr)
Inventor
謙志 河手
孝雄 牧
武志 河原
Original Assignee
リチウム エナジー アンド パワー ゲゼルシャフト ミット ベシュレンクテル ハフッング ウント コンパニー コマンディトゲゼルシャフト
株式会社Gsユアサ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by リチウム エナジー アンド パワー ゲゼルシャフト ミット ベシュレンクテル ハフッング ウント コンパニー コマンディトゲゼルシャフト, 株式会社Gsユアサ filed Critical リチウム エナジー アンド パワー ゲゼルシャフト ミット ベシュレンクテル ハフッング ウント コンパニー コマンディトゲゼルシャフト
Priority to US15/760,929 priority Critical patent/US11081723B2/en
Priority to DE112016004239.6T priority patent/DE112016004239T5/de
Priority to JP2017540024A priority patent/JP6794988B2/ja
Priority to CN201680053289.0A priority patent/CN108028342B/zh
Publication of WO2017047787A1 publication Critical patent/WO2017047787A1/ja
Priority to US17/371,713 priority patent/US20210336288A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/78Cases; Housings; Encapsulations; Mountings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0587Construction or manufacture of accumulators having only wound construction elements, i.e. wound positive electrodes, wound negative electrodes and wound separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/381Alkaline or alkaline earth metals elements
    • H01M4/382Lithium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings, jackets or wrappings of a single cell or a single battery
    • H01M50/102Primary casings, jackets or wrappings of a single cell or a single battery characterised by their shape or physical structure
    • H01M50/103Primary casings, jackets or wrappings of a single cell or a single battery characterised by their shape or physical structure prismatic or rectangular
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings, jackets or wrappings of a single cell or a single battery
    • H01M50/147Lids or covers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/463Separators, membranes or diaphragms characterised by their shape
    • H01M50/466U-shaped, bag-shaped or folded
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/471Spacing elements inside cells other than separators, membranes or diaphragms; Manufacturing processes thereof
    • H01M50/474Spacing elements inside cells other than separators, membranes or diaphragms; Manufacturing processes thereof characterised by their position inside the cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/543Terminals
    • H01M50/547Terminals characterised by the disposition of the terminals on the cells
    • H01M50/55Terminals characterised by the disposition of the terminals on the cells on the same side of the cell
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/531Electrode connections inside a battery casing
    • H01M50/533Electrode connections inside a battery casing characterised by the shape of the leads or tabs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/531Electrode connections inside a battery casing
    • H01M50/534Electrode connections inside a battery casing characterised by the material of the leads or tabs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/531Electrode connections inside a battery casing
    • H01M50/536Electrode connections inside a battery casing characterised by the method of fixing the leads to the electrodes, e.g. by welding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/543Terminals
    • H01M50/562Terminals characterised by the material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/543Terminals
    • H01M50/564Terminals characterised by their manufacturing process
    • H01M50/567Terminals characterised by their manufacturing process by fixing means, e.g. screws, rivets or bolts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a power storage element and a method for manufacturing the power storage element.
  • a power storage element As a power storage element, a power storage element is known that is assembled by being inserted into a container with a spacer attached to an electrode body (see, for example, Patent Document 1).
  • the electrode body when the electrode body is inserted into the container with the electrode body and the spacer attached, it is necessary to press and push the electrode body itself, and the electrode body may be crushed during insertion. There is a risk of damaging the board.
  • the present invention has been made in consideration of the above-described conventional problems, and an object thereof is to suppress damage to the electrode body during manufacturing.
  • a power storage element includes an electrode body having a curved portion around which an electrode is wound, a container that houses the electrode body, and a lid plate that closes the container.
  • the electrode body is housed in a container with one end in the winding axis direction facing the lid plate structure, and is attached to a curved portion of the electrode body.
  • a spacer having one end abutting against a part of the lid plate structure.
  • FIG. 1 is a perspective view showing an external appearance of a power storage device according to an embodiment.
  • FIG. 2 is an exploded perspective view of the energy storage device according to the embodiment.
  • FIG. 3 is an exploded perspective view of the lid plate structure according to the embodiment.
  • FIG. 4 is a perspective view showing the configuration of the electrode body according to the embodiment.
  • FIG. 5 is a cross-sectional view schematically showing an adhesive state of the adhesive tape to the main body portion of the electrode body according to the embodiment.
  • FIG. 6 is a front view of the side spacer according to the embodiment as viewed from the inside.
  • FIG. 7 is a cross-sectional view of the side spacer when cut along the XY plane passing through the line VII-VII in FIG. FIG.
  • FIG. 8 is a top view of the side spacer according to the embodiment.
  • FIG. 9 is a perspective view showing an assembled state of the side spacer and the electrode body according to the embodiment.
  • FIG. 10 is a side view showing a positional relationship between the lid plate structure and the side spacer according to the embodiment after positioning.
  • FIG. 11 is a schematic cross-sectional view showing the cover plate structure and the surrounding structure according to the embodiment.
  • FIG. 12 is a perspective view showing a binding state of the binding sheet with respect to the electrode body according to the embodiment.
  • FIG. 13 is a perspective view showing one step of the method for manufacturing the energy storage device according to the embodiment.
  • FIG. 14 is a cross-sectional view showing a positional relationship among the side spacer, the electrode body, and the container according to the embodiment.
  • FIG. 15 is a perspective view showing a state in which a modified example of the side spacer according to the embodiment is attached to the electrode body.
  • FIG. 16 is a perspective view showing a state in which another modified example of the side spacer according to the embodiment is attached to the electrode body.
  • FIG. 17 is a cross-sectional view showing the positional relationship between another modified example of the side spacer according to the embodiment and the container.
  • a power storage element includes an electrode body having a curved portion around which an electrode is wound, a container that houses the electrode body, and a lid plate that closes the container.
  • the electrode body is housed in a container with one end in the winding axis direction facing the lid plate structure, and is attached to a curved portion of the electrode body.
  • a spacer having one end abutting against a part of the lid plate structure.
  • the cover plate structure since a part of the cover plate structure is in contact with one end of the spacer attached to the electrode body, if the cover plate structure is pressed when the electrode body is assembled in the container, the spacer The electrode body enters the container. Therefore, the electrode body can be accommodated in the container without being pressed directly, and damage to the electrode body during manufacturing can be suppressed.
  • the spacer may extend from one end to the other end in the winding axis direction of the electrode body.
  • the spacer since the spacer extends from one end portion to the other end portion of the electrode body, the spacer can be slid with respect to the container to the end when the electrode body is accommodated in the container. Therefore, the electrode body can be easily guided into the container.
  • the spacer may have a bottom plate that covers a part of the other end of the electrode body at the other end in the winding axis direction.
  • the bottom plate that covers a part of the other end of the electrode body is provided at the other end of the spacer, a part of the other end of the electrode body is accommodated in the container after being stored in the container. Contact can be prevented. Therefore, damage to the electrode body can be further suppressed.
  • the spacer includes a top plate that is interposed between one end of the electrode body in the winding axis direction and the container and covers a part of the one end of the electrode body. It may be.
  • the top plate that covers a part of one end of the electrode body is provided on the spacer, it is possible to prevent the one end of the electrode body from contacting the container after being stored in the container. . Therefore, damage to the electrode body can be further suppressed.
  • the spacer includes a positioning portion that positions the lid plate structure, and the lid plate structure includes an engaging portion that engages with the positioning portion. Also good.
  • the position of the lid plate structure relative to the spacer is determined by engaging the engaging portion of the lid plate structure with the positioning portion of the spacer. Therefore, the electrode body can be accommodated in the container in a state where the positional relationship between the spacer and the cover plate structure is stabilized.
  • the lid plate structure may include an insulating member disposed between the lid plate and the electrode body, and the engaging member may be provided in the insulating member.
  • the insulating member is provided between the lid plate and the electrode body, the insulating property between the lid plate and the electrode body can be maintained by the insulating member. Moreover, since the engaging part is provided in the insulating member, the position of the insulating member can be stabilized.
  • one end of the spacer may be separated from the electrode body in the winding axis direction.
  • the spacer since the one end of the spacer is separated from the electrode body in the winding axis direction, the spacer does not interfere with the one end of the electrode body even when the cover plate structure is pressed. Therefore, damage to the electrode body during manufacturing can be further suppressed.
  • the cover plate structure may include a current collector, and the electrode body may include a tab portion that is electrically connected to the current collector.
  • the electrode body can be accommodated in the container without being directly pressed, so that damage to the tab portion can be suppressed.
  • the power storage device is a power storage device including an electrode body in which an electrode is wound and a container that houses the electrode body, and includes a lid plate structure that closes the container.
  • the electrode body is a spacer attached to the electrode body, with one end portion in the winding axis direction facing the lid plate structure, and is attached to the electrode body, the one end portion being the lid plate A spacer is in contact with a part of the structure.
  • the cover plate structure since a part of the cover plate structure is in contact with one end of the spacer attached to the electrode body, if the cover plate structure is pressed when the electrode body is assembled in the container, the spacer The electrode body enters the container. Therefore, the electrode body can be accommodated in the container without being pressed directly, and damage to the electrode body during manufacturing can be suppressed.
  • a method for manufacturing a power storage element includes a container that houses an electrode body having a curved portion around which an electrode is wound, a lid plate structure that has a lid plate that closes the container, and an electrode And a spacer attached to the body, wherein the lid is attached with a part of the lid plate structure in contact with one end of the spacer attached to the electrode body on the lid plate structure side.
  • the electrode body is accommodated in the container by pushing the lid plate structure in a state in which a part of the lid plate structure is in contact with one end of the spacer. Even if it does not press, it can accommodate in a container and the damage to the electrode body at the time of manufacture can be suppressed.
  • FIG. 1 is a perspective view showing an appearance of a power storage device 10 according to the embodiment.
  • FIG. 2 is an exploded perspective view of the energy storage device 10 according to the embodiment.
  • FIG. 3 is an exploded perspective view of the cover plate structure 180 according to the embodiment.
  • the positive electrode lead plate 145 and the negative electrode lead plate 155 bonded to the positive electrode current collector 140 and the negative electrode current collector 150 included in the lid plate structure 180 are illustrated by broken lines.
  • the Z-axis direction is described as the vertical direction for convenience of explanation. However, in the actual usage, the Z-axis direction may not match the vertical direction.
  • the electricity storage element 10 is a secondary battery that can charge electricity and discharge electricity.
  • the electricity storage element 10 is a nonaqueous electrolyte secondary battery such as a lithium ion secondary battery.
  • the power storage element 10 is applied to, for example, an electric vehicle (EV), a hybrid electric vehicle (HEV), a plug-in hybrid electric vehicle (PHEV), or the like.
  • the electrical storage element 10 is not limited to a nonaqueous electrolyte secondary battery, A secondary battery other than a nonaqueous electrolyte secondary battery may be sufficient, and a capacitor may be sufficient as it.
  • the power storage element 10 may be a primary battery.
  • the electricity storage device 10 includes an electrode body 400 and a container 100 that houses the electrode body 400.
  • a cover plate structure 180 configured by arranging various elements on the cover plate 110 of the container 100 is disposed above the electrode body 400.
  • one end of the electrode body 400 faces the lid plate structure 180.
  • the lid plate structure 180 includes a lid plate 110 of the container 100, a positive electrode terminal 200, a negative electrode terminal 300, upper insulating members 125 and 135, lower insulating members 120 and 130, a positive electrode current collector 140, and a negative electrode current collector 150.
  • the positive electrode terminal 200 is electrically connected to the positive electrode of the electrode body 400 via the positive electrode current collector 140
  • the negative electrode terminal 300 is electrically connected to the negative electrode of the electrode body 400 via the negative electrode current collector 150.
  • Each of the conductive members electrically connected to the electrode body 400 such as the positive electrode terminal 200 is insulated from the container 100 by an insulating member such as the lower insulating member 120.
  • Each of the upper insulating members 125 and 135 and the lower insulating members 120 and 130 is an insulating member at least partially disposed between the wall portion of the container 100 and the conductive member.
  • each of the insulating members is arranged along the lid plate 110 that forms the upper wall portion among the six wall portions that form the container 100 having a substantially rectangular parallelepiped outer shape.
  • the electricity storage device 10 includes an upper spacer 500 and a buffer sheet 600 disposed between the cover plate structure 180 and the electrode body 400 in addition to the above configuration.
  • the upper spacer 500 is disposed between the electrode body 400 and the lid plate 110 and has a locking portion 510 that is locked to a part of the lid plate structure 180.
  • the upper spacer 500 has a flat plate shape as a whole, and the two engaging portions 510 and the two insertion portions 520 into which the tab portions 410 and 420 are inserted (through the tab portions 410 and 420). And have.
  • the insertion portion 520 is provided in a cutout shape in the upper spacer 500.
  • the upper spacer 500 is made of an insulating material such as polycarbonate (PC), polypropylene (PP), polyethylene (PE), or polyphenylene sulfide resin (PPS).
  • the upper spacer 500 is, for example, a member that directly or indirectly regulates the upward movement of the electrode body 400 (in the direction of the cover plate 110), or a short circuit between the cover plate structure 180 and the electrode body 400. It functions as a member to prevent.
  • the upper spacer 500 includes two locking portions 510, and each of the two locking portions 510 is locked to the mounting portion 122 or 132 included in the lid plate structure 180.
  • Buffer sheet 600 is formed of a highly flexible porous material such as foamed polyethylene and is a member that functions as a buffer material between electrode body 400 and upper spacer 500.
  • a side spacer (spacer) 700 is disposed between the inner peripheral surface of the container 100.
  • the side spacer 700 plays a role of regulating the position of the electrode body 400, for example. A specific configuration of the side spacer 700 will be described later.
  • the electricity storage element 10 includes other elements such as a buffer sheet disposed between the electrode body 400 and the bottom 113 of the container 100 (main body 111). Also good.
  • an electrolytic solution nonaqueous electrolyte
  • the illustration of the electrolytic solution is omitted.
  • the container 100 includes a main body 111 and a lid plate 110.
  • the material of the main body 111 and the cover plate 110 is not particularly limited, but is preferably a weldable metal such as stainless steel, aluminum, or aluminum alloy.
  • the main body 111 is a cylindrical body having a rectangular shape in a top view, and includes a receiving recess 112 having a rectangular shape in a top view and a bottom 113.
  • An insulating sheet 350 that covers the electrode body 400 is provided inside the main body 111.
  • the main body 111 is sealed by the electrode plate 400, the insulating sheet 350 and the like being accommodated in the accommodating recess 112, and then the lid plate 110 being welded.
  • the lid plate 110 is a plate-like member that closes the opening of the housing recess 112. As shown in FIGS. 2 and 3, the cover plate 110 is formed with a gas discharge valve 170, a liquid injection port 117, through holes 110 a and 110 b, and two bulging portions 160.
  • the gas discharge valve 170 has a role of releasing the gas inside the container 100 by being opened when the internal pressure of the container 100 increases.
  • the liquid injection port 117 is a through hole for injecting an electrolytic solution at the time of manufacturing the electric storage element 10. Further, as shown in FIGS. 1 to 3, a liquid injection plug 118 is arranged on the lid plate 110 so as to close the liquid injection port 117. That is, at the time of manufacturing the electricity storage device 10, the electrolytic solution is injected into the container 100 from the liquid injection port 117, the liquid injection plug 118 is welded to the lid plate 110, and the liquid injection port 117 is closed. Housed inside.
  • each of the two bulging portions 160 is provided on the lid plate 110 by forming a part of the lid plate 110 in a bulging shape.
  • the upper insulating member 125 or 135 is provided. Used for positioning.
  • a concave portion (not shown) that is a concave portion is formed on the back side (the side facing the electrode body 400) of the bulging portion 160, and the lower insulating member 120 or 130 is formed in a part of the concave portion.
  • the engaging protrusion 120b or 130b is engaged. Thereby, the lower insulating member 120 or 130 is also positioned and fixed to the lid plate 110 in that state.
  • the upper insulating member 125 is a member that electrically insulates the positive electrode terminal 200 and the cover plate 110 from each other.
  • the lower insulating member 120 is a member that electrically insulates the positive electrode current collector 140 from the lid plate 110.
  • the upper insulating member 135 is a member that electrically insulates the negative electrode terminal 300 from the lid plate 110.
  • the lower insulating member 130 is a member that electrically insulates the negative electrode current collector 150 from the lid plate 110.
  • the upper insulating members 125 and 135 may be called, for example, an upper gasket, and the lower insulating members 120 and 130 may be called, for example, a lower gasket. That is, in the present embodiment, the upper insulating members 125 and 135 and the lower insulating members 120 and 130 also have a function of sealing between the electrode terminal (200 or 300) and the container 100.
  • the upper insulating members 125 and 135 and the lower insulating members 120 and 130 are formed of an insulating material such as PC, PP, PE, or PPS, for example, similarly to the upper spacer 500. Further, a through hole 126 that guides the electrolyte flowing from the liquid injection port 117 toward the electrode body 400 is provided in a portion of the lower insulating member 120 that is located immediately below the liquid injection port 117.
  • the lower insulating members 120 and 130 are provided with engaging portions 121 and 131 that engage with the side spacer 700. Specifically, the engaging portions 121 and 131 protrude from the outer end portions of the lower insulating members 120 and 130.
  • the positions of the lower insulating members 120 and 130 with respect to the side spacer 700 are determined.
  • the position of the cover plate structure 180 with respect to the side spacer 700 is determined. The engagement state between the engagement portions 121 and 131 and the side spacer 700 will be described later.
  • the positive electrode terminal 200 is an electrode terminal electrically connected to the positive electrode of the electrode body 400 through the positive electrode current collector 140.
  • the negative electrode terminal 300 is an electrode terminal electrically connected to the negative electrode of the electrode body 400 via the negative electrode current collector 150. That is, the positive electrode terminal 200 and the negative electrode terminal 300 lead the electricity stored in the electrode body 400 to the external space of the power storage element 10, and in order to store the electricity in the electrode body 400, It is an electrode terminal made of metal for introducing.
  • the positive electrode terminal 200 and the negative electrode terminal 300 are formed of aluminum or an aluminum alloy.
  • the positive terminal 200 is provided with a fastening portion 210 that fastens the container 100 and the positive current collector 140.
  • the negative electrode terminal 300 is provided with a fastening portion 310 that fastens the container 100 and the negative electrode current collector 150.
  • the fastening portion 210 is a member (rivet) extending downward from the positive electrode terminal 200 and is inserted into the through hole 140a of the positive electrode current collector 140 and caulked. Specifically, the fastening portion 210 is inserted into the through hole 125 a of the upper insulating member 125, the through hole 110 a of the cover plate 110, the through hole 120 a of the lower insulating member 120, and the through hole 140 a of the positive electrode current collector 140. It is squeezed. Accordingly, the positive electrode terminal 200 and the positive electrode current collector 140 are electrically connected, and the positive electrode current collector 140 is fixed to the cover plate 110 together with the positive electrode terminal 200, the upper insulating member 125, and the lower insulating member 120.
  • the fastening portion 310 is a member (rivet) extending downward from the negative electrode terminal 300 and is inserted into the through hole 150a of the negative electrode current collector 150 and caulked. Specifically, the fastening portion 310 is inserted into the through hole 135 a of the upper insulating member 135, the through hole 110 b of the lid plate 110, the through hole 130 a of the lower insulating member 130, and the through hole 150 a of the negative electrode current collector 150. It is squeezed. Thereby, the negative electrode terminal 300 and the negative electrode current collector 150 are electrically connected, and the negative electrode current collector 150 is fixed to the cover plate 110 together with the negative electrode terminal 300, the upper insulating member 135, and the lower insulating member 130.
  • the fastening part 210 may be formed as an integral part of the positive electrode terminal 200, and the fastening part 210 manufactured as a separate part from the positive electrode terminal 200 is fixed to the positive electrode terminal 200 by a technique such as caulking or welding. It may be done. The same applies to the relationship between the fastening portion 310 and the negative electrode terminal 300.
  • the positive electrode current collector 140 is a member that is disposed between the electrode body 400 and the container 100 and electrically connects the electrode body 400 and the positive electrode terminal 200.
  • the positive electrode current collector 140 is made of aluminum or an aluminum alloy.
  • the positive electrode current collector 140 is electrically connected to the tab portion 410 on the positive electrode side of the electrode body 400 via a positive electrode lead plate 145 as a lead plate.
  • the positive electrode lead plate 145 is formed of aluminum or an aluminum alloy as with the positive electrode current collector 140.
  • the negative electrode current collector 150 is a member that is disposed between the electrode body 400 and the container 100 and electrically connects the electrode body 400 and the negative electrode terminal 300.
  • the negative electrode current collector 150 is made of copper or a copper alloy.
  • the negative electrode current collector 150 is electrically connected to the tab portion 420 on the negative electrode side of the electrode body 400 via a negative electrode lead plate 155 as a lead plate.
  • the negative electrode lead plate 155 is formed of copper or a copper alloy.
  • FIG. 4 is a perspective view showing the configuration of the electrode assembly 400 according to the embodiment.
  • FIG. 4 is a partially developed view of the wound state of the electrode body 400.
  • the electrode body 400 is a power storage element (power generation element) that can store electricity.
  • the electrode body 400 is formed by alternately stacking and winding positive electrodes 450 and negative electrodes 460 and separators 470a and 470b. That is, the electrode body 400 is formed by laminating the positive electrode 450, the separator 470a, the negative electrode 460, and the separator 470b in this order, and winding the cross section into an oval shape.
  • the positive electrode 450 is an electrode plate in which a positive electrode active material layer is formed on the surface of a positive electrode base material layer that is a long strip-shaped metal foil made of aluminum or an aluminum alloy.
  • a positive electrode active material used for a positive electrode active material layer if it is a positive electrode active material which can occlude / release lithium ion, a well-known material can be used suitably.
  • a positive electrode active material a polyanion compound such as LiMPO 4 , LiMSiO 4 , LiMBO 3 (M is one or more transition metal elements selected from Fe, Ni, Mn, Co, etc.), lithium titanate, Spinel compounds such as lithium manganate, lithium transition metal oxides such as LiMO 2 (M is one or more transition metal elements selected from Fe, Ni, Mn, Co, etc.) and the like can be used.
  • the negative electrode 460 is an electrode plate in which a negative electrode active material layer is formed on the surface of a negative electrode base material layer which is a long strip-shaped metal foil made of copper or a copper alloy.
  • a negative electrode active material used for a negative electrode active material layer if it is a negative electrode active material which can occlude-release lithium ion, a well-known material can be used suitably.
  • lithium metal lithium metal
  • lithium alloy lithium metal-containing alloys such as lithium-aluminum, lithium-lead, lithium-tin, lithium-aluminum-tin, lithium-gallium, and wood alloy
  • lithium Alloys that can be occluded / released
  • carbon materials eg, graphite, non-graphitizable carbon, graphitizable carbon, low-temperature calcined carbon, amorphous carbon, etc.
  • metal oxides lithium metal oxides (Li 4 Ti 5 O 12, etc.)
  • polyphosphoric acid compounds e.g, lithium metal, lithium alloy (lithium metal-containing alloys such as lithium-aluminum, lithium-lead, lithium-tin, lithium-aluminum-tin, lithium-gallium, and wood alloy), and lithium Alloys that can be occluded / released
  • carbon materials eg, graphite, non-graphitizable carbon, graphitizable carbon, low-temperature calcined carbon
  • the separators 470a and 470b are microporous sheets made of resin.
  • a well-known material can be used suitably as long as the performance of the electrical storage element 10 is not impaired.
  • the positive electrode 450 has a plurality of protruding portions 411 protruding outward at one end in the winding axis direction.
  • the negative electrode 460 includes a plurality of projecting portions 421 that project outward at one end in the winding axis direction.
  • the plurality of protrusions 411 and the plurality of protrusions 421 are portions where the active material is not applied and the base material layer is exposed (active material uncoated portions).
  • the winding axis is an imaginary axis that becomes a central axis when winding the positive electrode 450, the negative electrode 460, and the like.
  • the winding axis is parallel to the Z-axis direction passing through the center of the electrode body 400. It is a straight line.
  • the plurality of protrusions 411 and the plurality of protrusions 421 are arranged on the same end in the winding axis direction (the end on the plus side in the Z-axis direction in FIG. 4), and the positive electrode 450 and the negative electrode 460 are stacked.
  • the electrode body 400 is laminated at a predetermined position. Specifically, the plurality of protrusions 411 are stacked at predetermined positions in the circumferential direction at one end in the winding axis direction by stacking the positive electrodes 450 by winding.
  • the plurality of protrusions 421 are stacked at a predetermined position in the circumferential direction different from the position where the plurality of protrusions 411 are stacked at one end in the winding axis direction by stacking the negative electrode 460 by winding. Is done.
  • the electrode body 400 is formed with a tab portion 410 formed by stacking a plurality of protrusions 411 and a tab portion 420 formed by stacking a plurality of protrusions 421.
  • the tab portion 410 is gathered toward the center in the stacking direction, for example, and joined to the positive electrode lead plate 145 by, for example, ultrasonic welding.
  • the tab portion 420 is gathered toward the center in the stacking direction, for example, and joined to the negative electrode lead plate 155 by, for example, ultrasonic welding.
  • the positive electrode lead plate 145 bonded to the tab portion 410 is bonded to the positive electrode current collector 140, and the positive electrode lead plate 145 bonded to the tab portion 420 is bonded to the negative electrode current collector 150.
  • the tab portions (410, 420) are portions for introducing and deriving electricity in the electrode body 400, and other names such as “lead (part)” and “current collector” may be attached. is there.
  • the tab portion 410 is formed by laminating the protruding portion 411 that is the portion where the base material layer is exposed, the tab portion 410 does not contribute to power generation.
  • the tab part 420 is formed by laminating the protruding part 421 that is the part where the base material layer is exposed, the tab part 420 does not contribute to power generation.
  • the portions of the electrode body 400 that are different from the tab portions 410 and 420 are formed by laminating portions of the base material layer coated with the active material, and thus contribute to power generation.
  • this part is referred to as a main body part 430. Both end portions in the X-axis direction of the main body 430 are curved portions 431 and 432 whose outer peripheral surfaces are curved.
  • the electrode body 400 is formed in an oval shape having two curved portions 431 and 432.
  • an adhesive tape 370 is attached to each of one end and the other end of the main body 430 in the winding axis direction (Z-axis direction) to prevent winding deviation (see FIG. 9). .
  • FIG. 5 is a cross-sectional view schematically showing an adhesive state of the adhesive tape 370 to the main body 430 of the electrode body 400 according to the embodiment.
  • FIG. 5 shows the state of one adhesive tape 370 affixed to the lower end of the main body 430 and the positive electrode 450, the negative electrode 460, and the separators 470a and 470b sandwiched between both ends of the adhesive tape 370.
  • the positive electrode 450, the negative electrode 460, and the separators 470 a and 470 b do not correspond to the actual number of turns and are shown in a simplified manner.
  • both end portions of the adhesive tape 370 are bonded to the outer peripheral surface of the main body 430 so that the protruding portions 470c and 470d of the separators 470a and 470b are brought to the center.
  • the protruding portions 470c and 470d of the separators 470a and 470b block the end portion of the main body portion 430, and the main body portion 430 is suppressed while suppressing the winding displacement of the main body portion 430. Prevents foreign matter from getting inside.
  • FIG. 6 is a front view of the side spacer 700 according to the embodiment as viewed from the inside.
  • FIG. 7 is a cross-sectional view of the side spacer 700 when cut along the XY plane passing through the line VII-VII in FIG.
  • FIG. 8 is a top view of the side spacer 700 according to the embodiment.
  • the outer shape of the main body 430 of the electrode body 400 is indicated by a two-dot chain line.
  • FIG. 8 shows a state in which the engaging portion 131 of the lower insulating member 130 is engaged with the side spacer 700. Since the positive electrode side has the same configuration, the description thereof is omitted here.
  • the side spacer 700 is a long member extending in the winding axis direction (Z-axis direction) and has an insulating property such as PC, PP, PE, or PPS. It is made of material.
  • the side spacer 700 has a base 710, a wall 720, and a bottom plate 730.
  • the base 710 has a top plate 711 and a wall 712.
  • the top plate 711 is formed in a substantially rectangular shape in a top view in which part of a pair of corners has an R shape.
  • a wall portion 712 is formed on the top surface of the top plate 711.
  • the wall portion 712 has a peripheral wall 713 and an inner wall 714.
  • the peripheral wall 713 is open from a portion corresponding to one side of the top plate 711 and is erected from the top plate 711 along other sides of the top plate 711.
  • the inner wall 714 is disposed inward of the peripheral wall 713 and is erected from three top plates 711 in parallel so as to extend inward continuously from the peripheral wall 713.
  • the peripheral wall 713 and the inner wall 714 have the same end surface in the Z-axis direction.
  • the inner wall 714a disposed at the center is formed longer in the X-axis direction than the other two inner walls 714b.
  • the distal end portion of the central inner wall 714a is a positioning portion 715 with which the engaging portions 121 and 131 of the lower insulating members 120 and 130 are engaged.
  • the wall body 720 extends in the Z-axis direction, a top plate 711 is connected to one end portion thereof, and a bottom plate 730 is connected to the other end portion thereof.
  • An opening 740 that opens the wall 720 is formed at the center of the wall 720 in the Y-axis direction.
  • the opening 740 is formed along the Z-axis direction so as to open from the top plate 711 to the bottom plate 730.
  • the portions facing each other across the opening 740 are defined as a first wall body 720a and a second wall body 720b.
  • the first wall body 720a and the second wall body 720b have a uniform shape from one end to the other end in the Z-axis direction.
  • the cross-sectional shape of the 1st wall body 720a and the 2nd wall body 720b is a concave curved surface where the inner surface is smooth as a whole.
  • the outer surfaces of the first wall body 720a and the second wall body 720b are smooth convex curved surfaces as a whole so as to correspond to the inner surface shape of the main body 111 of the container 100.
  • the bottom plate 730 is formed in a substantially rectangular shape in top view with part of the corners having an R shape.
  • a wall body 720 is connected to the upper surface of the bottom plate 730.
  • FIG. 9 is a perspective view showing an assembled state of the side spacer 700 and the electrode body 400 according to the embodiment.
  • the side spacer 700 is individually attached to the curved portions 431 and 432 of the electrode body 400. Specifically, the side spacer 700 is attached to the electrode body 400 so that the opening 740 accommodates the curved portions 431 and 432 from one end to the other end in the winding axis direction.
  • the outer shape of the curved portion 432 is indicated by a two-dot chain line. Since the curved portions 431 and 432 have substantially the same outer shape, the positional relationship between the side spacer 700 and the curved portion 432 will be described as an example here, and the positional relationship between the side spacer 700 and the curved portion 431 will be described. Is omitted. As shown in FIG. 7, the side spacer 700 is attached to the electrode body 400 such that the outer surface of the wall body 720 is flush with a part of the surface of the curved portion 432. Here, a part of the surface of the bending portion 432 is a region including the apex portion of the bending portion 432.
  • the curved portion 432 is accommodated in the opening 740 of the side spacer 700. Further, since the inner surface of the wall body 720 is a concave curved surface, the curved surface shape of the bending portion 432 is abutted against the surface of the bending portion 432 and the form is stabilized.
  • the side spacer 700 is fixed to the main body 430 of the electrode body 400 by the adhesive tape 380. Specifically, the side spacer 700 is fixed to the main body 430 with an adhesive tape 380 at two positions spaced apart in the Z-axis direction.
  • the side spacer 700 When the side spacer 700 is fixed to the main body 430 of the electrode body 400, as shown in FIG. 9, the side spacer 700 extends from one end of the main body 430 in the winding axis direction to the other end. . At this time, the bottom plate 730 of the side spacer 700 covers the other end of the main body 430. Further, the base portion 710 that is one end portion of the side spacer 700 is separated from the one end of the main body portion 430 by a predetermined gap S1 in the winding axis direction.
  • connection state between each of the lower insulating members 120 and 130 and the side spacer 700 is the same. Therefore, in the following, the connection state between the lower insulating member 130 and the side spacer 700 will be described as an example, and description of the connection state between the lower insulating member 120 and the side spacer 700 will be omitted.
  • the engaging portion 131 protrudes from an outer end portion of the lower insulating member 130. Ribs 133 extending over the entire length of the engaging portion 131 are provided on both sides of the engaging portion 131. The rib 133 increases the strength of the entire engaging portion 131. In addition, a notch 131 a that is recessed along the X-axis direction is provided at the center of the tip of the engaging portion 131. The notch 131 a engages with the positioning part 715 on the top plate 711 of the side spacer 700.
  • the notch 131a penetrates in the Z-axis direction and is open on the positive side in the X-axis direction, so that it can be engaged with the positioning portion 715 from the Z-axis direction and the X-axis direction. Yes.
  • the positioning portion 715 restricts movement in the direction intersecting the Z-axis direction, more specifically, movement in the Y-axis direction. That is, since the movement of the entire lower insulating member 130 in the Y-axis direction is restricted, the movement of the lid plate structure 180 having the lower insulating member 130 in the Y-axis direction is also restricted, and the position of the lid plate structure 180 Is decided.
  • FIG. 10 is a side view showing a positional relationship between the lid plate structure 180 and the side spacer 700 according to the embodiment after positioning.
  • the base portion 710 that is one end portion of the side spacer 700 is in contact with the lid plate 110 that is a part of the lid plate structure 180. Specifically, one end surface of the wall portion 712 of the base portion 710 is in contact with the lid plate 110. Even in this state, as described above, the base 710 is separated from the one end of the main body 430 of the electrode body 400 by a predetermined gap S1 in the winding axis direction (see FIG. 6). Thereby, even if the lid plate structure 180 is pressed from above, the force is suppressed from acting on one end of the main body 430.
  • FIG. 11 is a schematic cross-sectional view showing the cover plate structure 180 and the surrounding structure according to the embodiment. Note that FIG. 11 shows a partial cross section of the electricity storage element 10 when cut along the YZ plane passing through the line XI-XI in FIG. 3, and a side spacer 700 on the X axis direction plus side (see FIG. 2). ) Is omitted. Further, the electrode body 400 is illustrated in a simplified manner.
  • the tab portion 420 of the electrode body 400 and the negative electrode current collector 150 are electrically connected via a negative electrode lead plate 155 having a U-shaped cross section.
  • a connection structure is produced, for example, by the following procedure.
  • the end portion (first end portion) of the flat negative electrode lead plate 155 and the tab portion 420 of the electrode body 400 are joined by, for example, ultrasonic welding. Further, the end (second end) opposite to the first end of the negative electrode lead plate 155 is joined to the negative electrode current collector 150 incorporated in the lid plate structure 180 by, for example, laser welding. Thereafter, the negative electrode lead plate 155 is deformed into a U shape by being bent at a predetermined position between the first end and the second end. As a result, as shown in FIG. 11, a connection structure between the tab portion 420 of the electrode body 400 and the negative electrode current collector 150 is formed via the negative electrode lead plate 155 having a U-shaped cross section.
  • the upper spacer 500 is disposed between the end of the main body 430 on the side where the tab 420 is provided and the cover plate 110. More specifically, the joint portion between the tab portion 420 and the negative electrode lead plate 155 and the main body portion 430 of the electrode body 400 are partitioned by the upper spacer 500. The tab part 420 is inserted into the insertion part 520 provided in the upper spacer 500 and arranged. Further, a buffer sheet 600 is sandwiched between the upper spacer 500 and the main body 430 of the electrode body 400.
  • FIG. 11 the structure around the negative electrode lead plate 155 is shown and described, but the structure around the positive electrode lead plate 145 is the same. That is, the tab portion 410 of the electrode body 400 and the positive electrode current collector 140 are electrically connected via a positive electrode lead plate 145 (see, for example, FIG. 2) having a U-shaped cross section. Further, the joint portion between the tab portion 410 and the positive electrode lead plate 145 and the main body portion 430 of the electrode body 400 are partitioned by the upper spacer 500, and the tab portion 410 is inserted into the insertion portion 520 provided in the upper spacer 500. Inserted and placed.
  • the electrode body 400 is connected to the positive electrode current collector 140 and the negative electrode current collector 150 via the positive electrode lead plate 145 and the negative electrode lead plate 155, so that the tab portions 410 and 420 of the electrode body 400 are provided.
  • the width (length in the winding axis direction (Z-axis direction)) of the electrode plates of the positive electrode 450 and the negative electrode 460 necessary for manufacturing the electrode body 400 can be made relatively short. This is advantageous from the viewpoint of manufacturing efficiency of the electrode body 400, for example.
  • the binding sheet 360 is arrange
  • FIG. 12 is a perspective view showing a binding state of the binding sheet 360 with respect to the electrode body 400 according to the embodiment.
  • a binding sheet 360 is wound around the main body 430 of the electrode body 400.
  • the binding sheet 360 is a belt-like member that stabilizes the form of the main body portion 430 and is wound around the outer peripheral portion of the main body portion 430.
  • One end of the binding sheet 360 is overlapped with the other end, and the ends of the binding sheet 360 are fixed with an adhesive tape 390.
  • the ends of the binding sheet 360 may be fixed by an adhesive, heat welding, or the like.
  • An annular binding member may be used.
  • the binding sheet 360 is made of an insulating material having resistance to electrolyte. Specific examples of the insulating material include PC, PP, PE, and PPS. Note that the step of winding the binding sheet 360 around the main body 430 may be omitted when the form of the main body 430 is stable.
  • the adhesive tapes 370, 380, and 390 are formed of an insulating material whose base material has resistance to electrolytic solution. Specific examples of the insulating material include PC, PP, PE, and PPS. Further, the adhesive layer provided on one surface of the base material of the adhesive tapes 370 and 380 is also formed of an adhesive having an electrolytic solution resistance and an insulating property.
  • the tab portion 410 of the electrode body 400 is welded to the flat plate to be the positive electrode lead plate 145, and the tab portion 420 of the electrode body 400 is welded to the flat plate to be the negative electrode lead plate 155.
  • a flat plate serving as the positive electrode lead plate 145 is welded to the positive electrode current collector 140 of the cover plate structure 180, and the negative electrode lead plate 155 is bonded to the negative electrode current collector 150.
  • the positive electrode lead plate 145 and the negative electrode lead plate 155 are formed by bending the flat plate to be the positive electrode lead plate 145 and the flat plate to be the negative electrode lead plate 155, respectively.
  • the side spacer 700 is attached to the main body 430 of the electrode body 400. Specifically, as shown in FIG. 7, the side spacers 700 are individually attached to the curved portions 431 and 432 of the main body portion 430. On the curved portion 431 side, the positioning portion 715 of the side spacer 700 is engaged with the engaging portion 121 of the lower insulating member 120 which is a part of the lid plate structure 180, and the position of both is determined. 700 is fixed to the main body 430 with an adhesive tape 380. On the other hand, the side spacer 700 is fixed to the main body 430 with the adhesive tape 380 in the same process on the curved portion 432 side. After the fixing, as shown in FIG. 10, the cover plate 110 that is a part of the cover plate structure 180 is in contact with the base 710 that is one end of the side spacer 700.
  • the binding sheet 360 is wound around the main body 430 of the electrode body 400, and the ends of the binding sheet 360 are fixed with the adhesive tape 390.
  • FIG. 13 is a perspective view showing one step of the method for manufacturing the electricity storage device 10 according to the embodiment.
  • the electrode body 400 around which the binding sheet 360 is wound is accommodated in the main body 111 of the container 100 in that state.
  • the base 710 of the side spacer 700 is in contact with the lid plate 110 of the lid plate structure 180, when the lid plate structure 180 is pushed, The electrode body 400 moves toward the inside of the main body 111 of the container 100. During movement, the side spacer 700 slides along the inner peripheral surface of the main body 111, so that the electrode body 400 is smoothly guided to the inside of the main body 111.
  • FIG. 14 is a cross-sectional view showing a positional relationship among the side spacer 700, the electrode body 400, and the container 100 according to the embodiment.
  • the outer shape of the curved portion 432 of the main body portion 430 of the electrode body 400 is indicated by a two-dot chain line.
  • the side spacer 700 is disposed along the side surface forming the short side of the housing recess 112 when viewed from the winding axis direction.
  • the inner surface of the housing recess 112 has an R shape at the corner. Since the outer surface of the wall body 720 of the side spacer 700 is a smooth convex curved surface so as to correspond to this R shape, the side spacer 700 is in close contact with the main body 111 and stably holds the electrode body 400. It will be.
  • the curved portion 432 of the electrode body 400 is disposed in the opening 740 of the side spacer 700 so that a part of the surface of the curved portion 432 is flush with the outer surface of the wall body 720.
  • the main body 430 of the electrode body 400 can be firmly accommodated in the main body 111 while using the side spacer 700.
  • the electrode body 400 or the like is accommodated in the main body 111 of the container 100, one end of the main body portion 430 of the electrode body 400 faces the cover plate structure 180.
  • the cover plate 110 is welded to the main body 111 to assemble the container 100.
  • the storage element 10 is manufactured by welding the injection plug 118 to the lid plate 110 and closing the injection port 117.
  • part of the cover plate structure 180 is in contact with one end of the side spacer 700 attached to the electrode body 400, so that the electrode body 400 is incorporated into the container 100.
  • the electrode body 400 enters the container 100 together with the side spacer 700. Therefore, the electrode body 400 can be accommodated in the container 100 without being pressed directly, and damage to the electrode body 400 during manufacturing can be suppressed.
  • the side spacer 700 extends from one end portion to the other end portion of the electrode body 400, when the electrode body 400 is accommodated in the container 100, the side spacer 700 can be slid with respect to the container 100 to the end. it can. Therefore, the electrode body 400 can be easily guided into the container 100.
  • the bottom plate 730 that covers a part of the other end portion of the electrode body 400 is provided at the other end portion of the side spacer 700, a part of the other end portion of the electrode body 400 is accommodated after being housed in the container 100. Contact with the container 100 can be prevented. Therefore, damage to the electrode body 400 can be further suppressed.
  • the top plate 711 that covers a part of one end of the electrode body 400 is provided on the side spacer 700, it is possible to prevent one end of the electrode body 400 from contacting the container 100 after being stored in the container 100. be able to. Therefore, damage to the electrode body 400 can be further suppressed.
  • the engaging portion 131 of the lid plate structure 180 is engaged with the positioning portion 715 of the side spacer 700, whereby the position of the lid plate structure 180 with respect to the side spacer 700 is determined. Therefore, the electrode body 400 can be accommodated in the container 100 in a state where the positional relationship between the side spacer 700 and the lid plate structure 180 is stabilized.
  • the lower insulating member 130 is provided between the lid plate 110 and the electrode body 400, the insulation between the lid plate 110 and the electrode body 400 can be maintained by the lower insulating member 130. Moreover, since the engaging part 131 is provided in the lower insulating member 130, the position of the lower insulating member 130 can be stabilized.
  • the side spacer 700 since one end portion of the side spacer 700 is separated from the electrode body 400 in the winding axis direction, the side spacer 700 does not interfere with one end portion of the electrode body 400 even when the lid plate structure 180 is pressed. Therefore, damage to the electrode body 400 during manufacturing can be further suppressed.
  • the electrode body 400 can be accommodated in the container 100 without being pressed directly, so that damage to the tab portions 410 and 420 can be suppressed. it can.
  • the portion of the lid plate structure 180 that contacts the side spacer 700 is the lid plate 110, it can be formed more easily than when the other portion contacts the side spacer 700.
  • the number of electrode bodies 400 included in the electricity storage element 10 is not limited to 1, and may be 2 or more.
  • the storage element 10 includes a plurality of electrode bodies 400, the dead space in the corner portion of the container 100 can be reduced as compared with the case where a single electrode body 400 is accommodated in the container 100 having the same volume (volume). For this reason, it becomes possible to increase the ratio of the electrode body 400 to the volume of the container 100, and as a result, the capacity
  • the positional relationship between the positive electrode side tab portion 410 and the negative electrode side tab portion 420 of the electrode body 400 is not particularly limited.
  • the tab portion 410 and the tab portion 420 may be disposed on opposite sides in the winding axis direction.
  • the positive-side tab portion and the negative-side tab portion may be provided so as to protrude in different directions.
  • the electrode body 400 included in the power storage element 10 does not have to be a winding type.
  • the power storage element 10 may include a stacked electrode body in which, for example, flat plate plates are stacked.
  • the electrical storage element 10 may be provided with the electrode body which has a structure which laminated
  • the side spacer 700 may have any shape as long as the curved portions 431 and 432 can be exposed from one end to the other end of the electrode body 400 in the winding axis direction.
  • the side spacers 700 integrally provided on the curved portions 431 and 432 of the electrode body 400 are individually provided is illustrated.
  • the side spacer may be divided.
  • FIG. 15 is a perspective view showing a state in which a modified example of the side spacer according to the embodiment is attached to the electrode body 400.
  • the same portions of the above embodiment may be denoted by the same reference numerals and description thereof may be omitted.
  • the side spacer 700A is obtained by dividing the side spacer 700 of the above-described embodiment at the approximate center in the Z-axis direction, and includes a first member 760 and a second member 770.
  • the first member 760 has a base 710 and a wall body 721.
  • the second member 770 includes a bottom plate 730 and a wall body 722.
  • the wall body of the first member 760 and the wall body 722 of the second member 770 are spaced apart from each other in the Z-axis direction.
  • the slit between the first wall body 721a and the second wall body 721b in the wall body 721 and the slit between the first wall body 722a and the second wall body 722b in the wall body 722 form an opening 740a.
  • the opening 740a Through the opening 740a, a part of the surface of the curved portions 431 and 432 is exposed from one end to the other end of the electrode body 400 in the winding axis direction.
  • FIG. 16 is a perspective view showing a state in which another modified example of the side spacer according to the embodiment is attached to the electrode body 400.
  • the side spacers 700B attached to the curved portions 431 and 432 are connected and integrated by a beam portion 780.
  • a beam portion 780 extending in the X-axis direction is stretched over one end portion of the pair of side spacers 700B.
  • the installation location of the beam portion 780 may be any location as long as the capacity of the electrode body 400 is not significantly reduced.
  • the rigidity can be increased and the assembly can be easily performed.
  • the outer surface of the wall body 720 of the side spacer 700 is a smooth convex curved surface
  • the outer surface of the wall 720 may have any shape as long as it corresponds to the inner surface shape of the main body 111 of the container 100.
  • FIG. 17 is a cross-sectional view showing the positional relationship between another modified example of the side spacer according to the embodiment and the container 100.
  • the main body 111 c of the container 100 ⁇ / b> C has a shape in which the inner surface has corner portions that are substantially perpendicular.
  • the outer surface of the wall body 720c of the side spacer 700C has a shape having substantially right-angled corners corresponding to the inner surface shape of the main body 111c. Also in this case, since the side spacer 700C is in close contact with the main body 111c, the electrode body 400 can be stably held.
  • the case where the cover plate 110 abuts on the base 710 which is one end of the side spacer 700 has been described as an example.
  • the object that contacts the base 710 may be a part other than the cover plate 110 as long as it is a part of the cover plate structure 180, and a member (for example, a member located inside the container 100 relative to the cover plate 110) Lower insulating members 120 and 130, positive electrode current collector 140, negative electrode current collector 150, etc.) may be used.
  • the positioning portion 715 of the side spacer 700 is the tip portion of the inner wall 714a, and the engaging portion 131 of the lid plate structure 180 has the notch portion 131a that engages with the positioning portion 715.
  • the positioning part 715 and the engaging part 131 may have any shape as long as they can be engaged and aligned.
  • the positioning portion 715 may be a boss that protrudes along the Z-axis direction, and a hole in which the boss is inserted may be provided in the engaging portion 131. In this case, movement in the X-axis direction in addition to the Y-axis direction can be restricted.
  • the power storage element 10 including the insulating sheet 350 and the binding sheet 360 has been described as an example, but the insulating sheet 350 and the binding sheet 360 are not essential.
  • the present invention can be applied to power storage elements such as lithium ion secondary batteries.

Abstract

蓄電素子(10)は、電極が巻回されてなる湾曲部(431)及び(432)を有する電極体(400)と、電極体(400)を収容する容器(100)と、容器(100)を閉塞する蓋板(110)を有する蓋板構造体(180)と、を備える。電極体(400)は、巻回軸方向における一端部が蓋板構造体(180)に対向して、容器(100)内に収容されている。蓄電素子(10)は、湾曲部(431)及び(432)に取り付けられたスペーサ(サイドスペーサ(700))であって、その一端部が前記蓋板構造体(180)の一部に当接しているスペーサを有する。

Description

蓄電素子及び蓄電素子の製造方法
 本発明は、蓄電素子及び蓄電素子の製造方法に関する。
 従来、蓄電素子においては、電極体にスペーサを取り付けた状態で容器に挿入することで組み立てられる蓄電素子が知られている(例えば特許文献1参照)。
特開2011-216239号公報
 しかしながら、電極体とスペーサとを取り付けた状態で電極体を容器に挿入する際には電極体自体を押圧して押し込む必要があり、挿入時に電極体を押しつぶしてしまう等、電極体を構成する極板に損傷を与えるおそれがある。
 本発明は、上記従来の課題を考慮し、製造時における電極体の損傷を抑制することを目的とする。
 上記目的を達成するために、本発明の一態様に係る蓄電素子は、電極が巻回されてなる湾曲部を有する電極体と、電極体を収容する容器と、容器を閉塞する蓋板を有する蓋板構造体とを備える蓄電素子であって、電極体は、巻回軸方向における一端部が蓋板構造体に対向して、容器内に収容されており、電極体の湾曲部に取り付けられたスペーサであって、その一端部が蓋板構造体の一部に当接しているスペーサを有する。
 本発明によれば、製造時における電極体の損傷を抑制することができる。
図1は、実施の形態に係る蓄電素子の外観を示す斜視図である。 図2は、実施の形態に係る蓄電素子の分解斜視図である。 図3は、実施の形態に係る蓋板構造体の分解斜視図である。 図4は、実施の形態に係る電極体の構成を示す斜視図である。 図5は、実施の形態に係る電極体の本体部に対する接着テープの接着状態を模式的に示す断面図である。 図6は、実施の形態に係るサイドスペーサを内方から見た正面図である。 図7は、図6におけるVII-VII線を通るXY平面で切断した場合のサイドスペーサの断面図である。 図8は、実施の形態に係るサイドスペーサの上面視図である。 図9は、実施の形態に係るサイドスペーサと電極体との組付け状態を示す斜視図である。 図10は、実施の形態に係る蓋板構造体とサイドスペーサとの位置決め後における位置関係を示す側面図である。 図11は、実施の形態に係る蓋板構造体及びその周辺の構造を示す断面概要図である。 図12は、実施の形態に係る電極体に対する結束シートの結束状態を示す斜視図である。 図13は、実施の形態に係る蓄電素子の製造方法の一工程を示す斜視図である。 図14は、実施の形態に係るサイドスペーサと、電極体と、容器との位置関係を示す断面図である。 図15は、実施の形態に係るサイドスペーサの変形例が電極体に取り付けられた状態を示す斜視図である。 図16は、実施の形態に係るサイドスペーサの他の変形例が電極体に取り付けられた状態を示す斜視図である。 図17は、実施の形態に係るサイドスペーサの他の変形例と、容器との位置関係を示す断面図である。
 上記目的を達成するために、本発明の一態様に係る蓄電素子は、電極が巻回されてなる湾曲部を有する電極体と、電極体を収容する容器と、容器を閉塞する蓋板を有する蓋板構造体とを備える蓄電素子であって、電極体は、巻回軸方向における一端部が蓋板構造体に対向して、容器内に収容されており、電極体の湾曲部に取り付けられたスペーサであって、その一端部が蓋板構造体の一部に当接しているスペーサを有する。
 この構成によれば、電極体に取り付けられたスペーサの一端部に蓋板構造体の一部が当接しているので、容器に電極体を組み込む際に蓋板構造体を押圧すれば、スペーサとともに電極体が容器内に進入することになる。したがって、電極体を直接押圧しなくとも容器内に収容することができ、製造時における電極体の損傷を抑制することができる。
 また、本発明の一態様に係る蓄電素子は、スペーサが電極体の巻回軸方向における一端部から他端部まで延在していてもよい。
 この構成によれば、電極体の一端部から他端部までスペーサが延在しているので、電極体を容器に収容する際に最後までスペーサを容器に対してスライドさせることができる。したがって、電極体を容易に容器内へ案内することができる。
 また、本発明の一態様に係る蓄電素子は、スペーサが、巻回軸方向における他端部に、電極体の他端部の一部を覆う底板を有していてもよい。
 この構成によれば、スペーサの他端部に、電極体の他端部の一部を覆う底板が設けられているので、容器に収納した後に、電極体の他端部の一部が容器に接触することを防止することができる。したがって、電極体の損傷をより抑制することができる。
 また、本発明の一態様にかかる蓄電素子は、スペーサは、電極体の巻回軸方向の一端部と容器との間に介在し、電極体の一端部の一部を覆う天板を有していてもよい。
 この構成によれば、電極体の一端部の一部を覆う天板がスペーサに設けられているので、容器に収納した後に、電極体の一端部が容器に接触することを防止することができる。したがって、電極体の損傷をより抑制することができる。
 また、本発明の一態様に係る蓄電素子は、スペーサは、蓋板構造体を位置決めする位置決め部を有し、蓋板構造体には、位置決め部に係合する係合部が設けられていてもよい。
 この構成によれば、スペーサの位置決め部に蓋板構造体の係合部が係合することで、スペーサに対する蓋板構造体の位置が決められる。したがって、スペーサと蓋板構造体との位置関係を安定させた状態で、容器に電極体を収容することができる。
 また、本発明の一態様に係る蓄電素子は、蓋板構造体は、蓋板と電極体との間に配置された絶縁部材を有し、絶縁部材に係合部が設けられていてもよい。
 この構成によれば、蓋板と電極体との間に絶縁部材が設けられているので、蓋板-電極体間の絶縁性を絶縁部材によって維持することができる。また、絶縁部材に係合部が設けられているので、絶縁部材の位置を安定させることができる。
 また、本発明の一態様に係る蓄電素子は、スペーサの一端部は、巻回軸方向で電極体から離間していてもよい。
 この構成によれば、スペーサの一端部が、巻回軸方向で電極体から離間しているので、蓋板構造体を押したとしてもスペーサが電極体の一端部に干渉しない。したがって、製造時における電極体の損傷をより抑制することができる。
 また、本発明の一態様に係る蓄電素子は、蓋板構造体は集電体を有し、電極体は、集電体に電気的に接続されるタブ部を有していてもよい。
 この構成によれば、タブ部が電極体に設けられていたとしても、電極体を直接押圧せずに容器に収容することができるので、タブ部の損傷を抑制することができる。
 また、本発明の一態様に係る蓄電素子は、電極が巻回されてなる電極体と、電極体を収容する容器とを備える蓄電素子であって、容器を閉塞する蓋板を有する蓋板構造体を備え、電極体は、巻回軸方向における一端部が蓋板構造体に対向して、容器内に収容されており、電極体に取り付けられたスペーサであって、その一端部が蓋板構造体の一部に当接しているスペーサを有する。
 この構成によれば、電極体に取り付けられたスペーサの一端部に蓋板構造体の一部が当接しているので、容器に電極体を組み込む際に蓋板構造体を押圧すれば、スペーサとともに電極体が容器内に進入することになる。したがって、電極体を直接押圧しなくとも容器内に収容することができ、製造時における電極体の損傷を抑制することができる。
 また、本発明の一態様に係る蓄電素子の製造方法は、電極が巻回されてなる湾曲部を有する電極体を収容する容器と、容器を閉塞する蓋板を有する蓋板構造体と、電極体に取り付けられたスペーサと、を備える蓄電素子の製造方法であって、電極体に取り付けられたスペーサにおける蓋板構造体側の一端部に蓋板構造体の一部を当接させた状態で蓋板構造体を押すことで、電極体の、巻回軸方向における一端部を蓋板構造体に対向させながら、電極体を容器に収容する。
 この構成によれば、スペーサの一端部に蓋板構造体の一部を当接させた状態で蓋板構造体を押すことで、電極体を容器内に収容しているので、電極体を直接押圧しなくとも容器内に収容することができ、製造時における電極体の損傷を抑制することができる。
 以下、図面を参照しながら、本発明の実施の形態における蓄電素子について説明する。なお、各図は、模式図であり、必ずしも厳密に図示したものではない。
 また、以下で説明する実施の形態は、本発明の一具体例を示すものである。以下の実施の形態で示される形状、材料、構成要素、構成要素の配置位置及び接続形態、製造工程の順序などは一例であり、本発明を限定する主旨ではない。また、以下の実施の形態における構成要素のうち、最上位概念を示す独立請求項に記載されていない構成要素については、任意の構成要素として説明される。
 まず、図1~図3を用いて、実施の形態における蓄電素子10の全般的な説明を行う。
 図1は、実施の形態に係る蓄電素子10の外観を示す斜視図である。図2は、実施の形態に係る蓄電素子10の分解斜視図である。図3は、実施の形態に係る蓋板構造体180の分解斜視図である。なお、図3では、蓋板構造体180が有する正極集電体140及び負極集電体150に接合される正極リード板145及び負極リード板155は、破線で図示されている。
 また、図1及び以降の図について、説明の便宜のため、Z軸方向を上下方向として説明しているが、実際の使用態様において、Z軸方向と上下方向とが一致しない場合もある。
 蓄電素子10は、電気を充電し、また、電気を放電することのできる二次電池である。具体的には、蓄電素子10は、リチウムイオン二次電池などの非水電解質二次電池である。蓄電素子10は、例えば、電気自動車(EV)、ハイブリッド電気自動車(HEV)またはプラグインハイブリッド電気自動車(PHEV)等に適用される。なお、蓄電素子10は、非水電解質二次電池には限定されず、非水電解質二次電池以外の二次電池であってもよいし、キャパシタであってもよい。また、蓄電素子10は一次電池であってもよい。
 図1及び図2に示すように、蓄電素子10は、電極体400と、電極体400を収容する容器100とを備える。本実施の形態では、容器100の蓋板110に各種の要素が配置されることで構成された蓋板構造体180が、電極体400の上方に配置されている。容器100内においては、電極体400は、その一端部が蓋板構造体180に対向している。
 蓋板構造体180は、容器100の蓋板110、正極端子200、負極端子300、上部絶縁部材125及び135、下部絶縁部材120及び130、正極集電体140並びに負極集電体150を有する。
 正極端子200は、正極集電体140を介して電極体400の正極と電気的に接続され、負極端子300は、負極集電体150を介して電極体400の負極と電気的に接続される。これら正極端子200等の、電極体400と電気的に接続される導電部材のそれぞれは、下部絶縁部材120等の絶縁部材によって容器100と絶縁されている。
 上部絶縁部材125及び135並びに下部絶縁部材120及び130のそれぞれは、少なくとも一部が、容器100の壁部と導電部材との間に配置された絶縁部材である。本実施の形態では、略直方体の外形を有する容器100を形成する6つの壁部のうちの、上壁部を形成する蓋板110に沿って各絶縁部材が配置されている。
 本実施の形態に係る蓄電素子10は、上記構成に加え、蓋板構造体180と電極体400との間に配置された、上部スペーサ500と緩衝シート600とを有する。
 上部スペーサ500は、電極体400と蓋板110との間に配置され、蓋板構造体180の一部に係止される係止部510を有している。
 具体的には、上部スペーサ500は全体として平板状であり、かつ、2つの係止部510と、タブ部410及び420が挿入される(タブ部410及び420を貫通させる)2つの挿入部520とを有している。本実施の形態では、挿入部520は、上部スペーサ500において切り欠き状に設けられている。上部スペーサ500は、例えば、ポリカーボネート(PC)、ポリプロピレン(PP)、ポリエチレン(PE)、または、ポリフェニレンサルファイド樹脂(PPS)等の絶縁性を有する素材によって形成されている。
 上部スペーサ500は、例えば、電極体400の上方(蓋板110の方向)への移動を直接的もしくは間接的に規制する部材、または、蓋板構造体180と電極体400との間における短絡を防止する部材として機能する。上部スペーサ500は、2つの係止部510を有し、2つの係止部510のそれぞれは、蓋板構造体180が有する取付部122または132に係止される。
 緩衝シート600は、発泡ポリエチレンなどの、柔軟性の高い多孔質な素材で形成されており、電極体400と上部スペーサ500との間の緩衝材として機能する部材である。
 また、本実施の形態では、電極体400の、電極体400と蓋板110との並び方向(Z軸方向)に交差する方向の側面(本実施の形態ではX軸方向の両側面)と、容器100の内周面との間にサイドスペーサ(スペーサ)700が配置されている。サイドスペーサ700は、例えば、電極体400の位置を規制する役割を果たしている。サイドスペーサ700の具体的な構成については、後述する。
 なお、蓄電素子10は、図1~図3に図示された要素に加え、電極体400と容器100(本体111)の底113との間に配置された緩衝シートなど、他の要素を備えてもよい。また、蓄電素子10の容器100の内部には電解液(非水電解質)が封入されているが、電解液の図示は省略する。
 容器100は、本体111と、蓋板110とを備える。本体111及び蓋板110の材質は、特に限定されないが、例えばステンレス鋼、アルミニウム、アルミニウム合金など溶接可能な金属であるのが好ましい。
 本体111は、上面視矩形状の筒体であり、上面視矩形状の収容凹部112を備えるとともに、底113を備える。本体111の内方には、電極体400を覆う絶縁シート350が設けられている。
 本体111は、電極体400、絶縁シート350等を収容凹部112に収容後、蓋板110が溶接等されることにより、内部が密封されている。
 蓋板110は、収容凹部112の開口を閉塞する板状部材である。蓋板110には、図2及び図3に示されるように、ガス排出弁170、注液口117、貫通孔110a及び110b、並びに、2つの膨出部160が形成されている。ガス排出弁170は、容器100の内圧が上昇した場合に開放されることで、容器100の内部のガスを放出する役割を有する。
 注液口117は、蓄電素子10の製造時に電解液を注液するための貫通孔である。また、図1~図3に示すように、蓋板110には、注液口117を塞ぐように、注液栓118が配置されている。つまり、蓄電素子10の製造時に、注液口117から容器100内に電解液を注入し、注液栓118を蓋板110に溶接して注液口117を塞ぐことで、電解液が容器100内に収容される。
 なお、容器100に封入される電解液としては、蓄電素子10の性能を損なうものでなければその種類に特に制限はなく様々なものを選択することができる。
 2つの膨出部160のそれぞれは、本実施の形態では、蓋板110の一部が膨出状に形成されていることで蓋板110に設けられており、例えば、上部絶縁部材125または135の位置決めに利用される。また、膨出部160の裏側(電極体400に対向する側)には上方に凹状の部分である凹部(図示せず)が形成されており、凹部の一部に、下部絶縁部材120または130の係合突部120bまたは130bが係合する。これにより、下部絶縁部材120または130も位置決めされ、その状態で蓋板110に固定される。
 上部絶縁部材125は、正極端子200と蓋板110とを電気的に絶縁する部材である。下部絶縁部材120は、正極集電体140と蓋板110とを電気的に絶縁する部材である。上部絶縁部材135は、負極端子300と蓋板110とを電気的に絶縁する部材である。下部絶縁部材130は、負極集電体150と蓋板110とを電気的に絶縁する部材である。上部絶縁部材125及び135は、例えば上部ガスケットと呼ばれる場合もあり、下部絶縁部材120及び130は、例えば下部ガスケットと呼ばれる場合もある。つまり、本実施の形態では、上部絶縁部材125及び135並びに下部絶縁部材120及び130は、電極端子(200または300)と容器100との間を封止する機能も有している。
 なお、上部絶縁部材125及び135、並びに、下部絶縁部材120及び130は、例えば上部スペーサ500と同様に、PC、PP、PE、またはPPS等の絶縁性を有する素材によって形成されている。また、下部絶縁部材120の、注液口117の直下に位置する部分には、注液口117から流入する電解液を電極体400の方向に導く貫通孔126が設けられている。
 また、下部絶縁部材120及び130には、サイドスペーサ700に係合する係合部121及び131が設けられている。具体的には、係合部121及び131は、下部絶縁部材120及び130の外側の一端部から突出している。係合部121及び131がサイドスペーサ700に係合することによって、サイドスペーサ700に対する下部絶縁部材120及び130の位置が決められる。ひいてはサイドスペーサ700に対する蓋板構造体180の位置が決められる。この係合部121及び131とサイドスペーサ700との係合状態については後述する。
 図1~図3に示すように、正極端子200は、正極集電体140を介して、電極体400の正極に電気的に接続された電極端子である。負極端子300は、負極集電体150を介して、電極体400の負極に電気的に接続された電極端子である。つまり、正極端子200及び負極端子300は、電極体400に蓄えられている電気を蓄電素子10の外部空間に導出し、また、電極体400に電気を蓄えるために蓄電素子10の内部空間に電気を導入するための金属製の電極端子である。なお、正極端子200及び負極端子300は、アルミニウムまたはアルミニウム合金などで形成されている。
 また、正極端子200には、容器100と正極集電体140とを締結する締結部210が設けられている。負極端子300には、容器100と負極集電体150とを締結する締結部310が設けられている。
 締結部210は、正極端子200から下方に延設された部材(リベット)であり、正極集電体140の貫通孔140aに挿入されてかしめられる。具体的には、締結部210は、上部絶縁部材125の貫通孔125a、蓋板110の貫通孔110a、下部絶縁部材120の貫通孔120a、及び、正極集電体140の貫通孔140aに挿入されてかしめられる。これにより、正極端子200と正極集電体140とが電気的に接続され、正極集電体140は、正極端子200、上部絶縁部材125及び下部絶縁部材120とともに、蓋板110に固定される。
 締結部310は、負極端子300から下方に延設された部材(リベット)であり、負極集電体150の貫通孔150aに挿入されてかしめられる。具体的には、締結部310は、上部絶縁部材135の貫通孔135a、蓋板110の貫通孔110b、下部絶縁部材130の貫通孔130a、及び、負極集電体150の貫通孔150aに挿入されてかしめられる。これにより、負極端子300と負極集電体150とが電気的に接続され、負極集電体150は、負極端子300、上部絶縁部材135及び下部絶縁部材130とともに、蓋板110に固定される。
 なお、締結部210は、正極端子200との一体物として形成されていてもよく、正極端子200とは別部品として作製された締結部210が、かしめまたは溶接などの手法によって正極端子200に固定されていてもかまわない。締結部310と負極端子300との関係についても同様である。
 正極集電体140は、電極体400と容器100との間に配置され、電極体400と正極端子200とを電気的に接続する部材である。正極集電体140は、アルミニウムまたはアルミニウム合金などで形成されている。本実施の形態では、正極集電体140は、リード板としての正極リード板145を介して電極体400の正極側のタブ部410と電気的に接続される。正極リード板145は、正極集電体140と同様に、アルミニウムまたはアルミニウム合金などで形成されている。
 負極集電体150は、電極体400と容器100との間に配置され、電極体400と負極端子300とを電気的に接続する部材である。負極集電体150は、銅または銅合金などで形成されている。本実施の形態では、負極集電体150は、リード板としての負極リード板155を介して電極体400の負極側のタブ部420と電気的に接続される。負極リード板155は、負極集電体150と同様に、銅または銅合金などで形成されている。
 なお、リード板を介した集電体とタブ部との接続部分の詳細については後述する。
 次に、電極体400の構成について、図4を用いて説明する。
 図4は、実施の形態に係る電極体400の構成を示す斜視図である。なお、図4は、電極体400の巻回状態を一部展開して図示している。
 電極体400は、電気を蓄えることができる蓄電要素(発電要素)である。電極体400は、正極450及び負極460と、セパレータ470a及び470bとが交互に積層されかつ巻回されることで形成されている。つまり、電極体400は、正極450と、セパレータ470aと、負極460と、セパレータ470bとがこの順に積層され、かつ、断面が長円形状になるように巻回されることで形成されている。
 正極450は、アルミニウムまたはアルミニウム合金などからなる長尺帯状の金属箔である正極基材層の表面に、正極活物質層が形成された電極板である。なお、正極活物質層に用いられる正極活物質としては、リチウムイオンを吸蔵放出可能な正極活物質であれば、適宜公知の材料を使用できる。例えば、正極活物質として、LiMPO、LiMSiO、LiMBO(MはFe、Ni、Mn、Co等から選択される1種または2種以上の遷移金属元素)等のポリアニオン化合物、チタン酸リチウム、マンガン酸リチウム等のスピネル化合物、LiMO(MはFe、Ni、Mn、Co等から選択される1種または2種以上の遷移金属元素)等のリチウム遷移金属酸化物等を用いることができる。
 負極460は、銅または銅合金などからなる長尺帯状の金属箔である負極基材層の表面に、負極活物質層が形成された電極板である。なお、負極活物質層に用いられる負極活物質としては、リチウムイオンを吸蔵放出可能な負極活物質であれば、適宜公知の材料を使用できる。例えば、負極活物質として、リチウム金属、リチウム合金(リチウム-アルミニウム、リチウム-鉛、リチウム-錫、リチウム-アルミニウム-錫、リチウム-ガリウム、及びウッド合金等のリチウム金属含有合金)の他、リチウムを吸蔵・放出可能な合金、炭素材料(例えば黒鉛、難黒鉛化炭素、易黒鉛化炭素、低温焼成炭素、非晶質カーボン等)、金属酸化物、リチウム金属酸化物(LiTi12等)、ポリリン酸化合物などが挙げられる。
 セパレータ470a及び470bは、樹脂からなる微多孔性のシートである。なお、蓄電素子10に用いられるセパレータ470a及び470bの素材としては、蓄電素子10の性能を損なうものでなければ適宜公知の材料を使用できる。
 正極450は、巻回軸方向の一端において外方に突出する複数の突出部411を有する。負極460も同様に、巻回軸方向の一端において外方に突出する複数の突出部421を有する。これら、複数の突出部411及び複数の突出部421は、活物質が塗工されず基材層が露出した部分(活物質未塗工部)である。
 なお、巻回軸とは、正極450及び負極460等を巻回する際の中心軸となる仮想的な軸であり、本実施の形態では、電極体400の中心を通るZ軸方向に平行な直線である。
 複数の突出部411と複数の突出部421とは、巻回軸方向の同一側の端(図4におけるZ軸方向プラス側の端)に配置され、正極450及び負極460が積層されることにより、電極体400の所定の位置で積層される。具体的には、複数の突出部411は、正極450が巻回によって積層されることにより、巻回軸方向の一端において周方向の所定の位置で積層される。また、複数の突出部421は、負極460が巻回によって積層されることにより、巻回軸方向の一端において、複数の突出部411が積層される位置とは異なる周方向の所定の位置で積層される。
 その結果、電極体400には、複数の突出部411が積層されることで形成されたタブ部410と、複数の突出部421が積層されることで形成されたタブ部420とが形成される。タブ部410は、例えば積層方向の中央に向かって寄せ集められて、正極リード板145と、例えば超音波溶接によって接合される。また、タブ部420は、例えば積層方向の中央に向かって寄せ集められて、負極リード板155と、例えば超音波溶接によって接合される。タブ部410と接合された正極リード板145は、正極集電体140と接合され、タブ部420と接合された正極リード板145は負極集電体150と接合される。
 なお、タブ部(410,420)は、電極体400において、電気の導入及び導出を行う部分であり、「リード(部)」、「集電部」等の他の名称が付される場合もある。
 ここで、タブ部410は、基材層が露出した部分である突出部411が積層されることで形成されているため、発電に寄与しない部分となる。同様に、タブ部420は、基材層が露出した部分である突出部421が積層されることで形成されているため、発電に寄与しない部分となる。一方、電極体400のタブ部410及び420と異なる部分は、基材層に活物質が塗工された部分が積層されることで形成されているため、発電に寄与する部分となる。以降、当該部分を本体部430と称する。本体部430のX軸方向における両端部は、その外周面が湾曲した湾曲部431及び432となる。このように、電極体400は、湾曲部431及び432を2つ有する長円状に形成されている。
 また、本体部430における巻回軸方向(Z軸方向)の一端部及び他端部には、それぞれ3箇所に接着テープ370が取り付けられており、巻きズレが防止されている(図9参照)。
 図5は、実施の形態に係る電極体400の本体部430に対する接着テープ370の接着状態を模式的に示す断面図である。
 図5では、本体部430の下端部に貼り付けられた一つの接着テープ370と、当該接着テープ370の両端部により挟まれた正極450、負極460、セパレータ470a及び470bの状態を示している。その他の接着テープ370における接着状態についても同様であるのでその説明を省略する。なお、図5においては、正極450、負極460、セパレータ470a及び470bは、実際の巻回数には対応しておらず、簡略化して示す。
 図5に示すように、セパレータ470a及び470bの端部は、正極450と負極460とからはみ出している。この接着テープ370は、セパレータ470a及び470bのはみ出し部分470c及び470dを中央に寄せるように、当該接着テープ370の両端部が本体部430の外周面に接着されている。これにより、接着テープ370のない部分においても、セパレータ470a及び470bのはみ出し部分470c及び470dが、本体部430の端部を閉塞することになり、本体部430の巻きズレを抑えつつ、本体部430内への異物混入を防止する。
 次に、サイドスペーサ700の具体的な構成について説明する。
 図6は実施の形態に係るサイドスペーサ700を内方から見た正面図である。図7は図6におけるVII-VII線を通るXY平面で切断した場合のサイドスペーサ700の断面図である。図8は実施の形態に係るサイドスペーサ700の上面視図である。なお、図6では、電極体400の本体部430の外形を二点鎖線で示している。また、図8では、下部絶縁部材130の係合部131がサイドスペーサ700に係合した状態を示している。正極側についても同様の構成であるので、ここでは説明を省略する。
 図6~図8に示すように、サイドスペーサ700は、巻回軸方向(Z軸方向)に延在する長尺状の部材であり、PC、PP、PE、またはPPS等の絶縁性を有する素材によって形成されている。サイドスペーサ700は、基部710と、壁体720と、底板730とを有する。
 基部710は、天板711と、壁部712とを有する。
 天板711は、一対の角部の一部がR形状となった上面視略矩形状に形成されている。この天板711の上面に壁部712が形成されている。
 壁部712は、周壁713と、内壁714とを有する。
 周壁713は、天板711の一辺に対応する部分を開放し、その他の天板711の辺に沿って天板711から立設している。内壁714は、周壁713の内方に配置されており、周壁713に連続して内方に向けて延在するように、平行に3つ天板711から立設している。周壁713及び内壁714は、Z軸方向の端面が面一となっている。また、3つの内壁714のうち、中央に配置される内壁714aは、他の2つの内壁714bよりもX軸方向に長く形成されている。この中央の内壁714aの先端部は、下部絶縁部材120及び130の係合部121及び131が係合する位置決め部715である。
 壁体720は、Z軸方向に延在しており、その一端部には天板711が連結されていて、他端部には底板730が連結されている。壁体720におけるY軸方向における中央部には、壁体720を開放する開口部740が形成されている。開口部740は、天板711から底板730まで開放するようにZ軸方向に沿って形成されている。
 壁体720のうち、開口部740を挟んで対向する部分を第1壁体720a、第2壁体720bとする。第1壁体720a及び第2壁体720bは、Z軸方向における一端から他端まで一様な形状となっている。また、図7に示すように、第1壁体720a及び第2壁体720bの断面形状は、内表面が全体として滑らかな凹曲面となっている。他方、第1壁体720a及び第2壁体720bの外表面は、容器100の本体111の内面形状に対応するように、全体として滑らかな凸曲面となっている。
 底板730は、天板711と同様に、角部の一部がR形状となった上面視略矩形状に形成されている。この底板730の上面に壁体720が連結されている。
 次に、サイドスペーサ700を電極体400に組み付けた状態について図7及び図9に基づいて説明する。
 図9は、実施の形態に係るサイドスペーサ700と電極体400との組付け状態を示す斜視図である。
 図9に示すように、サイドスペーサ700は、電極体400の湾曲部431及び432に対して個別に取り付けられている。具体的には、サイドスペーサ700は、開口部740内に、湾曲部431及び432における巻回軸方向の一端部から他端部までが収容されるように、電極体400に取り付けられている。
 図7では、湾曲部432の外形を二点鎖線で示している。なお、湾曲部431及び432は概ね同じ外形であるため、ここでは、サイドスペーサ700と湾曲部432との位置関係を例示して説明し、サイドスペーサ700と湾曲部431との位置関係についての説明は省略する。図7に示すように、サイドスペーサ700は、湾曲部432の表面の一部に対して壁体720の外表面が面一となるように、電極体400に取り付けられている。ここで、湾曲部432の表面の一部は、湾曲部432の頂点部分を含む領域である。これにより、サイドスペーサ700の開口部740内に湾曲部432が収容される。また、壁体720の内表面は、凹曲面となっているので、湾曲部432の湾曲した表面形状を崩すことなく湾曲部432の表面に当接し、その形態を安定させる。
 そして、図9に示すように、サイドスペーサ700は、接着テープ380によって、電極体400の本体部430に固定される。具体的には、サイドスペーサ700は、Z軸方向に所定の間隔をあけた2箇所が接着テープ380によって本体部430に固定されている。
 サイドスペーサ700が電極体400の本体部430に固定されると、図9に示すように、サイドスペーサ700は、巻回軸方向における本体部430の一端部から他端部まで延在している。このとき、サイドスペーサ700の底板730は、本体部430の他端部を覆っている。また、サイドスペーサ700の一端部である基部710は、本体部430の一端から巻回軸方向で所定の隙間S1だけ離間している。
 次に、サイドスペーサ700と下部絶縁部材120及び130との接続状態について図8に基づいて説明する。
 なお、下部絶縁部材120及び130のそれぞれとサイドスペーサ700との接続状態は同等である。このため、以下では、下部絶縁部材130とサイドスペーサ700との接続状態を例示して説明し、下部絶縁部材120とサイドスペーサ700との接続状態についての説明は省略する。
 図8に示すように、係合部131は、下部絶縁部材130の外方の一端部から突出している。係合部131の両側部には、係合部131の全長にわたって延在するリブ133が設けられている。このリブ133によって、係合部131全体の強度が高められている。また、係合部131の先端の中央には、X軸方向に沿って凹んだ切欠き部131aが設けられている。切欠き部131aはサイドスペーサ700の天板711上で位置決め部715に係合する。具体的には、切欠き部131aは、Z軸方向で貫通されており、かつX軸方向プラス側が開放されているので、Z軸方向及びX軸方向から位置決め部715に係合可能となっている。切欠き部131aは、位置決め部715に係合すると、Z軸方向に交差する方向の移動、より具体的にはY軸方向の移動が位置決め部715によって規制される。つまり、下部絶縁部材130の全体のY軸方向の移動が規制されるので、この下部絶縁部材130を有する蓋板構造体180のY軸方向に移動も規制されて、蓋板構造体180の位置が決められる。
 図10は、実施の形態に係る蓋板構造体180とサイドスペーサ700との位置決め後における位置関係を示す側面図である。
 図10に示すように、サイドスペーサ700の一端部である基部710は、蓋板構造体180の一部である蓋板110に対して当接している。具体的には、基部710の壁部712の一端面が蓋板110に対して当接している。この状態においても、上述したように、基部710は、電極体400の本体部430の一端から巻回軸方向で所定の隙間S1だけ離間している(図6参照)。これにより、蓋板構造体180が上方から押圧されたとしても、その力が本体部430の一端部に作用することが抑制されている。
 次に、リード板を介した集電体とタブ部との接続部分の構成例について図11を用いて説明する。
 図11は、実施の形態に係る蓋板構造体180及びその周辺の構造を示す断面概要図である。なお、図11には、図3におけるXI-XI線を通るYZ平面で切断した場合の蓄電素子10の一部の断面が図示されており、X軸方向プラス側のサイドスペーサ700(図2参照)の図示は省略されている。また、電極体400は簡略化されて図示されている。
 図11に示すように、電極体400のタブ部420と、負極集電体150とは、断面がU字状の負極リード板155を介して電気的に接続されている。このような接続構造は、例えば以下の手順で作製される。
 平板状の負極リード板155の端部(第一端部)と電極体400のタブ部420とを、例えば超音波溶接によって接合する。さらに、負極リード板155の第一端部とは反対側の端部(第二端部)を、蓋板構造体180に組み込まれた負極集電体150と、例えばレーザー溶接によって接合する。その後、負極リード板155を、第一端部と第二端部との間の所定の位置で折り曲げることでU字状に変形させる。その結果、図11に示すように、断面がU字状の負極リード板155を介した、電極体400のタブ部420と負極集電体150との接続構造が形成される。
 そして、本体部430の、タブ部420が設けられた側の端部と蓋板110との間には、上部スペーサ500が配置されている。より詳細には、上部スペーサ500によって、タブ部420と負極リード板155との接合部分と、電極体400の本体部430とが仕切られている。タブ部420は、上部スペーサ500に設けられた挿入部520に挿入されて配置されている。また、上部スペーサ500と電極体400の本体部430との間には、緩衝シート600が挟まれている。
 なお、図11では負極リード板155周辺の構造について図示し、その説明を行ったが、正極リード板145周辺の構造も同様である。すなわち、電極体400のタブ部410と、正極集電体140とは、断面がU字状の正極リード板145(例えば図2参照)を介して電気的に接続されている。また、上部スペーサ500によって、タブ部410と正極リード板145との接合部分と、電極体400の本体部430とが仕切られており、タブ部410は、上部スペーサ500に設けられた挿入部520に挿入されて配置される。
 このように、電極体400と、正極集電体140及び負極集電体150とを、正極リード板145及び負極リード板155とを介して接続することで、電極体400のタブ部410及び420の長さ(巻回軸方向(Z軸方向)の長さ)を比較的短くすることができる。
 つまり、電極体400の製造に必要な、正極450及び負極460の電極板の幅(巻回軸方向(Z軸方向)の長さ)を比較的短くすることができる。このことは、例えば電極体400の製造効率の観点から有利である。
 そして、図11に示すように、電極体400の本体部430と、絶縁シート350との間には、結束シート360が配置されている。
 図12は、実施の形態に係る電極体400に対する結束シート360の結束状態を示す斜視図である。
 図12に示すように、電極体400の本体部430には、結束シート360が巻きつけられている。具体的には、結束シート360は、本体部430の形態を安定させる帯状部材であり、本体部430の外周部に巻きつけられている。結束シート360は、一端部が他端部に重ねられており、その結束シート360の端部同士が接着テープ390によって固定されている。なお、接着テープ390以外にも接着剤、熱溶着等によって結束シート360の端部同士を固定してもよい。また、環状の結束部材を用いてもよい。そして、結束シート360は、耐電解液性を有する絶縁材料から形成されている。絶縁材料としては、具体的には、PC、PP、PE、またはPPS等が挙げられる。なお、結束シート360を本体部430に巻き付ける工程は、本体部430の形態が安定している場合は省略してもよい。
 接着テープ370,380及び390は、基材が耐電解液性を有する絶縁材料から形成されている。絶縁材料としては、具体的には、PC、PP、PE、またはPPS等が挙げられる。また、接着テープ370及び380の基材の一面に設けられた接着層においても、耐電解液性及び絶縁性を有する接着剤により形成されている。
 次に、蓄電素子10の製造方法について説明する。
 まず、正極リード板145となる平板に電極体400のタブ部410を溶接するとともに、負極リード板155となる平板に電極体400のタブ部420を溶接する。その後、蓋板構造体180を組み立ててから、蓋板構造体180の正極集電体140に対して正極リード板145となる平板を溶接するとともに、負極集電体150に対して負極リード板155となる平板を溶接する。溶接後においては、正極リード板145となる平板と、負極リード板155となる平板とをそれぞれ折り曲げることで、正極リード板145及び負極リード板155を形成する。
 次いで、電極体400の本体部430に対してサイドスペーサ700を取り付ける。具体的には、図7に示すように、本体部430の湾曲部431及び432毎に個別にサイドスペーサ700を取り付ける。湾曲部431側においては、蓋板構造体180の一部である下部絶縁部材120の係合部121にサイドスペーサ700の位置決め部715を係合させて、両者の位置を決めてから、サイドスペーサ700を本体部430に接着テープ380で固定する。他方、湾曲部432側においても同様の工程で、サイドスペーサ700を本体部430に接着テープ380で固定する。固定後においては、図10に示すように、蓋板構造体180の一部である蓋板110が、サイドスペーサ700の一端部である基部710に当接した状態となる。
 次いで、図12に示すように、電極体400の本体部430に対して結束シート360を巻きつけて、接着テープ390で結束シート360の端部同士を固定する。
 図13は、実施の形態に係る蓄電素子10の製造方法の一工程を示す斜視図である。
 図13に示すように、結束シート360が巻きつけられた電極体400は、その状態で容器100の本体111に収容される。
 そして、図10に示すように、サイドスペーサ700の基部710が、蓋板構造体180の蓋板110に対して当接しているので、蓋板構造体180が押されることにより、サイドスペーサ700及び電極体400が容器100の本体111の内方に向けて移動する。移動時においては、サイドスペーサ700が本体111の内周面に沿ってスライドするので、スムーズに本体111の内方まで電極体400が案内される。
 図14は、実施の形態に係るサイドスペーサ700と、電極体400と、容器100との位置関係を示す断面図である。なお、図14においては、電極体400の本体部430の湾曲部432の外形を二点鎖線で示している。
 図14に示すように、サイドスペーサ700は、巻回軸方向から見て収容凹部112の短辺をなす側面に沿って配置されている。収容凹部112の内面形状は、角部がR形状となっている。このR形状に対応するように、サイドスペーサ700の壁体720の外表面が滑らかな凸曲面となっているので、サイドスペーサ700が本体111に密着して、電極体400を安定して保持することになる。また、湾曲部432の表面の一部と、壁体720の外表面とが面一となるように、電極体400の湾曲部432がサイドスペーサ700の開口部740内に配置されている。これにより、サイドスペーサ700を用いつつ、電極体400の本体部430を本体111内にみっしりと収容することができる。容器100の本体111に電極体400等が収容されると、電極体400は、本体部430の一端部が蓋板構造体180に対向する。
 その後、本体111に蓋板110を溶接して、容器100を組み立てる。
 次いで、注液口117から電解液を注液した後、注液栓118を蓋板110に溶接して注液口117を塞ぐことで、蓄電素子10が製造される。
 以上のように、本実施の形態によれば、電極体400に取り付けられたサイドスペーサ700の一端部に蓋板構造体180の一部が当接しているので、容器100に電極体400を組み込む際に蓋板構造体180を押圧すれば、サイドスペーサ700とともに電極体400が容器100内に進入することになる。したがって、電極体400を直接押圧しなくとも容器100内に収容することができ、製造時における電極体400の損傷を抑制することができる。
 また、電極体400の一端部から他端部までサイドスペーサ700が延在しているので、電極体400を容器100に収容する際に最後までサイドスペーサ700を容器100に対してスライドさせることができる。したがって、電極体400を容易に容器100内へ案内することができる。
 また、サイドスペーサ700の他端部に、電極体400の他端部の一部を覆う底板730が設けられているので、容器100に収納した後に、電極体400の他端部の一部が容器100に接触することを防止することができる。したがって、電極体400の損傷をより抑制することができる。
 また、電極体400の一端部の一部を覆う天板711がサイドスペーサ700に設けられているので、容器100に収納した後に、電極体400の一端部が容器100に接触することを防止することができる。したがって、電極体400の損傷をより抑制することができる。
 また、サイドスペーサ700の位置決め部715に蓋板構造体180の係合部131が係合することで、サイドスペーサ700に対する蓋板構造体180の位置が決められる。したがって、サイドスペーサ700と蓋板構造体180との位置関係を安定させた状態で、容器100に電極体400を収容することができる。
 また、蓋板110と電極体400との間に下部絶縁部材130が設けられているので、蓋板110-電極体400間の絶縁性を下部絶縁部材130によって維持することができる。また、下部絶縁部材130に係合部131が設けられているので、下部絶縁部材130の位置を安定させることができる。
 また、サイドスペーサ700の一端部が、巻回軸方向で電極体400から離間しているので、蓋板構造体180を押したとしてもサイドスペーサ700が電極体400の一端部に干渉しない。したがって、製造時における電極体400の損傷をより抑制することができる。
 また、タブ部410及び420が電極体400に設けられていたとしても、電極体400を直接押圧せずに容器100に収容することができるので、タブ部410及び420の損傷を抑制することができる。
 また、蓋板構造体180におけるサイドスペーサ700に当接する部分が、蓋板110であるので、他の部分をサイドスペーサ700に当接させる場合と比しても容易に形成することができる。
 (他の実施の形態)
 以上、本発明に係る蓄電素子について、実施の形態に基づいて説明した。しかしながら、本発明は、上記実施の形態に限定されるものではない。本発明の趣旨を逸脱しない限り、当業者が思いつく各種変形を上記実施の形態に施したものも、あるいは、上記説明された複数の構成要素を組み合わせて構築される形態も、本発明の範囲内に含まれる。
 例えば、蓄電素子10が備える電極体400の個数は1には限定されず、2以上であってよい。蓄電素子10が複数の電極体400を備える場合、同一体積(容積)の容器100に単数の電極体400を収容する場合に比べ、容器100のコーナー部のデッドスペースを減らすことができる。このため、容器100の容積に占める電極体400の割合を増加させることが可能となり、その結果、蓄電素子10の容量の増加が図られる。
 また、電極体400が有する正極側のタブ部410と負極側のタブ部420との位置関係は特に限定されない。例えば、巻回型の電極体400において、タブ部410とタブ部420とが巻回軸方向の互いに反対側に配置されていてもよい。また、蓄電素子10が、積層型の電極体を備える場合、積層方向から見た場合において、正極側のタブ部と負極側のタブ部とが異なる方向に突出して設けられていてもよい。
 また、蓄電素子10が備える電極体400は巻回型である必要はない。蓄電素子10は、例えば平板状極板を積層した積層型の電極体を備えてもよい。また、蓄電素子10は、例えば、長尺帯状の極板を山折りと谷折りとの繰り返しによって蛇腹状に積層した構造を有する電極体を備えてもよい。
 また、サイドスペーサ700は、巻回軸方向における電極体400の一端から他端まで湾曲部431及び432を露出できるのであればその形状は如何様でもよい。例えば、上記実施の形態では、電極体400の湾曲部431及び432にそれぞれ個別に一体のサイドスペーサ700が設けられている場合を例示した。しかしながら、サイドスペーサは分割されていてもよい。
 図15は、実施の形態に係るサイドスペーサの変形例が電極体400に取り付けられた状態を示す斜視図である。なお、以下の説明において、上記実施の形態の同一の部分においては、同一の符号を付してその説明を省略する場合がある。
 図15に示すように、サイドスペーサ700Aは、上記実施の形態のサイドスペーサ700をZ軸方向の略中央で分割したものであり、第1部材760と、第2部材770とを備える。第1部材760は、基部710と、壁体721とを有する。第2部材770は、底板730と、壁体722とを有する。第1部材760の壁体と、第2部材770の壁体722とは、Z軸方向に所定の間隔をあけている。また、壁体721における第1壁体721a及び第2壁体721bの間のスリットと、壁体722における第1壁体722a及び第2壁体722bの間のスリットとが、開口部740aを形成する。この開口部740aによって、巻回軸方向における電極体400の一端から他端まで湾曲部431及び432の表面の一部が露出されることになる。
 また、上記実施の形態では、電極体400の各湾曲部431及び432にそれぞれ個別にサイドスペーサ700が設けられている場合を例示して説明した。しかし、複数のサイドスペーサが一体化されていてもよい。
 図16は、実施の形態に係るサイドスペーサの他の変形例が電極体400に取り付けられた状態を示す斜視図である。
 図16に示すように、各湾曲部431及び432に取り付けられたサイドスペーサ700Bは、梁部780によって連結されて一体化されている。具体的には、一対のサイドスペーサ700Bの一端部には、X軸方向に延在する梁部780が掛け渡されている。梁部780の設置箇所は、電極体400の容量を大幅に低減しない範囲であればどの場所であってもよい。このように、一対のサイドスペーサ700Bが梁部780によって一体化されているので、剛性を高めることができ、組立を容易に行うことが可能である。
 また、上記実施の形態では、サイドスペーサ700の壁体720の外表面が滑らかな凸曲面である場合を例示して説明した。しかし、壁体720の外表面は、容器100の本体111の内面形状に対応していれば如何様の形状であってもよい。
 図17は、実施の形態に係るサイドスペーサの他の変形例と、容器100との位置関係を示す断面図である。
 図17に示すように、容器100Cの本体111cは、その内面形状が略直角の角部を有する形状となっている。サイドスペーサ700Cの壁体720cの外表面は、本体111cの内面形状に対応して、略直角の角部を有する形状となっている。この場合においても、サイドスペーサ700Cが本体111cに密着するので、電極体400を安定して保持することができる。
 また、上記実施の形態では、サイドスペーサ700の一端部である基部710に蓋板110が当接する場合を例示して説明した。しかし、基部710に当接する対象は、蓋板構造体180の一部であれば蓋板110以外の部分であってもよく、蓋板110よりも容器100の内方に位置する部材(例えば、下部絶縁部材120及び130、正極集電体140、負極集電体150等)でもよい。
 また、上記実施の形態では、サイドスペーサ700の位置決め部715が内壁714aの先端部であり、蓋板構造体180の係合部131が、位置決め部715に係合する切欠き部131aを有する場合を例示して説明した。しかし、位置決め部715及び係合部131の形状は、両者が係合し位置合わせできる形状であれば如何様でもよい。例えば、位置決め部715をZ軸方向に沿って突出するボスとして、前記ボスが挿入される孔を係合部131に設ける形態でもよい。この場合、Y軸方向に加えてX軸方向の移動も規制することができる。
 また、上記実施の形態では、絶縁シート350及び結束シート360を備える蓄電素子10を例示して説明したが、絶縁シート350及び結束シート360は必須ではない。
 なお、上記実施の形態及び上記変形例を任意に組み合わせて構築される形態も、本発明の範囲内に含まれる。
 本発明は、リチウムイオン二次電池などの蓄電素子等に適用できる。
10 蓄電素子
100,100C 容器
110 蓋板
110a 貫通孔
110b 貫通孔
111,111c 本体
112 収容凹部
113 底
117 注液口
118 注液栓
120,130 下部絶縁部材
120a,130a 貫通孔
120b,130b 係合突部
121,131 係合部
122,132 取付部
125,135 上部絶縁部材
125a,126,135a,140a,150a 貫通孔
131a 切欠き部
133 リブ
140 正極集電体
145 正極リード板150 負極集電体
155 負極リード板
160 膨出部
170 ガス排出弁
180 蓋板構造体
200 正極端子
210,310 締結部
300 負極端子
350 絶縁シート
360 結束シート
370,380,390 接着テープ
400 電極体
410,420 タブ部
411,421 突出部
430 本体部
431,432 湾曲部
450 正極
460 負極
470a,470b セパレータ
470c,470d はみ出し部分
500 上部スペーサ
510 係止部
520 挿入部
600 緩衝シート
700,700A,700B,700C サイドスペーサ(スペーサ)
710 基部
711 天板
712 壁部
713 周壁
714,714a,714b 内壁
715 位置決め部
720,720c,721,722 壁体
720a,721a,722a 第1壁体
720b,721b,722b 第2壁体
730 底板
740,740a 開口部
760 第1部材
770 第2部材
780 梁部

Claims (10)

  1.  電極が巻回されてなる湾曲部を有する電極体と、前記電極体を収容する容器と、前記容器を閉塞する蓋板を有する蓋板構造体と、を備える蓄電素子であって、
     前記電極体は、巻回軸方向における一端部が前記蓋板構造体に対向して、前記容器内に収容されており、
     前記電極体の前記湾曲部に取り付けられたスペーサであって、その一端部が前記蓋板構造体の一部に当接しているスペーサを有する
     蓄電素子。
  2.  前記スペーサは、前記電極体の前記巻回軸方向における一端部から他端部まで延在している
     請求項1に記載の蓄電素子。
  3.  前記スペーサは、前記巻回軸方向における他端部に、前記電極体の他端部の一部を覆う底板を有する
     請求項2に記載の蓄電素子。
  4.  前記スペーサは、前記電極体の巻回軸方向の一端部と容器との間に介在し、前記電極体の一端部の一部を覆う天板を有する
     請求項1~3のいずれか一項に記載の蓄電素子。
  5.  前記スペーサは、前記蓋板構造体を位置決めする位置決め部を有し、
     前記蓋板構造体には、前記位置決め部に係合する係合部が設けられている
     請求項1~4のいずれか一項に記載の蓄電素子。
  6.  前記蓋板構造体は、前記蓋板と前記電極体との間に配置された絶縁部材を有し、
     前記絶縁部材に前記係合部が設けられている
     請求項5に記載の蓄電素子。
  7.  前記スペーサの前記一端部は、前記巻回軸方向で前記電極体から離間している
     請求項1~6のいずれか一項に記載の蓄電素子。
  8.  前記蓋板構造体は集電体を有し、
     前記電極体は、前記集電体に電気的に接続されるタブ部を有する
     請求項1~7のいずれか一項に記載の蓄電素子。
  9.  電極が積層されてなる電極体と、前記電極体を収容する容器と、前記容器を閉塞する蓋板を有する蓋板構造体とを備える蓄電素子であって、
     前記電極体は、前記容器内に収容されており、
     前記電極体に取り付けられたスペーサであって、その一端部が前記蓋板構造体の一部に当接しているスペーサを有する
     蓄電素子。
  10.  電極が巻回されてなる湾曲部を有する電極体を収容する容器と、前記容器を閉塞する蓋板を有する蓋板構造体と、前記電極体に取り付けられたスペーサと、を備える蓄電素子の製造方法であって、
     前記電極体に取り付けられた前記スペーサにおける前記蓋板構造体側の一端部に前記蓋板構造体の一部を当接させた状態で前記蓋板構造体を押すことで、前記電極体の、前記巻回軸方向における一端部を前記蓋板構造体に対向させながら、前記電極体を前記容器に収容する
     蓄電素子の製造方法。
PCT/JP2016/077542 2015-09-18 2016-09-16 蓄電素子及び蓄電素子の製造方法 WO2017047787A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US15/760,929 US11081723B2 (en) 2015-09-18 2016-09-16 Energy storage device and energy storage device production method
DE112016004239.6T DE112016004239T5 (de) 2015-09-18 2016-09-16 Energiespeichervorrichtung und herstellungsverfahren der energiespeichervorrichtung
JP2017540024A JP6794988B2 (ja) 2015-09-18 2016-09-16 蓄電素子及び蓄電素子の製造方法
CN201680053289.0A CN108028342B (zh) 2015-09-18 2016-09-16 蓄电元件以及蓄电元件的制造方法
US17/371,713 US20210336288A1 (en) 2015-09-18 2021-07-09 Energy storage device and energy storage device production method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015186090 2015-09-18
JP2015-186090 2015-09-18

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US15/760,929 A-371-Of-International US11081723B2 (en) 2015-09-18 2016-09-16 Energy storage device and energy storage device production method
US17/371,713 Division US20210336288A1 (en) 2015-09-18 2021-07-09 Energy storage device and energy storage device production method

Publications (1)

Publication Number Publication Date
WO2017047787A1 true WO2017047787A1 (ja) 2017-03-23

Family

ID=58289402

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/077542 WO2017047787A1 (ja) 2015-09-18 2016-09-16 蓄電素子及び蓄電素子の製造方法

Country Status (5)

Country Link
US (2) US11081723B2 (ja)
JP (1) JP6794988B2 (ja)
CN (1) CN108028342B (ja)
DE (1) DE112016004239T5 (ja)
WO (1) WO2017047787A1 (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018147618A (ja) * 2017-03-02 2018-09-20 株式会社Gsユアサ 蓄電素子
WO2019131492A1 (ja) * 2017-12-27 2019-07-04 株式会社Gsユアサ 蓄電素子
WO2019131481A1 (ja) * 2017-12-27 2019-07-04 株式会社Gsユアサ 蓄電素子
JP2020035581A (ja) * 2018-08-28 2020-03-05 株式会社Gsユアサ 蓄電素子
WO2020110976A1 (ja) * 2018-11-28 2020-06-04 三洋電機株式会社 電池及びその製造方法
JP2023509716A (ja) * 2020-05-27 2023-03-09 寧徳時代新能源科技股▲分▼有限公司 二次電池、電池モジュール及び二次電池を電源として用いる装置
JP2023523108A (ja) * 2021-03-29 2023-06-02 寧徳新能源科技有限公司 セル、電池及び電力消費機器
JP7466654B2 (ja) 2020-05-27 2024-04-12 寧徳時代新能源科技股▲分▼有限公司 二次電池、電池モジュール及び二次電池を電源として用いる装置

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111200155A (zh) * 2018-11-19 2020-05-26 宁德新能源科技有限公司 电极组件及包括该电极组件的电池
CN112864542A (zh) * 2019-11-27 2021-05-28 江苏海四达电源股份有限公司 极柱结构及锂离子电池
CN112864512A (zh) * 2019-11-27 2021-05-28 江苏海四达电源股份有限公司 锂离子电池
CN211907597U (zh) * 2020-03-27 2020-11-10 宁德新能源科技有限公司 电芯和应用所述电芯的电池
JP7296923B2 (ja) * 2020-08-12 2023-06-23 プライムプラネットエナジー&ソリューションズ株式会社 角型電池
CN216450747U (zh) * 2021-09-30 2022-05-06 厦门海辰新能源科技有限公司 电池
DE102022125854A1 (de) 2022-10-06 2024-04-11 Volkswagen Aktiengesellschaft Batterie mit Gehäuse, Batterieelementeverbund und Führungselement

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006040899A (ja) * 2004-07-28 2006-02-09 Samsung Sdi Co Ltd 二次電池
JP2006278142A (ja) * 2005-03-29 2006-10-12 Sanyo Electric Co Ltd 渦巻式電極の角型電池
JP2011049064A (ja) * 2009-08-27 2011-03-10 Toshiba Corp 電池
JP2013161755A (ja) * 2012-02-08 2013-08-19 Toyota Industries Corp 蓄電装置、車両及び蓄電装置の製造方法
JP2013191544A (ja) * 2012-02-15 2013-09-26 Gs Yuasa Corp 蓄電素子及び蓄電素子の製造方法
JP2014011115A (ja) * 2012-07-02 2014-01-20 Toyota Industries Corp 蓄電装置

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100349908B1 (ko) * 1999-12-15 2002-08-22 삼성에스디아이 주식회사 각형 밀폐전지
CN101350428B (zh) 2008-08-26 2010-10-13 深圳市海盈科技有限公司 锂离子电池、以及锂离子电池的装配方法
CN101714624A (zh) 2009-09-11 2010-05-26 广州丰江电池新技术股份有限公司 一种螺旋线多极耳锂离子电池及其制造方法
CN201608211U (zh) * 2010-02-22 2010-10-13 东莞市良源电池科技有限公司 一种外壁设绝缘层的锂离子电池电芯
JP5437133B2 (ja) 2010-03-31 2014-03-12 古河電池株式会社 リチウムイオン電池及びリチウムイオン電池の製造方法
CN104600234B (zh) * 2010-06-21 2017-12-01 株式会社东芝 电池
CN202339951U (zh) 2011-11-16 2012-07-18 珠海汉格能源科技有限公司 一种多极耳的聚合物锂离子电池极片
JP2013110045A (ja) * 2011-11-24 2013-06-06 Hitachi Ltd 非水電解液捲回型二次電池
CN202454658U (zh) 2012-02-16 2012-09-26 浙江兴海能源科技有限公司 差节距极片及采用该差节距极片的动力电池
CN202434631U (zh) 2012-02-16 2012-09-12 浙江兴海能源科技有限公司 一种差节距极片及采用该差节距极片的动力电池
TW201414046A (zh) * 2012-09-19 2014-04-01 Dijiya Energy Saving Technology Inc 鋰電池結構
JP6225928B2 (ja) * 2015-02-09 2017-11-08 トヨタ自動車株式会社 二次電池
CN104916868A (zh) * 2015-07-03 2015-09-16 深圳市慧通天下科技股份有限公司 一种圆柱形锂离子动力电池及其制作工艺

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006040899A (ja) * 2004-07-28 2006-02-09 Samsung Sdi Co Ltd 二次電池
JP2006278142A (ja) * 2005-03-29 2006-10-12 Sanyo Electric Co Ltd 渦巻式電極の角型電池
JP2011049064A (ja) * 2009-08-27 2011-03-10 Toshiba Corp 電池
JP2013161755A (ja) * 2012-02-08 2013-08-19 Toyota Industries Corp 蓄電装置、車両及び蓄電装置の製造方法
JP2013191544A (ja) * 2012-02-15 2013-09-26 Gs Yuasa Corp 蓄電素子及び蓄電素子の製造方法
JP2014011115A (ja) * 2012-07-02 2014-01-20 Toyota Industries Corp 蓄電装置

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018147618A (ja) * 2017-03-02 2018-09-20 株式会社Gsユアサ 蓄電素子
WO2019131492A1 (ja) * 2017-12-27 2019-07-04 株式会社Gsユアサ 蓄電素子
WO2019131481A1 (ja) * 2017-12-27 2019-07-04 株式会社Gsユアサ 蓄電素子
JPWO2019131481A1 (ja) * 2017-12-27 2021-01-21 株式会社Gsユアサ 蓄電素子
JP2020035581A (ja) * 2018-08-28 2020-03-05 株式会社Gsユアサ 蓄電素子
JP7176300B2 (ja) 2018-08-28 2022-11-22 株式会社Gsユアサ 蓄電素子
WO2020110976A1 (ja) * 2018-11-28 2020-06-04 三洋電機株式会社 電池及びその製造方法
JPWO2020110976A1 (ja) * 2018-11-28 2021-10-07 三洋電機株式会社 電池及びその製造方法
JP7402175B2 (ja) 2018-11-28 2023-12-20 三洋電機株式会社 電池及びその製造方法
JP2023509716A (ja) * 2020-05-27 2023-03-09 寧徳時代新能源科技股▲分▼有限公司 二次電池、電池モジュール及び二次電池を電源として用いる装置
JP7466654B2 (ja) 2020-05-27 2024-04-12 寧徳時代新能源科技股▲分▼有限公司 二次電池、電池モジュール及び二次電池を電源として用いる装置
JP2023523108A (ja) * 2021-03-29 2023-06-02 寧徳新能源科技有限公司 セル、電池及び電力消費機器

Also Published As

Publication number Publication date
JP6794988B2 (ja) 2020-12-02
DE112016004239T5 (de) 2018-07-26
US20210336288A1 (en) 2021-10-28
CN108028342B (zh) 2021-09-24
US11081723B2 (en) 2021-08-03
US20180269523A1 (en) 2018-09-20
CN108028342A (zh) 2018-05-11
JPWO2017047787A1 (ja) 2018-08-09

Similar Documents

Publication Publication Date Title
WO2017047787A1 (ja) 蓄電素子及び蓄電素子の製造方法
CN108028343B (zh) 蓄电元件
JP6701211B2 (ja) 蓄電素子及び蓄電素子の製造方法
JP6766136B2 (ja) 蓄電素子
JP6739522B2 (ja) 蓄電素子
JP6857294B2 (ja) 蓄電素子及び蓄電素子の製造方法
JP7136177B2 (ja) 蓄電素子
JP2017059506A (ja) 蓄電素子及び蓄電素子の製造方法
EP3552258A1 (en) Energy storage device
JP6701210B2 (ja) 蓄電素子及び蓄電素子の製造方法
WO2018159581A1 (ja) 蓄電素子
JP2017157355A (ja) 蓄電素子
JP6726738B2 (ja) 蓄電素子
JP2018056081A (ja) 蓄電素子
JP2018147618A (ja) 蓄電素子

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16846658

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017540024

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15760929

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 112016004239

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16846658

Country of ref document: EP

Kind code of ref document: A1