WO2017047694A1 - フラックス - Google Patents

フラックス Download PDF

Info

Publication number
WO2017047694A1
WO2017047694A1 PCT/JP2016/077261 JP2016077261W WO2017047694A1 WO 2017047694 A1 WO2017047694 A1 WO 2017047694A1 JP 2016077261 W JP2016077261 W JP 2016077261W WO 2017047694 A1 WO2017047694 A1 WO 2017047694A1
Authority
WO
WIPO (PCT)
Prior art keywords
mass
flux
acid
resin
long
Prior art date
Application number
PCT/JP2016/077261
Other languages
English (en)
French (fr)
Inventor
泰弘 梶川
義紀 平岡
浩由 川▲崎▼
崇史 萩原
Original Assignee
千住金属工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 千住金属工業株式会社 filed Critical 千住金属工業株式会社
Priority to CN201680053796.4A priority Critical patent/CN108025405B/zh
Priority to US15/760,818 priority patent/US10357852B2/en
Publication of WO2017047694A1 publication Critical patent/WO2017047694A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/36Selection of non-metallic compositions, e.g. coatings, fluxes; Selection of soldering or welding materials, conjoint with selection of non-metallic compositions, both selections being of interest
    • B23K35/3612Selection of non-metallic compositions, e.g. coatings, fluxes; Selection of soldering or welding materials, conjoint with selection of non-metallic compositions, both selections being of interest with organic compounds as principal constituents
    • B23K35/3613Polymers, e.g. resins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/36Selection of non-metallic compositions, e.g. coatings, fluxes; Selection of soldering or welding materials, conjoint with selection of non-metallic compositions, both selections being of interest
    • B23K35/3612Selection of non-metallic compositions, e.g. coatings, fluxes; Selection of soldering or welding materials, conjoint with selection of non-metallic compositions, both selections being of interest with organic compounds as principal constituents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/36Selection of non-metallic compositions, e.g. coatings, fluxes; Selection of soldering or welding materials, conjoint with selection of non-metallic compositions, both selections being of interest
    • B23K35/362Selection of compositions of fluxes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • C08G59/42Polycarboxylic acids; Anhydrides, halides or low molecular weight esters thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins

Definitions

  • the present invention relates to a flux used in soldering to fix a joint target portion with an underfill.
  • the flux used for soldering removes the metal oxides present on the metal surface of the solder alloy and the object to be soldered, and allows the movement of metal elements at the boundary between them. Has the effect of For this reason, by performing soldering using a flux, an intermetallic compound can be formed between the solder alloy and the metal surface of the object to be joined, and a strong joint can be obtained.
  • the component of the flux contains a component that does not decompose or evaporate by heating of soldering, and remains as a flux residue around the soldering site after soldering.
  • the flux residue if the flux residue remains in the soldering joint target portion, the flux residue inhibits the bonding between the joint target portion and the resin, so that the strength cannot be ensured. For this reason, in order to cover the circumference
  • thermosetting resin in the flux can be maintained in an uncured state even after reflowing, so that the resin in the flux residue and the underfill can be compatible
  • a technique has been proposed in which the resin contained in the flux has thermoplastic properties so that the resin in the flux residue becomes liquid at the time of underfill application and is compatible with the underfill (for example, Patent Document 2).
  • the flux residue has fluidity during and after the reflow process. Since the resin in the flux residue does not harden, the surface of the flux residue is sticky, and fine foreign matter may adhere to the surface of the flux residue before filling with the underfill.
  • the present invention has been made in order to solve such problems, and suppresses the adhesiveness of the surface of the flux residue after the reflow process without impairing the wettability of the solder alloy, and is compatible with the underfill. It aims at providing the flux which melts.
  • thermosetting resin By adding a predetermined amount of curing agent to the flux to which the thermosetting resin is added, even if heated to the heating temperature at the time of soldering, it does not have fluidity to flow out, and maintains a predetermined viscosity, And it discovered that the adhesiveness of the surface of the flux residue after soldering was suppressed.
  • the present invention includes a thermosetting resin, a curing agent, an organic acid, and a solvent.
  • the organic acid is a long-chain dibasic acid having a composition shown in the following (1) to (4).
  • the ratio of the long-chain dibasic acid shown in (1) to (4) is as follows when the ratio of the entire long-chain dibasic acid mixture is 100%: 3 mass% or more and 8 mass% or less of the resin, 1 mass% or more and 5 mass% or less of the long-chain dibasic acid mixture within a range not exceeding the amount of addition of the curing agent, and 5 mass% or more and 15 mass% or less of the long chain dibasic acid mixture. It is a flux that contains the remainder as a solvent.
  • thermosetting resin a predetermined amount of a curing agent is added to the thermosetting resin, so that even when heated to the heating temperature during soldering, it does not have fluidity to flow out and maintains a predetermined viscosity. And the adhesiveness of the surface of the flux residue after soldering is suppressed.
  • the present invention by adding a predetermined amount of curing agent to the flux in which the flux residue after reflow is compatible with the underfill, it has fluidity so that the resin in the flux flows out by heating during soldering. Therefore, it is possible to prevent the flux residue from adhering to other portions than the joining target portion. Moreover, since the adhesiveness of the surface of a flux residue can be suppressed, it can suppress that a fine foreign material adheres to the surface of a flux residue, and can suppress a foreign material entering in an underfill.
  • the flux of the present embodiment includes a resin, a curing agent, an organic acid, and a solvent.
  • the resin does not volatilize at the heating temperature during soldering and becomes a flux residue.
  • a thermosetting epoxy resin is added as the resin.
  • Epoxy resins include bisphenol A, bisphenol AP, bisphenol AF, bisphenol B, bisphenol BP, bisphenol C, bisphenol E, bisphenol F, bisphenol G, bisphenol M, and bisphenol. S type, bisphenol P type, bisphenol PH type, bisphenol TMC type, bisphenol Z type and the like can be mentioned.
  • Examples of the alicyclic epoxy resin include 3 ′, 4′-epoxycyclohexylmethyl-3,4-epoxycyclohexanecarboxylate, 1,2-epoxy-4-vinylcyclohexane, and the like. In this example, bisphenol A type was used.
  • curing agent examples include dicyandiamide, organic acid dihydrazide, imidazoles, amine adduct curing agent, vinyl ether block carboxylic acid, onium salt, ketimine compound, microencapsulated imidazole, acid anhydride, and phenols.
  • Acid anhydrides include phthalic anhydride, maleic anhydride, citraconic anhydride, 3,3 ', 4,4'-biphenyltetracarboxylic dianhydride, 4-methylhexahydrophthalic anhydride, hexahydrophthalic anhydride, Methylbicyclo [2.2.1] heptane-2,3-dicarboxylic anhydride, bicyclo [2.2.1] heptane-2,3-dicarboxylic anhydride, 1,2,3,6-tetrahydrophthalic anhydride, 3, 4,5,6-tetrahydrophthalic anhydride, ethylene glycol bisanhydro trimellitate, glycerin bis-anhydro trimellitate monoacetate, tetrapropenyl succinic anhydride.
  • the epoxy resin may be any of the compounds shown above, or a mixture obtained by mixing two or more of these compounds.
  • the curing agent may be any of the compounds shown above, or a mixture obtained by mixing two or more of these compounds.
  • the epoxy resin and the curing agent may be any combination of the compositions shown above.
  • An organic acid functions as an activator, and for example, a carboxylic acid is added.
  • the organic acid is preferably a long-chain organic acid having a predetermined number of carbon atoms or more, for example, long-chain dicarboxylic acid is added, in order to impart heat-softening properties to the resin flux residue. .
  • a long-chain dicarboxylic acid as an organic acid, the function of the flux that removes oxides on the metal surface is not hindered by the addition of a thermosetting resin, and the heating during soldering The wettability of the solder is improved without significantly reducing the activity.
  • the long-chain dicarboxylic acid is a main-chain carbon having a first long-chain dibasic acid having an alkyl group in the side chain, an alkyl group and an alkoxycarbonyl group in the side chain, and sandwiched between both carboxyl groups. It is a long-chain dibasic acid mixture containing one or more second long-chain dibasic acids having a number of 8 or more. The long-chain dibasic acid mixture preferably contains one or more long-chain dibasic acids having two or more alkoxycarbonyl groups as the second long-chain dibasic acid.
  • the mixture is a mixture of
  • preferable ratios as a mixture of the long-chain dibasic acid mixture shown in the above (1), (2), (3) and (4) are as follows when the ratio of the whole mixture is 100%. .
  • the solvent examples include isobornylcyclohexanol, hexylene glycol, dibutyl diglycol, hexyl diglycol and the like.
  • the solvent may be any of the compounds shown above, or a mixture obtained by mixing two or more of these compounds.
  • thixotropic agent higher fatty acid amide and castor hydrogenated oil may be added in an amount of 0 to 5% by mass. Moreover, you may add 0 mass% or more and 1 mass% or less of silane coupling agents. By adding the thixotropic agent, workability such as printability can be improved, and by adding the silane coupling agent, the adhesion of the thermosetting resin can be improved.
  • the thixotropic agent may be any of the compounds shown above, or a mixture obtained by mixing two or more of these compounds.
  • the content of the resin in the flux is 3% by mass or more and 8% by mass or less, and the content of the curing agent is 1% by mass or more and 5% by mass or less in a range not exceeding the resin content.
  • the content was 5 mass% or more and 15 mass% or less, and the balance was the solvent.
  • thermosetting resin and a curing agent are mixed is cured by a polymerization reaction caused by heating.
  • the progress of polymerization depends on the amount of curing agent added.
  • a composition in which a long-chain dicarboxylic acid is added to a thermosetting resin has characteristics similar to thermoplasticity, and the resin is easily softened by heating. When the resin is softened by heating so that the heated composition has fluidity, the surface of the composition has adhesiveness.
  • the flux of the present embodiment is such that a glass transition point at which the resin softens is lowered by adding a curing agent and a long-chain dicarboxylic acid to the thermosetting resin, and the temperature is lower than the heating temperature at the time of soldering. With a liquidity of.
  • a predetermined amount of curing agent even when heated to the heating temperature at the time of soldering, it does not have fluidity to flow out and maintains a predetermined viscosity. Also, the adhesiveness of the surface of the flux residue after soldering is suppressed
  • the flux of this embodiment removes the oxide on the metal surface, which is an object to be joined, by adding a long-chain dicarboxylic acid as an organic acid without significantly reducing the activity due to heating during soldering. .
  • the solvent volatilizes at the heating temperature at the time of soldering, and the component that does not volatilize at the heating temperature at the time of soldering becomes a flux residue, and remains in the bonding target object including the bonding target and its vicinity.
  • the thermosetting resin becomes a residue. And by adding an acid anhydride as a curing agent, it does not have the fluidity that the resin in the flux flows out by heating at the time of soldering, and is prevented from adhering to places other than the joining target portions. Furthermore, when the temperature after soldering falls below the glass transition point of the resin in the flux residue, the resin becomes solid.
  • FIG. 1A to 1C are explanatory views showing an underfill filling process.
  • the electrode 10 of the substrate 1 and the electrode 20 of the semiconductor chip 2 are joined with the solder alloy 3 using the flux of the present embodiment, as shown in FIG. 1A, after the soldering reflow process, the flux residue 4 Remains at the location to be joined.
  • the underfill 5 is cured in a state where the resin in the flux residue is mixed in the underfill. Therefore, the electrode 20 of the semiconductor chip 2 that is the bonding object and the electrode 10 of the substrate 1 that is the bonding object are fixed by the underfill 5 without cleaning the flux residue.
  • the fluxes of Examples and Comparative Examples were prepared with the compositions shown in Table 1 below, and the solder wettability, adhesiveness, and presence / absence of voids in the underfill were verified.
  • the composition rate in Table 1 is the mass% in a flux composition.
  • the flux of Example 1 in which glutaric acid is added in the above-described content range, and long chain which is an example of organic acid As the dicarboxylic acid, the flux of Example 2 in which sebacic acid was added in the above-described content range, and the long-chain dicarboxylic acid mixture in the above-mentioned content range as the long-chain dicarboxylic acid which is an example of the organic acid
  • the fluxes of Examples 3 to 7 to which was added good wettability was obtained.
  • a long-chain dicarboxylic acid in Comparative Example 2 in which a long-chain dibasic acid mixture having a content lower than the predetermined content was added, good wettability was not obtained.
  • the fluxes of Examples 1 to 7 to which the acid anhydride was added in the above-described content range as the curing agent were the adhesives on the surface of the flux residue. Sex was suppressed. In contrast, the flux of Comparative Example 1 to which no curing agent was added was found to have high adhesiveness on the surface of the flux residue.
  • the present invention is applied to a flux used in a bonding method in which a substrate and an electronic component are fixed with an underfill.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Electric Connection Of Electric Components To Printed Circuits (AREA)
  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

はんだ合金の濡れ性を阻害することなく、リフロー時及びリフロー工程後にフラックス残渣が所定の粘度を保ち、かつ、アンダーフィルの硬化工程でアンダーフィルと相溶になるフラックスを提供する。フラックスは、熱硬化性の樹脂と、硬化剤と、有機酸と、溶剤を含み、樹脂を3質量%以上8質量%以下、硬化剤を樹脂の添加量を超えない範囲で1質量%以上5質量%以下、有機酸を5質量%以上15質量%以下含み、残部を溶剤とした。

Description

フラックス
 本発明は、アンダーフィルで接合対象箇所を固着するはんだ付けで使用されるフラックスに関する。
 一般的に、はんだ付けに用いられるフラックスは、はんだ合金及びはんだ付けの対象となる接合対象物の金属表面に存在する金属酸化物を化学的に除去し、両者の境界で金属元素の移動を可能にする効能を持つ。このため、フラックスを使用してはんだ付けを行うことで、はんだ合金と接合対象物の金属表面との間に金属間化合物が形成できるようになり、強固な接合が得られる。
 一方、フラックスの成分には、はんだ付けの加熱によって分解、蒸発しない成分が含まれており、はんだ付け後にフラックス残渣としてはんだ付け部位の周辺に残留する。
 さて、近年の電子部品の小型化の進展につれて、電子部品のはんだ付け部位である電極も小さくなってきている。そのため、はんだ合金で接合できる面積が小さくなり、はんだ合金だけでの接合強度では、接合信頼性に不十分な場合もある。
 そこで、はんだ付けによる接合を強化する部品固着手段として、アンダーフィル等の樹脂によって、はんだ付けの接合対象箇所に周囲を覆うことにより、電子部品等を固着する技術が提案されている。
 ここで、はんだ付けの接合対象箇所にフラックス残渣が残っていると、フラックス残渣が接合対象箇所と樹脂との固着を阻害するので、強度を確保することができない。このため、接合対象箇所の周囲を樹脂で覆うためには、フラックス残渣を洗浄する必要がある。しかし、フラックス残渣を洗浄するには、時間とコストが掛かる。
 そこで、フラックス中の熱硬化性樹脂を、リフロー後も未硬化状態を維持できるようにして、フラックス残渣中の樹脂とアンダーフィルを相溶できるようにした技術が提案されている(例えば、特許文献1参照)。また、フラックス中に含まれる樹脂に熱可塑性の特性を持たせて、フラックス残渣中の樹脂がアンダーフィル塗布時に液状となってアンダーフィルと相溶するようにした技術が提案されている(例えば、特許文献2参照)。
特許第4757070号公報 特開2013-91093号公報
 従来のフラックスでは、はんだ付け時の加熱で樹脂を硬化させないため、リフロー工程中及びリフロー後にフラックス残渣が流動性を持つ。フラックス残渣中の樹脂が硬化しないため、フラックス残渣の表面に粘着性があり、アンダーフィルの充填前に微細な異物がフラックス残渣の表面に付着する可能性があった
 本発明は、このような課題を解決するためになされたもので、はんだ合金の濡れ性を阻害することなく、リフロー工程後のフラックス残渣の表面の粘着性を抑制し、かつ、アンダーフィルと相溶するフラックスを提供することを目的とする。
 熱硬化性の樹脂が添加されたフラックスに所定量の硬化剤が添加されることで、はんだ付け時の加熱温度まで加熱されても、流れ出すような流動性は持たず、所定の粘度を保ち、かつ、はんだ付け後のフラックス残渣の表面の粘着性が抑制されることを見出した。
 そこで、本発明は、熱硬化性の樹脂と、硬化剤と、有機酸と、溶剤を含み、有機酸は、下記の(1)~(4)に示す組成の長鎖二塩基酸をそれぞれ所定の比率で混合した長鎖二塩基酸混合物で、(1)~(4)に示す長鎖二塩基酸の比率は、長鎖二塩基酸混合物全体の比率を100%とした場合、下記の通りであり、樹脂を3質量%以上8質量%以下、硬化剤を樹脂の添加量を超えない範囲で1質量%以上5質量%以下、長鎖二塩基酸混合物を5質量%以上15質量%以下含み、残部を溶剤としたフラックスである。
(1)2-メチルノナン二酸を30~60%
(2)4-(メトキシカルボニル)-2,4-ジメチルウンデカン二酸を8~20%
(3)4,6-ビス(メトキシカルボニル)-2,4,6-トリメチルトリデカン二酸を8~20%
(4)8,9-ビス(メトキシカルボニル) -8,9-ジメチルヘキサデカン二酸を15~30%
 本発明のフラックスでは、熱硬化性の樹脂に所定量の硬化剤が添加されることで、はんだ付け時の加熱温度まで加熱されても、流れ出すような流動性は持たず、所定の粘度を保ち、かつ、はんだ付け後のフラックス残渣の表面の粘着性が抑制される。
 本発明では、リフロー後のフラックス残渣がアンダーフィルと相溶となるフラックスに、所定量の硬化剤が添加されることで、はんだ付け時の加熱でフラックス中の樹脂が流れ出すような流動性を持たず、フラックス残渣が接合対象箇所以外に付着することを抑制することができる。また、フラックス残渣の表面の粘着性を抑制することができるので、フラックス残渣の表面に微細な異物が付着することが抑制され、アンダーフィル中に異物が入り込むことを抑制できる。
アンダーフィル充填工程を示す説明図である。 アンダーフィル充填工程を示す説明図である。 アンダーフィル充填工程を示す説明図である。
 本実施の形態のフラックスは、樹脂と、硬化剤と、有機酸と、溶剤を含む。樹脂は、はんだ付け時の加熱温度で揮発せず、フラックス残渣となる。樹脂は、熱硬化性のエポキシ樹脂が添加される。
 エポキシ樹脂は、ビスフェノール型としては、ビスフェノールA型、ビスフェノールAP型、ビスフェノールAF型、ビスフェノールB型、ビスフェノールBP型、ビスフェノールC型、ビスフェノールE型、ビスフェノールF型、ビスフェノールG型、ビスフェノールM型、ビスフェノールS型、ビスフェノールP型、ビスフェノールPH型、ビスフェノールTMC型、ビスフェノールZ型などが挙げられる。脂環式エポキシ樹脂としては、3',4'-エポキシシクロヘキシルメチル-3,4-エポキシシクロヘキサンカルボキシレート、1,2-エポキシ-4-ビニルシクロヘキサンなどが挙げられる。本例ではビスフェノールA型を使用した。硬化剤としては、ジシアンジアミド、有機酸ジヒドラジド、イミダゾール類、アミンアダクト系硬化剤、ビニルエーテルブロックカルボン酸、オニウム塩、ケチミン化合物、マイクロカプセル化イミダゾール、酸無水物、フェノール類などが挙げられる。酸無水物としては、無水フタル酸、無水マレイン酸、無水シトラコン酸、3,3',4,4'-ビフェニルテトラカルボン酸ニ無水物、4-メチルヘキサヒドロ無水フタル酸、ヘキサヒドロ無水フタル酸、メチルビシクロ[2.2.1]ヘプタン-2,3-ジカルボン酸無水物、ビシクロ[2.2.1]ヘプタン-2,3-ジカルボン酸無水物、1,2,3,6-テトラヒドロ無水フタル酸、3,4,5,6-テトラヒドロ無水フタル酸、エチレングリコールビスアンヒドロトリメリテート、グリセリンビス アンヒドロトリメリテートモノアセテート、テトラプロペニル無水コハク酸が挙げられる。エポキシ樹脂は、以上に示す化合物の何れか、または、これら化合物の2つ以上を混合した混合物であっても良い。また、硬化剤は、以上に示す化合物の何れか、または、これら化合物の2つ以上を混合した混合物であっても良い。更に、エポキシ樹脂と硬化剤は、以上に示す組成を任意に組み合わせたものであれば良い。
 有機酸は、活性剤として機能させるため、例えばカルボン酸が添加される。また、有機酸は、樹脂によるフラックス残渣に熱で軟化する特性を持たせるため、炭素数が所定数以上の長鎖の有機酸であることが好ましく、例えば、長鎖のジカルボン酸が添加される。有機酸として長鎖のジカルボン酸を添加することにより、金属表面の酸化物を除去するフラックスの機能が、熱硬化性の樹脂の添加によって阻害されることがなく、また、はんだ付け時の加熱で活性が著しく低下することなく、はんだの濡れ性が向上する。
 長鎖のジカルボン酸は、側鎖にアルキル基を有する第1の長鎖二塩基酸と、側鎖にアルキル基とアルコキシカルボニル基とを有し、かつ両端カルボキシル基に挟まれた主鎖の炭素数が8以上の第2の長鎖二塩基酸を1種又はそれ以上含有する長鎖二塩基酸混合物である。長鎖二塩基酸混合物は、第2の長鎖二塩基酸として、アルコキシカルボニル基を2個又はそれ以上有する長鎖二塩基酸を1種又はそれ以上含有することが好ましい。
 このような長鎖二塩基酸混合物としては、以下の(1)、(2)、(3)あるいは(4)に示す組成の化合物の何れか、または、これら化合物の2つ以上を所定の比率で混合した混合物であることが好ましい。
(1)2-メチルノナン二酸
(2)4-(メトキシカルボニル)-2,4-ジメチルウンデカン二酸
(3)4,6-ビス(メトキシカルボニル)-2,4,6-トリメチルトリデカン二酸
(4)8,9-ビス(メトキシカルボニル) -8,9-ジメチルヘキサデカン二酸
 更に、上述した(1)、(2)、(3)及び(4)に示す長鎖二塩基酸混合物の混合物として好ましい比率は、混合物全体の比率を100%とした場合、以下の通りである。
(1)30~60%
(2)8~20%
(3)8~20%
(4)15~30%
 溶剤は、イソボニルシクロヘキサノール、ヘキシレングリコール、ジブチルジグリコール、ヘキシルジグリコール等が挙げられる。溶剤は、以上に示す化合物の何れか、または、これら化合物の2つ以上を混合した混合物であっても良い。
 更に、チキソ剤として、高級脂肪酸アマイド、ヒマシ硬化油を0質量%以上5質量%以下添加しても良い。また、シランカップリング剤を0質量%以上1質量%以下添加しても良い。チキソ剤を添加することで印刷性等の作業性を向上させることができ、シランカップリング剤を添加することで熱硬化性樹脂の密着性を向上させることができる。チキソ剤は、以上に示す化合物の何れか、または、これら化合物の2つ以上を混合した混合物であっても良い。
 本実施の形態では、フラックス中における樹脂の含有量を3質量%以上8質量%以下、硬化剤の含有量を、樹脂の含有量を超えない範囲で1質量%以上5質量%以下、有機酸の含有量を5質量%以上15質量%以下、残部を溶剤とした。
 熱硬化性の樹脂と硬化剤が混合された組成物は、加熱によって重合反応が進行して硬化する。重合の進行は、添加される硬化剤の量によって変わる。これに対し、熱硬化性の樹脂に長鎖のジカルボン酸が添加された組成物では、熱可塑性に類似する特性を持ち、樹脂が加熱によって軟化しやすくなる。樹脂を加熱によって軟化させることで、加熱後の組成物に流動性を持たせると、組成物の表面が粘着性を持つ。
 本実施の形態のフラックスは、熱硬化性の樹脂に硬化剤と長鎖のジカルボン酸が添加されることで、樹脂が軟化するガラス転移点が下がり、はんだ付け時の加熱温度より低い温度で所定の流動性を持つ。一方、所定量の硬化剤が添加されることで、はんだ付け時の加熱温度まで加熱されても、流れ出すような流動性は持たず、所定の粘度を保つ。また、はんだ付け後のフラックス残渣の表面の粘着性が抑制される
 本実施の形態のフラックスは、有機酸として長鎖のジカルボン酸が添加されることで、はんだ付け時の加熱で活性が著しく低下することなく、接合対象物である金属表面の酸化物を除去する。
 フラックスは、はんだ付け時の加熱温度で溶剤が揮発し、はんだ付け時の加熱温度で揮発しない成分がフラックス残渣となり、接合対象物及びその近傍を含む接合対象箇所に残る。
 本実施の形態のフラックスでは、熱硬化性の樹脂が残渣となる。かつ、硬化剤として酸無水物が添加されることで、はんだ付け時の加熱でフラックス中の樹脂が流れ出すような流動性は持たず、接合対象箇所以外に付着することが抑制される。更に、はんだ付け後の温度がフラックス残渣中の樹脂のガラス転移点以下に低下すると、樹脂は固体となる。
 図1A~図1Cは、アンダーフィル充填工程を示す説明図である。基板1の電極10及び半導体チップ2の電極20が、本実施の形態のフラックスを使用してはんだ合金3で接合されると、図1Aに示すように、はんだ付けのリフロー工程後に、フラックス残渣4が接合対象箇所に残る。
 はんだ付け後に、図1Bに示すように、アンダーフィル5として例えば熱硬化性の樹脂と硬化物が接合対象箇所に充填されて加熱され、フラックス残渣中の樹脂のガラス転移点を超えると、このフラックス残渣中の樹脂が軟化し、アンダーフィルと相溶な状態となる。
 これにより、図1Cに示すように、フラックス残渣中の樹脂がアンダーフィルに混ざり込んだ状態で、アンダーフィル5が硬化する。従って、フラックス残渣を洗浄することなく、接合対象物である半導体チップ2の電極20と接合物である基板1の電極10がアンダーフィル5で固着される。
 以下の表1に示す組成で実施例と比較例のフラックスを調合し、はんだ濡れ性、粘着性及びアンダーフィル中のボイドの発生の有無について検証した。なお、表1における組成率は、フラックス組成物中の質量%である。まず、各検証の評価方法について説明する。
(1)はんだ濡れ性の検証について
 (a)評価方法
 Cu板上にフラックスを塗布し、Cu板上に塗布したフラックス上にはんだボールを搭載し、リフローを行った後、はんだ濡れ広がり径を測定した。リフロー工程は、ピーク温度を250℃に設定したリフロー装置を用いて、35℃から1秒毎に1℃ずつ250℃まで温度を上昇させていき、250℃に達した後、30秒間加熱処理を行った。はんだボールの組成は96.5Sn-3.0Ag-0.5Cu、直径は0.3mmである。
 (b)判定基準
 ○:はんだの広がり径が510μm以上
 ×:はんだの広がり径が510μm未満
(2)粘着性の検証について
 (a)評価方法
 Cu板上にフラックスを塗布し、Cu板上に塗布したフラックスを300℃まで加熱し、リフローを行った状態にする。加熱後のフラックス残渣にφ100μmのはんだボールを散布させた。そして、フラックス残渣にはんだボールを散布させたCu板を30°傾け、はんだボールの動きを見た。
 (b)判定基準
 ○:フラックス残渣が無いCuと同等程度にはんだボールが転がる
 ×:フラックス残渣の粘着性によりはんだボールが転がらない
(3)アンダーフィル中のボイドの発生有無の検証について
 (a)評価方法
 Cu板にフラックスを塗布し、リフローを行った後、フラックス残渣を硬化させる工程の有無でアンダーフィル中のボイドの発生の有無を検証した。リフロー工程は、室温から1秒毎に3℃ずつ、250℃まで温度を上昇させていき、250℃に達した後、30秒間加熱処理を行った。実施例、比較例ともリフロー工程後の硬化工程は行わない。実施例、比較例とも、フラックス塗布位置の両側に高さ25μmのスペーサを置き、このスペーサにガラス板を載せ、Cu板とガラス板の間にアンダーフィルを充填した。アンダーフィルを充填した後、165℃で2時間加熱処理を行った。
 (b)判定基準
 ○:ボイドの発生が見られなかった
 ×:ボイドの発生が見られた
Figure JPOXMLDOC01-appb-T000001
 はんだのぬれ性について、表1に示すように、有機酸の一例であるジカルボン酸として、上述した含有量の範囲でグルタル酸が添加された実施例1のフラックス、有機酸の一例である長鎖のジカルボン酸として、上述した含有量の範囲でセバシン酸が添加された実施例2のフラックス、有機酸の一例である長鎖のジカルボン酸として、上述した含有量の範囲で長鎖二塩基酸混合物が添加された実施例3~実施例7のフラックスは、何れも良好な濡れ性が得られた。これに対し、長鎖のジカルボン酸であっても、所定の含有量を下回る長鎖二塩基酸混合物が添加された比較例2は、良好な濡れ性が得られなかった。
 また、フラックス残渣の粘着性について、表1に示すように、硬化剤として上述した含有量の範囲で酸無水物が添加された実施例1~実施例7のフラックスは、フラックス残渣の表面の粘着性が抑制されていた。これに対し、硬化剤が添加されていない比較例1のフラックスは、フラックス残渣の表面の粘着性が高いことが判った。
 更に、ボイドの発生の有無について、リフロー後に硬化工程を行わなければ、ボイドは発生しない、すなわち、フラックス残渣中の樹脂とアンダーフィルが相溶な状態となり、フラックス残渣中の樹脂がアンダーフィルに混ざり込んだ状態で、アンダーフィルが硬化することが判った。
 本発明は、アンダーフィルで基板と電子部品等を固着する接合法で使用するフラックスに適用される。
 1・・・基板、10・・・電極、2・・・半導体チップ、20・・・電極、3・・・はんだ合金、4・・・フラックス残渣、5・・・アンダーフィル

Claims (4)

  1.  熱硬化性の樹脂と、
     硬化剤と、
     有機酸と、
     溶剤を含み、
     前記有機酸は、下記の(1)~(4)に示す組成の長鎖二塩基酸をそれぞれ所定の比率で混合した長鎖二塩基酸混合物で、
     前記(1)~(4)に示す前記長鎖二塩基酸の比率は、前記長鎖二塩基酸混合物全体の比率を100%とした場合、下記の通りであり、
     前記樹脂を3質量%以上8質量%以下、
     前記硬化剤を前記樹脂の添加量を超えない範囲で1質量%以上5質量%以下、
     前記長鎖二塩基酸混合物を5質量%以上15質量%以下含み、残部を前記溶剤とした
     ことを特徴とするフラックス。
    (1)2-メチルノナン二酸を30~60質量%
    (2)4-(メトキシカルボニル)-2,4-ジメチルウンデカン二酸を8~20質量%
    (3)4,6-ビス(メトキシカルボニル)-2,4,6-トリメチルトリデカン二酸を8~20質量%
    (4)8,9-ビス(メトキシカルボニル) -8,9-ジメチルヘキサデカン二酸を15~30質量%
  2.  更に、チキソ剤とシランカップリング剤のうち少なくとも1種を含み、前記チキソ剤を0質量%超5質量%以下、前記シランカップリング剤を0質量%超1質量%以下添加した
     ことを特徴とする請求項1に記載のフラックス。
  3.  前記樹脂はエポキシ樹脂である
     ことを特徴とする請求項1又は2に記載のフラックス。
  4.  前記硬化剤は酸無水物である
     ことを特徴とする請求項1~請求項3の何れか1項に記載のフラックス。
PCT/JP2016/077261 2015-09-18 2016-09-15 フラックス WO2017047694A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201680053796.4A CN108025405B (zh) 2015-09-18 2016-09-15 助焊剂
US15/760,818 US10357852B2 (en) 2015-09-18 2016-09-15 Flux with dibasic acid mixture

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015185219A JP5962832B1 (ja) 2015-09-18 2015-09-18 フラックス
JP2015-185219 2015-09-18

Publications (1)

Publication Number Publication Date
WO2017047694A1 true WO2017047694A1 (ja) 2017-03-23

Family

ID=56558002

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/077261 WO2017047694A1 (ja) 2015-09-18 2016-09-15 フラックス

Country Status (5)

Country Link
US (1) US10357852B2 (ja)
JP (1) JP5962832B1 (ja)
CN (1) CN108025405B (ja)
TW (1) TWI659990B (ja)
WO (1) WO2017047694A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6399242B1 (ja) * 2018-01-17 2018-10-03 千住金属工業株式会社 フラックス及びソルダペースト
WO2019142795A1 (ja) * 2018-01-17 2019-07-25 千住金属工業株式会社 はんだ付け用樹脂組成物、やに入りはんだ、フラックスコートはんだ及び液状フラックス

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6536503B2 (ja) * 2016-07-12 2019-07-03 千住金属工業株式会社 フラックス
CN110303274A (zh) * 2019-06-26 2019-10-08 浙江强力控股有限公司 残留热固化焊锡膏及其制备方法
CN111618482A (zh) * 2020-06-15 2020-09-04 曾宪平 松香活性剂及在锡线外覆该松香活性剂的方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03184695A (ja) * 1989-12-12 1991-08-12 Yuho Chem Kk フラックス及びはんだペースト用添加剤
JPH07169646A (ja) * 1993-12-13 1995-07-04 Murata Mfg Co Ltd 電子部品の製造方法
JPH0890283A (ja) * 1994-09-21 1996-04-09 Murata Mfg Co Ltd はんだ付け用フラックス
JP2002301591A (ja) * 2001-04-03 2002-10-15 Sumitomo Bakelite Co Ltd 硬化性フラックス及び半田接合部
JP2004001030A (ja) * 2002-05-31 2004-01-08 Fujitsu Ltd はんだペーストおよび半導体装置の製造方法
WO2015146473A1 (ja) * 2014-03-25 2015-10-01 千住金属工業株式会社 フラックス及びソルダペースト

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0869646A (ja) 1994-08-29 1996-03-12 Sanyo Electric Co Ltd 光磁気記録メディア再生装置及び方法
JP4757070B2 (ja) 2006-03-27 2011-08-24 富士通株式会社 半田付け用フラックス及び半導体素子の接合方法
JP2013091093A (ja) * 2011-10-27 2013-05-16 Internatl Business Mach Corp <Ibm> アンダーフィルとの間で化学的に硬化物を形成する無洗浄フラックス

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03184695A (ja) * 1989-12-12 1991-08-12 Yuho Chem Kk フラックス及びはんだペースト用添加剤
JPH07169646A (ja) * 1993-12-13 1995-07-04 Murata Mfg Co Ltd 電子部品の製造方法
JPH0890283A (ja) * 1994-09-21 1996-04-09 Murata Mfg Co Ltd はんだ付け用フラックス
JP2002301591A (ja) * 2001-04-03 2002-10-15 Sumitomo Bakelite Co Ltd 硬化性フラックス及び半田接合部
JP2004001030A (ja) * 2002-05-31 2004-01-08 Fujitsu Ltd はんだペーストおよび半導体装置の製造方法
WO2015146473A1 (ja) * 2014-03-25 2015-10-01 千住金属工業株式会社 フラックス及びソルダペースト

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6399242B1 (ja) * 2018-01-17 2018-10-03 千住金属工業株式会社 フラックス及びソルダペースト
WO2019142795A1 (ja) * 2018-01-17 2019-07-25 千住金属工業株式会社 はんだ付け用樹脂組成物、やに入りはんだ、フラックスコートはんだ及び液状フラックス
WO2019142772A1 (ja) * 2018-01-17 2019-07-25 千住金属工業株式会社 フラックス及びソルダペースト
JP2019122994A (ja) * 2018-01-17 2019-07-25 千住金属工業株式会社 フラックス及びソルダペースト
JP2019123811A (ja) * 2018-01-17 2019-07-25 千住金属工業株式会社 はんだ付け用樹脂組成物、やに入りはんだ、フラックスコートはんだ及び液状フラックス
US11292089B2 (en) 2018-01-17 2022-04-05 Senju Metal Industry Co., Ltd. Resin composition for soldering, resin flux cored solder, flux coated solder, and liquid flux
US11376694B2 (en) 2018-01-17 2022-07-05 Senju Metal Industry Co., Ltd. Flux and solder paste

Also Published As

Publication number Publication date
CN108025405A (zh) 2018-05-11
US20180257182A1 (en) 2018-09-13
TWI659990B (zh) 2019-05-21
TW201723053A (zh) 2017-07-01
JP2017056485A (ja) 2017-03-23
CN108025405B (zh) 2019-08-06
US10357852B2 (en) 2019-07-23
JP5962832B1 (ja) 2016-08-03

Similar Documents

Publication Publication Date Title
WO2017047694A1 (ja) フラックス
US8227536B2 (en) Lead-free solder paste and its use
TWI565785B (zh) Conductive adhesives and welded joints
US10906137B2 (en) Solder composition and electronic board
JP5952849B2 (ja) フラックス及びソルダペースト
JP2013220466A (ja) 熱硬化性樹脂組成物を用いたはんだペースト
TW201401450A (zh) 安裝構造體及其製造方法
JP6152899B2 (ja) 半田付け用フラックス及び半田組成物
JP6452659B2 (ja) 熱硬化性フラックス組成物および電子基板の製造方法
JP2003082064A (ja) 封止充填剤用液状エポキシ樹脂組成物
JP2018161673A (ja) 熱硬化性フラックス組成物、はんだ組成物および電子基板の製造方法
JP2016043408A (ja) はんだペースト、電子部品、及び電子機器
JP6536503B2 (ja) フラックス
KR20170067069A (ko) 언더필용 에폭시 솔더링 플럭스, 에폭시 솔더 페이스트 및 이를 이용한 반도체 소자 실장 방법
JP6124032B2 (ja) 実装構造体と実装構造体の製造方法
KR102332799B1 (ko) 열경화성 플럭스 조성물 및 전자 기판의 제조 방법
JP2004059778A (ja) 封止充填剤用液状エポキシ樹脂組成物
JP2006143795A (ja) 液状樹脂組成物、それを用いた半導体装置の製造方法及び半導体装置
JP6374298B2 (ja) フラックス及びフラックスを用いた接合方法
JP2019166550A (ja) 熱硬化性フラックス組成物および電子基板の製造方法
JP6048562B1 (ja) フラックス残渣の接着強度測定方法
JP2020049489A (ja) 熱硬化性フラックス組成物および電子基板の製造方法
JP2020049493A (ja) 熱硬化性フラックス組成物および電子基板の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16846565

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15760818

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16846565

Country of ref document: EP

Kind code of ref document: A1