WO2017047542A1 - 貴金属粉末の製造方法 - Google Patents

貴金属粉末の製造方法 Download PDF

Info

Publication number
WO2017047542A1
WO2017047542A1 PCT/JP2016/076777 JP2016076777W WO2017047542A1 WO 2017047542 A1 WO2017047542 A1 WO 2017047542A1 JP 2016076777 W JP2016076777 W JP 2016076777W WO 2017047542 A1 WO2017047542 A1 WO 2017047542A1
Authority
WO
WIPO (PCT)
Prior art keywords
noble metal
aqueous solution
calcium
hydroxide
metal powder
Prior art date
Application number
PCT/JP2016/076777
Other languages
English (en)
French (fr)
Inventor
貴久 山崎
章夫 長岡
Original Assignee
田中貴金属工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 田中貴金属工業株式会社 filed Critical 田中貴金属工業株式会社
Priority to KR1020187007592A priority Critical patent/KR102059426B1/ko
Priority to US15/761,136 priority patent/US10569334B2/en
Priority to EP16846413.9A priority patent/EP3351324B1/en
Priority to CN201680054026.1A priority patent/CN108025366B/zh
Publication of WO2017047542A1 publication Critical patent/WO2017047542A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/16Making metallic powder or suspensions thereof using chemical processes
    • B22F9/18Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds
    • B22F9/24Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds starting from liquid metal compounds, e.g. solutions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/14Treatment of metallic powder
    • B22F1/142Thermal or thermo-mechanical treatment
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/0466Alloys based on noble metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C5/00Alloys based on noble metals
    • C22C5/02Alloys based on gold
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C5/00Alloys based on noble metals
    • C22C5/04Alloys based on a platinum group metal
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B13/00Apparatus or processes specially adapted for manufacturing conductors or cables
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/05Metallic powder characterised by the size or surface area of the particles
    • B22F1/052Metallic powder characterised by the size or surface area of the particles characterised by a mixture of particles of different sizes or by the particle size distribution
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2201/00Treatment under specific atmosphere
    • B22F2201/01Reducing atmosphere
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2201/00Treatment under specific atmosphere
    • B22F2201/10Inert gases
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2301/00Metallic composition of the powder or its coating
    • B22F2301/25Noble metals, i.e. Ag Au, Ir, Os, Pd, Pt, Rh, Ru
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy
    • B22F2998/10Processes characterised by the sequence of their steps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2999/00Aspects linked to processes or compositions used in powder metallurgy
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C5/00Alloys based on noble metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/02Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of metals or alloys

Definitions

  • the present invention relates to a method for producing a noble metal powder, and more particularly to a method for producing a noble metal powder for a thick film paste mainly used in electronic equipment.
  • Such a laminated part is a conductive paste in which a metal powder such as a noble metal powder is dispersed in an organic solvent containing an organic binder, printed on a ceramic green sheet, subjected to a process of laminating, pressing and cutting, It is manufactured by firing and further forming external electrodes.
  • the noble metal powder used in such a conductive paste is required to have a narrow particle size distribution range, high purity and high crystallinity.
  • Patent Document 1 platinum black and calcium carbonate are wet mixed, dried and pulverized, and then the pulverized body is baked to remove carbon dioxide gas, and then the remaining calcium oxide is diluted with dilute acid. It is described that a high-purity platinum powder having a narrow particle size distribution range can be obtained by a method for producing a highly crystalline platinum powder which is dissolved and removed by washing with water and dried to obtain a platinum powder.
  • Patent Document 1 when the method described in Patent Document 1 is used, if there is an abnormality in either the characteristics of platinum black, which is a platinum powder, or the characteristics of calcium carbonate, the characteristics of the resulting highly crystalline platinum powder are greatly changed. There was a problem.
  • platinum black which is a platinum powder, is manufactured first, and each process including wet mixing with calcium carbonate is then performed to manufacture a highly crystalline platinum powder, so the platinum powder is manufactured twice in total. There is a problem that the number of manufacturing steps is large and the cost is high.
  • Patent Document 2 discloses a method for producing one or more metal fine powders selected from platinum, gold, rhodium, palladium, silver, copper, and nickel, wherein the metal A metal compound aqueous solution preparation step in which an aqueous solution having a pH of 4 or less is prepared; and the aqueous solution having a pH of 4 or less is converted into one or more kinds of periodic table 2A element metal hydroxides selected from calcium hydroxide, magnesium hydroxide and barium hydroxide A reaction step of mixing the product powder and / or its aqueous slurry to a pH of 10 or higher; a first separation step of separating and drying the insoluble solid after completion of the reaction step; Heating in a gas or hydrogen gas atmosphere at a temperature not lower than 800 ° C.
  • a process for producing a metal fine powder characterized in that it comprises each of the steps is described.
  • an object of the present invention is to provide a method for producing a noble metal powder that can produce a noble metal powder having a narrow particle size distribution range, high purity, and high crystallinity at a low cost.
  • the present invention provides a step of preparing an acidic aqueous solution of at least one noble metal compound and a calcium compound, adding the acidic aqueous solution to a basic aqueous solution, and oxidizing the noble metal, hydroxide or a mixture thereof, and hydroxylation.
  • Production of noble metal powder including a step of generating calcium, a step of reducing the noble metal oxide, hydroxide or a mixture thereof with a reducing agent, and a step of separating and heat-treating a solid content containing the noble metal reductant Regarding the method.
  • the method for producing a noble metal powder of the present invention further includes a step of subjecting the obtained heat-treated product to an acid treatment after the heat treatment step.
  • the ratio of the one or more kinds of noble metal compound and the calcium compound is a weight ratio (noble metal atom / calcium atom) in terms of an atomic basis. It is preferably 10: 1 to 0.2: 1.
  • the acidic aqueous solution by dropping it into the basic aqueous solution.
  • the reaction solution after adding the total amount of the acidic aqueous solution to the basic aqueous solution is basic.
  • the heat treatment is performed at a temperature of 800 ° C. or higher.
  • the heat treatment is performed in an inert atmosphere or a reducing atmosphere.
  • a noble metal powder having a narrow particle size distribution range, high purity and high crystallinity can be produced at a low cost.
  • FIG. 1 is an SEM photograph of the platinum powder obtained in Example 1.
  • FIG. 2 is an SEM photograph of the platinum powder obtained in Comparative Example 1.
  • FIG. 3 is an SEM photograph of the platinum powder obtained in Comparative Example 2.
  • 4 is a SEM photograph of the gold powder obtained in Example 2.
  • the method for producing a noble metal powder of the present invention may be simply referred to as the production method of the present invention.
  • the method for producing a noble metal powder of the present invention includes a step of preparing an acidic aqueous solution of one or more kinds of noble metal compounds and a calcium compound (hereinafter also referred to as an acidic aqueous solution preparation step), adding the acidic aqueous solution to a basic aqueous solution, A step of generating oxide, hydroxide or a mixture thereof, and calcium hydroxide (hereinafter also referred to as a reaction step), a step of reducing the oxide of the noble metal, a hydroxide or a mixture thereof with a reducing agent (hereinafter referred to as “reaction step”) , And a reduction step) and a step of separating and heat-treating a solid content containing a noble metal reductant (hereinafter also referred to as a heat treatment step).
  • the manufacturing method of the noble metal of this invention further includes the process (henceforth an acid treatment process) which performs an acid treatment to the obtained heat-treated material after the said heat treatment
  • the noble metal contained in the target noble metal powder may be any noble metal. Specifically, for example, one or more selected from gold (Au), silver (Ag), platinum (Pt), palladium (Pd), rhodium (Rh), iridium (Ir) and ruthenium (Ru) can be mentioned. It is done.
  • the noble metal compound is not particularly limited, and examples thereof include platinum compounds, gold compounds, rhodium compounds, palladium compounds, iridium compounds, silver compounds, and ruthenium compounds.
  • platinum compound examples include hexachloroplatinic (IV) acid, tetrachloroplatinum (II) acid, and tetraammineplatinum (II) acid.
  • gold compound examples include chloroauric (III) acid, tetrachloroauric (III) acid, and ammonium tetrachloroaurate (III).
  • rhodium compound examples include rhodium (III) nitrate and ammonium hexachlororhodium (III).
  • Examples of the palladium compound include palladium nitrate (II) and tetraammine palladium (II) nitrate.
  • iridium compound examples include iridium oxide, iridium chloride, and iridium nitrate.
  • Examples of the silver compound include silver chloride, silver nitrate, and silver acetate.
  • ruthenium compound examples include ruthenium (IV) oxide, ruthenium (III) chloride, and ruthenium (III) nitrate.
  • one or more precious metal compounds can be appropriately selected and used in consideration of the type of precious metal contained in the target precious metal powder.
  • the calcium compound is a component that functions as a spacer that becomes calcium hydroxide in the reaction step described later, becomes calcium oxide by thermal decomposition in the subsequent heat treatment step, and suppresses the grain growth of the noble metal particles in the heat treatment step.
  • the calcium compound is not particularly limited as long as it is soluble in an acidic aqueous solution, and examples thereof include calcium carbonate, calcium hydroxide, calcium oxide, calcium sulfate, calcium chloride, and calcium nitrate.
  • examples thereof include calcium carbonate, calcium hydroxide, calcium oxide, calcium sulfate, calcium chloride, and calcium nitrate.
  • calcium chloride and calcium nitrate are preferable because they are easily dissolved in water and easy to handle.
  • the compounds exemplified other than calcium chloride and calcium nitrate are sparingly soluble in water, but the aqueous solution of the noble metal compound is often a strong acid and can be dissolved in the aqueous solution of the noble metal compound.
  • the said calcium compound may be used individually by 1 type, and may be used in combination of 2 or more type.
  • the use ratio of the noble metal compound and the calcium compound in preparing the acidic aqueous solution is not particularly limited, but when the ratio of the noble metal compound is excessively large, the ratio of the calcium compound becomes too small, and heat treatment described later. Necking at the time increases, and it tends to be difficult to obtain noble metal particles having a uniform particle diameter.
  • the use ratio of the noble metal compound and the calcium compound is preferably 10: 1 to 0.2: 1 in terms of a weight ratio (noble metal atom: calcium atom) converted to an atomic basis, and is preferably 2: 1 to 0.5. : 1 is more preferable.
  • the preparation method for preparing the acidic aqueous solution of the noble metal compound and the calcium compound is not particularly limited.
  • an acidic aqueous solution may be prepared by preparing an aqueous solution of a noble metal compound and dissolving a calcium compound therein.
  • an acidic aqueous solution may be prepared by preparing an aqueous solution of a calcium compound and dissolving a noble metal compound therein.
  • an aqueous acidic solution may be prepared by separately preparing an aqueous solution of a noble metal compound and an aqueous solution of a calcium compound and mixing them.
  • noble metal compounds and calcium compounds can be converted into a target acidic aqueous solution only by dissolving in water, but an acid may be added as necessary at any or a plurality of stages of preparing the acidic aqueous solution. May be.
  • an acidic aqueous solution of a noble metal compound and a calcium compound it is preferable to prepare an acidic aqueous solution of a noble metal compound and a calcium compound by preparing a noble metal compound in advance as an acidic aqueous solution and dissolving the calcium compound therein or mixing it with an aqueous solution of a calcium compound.
  • the acid used may be any acid that can increase the solubility of the noble metal compound or calcium compound in water, or can be adjusted to an acidic solution intended for an aqueous solution, such as hydrochloric acid, nitric acid, acetic acid, Examples include organic acids such as formic acid.
  • Sulfuric acid may be used, but depending on the purpose of use of the generated metal fine particles, the possibility of mixing sulfur atoms may be extremely avoided, which may not be preferable from this aspect.
  • the pH of the acidic aqueous solution to be prepared is not particularly limited as long as it is acidic. From the viewpoint of preventing the precious metal from being precipitated as an oxide or hydroxide, the pH is preferably 4 or less, more preferably 2 or less, and even more preferably 1 or less.
  • reaction process In the production method of the present invention, the acidic aqueous solution prepared as described above is then added to the basic aqueous solution to produce a noble metal oxide, hydroxide or mixture thereof, and calcium hydroxide.
  • the basic aqueous solution for example, a sodium hydroxide aqueous solution, a potassium hydroxide aqueous solution, and aqueous ammonia can be used.
  • the pH of the basic aqueous solution is not particularly limited as long as it is basic, but from the viewpoint of efficiently and appropriately precipitating the calcium compound as a hydroxide, the pH is preferably 11 or more, and 12 or more. More preferably.
  • the addition ratio of the acidic aqueous solution to the basic aqueous solution may be appropriately adjusted in consideration of the pH of the acidic aqueous solution and the pH of the basic aqueous solution. It is preferable to prepare a basic aqueous solution sufficient to neutralize the acidic aqueous solution in which the noble metal compound and the calcium compound are dissolved. That is, it is preferable to use a basic aqueous solution sufficient to precipitate the noble metal oxide, hydroxide or mixture thereof and calcium hydroxide.
  • the acidic aqueous solution it is important to add the acidic aqueous solution to the basic aqueous solution.
  • a liquid feed pump for example, it is preferable to use a liquid feed pump, a pipette, a dropper, a funnel, or the like as appropriate, and drop the acidic aqueous solution into the basic aqueous solution at once or gradually while stirring.
  • an acidic aqueous solution in which noble metal ions and calcium ions are uniformly dispersed is added to a basic, preferably strongly basic aqueous solution. Therefore, the formation of noble metal oxide, hydroxide or a mixture thereof and calcium hydroxide starts almost simultaneously or immediately after the addition, or immediately after the start of the formation of calcium hydroxide Production of the product, hydroxide or mixture thereof is started. That is, since the production of noble metal oxide, hydroxide or a mixture thereof is started before the production of calcium hydroxide is completed, a liquid in which these are uniformly dispersed is obtained.
  • noble metal powder having a narrow particle size distribution range and a uniform particle size can be obtained by subsequent steps.
  • acidic aqueous solution it is preferable to add acidic aqueous solution to the place where basic aqueous solution is stirring.
  • the control of the reaction conditions controls the particle size and mixing ratio of the noble metal particles and calcium hydroxide particles. Therefore, it is possible to control the characteristics of the obtained noble metal powder and to stabilize the quality.
  • the reaction solution after adding the entire amount of the acidic aqueous solution to the basic aqueous solution is basic.
  • the pH of the reaction solution after adding the entire amount of the acidic aqueous solution to the basic aqueous solution is preferably 11 or more, more preferably 12 or more.
  • the pH gradually increases from the acidic region to the basic region.
  • the formation of a noble metal hydroxide begins to occur first. Thereafter, the formation of calcium hydroxide occurs. Therefore, in this case, the noble metal hydroxide and calcium hydroxide are not generated simultaneously.
  • the noble metal hydroxide that has started to be produced becomes a noble metal-based aggregate in which calcium is not disposed around and becomes a basis of coarse particles, making it difficult to obtain a uniform particle size.
  • the noble metal oxide, hydroxide or mixture thereof is reduced by a reducing agent. That is, a reducing agent is added to a liquid containing noble metal oxide, hydroxide or a mixture thereof obtained by the above reaction step, and calcium hydroxide, and the noble metal oxide, hydroxide or them in the liquid is added. The mixture of is reduced.
  • the reducing agent used is not particularly limited as long as it can reduce a noble metal oxide, hydroxide, or a mixture thereof.
  • examples include hydrazine, formalin, glucose, hydroquinone, hydroxylammonium chloride, and sodium formate. From the viewpoint of precipitation efficiency and particle size uniformity, hydrazine is preferable for platinum, and hydroxylammonium chloride is preferable for gold.
  • the amount of the reducing agent used is not particularly limited as long as it can sufficiently reduce the noble metal oxide, hydroxide or mixture thereof.
  • the solid content (insoluble matter) containing the reduced form of the noble metal is separated from the liquid after the reduction of the oxide, hydroxide or mixture thereof.
  • Heat treatment (firing) is performed.
  • the reduction step is performed to obtain a solid content.
  • the separated solid content contains the reduced form of noble metal and calcium hydroxide in a uniformly dispersed state.
  • the coexisting calcium hydroxide is thermally decomposed into calcium oxide.
  • the reductant of the noble metal becomes a semi-molten state and aggregates in the state of zero valence, but is surrounded by calcium oxide, which is a thermally stable solid, preventing aggregation, and around the aggregated noble metal.
  • the calcium oxide is placed so as to surround it.
  • noble metal particles can be grown in an environment where noble metal particles can grow freely from a state in which the reduced form of noble metal and calcium hydroxide are uniformly dispersed, so that the noble metal particle diameters can be made uniform and the particle size distribution. It is possible to obtain noble metal particles having a narrow range, high purity and high crystallinity.
  • a conventionally known solid-liquid separation method such as filtration or centrifugation is appropriately used. You can select and apply. Moreover, you may remove the water
  • the drying temperature is not particularly limited, but can be performed at 80 to 200 ° C., for example.
  • the heat treatment temperature for heat-treating the separated solid content is not particularly limited. However, in order to further improve the purity and crystallinity of the noble metal powder, it is preferably 800 ° C. or higher, more preferably 900 ° C. or higher. preferable. Further, the upper limit of the heat treatment temperature is not particularly limited. From the viewpoint of uniformly controlling the particle size, it is preferable that the temperature is not higher than the melting point of the noble metal having the lowest melting point by 100 ° C. or more among the noble metals contained in the target noble metal particles.
  • the heat treatment time is not particularly limited, but is preferably 0.2 to 5 hours, more preferably 0.5 to 3 hours. It is preferable for the heat treatment time to be 0.2 hours or longer because the grain growth of the noble metal particles is sufficient. Further, it is preferable that the heat treatment time is 5 hours or less because the production efficiency is high.
  • the heat treatment atmosphere for performing heat treatment on the separated solid content may be affected by oxidation depending on the type of noble metal, so in an inert atmosphere such as nitrogen, argon and helium, or a reducing atmosphere such as hydrogen. Preferably there is.
  • the heat-treated product subjected to the heat treatment contains noble metal particles and calcium oxide, but by acid treatment, only the noble metal particles (powder) are left and only the calcium oxide is dissolved in the acid. Components can be removed.
  • the heat-treated product may be immersed and held in an acid aqueous solution.
  • the acid used at this time may be any acid that does not dissolve the target noble metal fine particles but can dissolve only calcium oxide in water.
  • the noble metal is at least one selected from platinum and gold, it is at least one selected from hydrochloric acid, nitric acid and acetic acid.
  • the noble metal contains one or more selected from rhodium, palladium, silver, ruthenium and iridium, it is acetic acid.
  • the amount of the acid used for the acid treatment may be an amount sufficient to react with calcium oxide, but in practice, the acid treatment is performed so as to maintain the acidity by immersing in an acid aqueous solution in which the acid is excessive.
  • the acid treatment step is preferably performed while stirring.
  • the target noble metal powder can be obtained by performing washing
  • the drying temperature is not particularly limited, but can be performed at 80 to 200 ° C., for example.
  • the production method of the present invention can produce a noble metal powder that has a small number of production steps, is low in cost, has a narrow particle size distribution range (having a uniform particle size), and is highly pure and highly crystalline.
  • Example 1 A calcium chloride aqueous solution was prepared by dissolving 55.5 g of calcium chloride in 200 g of pure water. Next, 243.9 g of chloroplatinic acid solution (platinum content 16.4% by weight) was added to the prepared calcium chloride aqueous solution and sufficiently stirred to prepare an acidic aqueous solution containing platinum ions and calcium ions. While stirring 500 g of 40% potassium hydroxide aqueous solution heated to 50 ° C., the acidic aqueous solution was added dropwise over 10 minutes. Next, 200 g of 5% hydrazine was added, and the mixture was further stirred for 1 hour and then cooled to room temperature.
  • chloroplatinic acid solution platinum content 16.4% by weight
  • Example 1 The insoluble matter separated by filtration was washed, dried at 120 ° C., and heat-treated at 1200 ° C. for 1 hour in a nitrogen atmosphere. Subsequently, 1 L of a 3 mol / L nitric acid solution was prepared, and heat treatment was added to the solution to perform acid treatment. After dissolving and removing the calcium component, washing and drying at 120 ° C. gave 39.4 g of platinum powder. . In FIG. 1, the SEM photograph of the platinum powder obtained in Example 1 is shown.
  • a calcium chloride aqueous solution was prepared by dissolving 55.5 g of calcium chloride in 200 g of pure water. Next, 243.9 g of chloroplatinic acid solution (platinum content 16.4% by weight) was added to the prepared calcium chloride aqueous solution and sufficiently stirred to prepare an acidic aqueous solution containing platinum ions and calcium ions. While stirring the acidic aqueous solution while heating to 50 ° C., 500 g of 40% aqueous potassium hydroxide solution was added dropwise over 10 minutes. Next, 200 g of 5% hydrazine was added, and the mixture was further stirred for 1 hour and then cooled to room temperature.
  • chloroplatinic acid solution platinum content 16.4% by weight
  • Example 1 the particle size distribution of each platinum powder obtained in Example 1 and Comparative Examples 1 and 2 was measured using a laser diffraction particle size distribution measuring device (product name: MT3000, manufactured by Nikkiso Co., Ltd.). Table 1 shows the measurement results of the obtained 10 volume% average particle diameter, 50 volume% average particle diameter, 90 volume% average particle diameter, and maximum particle diameter.
  • Example 1 and Comparative Examples 1 and 2 the element content ratio (weight ratio) of platinum and calcium in the dried product (platinum calcium mixed powder) of the insoluble matter filtered off before heat treatment as the reaction product are also shown in Table 1.
  • Example 1 in which the acidic aqueous solution was dropped into the 40% aqueous potassium hydroxide solution, the particle diameters were uniform throughout and no coarse particles were contained.
  • Comparative Example 1 in which a 40% potassium hydroxide aqueous solution was dropped into an acidic aqueous solution and Comparative Example 2 in which a chloroplatinic acid aqueous solution was added to a calcium hydroxide slurry had a wide particle size distribution and contained coarse particles. It was confirmed that
  • Example 2 A calcium nitrate aqueous solution was prepared by dissolving 36.1 g of calcium nitrate in 36 g of pure water. Next, 35.3 g of chloroauric acid solution (gold content: 17.0% by weight) was added to the prepared calcium nitrate aqueous solution and stirred sufficiently to prepare an acidic aqueous solution containing gold ions and calcium ions. While stirring 248 g of 40% calcium hydroxide aqueous solution heated to 50 ° C., the acidic aqueous solution was added dropwise over 80 minutes. Next, 17.1 g of 10% hydrazine hydrochloride was added, and the mixture was further stirred for 1 hour and then cooled to room temperature.
  • chloroauric acid solution gold content: 17.0% by weight
  • Example 2 The insoluble matter separated by filtration was washed, dried at 120 ° C., and heat-treated at 800 ° C. for 1 hour in a nitrogen atmosphere. Subsequently, 1 L of a 3 mol / L nitric acid solution was prepared, and a heat treatment was added thereto, followed by acid treatment to dissolve and remove the calcium component, followed by washing and drying at 120 ° C. to obtain 6.0 g of gold powder. . In FIG. 4, the SEM photograph of the gold powder obtained in Example 2 is shown.
  • the specific surface area of the gold powder obtained in Example 2 was measured by the BET method. The measurement results are shown in Table 2.
  • Example 2 the particle size distribution of the gold powder obtained in Example 2 was measured using a laser diffraction particle size distribution measuring device (manufactured by Nikkiso Co., Ltd., product name: MT3000). Table 2 shows the measurement results of the obtained 10 volume% average particle diameter, 50 volume% average particle diameter, 90 volume% average particle diameter, and maximum particle diameter.
  • Example 2 the element content ratio (weight ratio) of the gold
  • Example 2 in which an acidic aqueous solution was dropped into a 40% potassium hydroxide aqueous solution in the same manner as in Example 1, the particle diameter was uniform overall and almost no coarse particles were contained. It was done.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Powder Metallurgy (AREA)

Abstract

本発明は、粒度分布範囲が狭く、かつ高純度で高結晶性である貴金属粉末を低コストで製造できる貴金属粉末の製造方法を提供する。本発明は、1種以上の貴金属化合物とカルシウム化合物の酸性水溶液を調製する工程、前記酸性水溶液を塩基性水溶液に添加し、貴金属の酸化物、水酸化物又はそれらの混合物、及び水酸化カルシウムを生成させる工程、還元剤により前記貴金属の酸化物、水酸化物又はそれらの混合物を還元する工程、及び、貴金属の還元体を含む固形分を分離して熱処理する工程を含む貴金属粉末の製造方法に関する。

Description

貴金属粉末の製造方法
 本発明は、貴金属粉末の製造方法、特に、主に電子機器に使用される厚膜ペースト用の貴金属粉末の製造方法に関する。
 近年の電子機器の小型化に伴い、これらに使用される電子部品は益々小型化が要求されている。なかでも、セラミックを使用したインダクター、コンデンサーなどの機能部品は、多積層構造により小型化とともに特性の向上が図られるようになってきている。このような積層部品は、貴金属粉末等の金属粉末を、有機バインダーを含む有機溶剤に分散させた導電性ペーストにして、セラミックスグリーンシート上に印刷し、積層、圧着及び切断する工程を経た後、焼成され、さらに外部電極を形成することにより製造される。
 このような導電ペーストに用いられる貴金属粉末には、粒度分布範囲が狭く、かつ高純度で高結晶性であることが要求される。
 ここで、たとえば、特許文献1には、白金ブラックと炭酸カルシウムとを湿式混合して乾燥後粉砕し、しかる後にこの粉砕体を焼成して炭酸ガスを除去してから残余の酸化カルシウムを希酸にて溶解させて水洗除去し、これを乾燥して白金粉末を得る高結晶性白金粉末の製造方法により、粒度分布範囲が狭く、高純度な白金粉末が得られることが記載されている。
 しかしながら、特許文献1に記載の方法を用いた場合、白金粉末である白金ブラックの特性と炭酸カルシウムの特性のいずれかに異常があると、得られる高結晶性白金粉末の特性が大きく変わってしまうという問題があった。また、白金粉末である白金ブラックをまず製造し、これに炭酸カルシウムとの湿式混合をはじめとする各処理を行って高結晶性白金粉末を製造しているため、白金粉末を計2回製造する必要があり、製造工程数が多く、コストが高くなるという問題があった。
 このような問題を解決するための方法として、特許文献2には、白金、金、ロジウム、パラジウム、銀、銅、ニッケルから選ばれる1種以上の金属微粉末の製造方法であって、前記金属の水溶性化合物をpH4以下の水溶液にする金属化合物水溶液調製工程;前記pH4以下の水溶液に、水酸化カルシウム、水酸化マグネシウム、水酸化バリウムから選ばれる1種以上の周期律表2A元素金属水酸化物の粉体および/またはその水系スラリーを混合してpH10以上にする反応工程;前記反応工程終了後の不溶解固体を分別、乾燥する第1分離工程;前記分別した不溶解固体を、不活性ガスあるいは水素ガス雰囲気下で、800℃以上でありかつ選ばれた前記金属のうち最も低い融点より100℃以上高くならない温度範囲で加熱する加熱処理工程;前記加熱処理後の固体を、酸水溶液中に浸漬してpHを4以下に保持する酸処理工程;前記酸処理後における酸水溶液中の金属粒子を分別、洗浄、乾燥する第2分離工程;の各工程を含んでなることを特徴とする金属微粉末の製造方法が記載されている。
日本国特開平10-102103号公報 日本国特開2006-199982号公報
 しかしながら、特許文献2に記載の方法では、周期律表2A元素金属水酸化物の粉体あるいはスラリー中の粉体と、液中で生成される貴金属粒子とは、液の攪拌によって混合されるのみであるため、湿式混合法と比較すると、貴金属粒子と周期律表2A元素金属水酸化物の粉体を均一に混合することができず、液中に貴金属粒子の凝集体が多く存在するものとなる。そのため、これを焼成すると、一部粗大粒子が生成してしまい、均一な粒径が得られにくいという問題があった。
 上記従来の課題を鑑みて、本発明は、粒度分布範囲が狭く、かつ高純度で高結晶性である貴金属粉末を、低コストで製造できる貴金属粉末の製造方法を提供することを目的とする。
 本発明者らは、鋭意検討の結果、下記の貴金属粉末の製造方法により前記課題を解決できることを見出し、本発明を完成するに至った。
 すなわち、本発明は、1種以上の貴金属化合物とカルシウム化合物の酸性水溶液を調製する工程、前記酸性水溶液を塩基性水溶液に添加し、貴金属の酸化物、水酸化物又はそれらの混合物、及び水酸化カルシウムを生成させる工程、還元剤により前記貴金属の酸化物、水酸化物又はそれらの混合物を還元する工程、及び、貴金属の還元体を含む固形分を分離して熱処理する工程を含む貴金属粉末の製造方法に関する。
 本発明の貴金属粉末の製造方法においては、前記熱処理する工程の後、得られた熱処理物に酸処理を施す工程をさらに含むことが好ましい。
 本発明の貴金属粉末の製造方法においては、前記酸性水溶液を調製する際の、前記1種以上の貴金属化合物と前記カルシウム化合物の割合が、原子基準に換算した重量比(貴金属原子/カルシウム原子)で、10:1~0.2:1であることが好ましい。
 本発明の貴金属粉末の製造方法においては、前記酸性水溶液を前記塩基性水溶液に滴下することにより添加することが好ましい。
 本発明の貴金属粉末の製造方法においては、前記酸性水溶液の全量を前記塩基性水溶液に添加した後の反応液が塩基性であることが好ましい。
 本発明の貴金属粉末の製造方法においては、前記熱処理が800℃以上の温度で行われることが好ましい。
 本発明の貴金属粉末の製造方法においては、前記熱処理が不活性雰囲気下又は還元性雰囲気下で行われることが好ましい。
 本発明の貴金属粉末の製造方法によれば、粒度分布範囲が狭く、かつ高純度で高結晶性である貴金属粉末を、低コストで製造することができる。
図1は、実施例1で得られた白金粉末のSEM写真である。 図2は、比較例1で得られた白金粉末のSEM写真である。 図3は、比較例2で得られた白金粉末のSEM写真である。 図4は、実施例2で得られた金粉末のSEM写真である。
 以下、本発明の貴金属粉末の製造方法の実施形態について詳細に説明する。なお、以下において、本発明の貴金属粉末の製造方法を、単に、本発明の製造方法ということがある。
 本発明の貴金属粉末の製造方法は、1種以上の貴金属化合物とカルシウム化合物の酸性水溶液を調製する工程(以下、酸性水溶液調製工程ともいう)、前記酸性水溶液を塩基性水溶液に添加し、貴金属の酸化物、水酸化物又はそれらの混合物、及び水酸化カルシウムを生成させる工程(以下、反応工程ともいう)、還元剤により前記貴金属の酸化物、水酸化物又はそれらの混合物を還元する工程(以下、還元工程ともいう)、及び、貴金属の還元体を含む固形分を分離して熱処理する工程(以下、熱処理工程ともいう)を含むものである。また、本発明の貴金属の製造方法は、前記熱処理工程後に、得られた熱処理物に酸処理を施す工程(以下、酸処理工程ともいう)をさらに含むことが好ましい。
 本発明の製造方法において、目的とする貴金属粉末に含まれる貴金属は、いかなる貴金属であってもよい。具体的には、例えば、金(Au)、銀(Ag)、白金(Pt)、パラジウム(Pd)、ロジウム(Rh)、イリジウム(Ir)及びルテニウム(Ru)から選択される1種以上が挙げられる。
(酸性水溶液調製工程)
 本発明の製造方法においては、まず、1種以上の貴金属化合物(以下、単に貴金属化合物ともいう)とカルシウム化合物の酸性水溶液を調製する。
 貴金属化合物としては、特に制限されないが、例えば、白金化合物、金化合物、ロジウム化合物、パラジウム化合物、イリジウム化合物、銀化合物、及びルテニウム化合物等が挙げられる。
 白金化合物としては、例えば、ヘキサクロロ白金(IV)酸、テトラクロロ白金(II)酸、及びテトラアンミン白金(II)酸等が挙げられる。
 金化合物としては、例えば、塩化金(III)酸、テトラクロロ金(III)酸、及びテトラクロロ金(III)酸アンモニウム等が挙げられる。
 ロジウム化合物としては、例えば、硝酸ロジウム(III)、及びヘキサクロロロジウム(III)酸アンモニウム等が挙げられる。
 パラジウム化合物としては、例えば、硝酸パラジウム(II)、及びテトラアンミンパラジウム(II)硝酸塩等が挙げられる。
 イリジウム化合物としては、例えば、酸化イリジウム、塩化イリジウム、及び硝酸イリジウム等が挙げられる。
 銀化合物としては、例えば、塩化銀、硝酸銀、及び酢酸銀等が挙げられる。
 ルテニウム化合物としては、例えば、酸化ルテニウム(IV)、塩化ルテニウム(III)、及び硝酸ルテニウム(III)等が挙げられる。
 なお、貴金属化合物は、目的とする貴金属粉末に含まれる貴金属の種類等を考慮して、その1種以上を適宜選択して用いることができる。
 カルシウム化合物は、後述する反応工程において水酸化カルシウムとなり、その後の熱処理工程において熱分解により酸化カルシウムとなり、熱処理工程における貴金属粒子の粒成長を抑制するスペーサーとして機能する成分である。
 また、カルシウム化合物としては、酸性水溶液に可溶である限り、特に限定されないが、例えば、炭酸カルシウム、水酸化カルシウム、酸化カルシウム、硫酸カルシウム、塩化カルシウム、及び硝酸カルシウム等が挙げられる。これらのなかでも、塩化カルシウムと硝酸カルシウムは水に溶解し易く、取扱い性が容易であるため、好ましい。
 なお、塩化カルシウムと硝酸カルシウム以外に例示した化合物は、水に対して難溶性であるが、貴金属化合物の水溶液は強酸であることが多く、この貴金属化合物の水溶液に溶解させることが可能である。ただし、これら化合物を貴金属化合物の水溶液に溶解させる際には発熱が生じ、また、熱に起因する変質が生じる場合があるため、塩化カルシウム又は硝酸カルシウムを用いることが好ましい。なお、当該カルシウム化合物は、1種のみを単独で用いてもよく、2種以上を組み合わせて用いてもよい。
 当該酸性水溶液を調製する際の、貴金属化合物とカルシウム化合物の使用割合は、特に限定されるものではないが、貴金属化合物の割合が過度に大きい場合、カルシウム化合物の割合が少なくなりすぎ、後述する熱処理時におけるネッキングが多くなり、粒径の揃った貴金属粒子が得られ難くなる傾向がある。
 一方、貴金属化合物の割合が過度に小さい場合、カルシウム化合物を添加する効果が飽和する傾向にあり、後述する酸処理における酸化カルシウムの除去に必要な酸の量が増加する。したがって、貴金属化合物とカルシウム化合物の使用割合は、原子基準に換算した重量比(貴金属原子:カルシウム原子)で、10:1~0.2:1であることが好ましく、2:1~0.5:1であることがより好ましい。
 貴金属化合物とカルシウム化合物の酸性水溶液を調製するにあたっての調製方法は、特に限定されるものではない。例えば、貴金属化合物の水溶液を作製し、これにカルシウム化合物を溶解させることにより、酸性水溶液を調製してもよい。あるいは、カルシウム化合物の水溶液を調製し、これに貴金属化合物を溶解させることにより、酸性水溶液を調製してもよい。もしくは、貴金属化合物の水溶液と、カルシウム化合物の水溶液を別々に調製し、これらを混合することにより、酸性水溶液を調製してもよい。
 また、貴金属化合物及びカルシウム化合物には、水に溶解させるだけで目的とする酸性水溶液となるものもあるが、酸性水溶液を調製するいずれかあるいは複数の段階において、必要に応じて、酸を添加してもよい。中でも、貴金属化合物をあらかじめ酸性水溶液として調製し、これにカルシウム化合物を溶解またはカルシウム化合物の水溶液と混合することにより貴金属化合物とカルシウム化合物との酸性水溶液を調製することが好ましい。
 このとき、使用される酸は、貴金属化合物やカルシウム化合物の水への溶解性を高め、または水溶液を目的とする酸性に調整できるものであればよく、塩酸、硝酸などの無機酸や、酢酸、蟻酸などの有機酸などが挙げられる。なお、硫酸を用いてもよいが、生成した金属微粒子の使用目的によっては硫黄原子が混入する可能性を極度に避けることがあるので、その面からは好ましくないことがある。
 調製される酸性水溶液のpHは、酸性である限り、特に限定されない。貴金属が酸化物や水酸化物として析出することを防ぐ観点からは、pHが4以下であることが好ましく、2以下であることがより好ましく、1以下であることがさらに好ましい。
(反応工程)
 本発明の製造方法においては、次に、上記のようにして調製した酸性水溶液を塩基性水溶液に添加して、貴金属の酸化物、水酸化物又はそれらの混合物、及び水酸化カルシウムを生成させる。
 塩基性水溶液としては、たとえば、水酸化ナトリウム水溶液、水酸化カリウム水溶液、及びアンモニア水等などを用いることができる。また、塩基性水溶液のpHは、塩基性である限り、特に限定されないが、カルシウム化合物を水酸化物として効率よく適切に析出させる観点からは、pHが11以上であることが好ましく、12以上であることがより好ましい。
 また、酸性水溶液の塩基性水溶液に対する添加割合は、酸性水溶液のpHと塩基性水溶液のpH等を考慮して適宜調整すればよい。貴金属化合物とカルシウム化合物が溶解した酸性水溶液を中和するのに十分な塩基性の水溶液を調製することが好ましい。つまり貴金属の酸化物、水酸化物又はそれらの混合物と水酸化カルシウムとを析出させるのに十分な塩基性水溶液を用いることが好ましい。
 本発明の製造方法においては、酸性水溶液の方を、塩基性水溶液に添加することが重要である。例えば、送液ポンプ、ピペット、スポイト、及びロート等を適宜使用して、酸性水溶液を塩基性水溶液に撹拌しながら一度にまたは除々に滴下することが好ましい。
 このようにすることにより、貴金属イオンとカルシウムイオンが均一に分散した酸性水溶液が、塩基性、好ましくは強塩基性の水溶液に添加される。そのため、添加された瞬間もしくは添加された後に、貴金属の酸化物、水酸化物又はそれらの混合物と水酸化カルシウムとの生成が凡そ同時に開始、または水酸化カルシウムの生成の開始後速やかに貴金属の酸化物、水酸化物又はそれらの混合物の生成が開始される。すなわち、水酸化カルシウムの生成が完了する前に貴金属の酸化物、水酸化物又はそれらの混合物の生成が開始することから、これらが均一に分散した液体が得られる。
 したがって、その後の工程により、粒度分布範囲が狭く、粒径の揃った貴金属粉末を得ることができる。なお、酸性水溶液を塩基性水溶液に添加するにあたっては、塩基性水溶液を撹拌しているところに、酸性水溶液を添加することが好ましい。
 本発明の製造方法においては、貴金属化合物やカルシウム化合物を水に溶解させた状態から貴金属粒子を生成させるため、反応条件の制御により、貴金属粒子や水酸化カルシウム粒子の粒径や混合比率の制御が可能であり、ひいては得られる貴金属粉末の特性を制御でき、品質を安定化させることが可能である。
 また、酸性水溶液の全量を塩基性水溶液に添加した後の反応液が塩基性であることが好ましい。これにより、生成される貴金属の水酸化物及び水酸化カルシウムが反応液中で安定に存在することができる。酸性水溶液の全量を塩基性水溶液に添加した後の反応液のpHは、好ましくは11以上であり、より好ましくは12以上である。
 一方、塩基性水溶液の方を、酸性水溶液に徐々に添加した場合、pHは酸性領域から塩基性領域に徐々に上昇していくが、この場合、先に貴金属の水酸化物の生成が起こり始め、その後に水酸化カルシウムの生成が起こる。したがって、この場合には貴金属の水酸化物と水酸化カルシウムは同時に生成しない。そして、先に生成し始めた貴金属の水酸化物は、カルシウムが周囲に配置されていない貴金属主体の集合体となり、粗大粒子の基になるため、均一な粒径を得ることが困難となる。
(還元工程)
 本発明の製造方法においては、上記反応工程につづいて、還元剤により前記貴金属の酸化物、水酸化物又はそれらの混合物を還元する。すなわち、上記反応工程により得られた貴金属の酸化物、水酸化物又はそれらの混合物、及び水酸化カルシウムを含む液体に還元剤を添加して、液体中の貴金属の酸化物、水酸化物又はそれらの混合物を還元させる。
 使用される還元剤は、貴金属の酸化物、水酸化物又はそれらの混合物を還元できるものであれば特に限定されない。例えば、ヒドラジン、ホルマリン、ブドウ糖、ハイドロキノン、塩化ヒドロキシルアンモニウム、及びギ酸ナトリウムなどが挙げられる。析出効率や粒径の均一性の観点からは、白金ではヒドラジンが好ましく、金では塩化ヒドロキシルアンモニウムが好ましい。また、還元剤の使用量も、貴金属の酸化物、水酸化物又はそれらの混合物を十分に還元できる量であればよく、特に限定されない。
(熱処理工程)
 つづいて、本発明の製造方法においては、貴金属の酸化物、水酸化物又はそれらの混合物を還元した後の液体から、貴金属の還元体を含む固形分(不溶解物)を分離し、これを熱処理(焼成)する。ここで、本発明の製造方法においては、上記反応工程において貴金属の酸化物、水酸化物又はそれらの混合物と水酸化カルシウムとが均一に分散した液体を得た後、還元工程を経て、固形分(不溶解物)を分離している。したがって、分離された固形分においては、貴金属の還元体と水酸化カルシウムが均一に分散された状態で含まれている。この固形分に熱処理を施すことにより、貴金属の還元体は原子価0の状態で半融状態となり凝集していく。
 一方、共存する水酸化カルシウムは熱分解して酸化カルシウムとなる。形態的には、貴金属の還元体は原子価0の状態で半融状態となり凝集していくが、熱的に安定な固体である酸化カルシウムに囲まれて凝集が妨げられ、凝集貴金属の周囲を取囲むように酸化カルシウムが配置された状態になる。このように、貴金属の還元体と水酸化カルシウムが均一に分散された状態から、貴金属粒子が自由に成長し得ない環境で粒成長させることにより、貴金属粒子径が均一に揃えられ、粒径分布範囲が狭く、高純度かつ高結晶性の貴金属粒子を得ることができる。
 貴金属の酸化物、水酸化物又はそれらの混合物を還元した後の液体から、貴金属の還元体を含む固形分を分離する方法としては、濾過や遠心分離等、従来公知の固液分離方法を適宜選択して適用することができる。また、固形分の分離後に、必要に応じて固形分を乾燥させることにより、固形分に付着した水分を除去してもよい。乾燥温度としては、特に限定されるものではないが、例えば80~200℃で行うことができる。
 分離した固形分を熱処理するにあたっての熱処理温度は、特に限定されないが、貴金属粉末の純度及び結晶性をより向上させるためには、800℃以上であることが好ましく、900℃以上であることがより好ましい。また、熱処理温度の上限も、特に限定されるものではない。粒径を均一に制御する観点からは、目的とする貴金属粒子に含まれる貴金属のうち、最も融点の低い貴金属の融点より100℃以上高くならない温度であることが好ましい。
 また、熱処理時間も、特に限定されるものではないが、好ましくは0.2~5時間、より好ましくは0.5~3時間である。熱処理時間が0.2時間以上であると、貴金属粒子の粒成長が十分であるため好ましい。また、熱処理時間が5時間以下であると、生産効率が高いため好ましい。
 分離した固形分に熱処理を施すにあたっての熱処理雰囲気としては、貴金属の種類によっては酸化の影響を受けることがあるため、窒素、アルゴン、及びヘリウム等の不活性雰囲気や、水素等の還元性雰囲気であることが好ましい。
(酸処理工程)
 本発明の製造方法においては、前記熱処理工程の後に、熱処理に供した熱処理物に対して酸処理をさらに施すことが好ましい。ここで、上記熱処理に供した熱処理物には、貴金属粒子と酸化カルシウムが含まれるが、酸処理によって、貴金属粒子(粉末)のみを残して、酸化カルシウムのみを酸に溶解させ、貴金属粉末以外の成分を除去することができる。
 酸処理を行うにあたっては、熱処理物を酸水溶液中に浸漬して保持すればよい。このとき使用される酸は、目的とする貴金属微粒子は溶解せず、酸化カルシウムのみを水に溶解させることができるものであればよい。好ましい具体例としては、貴金属が白金及び金から選択される1種以上であるときは、塩酸、硝酸及び酢酸から選ばれる1種以上である。また、貴金属が、ロジウム、パラジウム、銀、ルテニウム及びイリジウムから選択される1種以上を含むときは、酢酸である。
 酸処理に使用される酸の量は、酸化カルシウムと反応させるのに十分な量であればよいが、実際上は酸が過剰となる酸水溶液に浸漬し、酸性を維持できるようにして行う。酸処理工程は、攪拌を行いつつ実施するのが好ましい。また、酸処理の後、必要に応じて水洗等の洗浄や乾燥等を行うことにより、目的とする貴金属粉末を得ることができる。乾燥温度としては、特に限定されるものではないが、例えば80~200℃で行うことができる。
 本発明の製造方法は、製造工程数が少なく、したがって低コストで、粒度分布範囲が狭く(粒径が揃っており)、かつ高純度で高結晶性である貴金属粉末を製造することができる。
 以下、本発明につき、実施例によりさらに説明するが、本発明は下記例に制限されるものではない。
(実施例1)
 塩化カルシウム55.5gを200gの純水に溶解させて、塩化カルシウム水溶液を調製した。次に、塩化白金酸溶液(白金含有率16.4重量%)243.9gを、調製した塩化カルシウム水溶液に加えて十分に撹拌し、白金イオンとカルシウムイオンを含む酸性水溶液を調製した。50℃に加熱した500gの40%水酸化カリウム水溶液を撹拌しているところに、当該酸性水溶液を10分間かけて滴下した。次に、5%ヒドラジンを200g添加し、さらに1時間攪拌してから室温に冷却した後、不溶解物を濾別した。濾別された不溶解物を洗浄した後、120℃で乾燥させ、窒素雰囲気下1200℃で1時間熱処理を施した。つづいて、3mol/Lの硝酸溶液を1L用意し、これに熱処理物を加えて酸処理し、カルシウム成分を溶解除去した後、洗浄及び120℃で乾燥させて、白金粉末39.4gを得た。図1に、実施例1で得られた白金粉末のSEM写真を示す。
(比較例1)
 塩化カルシウム55.5gを200gの純水に溶解させて、塩化カルシウム水溶液を調製した。次に、塩化白金酸溶液(白金含有率16.4重量%)243.9gを、調製した塩化カルシウム水溶液に加えて十分に撹拌し、白金イオンとカルシウムイオンを含む酸性水溶液を調製した。前記酸性水溶液を50℃に加熱しながら攪拌しているところに、500gの40%水酸化カリウム水溶液を10分間かけて滴下した。次に、5%ヒドラジンを200g添加し、さらに1時間攪拌してから室温に冷却した後、不溶解物を濾別した。濾別された不溶解物を洗浄した後、120℃で乾燥させ、窒素雰囲気下1200℃で1時間熱処理を施した。つづいて、3mol/Lの硝酸溶液を1L用意し、これに熱処理物を加えて酸処理し、カルシウム成分を溶解除去した後、洗浄及び120℃で乾燥させて、白金粉末39.4gを得た。図2に、比較例1で得られた白金粉末のSEM写真を示す。
(比較例2)
 水酸化カルシウム148.2gを500gの純水に分散させ、水酸化カルシウムスラリーを調製した。この水酸化カルシウムスラリーに対して、塩化白金酸溶液(白金含有率16.4重量%)243.9gに純水を200g加えて混合した溶液を10分間かけて滴下した。次に、5%ヒドラジンを200g添加し、さらに1時間攪拌してから室温に冷却した後、不溶解物を濾別した。濾別された不溶解物を洗浄した後、120℃で乾燥させ、窒素雰囲気下1200℃で1時間熱処理を施した。つづいて、3mol/Lの硝酸溶液を1L用意し、これに熱処理物を加えて酸処理し、カルシウム成分を溶解除去した後、洗浄及び120℃で乾燥させて、白金粉末39.4gを得た。図3に、比較例2で得られた白金粉末のSEM写真を示す。
 実施例1及び比較例1~2で得られた各白金粉末について、BET法により比表面積を測定した。測定結果を表1に示す。
 また、実施例1及び比較例1~2で得られた各白金粉末について、レーザー回折式粒度分布測定装置(日機装社製、製品名:MT3000)を用いて粒度分布を測定した。得られた10体積%平均粒子径、50体積%平均粒子径、90体積%平均粒子径、及び最大粒子径の測定結果を表1に示す。
 また、実施例1及び比較例1~2について、反応生成物である熱処理前の濾別された不溶解物の乾燥体(白金カルシウム混合粉末)中の白金とカルシウムの元素含有比率(重量比)についても、表1にあわせて示す。
Figure JPOXMLDOC01-appb-T000001
 これらの結果から、40%水酸化カリウム水溶液に酸性水溶液を滴下した実施例1では、全体的に粒子径が揃っており、粗大な粒子が含まれていないことが確認された。一方、酸性水溶液に40%水酸化カリウム水溶液を滴下した比較例1や、水酸化カルシウムスラリーに塩化白金酸水溶液を添加した比較例2では、粒子径の分布が広く、粗大な粒子が含まれていることが確認された。
(実施例2)
 硝酸カルシウム36.1gを36gの純水に溶解させて、硝酸カルシウム水溶液を調製した。次に、塩化金酸溶液(金含有率17.0重量%)35.3gを、調製した硝酸カルシウム水溶液に加えて十分に撹拌し、金イオンとカルシウムイオンを含む酸性水溶液を調製した。50℃に加熱した248gの40%水酸化カルシウム水溶液を撹拌しているところに、当該酸性水溶液を80分間かけて滴下した。次に、10%塩酸ヒドラジンを17.1g添加し、さらに1時間攪拌してから室温に冷却した後、不溶解物を濾別した。濾別された不溶解物を洗浄した後、120℃で乾燥させ、窒素雰囲気下800℃で1時間熱処理を施した。つづいて、3mol/Lの硝酸溶液を1L用意し、これに熱処理物を加えて酸処理し、カルシウム成分を溶解除去した後、洗浄及び120℃で乾燥させて、金粉末6.0gを得た。図4に、実施例2で得られた金粉末のSEM写真を示す。
 実施例2で得られた金粉末について、BET法により比表面積を測定した。測定結果を表2に示す。
 また、実施例2で得られた金粉末について、レーザー回折式粒度分布測定装置(日機装社製、製品名:MT3000)を用いて粒度分布を測定した。得られた10体積%平均粒子径、50体積%平均粒子径、90体積%平均粒子径、及び最大粒子径の測定結果を表2に示す。
 また、実施例2について、反応生成物である熱処理前の濾別された不溶解物の乾燥体(金カルシウム混合粉末)中の金とカルシウムの元素含有比率(重量比)についても、表2にあわせて示す。
Figure JPOXMLDOC01-appb-T000002
 この結果から、実施例1と同様に40%水酸化カリウム水溶液に酸性水溶液を滴下した実施例2においても、全体的に粒子径が揃っており、粗大な粒子が殆ど含まれていないことが確認された。
 本発明を特定の態様を用いて詳細に説明したが、本発明の意図と範囲を離れることなく様々な変更および変形が可能であることは、当業者にとって明らかである。なお本出願は、2015年9月18日付で出願された日本特許出願(特願2015-185231)に基づいており、その全体が引用により援用される。

Claims (7)

  1.  1種以上の貴金属化合物とカルシウム化合物の酸性水溶液を調製する工程、
     前記酸性水溶液を塩基性水溶液に添加し、貴金属の酸化物、水酸化物又はそれらの混合物、及び水酸化カルシウムを生成させる工程、
     還元剤により前記貴金属の酸化物、水酸化物又はそれらの混合物を還元する工程、及び、
     貴金属の還元体を含む固形分を分離して熱処理する工程
     を含む貴金属粉末の製造方法。
  2.  前記熱処理する工程の後、得られた熱処理物に酸処理を施す工程をさらに含む、請求項1に記載の貴金属粉末の製造方法。
  3.  前記酸性水溶液を調製する際の、前記1種以上の貴金属化合物と前記カルシウム化合物の割合が、原子基準に換算した重量比(貴金属原子:カルシウム原子)で、10:1~0.2:1である、請求項1または2に記載の貴金属粉末の製造方法。
  4.  前記酸性水溶液を前記塩基性水溶液に滴下することにより添加する、請求項1から3のいずれか1項に記載の貴金属粉末の製造方法。
  5.  前記酸性水溶液の全量を前記塩基性水溶液に添加した後の反応液が塩基性である、請求項1から4のいずれか1項に記載の貴金属粉末の製造方法。
  6.  前記熱処理が800℃以上の温度で行われる、請求項1から5のいずれか1項に記載の貴金属粉末の製造方法。
  7.  前記熱処理が不活性雰囲気下又は還元性雰囲気下で行われる、請求項1から6のいずれか1項に記載の貴金属粉末の製造方法。
PCT/JP2016/076777 2015-09-18 2016-09-12 貴金属粉末の製造方法 WO2017047542A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020187007592A KR102059426B1 (ko) 2015-09-18 2016-09-12 귀금속 분말의 제조 방법
US15/761,136 US10569334B2 (en) 2015-09-18 2016-09-12 Process for producing noble-metal powder
EP16846413.9A EP3351324B1 (en) 2015-09-18 2016-09-12 Precious metal powder production method
CN201680054026.1A CN108025366B (zh) 2015-09-18 2016-09-12 贵金属粉末的制造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015185231A JP6453735B2 (ja) 2015-09-18 2015-09-18 貴金属粉末の製造方法
JP2015-185231 2015-09-18

Publications (1)

Publication Number Publication Date
WO2017047542A1 true WO2017047542A1 (ja) 2017-03-23

Family

ID=58288743

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/076777 WO2017047542A1 (ja) 2015-09-18 2016-09-12 貴金属粉末の製造方法

Country Status (7)

Country Link
US (1) US10569334B2 (ja)
EP (1) EP3351324B1 (ja)
JP (1) JP6453735B2 (ja)
KR (1) KR102059426B1 (ja)
CN (1) CN108025366B (ja)
TW (1) TWI636138B (ja)
WO (1) WO2017047542A1 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6462932B1 (ja) 2018-03-30 2019-01-30 田中貴金属工業株式会社 金属粉末
JP7414421B2 (ja) * 2019-08-05 2024-01-16 田中貴金属工業株式会社 金粉末及び該金粉末の製造方法並びに金ペースト
EP4051817A1 (en) * 2019-10-28 2022-09-07 Syddansk Universitet A method of recovering iridium
CN114453589B (zh) * 2022-02-18 2022-11-29 贵研铂业股份有限公司 一种高纯金的制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10102109A (ja) * 1996-09-30 1998-04-21 Tanaka Kikinzoku Kogyo Kk ニッケル粉末の製造方法
JPH10183208A (ja) * 1996-12-25 1998-07-14 Sumitomo Metal Mining Co Ltd 銀粉末の製造方法
JP2006199982A (ja) * 2005-01-18 2006-08-03 Tanaka Kikinzoku Kogyo Kk 金属微粉末の製造方法
JP2008095174A (ja) * 2006-09-14 2008-04-24 Kojima Kagaku Yakuhin Kk 微粒子白金粉末の製造方法
US20130202909A1 (en) * 2012-02-06 2013-08-08 Lg Chem, Ltd. Method of producing metal nanoparticles

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63307208A (ja) * 1987-06-08 1988-12-14 Chiyoda Chem Eng & Constr Co Ltd 貴金属微粉末の製造方法
JP3946798B2 (ja) * 1996-09-30 2007-07-18 田中貴金属工業株式会社 高結晶性白金粉末の製造方法
FR2898519B1 (fr) * 2006-03-20 2009-01-09 Commissariat Energie Atomique Nanoparticules notamment a structure coeur coquilles, enrobees
CN101622090B (zh) * 2007-02-27 2013-03-13 三菱麻铁里亚尔株式会社 金属纳米颗粒分散液及其制备方法以及金属纳米颗粒的合成方法
US8231704B2 (en) 2009-05-01 2012-07-31 E I Du Pont De Nemours And Company Silver particles and processes for making them
CN101823691B (zh) * 2010-05-06 2012-12-19 宁波大学 一种钯和/或锑掺杂的氧化锡纳米粉体的制备方法
CN101966595A (zh) * 2010-11-12 2011-02-09 余运洋 纳米银制备工艺
JP5310967B1 (ja) * 2011-11-18 2013-10-09 住友金属鉱山株式会社 銀粉の製造方法
DE102013203743A1 (de) * 2013-03-05 2014-09-11 Heraeus Precious Metals Gmbh & Co. Kg Verfahren zur Herstellung hochreinen Platinpulvers sowie Platinpulver erhältlich nach diesem Verfahren und Verwendung

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10102109A (ja) * 1996-09-30 1998-04-21 Tanaka Kikinzoku Kogyo Kk ニッケル粉末の製造方法
JPH10183208A (ja) * 1996-12-25 1998-07-14 Sumitomo Metal Mining Co Ltd 銀粉末の製造方法
JP2006199982A (ja) * 2005-01-18 2006-08-03 Tanaka Kikinzoku Kogyo Kk 金属微粉末の製造方法
JP2008095174A (ja) * 2006-09-14 2008-04-24 Kojima Kagaku Yakuhin Kk 微粒子白金粉末の製造方法
US20130202909A1 (en) * 2012-02-06 2013-08-08 Lg Chem, Ltd. Method of producing metal nanoparticles

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3351324A4 *

Also Published As

Publication number Publication date
EP3351324A1 (en) 2018-07-25
EP3351324B1 (en) 2019-11-06
TW201723195A (zh) 2017-07-01
EP3351324A4 (en) 2018-10-24
CN108025366A (zh) 2018-05-11
CN108025366B (zh) 2020-11-10
KR102059426B1 (ko) 2019-12-26
JP2017057480A (ja) 2017-03-23
US10569334B2 (en) 2020-02-25
US20180264555A1 (en) 2018-09-20
JP6453735B2 (ja) 2019-01-16
KR20180042317A (ko) 2018-04-25
TWI636138B (zh) 2018-09-21

Similar Documents

Publication Publication Date Title
WO2017047542A1 (ja) 貴金属粉末の製造方法
JP4277803B2 (ja) 金属微粉末の製造方法
JP4821014B2 (ja) 銅粉の製造法
JP5574154B2 (ja) ニッケル粉末およびその製造方法
EP2311586A1 (en) Metal microparticle containing composition and process for production of the same
KR102017177B1 (ko) 습식공정을 이용한 고순도 은 나노 분말의 제조 방법
JP2010144215A (ja) 導電ペースト用貴金属粉末及びその製造方法
CN111918735B (zh) 金属粉末
JP5942791B2 (ja) ニッケル粉末の製造方法
JP2017206751A (ja) ニッケル粉末の製造方法
JP2017071851A (ja) ニッケル粉末
JP6491595B2 (ja) 白金パラジウムロジウム合金粉末の製造方法
JP6201818B2 (ja) チタン及びバリウム含有ニッケル粉末の製造方法
JP6179423B2 (ja) 硫黄含有ニッケル粉末の製造方法
JP6201817B2 (ja) チタン含有ニッケル粉末の製造方法
JP6187822B2 (ja) ニッケル粉末の製造方法
JP6083295B2 (ja) ニッケル粉末の製造方法
JP2015163726A (ja) ニッケル粉末の製造方法
JP2021501267A (ja) 銀粉末の製造方法及び銀粉末を含む導電性ペースト

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16846413

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20187007592

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15761136

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2016846413

Country of ref document: EP