WO2017043522A1 - 太陽電池および太陽電池の製造方法 - Google Patents

太陽電池および太陽電池の製造方法 Download PDF

Info

Publication number
WO2017043522A1
WO2017043522A1 PCT/JP2016/076286 JP2016076286W WO2017043522A1 WO 2017043522 A1 WO2017043522 A1 WO 2017043522A1 JP 2016076286 W JP2016076286 W JP 2016076286W WO 2017043522 A1 WO2017043522 A1 WO 2017043522A1
Authority
WO
WIPO (PCT)
Prior art keywords
amorphous silicon
silicon film
electrode
solar cell
film
Prior art date
Application number
PCT/JP2016/076286
Other languages
English (en)
French (fr)
Inventor
怡瀟 宋
嘉高 銭谷
正道 小林
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Priority to CN201680049532.1A priority Critical patent/CN107924957A/zh
Priority to JP2017539186A priority patent/JPWO2017043522A1/ja
Publication of WO2017043522A1 publication Critical patent/WO2017043522A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/072Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type
    • H01L31/0745Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type comprising a AIVBIV heterojunction, e.g. Si/Ge, SiGe/Si or Si/SiC solar cells
    • H01L31/0747Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type comprising a AIVBIV heterojunction, e.g. Si/Ge, SiGe/Si or Si/SiC solar cells comprising a heterojunction of crystalline and amorphous materials, e.g. heterojunction with intrinsic thin layer
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Definitions

  • the present invention relates to a solar cell and a method for manufacturing a solar cell.
  • Patent Document 1 discloses an intrinsic amorphous silicon film on a first main surface of a crystalline silicon substrate of one conductivity type and a first amorphous material of another conductivity type.
  • a silicon film, a light-receiving surface electrode layer, and finger electrodes are sequentially stacked, and an intrinsic amorphous silicon film, a one-conductivity-type second amorphous silicon film, a contact layer, and an Mg-doped zinc oxide are formed on the second main surface.
  • a solar cell in which a layer and a back electrode layer are sequentially laminated is disclosed.
  • the light-receiving surface electrode layer and the Mg-doped zinc oxide layer are both metal oxides
  • the finger electrode can be formed by printing a silver paste
  • the back electrode layer is formed from a metal film such as copper or silver. It is supposed to be possible.
  • the solar cell of Patent Document 1 uses a light-receiving surface electrode layer and an Mg-doped zinc oxide layer which are metal oxides, and these metal oxides increase the cost of the solar cell.
  • An embodiment disclosed herein includes a semiconductor substrate of a first conductivity type or a second conductivity type, an amorphous silicon film on the semiconductor substrate, and an electrode on the amorphous silicon film, and includes amorphous silicon.
  • the region of the amorphous silicon film on the amorphous silicon film side from the interface between the film and the electrode, and the electrode include silver and a metal other than silver.
  • the embodiment disclosed herein includes a step of forming an amorphous silicon film on a semiconductor substrate of a first conductivity type or a second conductivity type, and silver and a metal other than silver on the amorphous silicon film.
  • a step of forming a metal film including the electrode and heating the metal film to form an electrode on the amorphous silicon film, and in contact with the electrode between the amorphous silicon film and the electrode; Forming a contact region containing the metal of the solar cell.
  • the cost of the solar cell can be reduced.
  • FIG. 2 is a schematic cross-sectional view of a heterojunction back contact cell as a solar battery according to Embodiment 1.
  • FIG. FIG. 3 is a schematic enlarged cross-sectional view in the vicinity of a first electrode and a second electrode of the heterojunction back contact cell shown in FIG. 1. It is typical sectional drawing illustrating a part of manufacturing process of an example of the manufacturing method of the heterojunction type back contact cell shown in FIG. It is typical sectional drawing illustrating a part of manufacturing process of an example of the manufacturing method of the heterojunction type back contact cell shown in FIG. It is typical sectional drawing illustrating a part of manufacturing process of an example of the manufacturing method of the heterojunction type back contact cell shown in FIG. It is typical sectional drawing illustrating a part of manufacturing process of an example of the manufacturing method of the heterojunction type back contact cell shown in FIG.
  • FIG. 1 It is typical sectional drawing illustrating a part of manufacturing process of an example of the manufacturing method of the heterojunction type back contact cell shown in FIG.
  • (A) is the transmission electron microscope (TEM) photograph of the cross section of the electrode vicinity of the heterojunction back contact cell shown in FIG. 1
  • (b) is the 1st of the heterojunction back contact cell shown in FIG. It is a component analysis result by energy dispersive X-ray spectroscopy (EDX) of the contact area
  • (A) is the transmission electron microscope (TEM) photograph of the cross section of the electrode vicinity of the heterojunction type back contact cell of a comparative example
  • (b) is the 1st non of the heterojunction type back contact cell of a comparative example.
  • FIG. 6 is a schematic cross-sectional view of a double-sided electrode type solar battery cell as a solar battery of Embodiment 3.
  • FIG. 6 is a schematic cross-sectional view of a double-sided electrode type solar battery cell as a solar battery of Embodiment 3.
  • FIG. 1 typical sectional drawing of the heterojunction type
  • the heterojunction back contact cell shown in FIG. 1 includes a semiconductor substrate 1 having a light receiving surface 1a which is one main surface having an uneven structure and a back surface 1b which is a main surface opposite to the light receiving surface 1a. .
  • a first i-type amorphous semiconductor film 2 and a second i-type amorphous semiconductor film 4 are disposed on the back surface 1 b of the semiconductor substrate 1.
  • the semiconductor substrate 1 is an n-type single crystal silicon substrate, and the first i-type amorphous semiconductor film 2 and the second i-type amorphous semiconductor film 4 are respectively i-type amorphous.
  • the silicon film is a porous silicon film will be described.
  • a first conductive type amorphous semiconductor film 3 is disposed on the first i type amorphous semiconductor film 2, and the first i type amorphous semiconductor film 2 and the first conductive type amorphous semiconductor film are arranged.
  • a first amorphous silicon film 6 is composed of a laminate with the film 3.
  • a second conductive type amorphous semiconductor film 5 is disposed on the second i type amorphous semiconductor film 4, and the second i type amorphous semiconductor film 4 and the second conductive type amorphous semiconductor film 4.
  • a second amorphous silicon film 7 is composed of a laminate with the crystalline semiconductor film 5.
  • first conductive amorphous semiconductor film 3 is a p-type amorphous silicon film and the second conductive amorphous semiconductor film 5 is an n-type amorphous silicon film will be described. To do.
  • i-type means not only a completely intrinsic state but also a sufficiently low concentration (the n-type impurity concentration is less than 1 ⁇ 10 15 / cm 3 and the p-type impurity concentration is 1 ⁇ (Less than 10 15 / cm 3 ) is meant to include n-type or p-type impurities. That is, in this embodiment, “n-type” means a state where the n-type impurity concentration is 1 ⁇ 10 15 / cm 3 or more, and “p-type” means that the p-type impurity concentration is 1 ⁇ 10 15 / cm 3 or more. Means the state.
  • amorphous silicon includes not only amorphous silicon in which dangling bonds of silicon atoms are not terminated with hydrogen, but also silicon such as hydrogenated amorphous silicon. Also included are those in which dangling bonds of atoms are terminated with hydrogen or the like.
  • the first electrode 8 is disposed on the first conductive amorphous semiconductor film 3, and the second electrode 9 is disposed on the second conductive amorphous semiconductor film 5.
  • the case where the 1st electrode 8 and the 2nd electrode 9 contain silver (Ag) and titanium (Ti), respectively is demonstrated.
  • FIG. 2 is a schematic enlarged sectional view of the vicinity of the first electrode 8 and the second electrode 9 of the heterojunction back contact cell shown in FIG.
  • a first contact region 11 that contacts the first electrode 8 is located between the first electrode 8 and the first conductive type amorphous semiconductor film 3, and the second electrode 9.
  • a second contact region 12 that is in contact with the second electrode 9 is located between the first conductive type amorphous semiconductor film 5 and the second conductive type amorphous semiconductor film 5.
  • the first contact region 11 and the second contact region 12 each contain Ag and Ti in addition to silicon (Si).
  • At least one of the thickness D1 of the first contact region 11 and the thickness D2 of the second contact region 12 is preferably 10 nm or less, and more preferably both the thickness D1 and the thickness D2 are 10 nm or less. preferable.
  • the thickness D1 is 10 nm or less, the adhesion between the first electrode 8 and the first contact region 11 can be improved, and the semiconductor substrate 1 made of the first amorphous silicon film 6 is used.
  • the passivation property of the back surface 1b can also be improved.
  • the thickness D2 is 10 nm or less, the adhesion between the second electrode 9 and the second contact region 12 can be improved, and the semiconductor formed by the second amorphous silicon film 7 is used.
  • the passivation property of the back surface 1b of the substrate 1 can also be improved. Furthermore, when both the thickness D1 and the thickness D2 are 10 nm or less, the adhesion between the first electrode 8 and the first contact region 11 and the second electrode 9 and the second contact region 12 Can be improved, and the passivation property of the back surface 1b of the semiconductor substrate 1 by the first amorphous silicon film 6 and the second amorphous silicon film 7 can also be improved.
  • the thickness D1 of the first contact region 11 is a length in a direction perpendicular to the interface 11a from the interface 11a between the first electrode 8 and the first contact region 11 to the first amorphous silicon film 6 side.
  • the thickness D2 of the second contact region 12 is a length in a direction perpendicular to the interface 12a from the interface 12a between the second electrode 9 and the second contact region 12 to the second amorphous silicon film 7 side.
  • the thickness D3 of the first amorphous silicon film 6 is preferably 5 nm or more, more preferably 8 nm or more, and further preferably 10 nm or more. As the thickness D3 of the first amorphous silicon film 6 becomes 5 nm or more, 8 nm or more, and 10 nm or more, the passivation property of the back surface 1b of the semiconductor substrate 1 by the first amorphous silicon film 6 is improved. There is a tendency.
  • the thickness D3 of the first amorphous silicon film 6 is from the interface 6a between the first contact region 11 and the first amorphous silicon film 6 to the first amorphous silicon film 6 side. It means the length in the direction perpendicular to the interface 6a.
  • the thickness D4 of the second amorphous silicon film 7 is preferably 5 nm or more, more preferably 8 nm or more, and further preferably 10 nm or more. As the thickness D4 of the second amorphous silicon film 7 becomes 5 nm or more, 8 nm or more, and 10 nm or more, the passivation property of the back surface 1b of the semiconductor substrate 1 by the second amorphous silicon film 7 tends to improve. It is in.
  • the thickness D4 of the second amorphous silicon film 7 is from the interface 7a between the second contact region 12 and the second amorphous silicon film 7 to the second amorphous silicon film 7 side. It means the length in the direction perpendicular to the interface 7a.
  • an uneven shape is formed on the light receiving surface 1 a of the semiconductor substrate 1.
  • the uneven shape of the light receiving surface 1a of the semiconductor substrate 1 can be formed, for example, by subjecting the light receiving surface 1a of the semiconductor substrate 1 to texture etching.
  • a dielectric film may be formed on the light receiving surface 1 a of the semiconductor substrate 1.
  • a first i-type amorphous semiconductor film 2 is formed so as to be in contact with the entire surface of the first main surface 1b of the semiconductor substrate 1, and then the first i-type amorphous semiconductor is formed.
  • a first conductive type amorphous semiconductor film 3 is formed so as to be in contact with the entire surface of the crystalline semiconductor film 2.
  • the method for forming the first i-type amorphous semiconductor film 2 and the first conductive amorphous semiconductor film 3 is not particularly limited, and for example, a plasma CVD (Chemical Vapor Deposition) method can be used.
  • a laminated body of the first i-type amorphous semiconductor film 2 and the first conductive-type amorphous semiconductor film 3 is formed on the first conductive-type amorphous semiconductor film 3.
  • An etching mask 31 having an opening is provided at a location where a certain first amorphous silicon film 6 is etched in the thickness direction.
  • the etching mask 31 As a mask, the first amorphous silicon film 6 is etched in the thickness direction to expose a part of the back surface 1b of the semiconductor substrate 1. Thereafter, as shown in FIG. 7, the etching mask 31 is removed.
  • a second i-type amorphous semiconductor film 4 is formed so as to cover the back surface 1b of the semiconductor substrate 1 and the first amorphous silicon film 6, and then the second i-type amorphous semiconductor film 4 is formed.
  • a second conductivity type amorphous semiconductor film 5 is formed so as to be in contact with the entire surface of the i-type amorphous semiconductor film 4.
  • a method for forming the second i-type amorphous semiconductor film 4 and the second conductive type amorphous semiconductor film 5 is not particularly limited, and for example, a plasma CVD method can be used.
  • second silicon that is a stacked body of the second i-type amorphous semiconductor film 4 and the second conductive amorphous semiconductor film 5 on the back surface 1 b of the semiconductor substrate 1.
  • An etching mask 32 is provided only in a portion where the film 7 is left.
  • a part of the first conductive type amorphous semiconductor film 3 is etched by etching a part of the second silicon film 7 in the thickness direction using the etching mask 32 as a mask. Expose.
  • a first metal film 8a made of an alloy of Ag and Ti is formed in contact with the first conductive type amorphous semiconductor film 3, and the second conductive type amorphous semiconductor is formed.
  • a second metal film 9 a made of an alloy of Ag and Ti is formed in contact with the semiconductor film 5.
  • the formation method of the 1st metal film 8a and the 2nd metal film 9a is not specifically limited, For example, sputtering method etc. can be used.
  • an alloy is a metal material in which two or more metals are mixed, or a small amount of non-metal is added to a metal material in which two or more metals are mixed. Means the material
  • the first conductive type amorphous semiconductor film 3 and the first metal film 8 a, the second conductive type amorphous semiconductor film 5 and the second metal film 9 a are annealed together with the semiconductor substrate 1.
  • Ag and Ti move from the first metal film 8a to the first conductive type amorphous semiconductor film 3 to form the first contact region 11, and Ag and Ti from the second metal film 9a.
  • the annealing conditions are not particularly limited as long as the first contact region 11 and the second contact region 12 containing Ag and Ti can be formed, respectively, but at a temperature of 100 ° C. or more and 250 ° C. or less. It is preferable to anneal.
  • FIG. 12A shows a transmission electron microscope (TEM) photograph of a cross section in the vicinity of the electrode of the heterojunction back contact cell shown in FIG. 1 manufactured as described above, and FIG.
  • the component analysis result by the energy dispersive X-ray spectroscopy (EDX) of the 1st contact region 11 of a heterojunction type back contact cell is shown.
  • the horizontal axis of FIG.12 (b) has shown the energy of X-ray
  • shaft of FIG.12 (b) has shown the count.
  • the first contact region 11 of the heterojunction back contact cell manufactured as described above contains Si, Ag, and Ti. Further, the same component analysis as that of the first contact region 11 was performed for the second contact region 12, and it was confirmed that the second contact region 12 also contained Si, Ag, and Ti. .
  • a predetermined tape (tape width: 25 mm) is applied to each of the first electrode 8 and the second electrode 9 of the heterojunction back contact cell shown in FIG. Then, the adhesiveness of the electrodes was evaluated by confirming whether or not each of the first electrode 8 and the second electrode 9 was peeled off.
  • the adhesion strength of each of the first electrode 8 and the second electrode 9 is the adhesion strength of the electrode of the conventional solar cell of Patent Document 1 in which the electrode is placed on the amorphous silicon film via the metal oxide. It was confirmed that it is equal to or better than.
  • the adhesive strength of the tape was 11 N / 25 mm, and the tensile strength was 130 N / 25 mm.
  • the first contact region 11 and the second contact region 12 containing Si, Ag, and Ti are obtained by not performing annealing after the formation of the first metal film 8a and the second metal film 9a.
  • a heterojunction back contact cell of a comparative example was fabricated in the same manner as the heterojunction back contact cell shown in FIG. 1 fabricated as described above except that it was not formed.
  • FIG. 13 (a) shows a transmission electron microscope (TEM) photograph of a cross section in the vicinity of the electrodes of the heterojunction back contact cell of the comparative example manufactured as described above
  • FIG. 13 (b) shows the comparative example.
  • 2 shows the result of component analysis by energy dispersive X-ray spectroscopy (EDX) of the first amorphous silicon film 6 of the heterojunction back contact cell.
  • EDX energy dispersive X-ray spectroscopy
  • shaft of FIG.13 (b) has shown the count.
  • the first amorphous silicon film 6 of the heterojunction back contact cell of the comparative example does not contain Ti. Further, when the same component analysis was performed on the second amorphous silicon film 7 of the heterojunction back contact cell of the comparative example as in the first amorphous silicon film 6, the second amorphous silicon film 7 was confirmed to contain no Ti.
  • black portions indicate electrodes and gray portions indicate amorphous silicon films.
  • the first electrode 8 and the second electrode 9 of the heterojunction back contact cell of the comparative example are folded back 180 ° in the longitudinal direction and pulled.
  • the adhesion of the electrode was evaluated by confirming the presence or absence of each peeling of the electrode 8 and the second electrode 9.
  • the adhesion strength of each of the first electrode 8 and the second electrode 9 of the heterojunction back contact cell of the comparative example is the conventional patent in which the electrode is placed on the amorphous silicon film via the metal oxide. It was confirmed that it was lower than the adhesion strength of the electrode of the solar cell of literature 1.
  • the adhesive strength of the tape was 11 N / 25 mm, and the tensile strength was 130 N / 25 mm.
  • the first electrode 8 and the second electrode 9 of the heterojunction back contact cell shown in FIG. 1 are the conventional patent document 1 in which electrodes are placed on an amorphous silicon film via a metal oxide. It has adhesion strength equal to or better than the electrode of the solar cell. Therefore, since the adhesion strength of the electrode can be ensured without using a metal oxide, the cost of the solar cell can be reduced.
  • first contact region 11 and the second contact region 12 are formed. However, only one of the first contact region 11 and the second contact region 12 is formed.
  • an electrode may be formed on the contact region on the side where the contact region is formed, and an electrode may be formed on the side where the contact region is not formed via a metal oxide.
  • the conductivity type of the semiconductor substrate 1 is n-type has been described, but the conductivity type of the semiconductor substrate 1 may be p-type.
  • the case where the first conductivity type is p-type and the second conductivity type is n-type has been described. However, even if the first conductivity type is n-type and the second conductivity type is p-type, Good.
  • a heterojunction back contact cell as a solar cell of Embodiment 2 which is another example of the solar cell of the embodiment is aluminum (Al), copper (Cu), palladium (Pd) together with Ti or instead of Ti.
  • a heterojunction back contact cell as a solar cell of Embodiment 1 in that at least one selected from the group consisting of chromium (Cr), gallium (Ga), neodymium (Nd) and nickel (Ni) is used Is different.
  • the adhesion strength of the electrode on the contact region is equal to or higher than that of the conventional solar cell electrode of Patent Document 1 in which the electrode is placed on the amorphous silicon film via the metal oxide. Therefore, the cost of the solar cell can be reduced by reducing the amount of metal oxide used as compared with the conventional case.
  • FIG. 14 typical sectional drawing of the double-sided electrode type solar cell as a solar cell of Embodiment 3 which is another example of the solar cell of embodiment is shown.
  • a first i-type amorphous semiconductor film 2 and a first conductive-type amorphous semiconductor film 3 are laminated in this order on a light-receiving surface 1 a of a semiconductor substrate 1.
  • a second i-type amorphous semiconductor film 4 and a second conductive type amorphous semiconductor film 5 in this order on the back surface 1b of the semiconductor substrate 1.
  • a second amorphous silicon film 7 made of a laminated body is provided.
  • a first electrode 8 containing Ag and Ti is disposed on the first amorphous silicon film 6, and the first electrode is interposed between the first amorphous silicon film 6 and the first electrode 8. 8 and the first contact region 11 containing Si, Ag, and Ti is located.
  • a second electrode 9 containing Ag and Ti is disposed on the second amorphous silicon film 7, and the second amorphous silicon film 7 and the second electrode 9 have a second electrode 9 between them.
  • a second contact region 12 that contacts the two electrodes 9 and includes Si, Ag, and Ti is located.
  • the adhesion strength of the electrode on the contact region is equal to or greater than the adhesion strength of the conventional solar cell electrode of Patent Document 1 in which the electrode is placed on the amorphous silicon film via the metal oxide. Therefore, the cost of the solar cell can be reduced by reducing the amount of metal oxide used compared to the conventional case.
  • the double-sided electrode type solar battery cell as the solar battery of the fourth embodiment which is another example of the solar battery of the embodiment is made of aluminum (Al), copper (Cu), palladium (Pd) together with Ti or instead of Ti.
  • the adhesion strength of the electrode on the contact region is equal to or higher than the adhesion strength of the conventional solar cell electrode of Patent Document 1 in which the electrode is placed on the amorphous silicon film via the metal oxide. Therefore, the cost of the solar cell can be reduced by reducing the amount of metal oxide used as compared with the conventional case.
  • An embodiment disclosed herein includes a semiconductor substrate of a first conductivity type or a second conductivity type, an amorphous silicon film on the semiconductor substrate, an electrode on the amorphous silicon film, and an amorphous A contact region in contact with the electrode between the silicon film and the electrode, wherein the electrode and the contact region are a solar cell including silver and a metal other than silver.
  • the metal other than silver includes at least one selected from the group consisting of aluminum, titanium, copper, palladium, chromium, gallium, neodymium, and nickel. Also good. Also in this case, the cost of the solar cell can be reduced by reducing the metal oxide.
  • the thickness of the contact region is preferably 10 nm or less. In this case, the adhesion between the electrode and the contact region is improved, and the passivation property of the semiconductor substrate by the amorphous silicon film can be improved.
  • the thickness of the amorphous silicon film is preferably 5 nm or more. In this case, the passivation property of the semiconductor substrate by the amorphous silicon film can be improved.
  • the thickness of the amorphous silicon film is preferably 8 nm or more. In this case, the passivation property of the semiconductor substrate by the amorphous silicon film can be further improved.
  • the thickness of the amorphous silicon film is preferably 10 nm or more. In this case, the passivation property of the semiconductor substrate by the amorphous silicon film can be further improved.
  • the amorphous silicon film includes a first conductivity type amorphous silicon film and a second conductivity type amorphous silicon film on one side of the semiconductor substrate. And may be included. Also in this case, the cost of the solar cell can be reduced by reducing the metal oxide.
  • the amorphous silicon film includes a first i-type amorphous silicon film between the semiconductor substrate and the first conductive amorphous silicon film, A second i-type amorphous silicon film between the semiconductor substrate and the second conductivity type amorphous silicon film may be further included. Also in this case, the cost of the solar cell can be reduced by reducing the metal oxide.
  • the amorphous silicon film includes a first conductivity type amorphous silicon film on one side of the semiconductor substrate and a side opposite to the one side of the semiconductor substrate.
  • the second conductivity type amorphous silicon film may be included. Also in this case, the cost of the solar cell can be reduced by reducing the metal oxide.
  • the amorphous silicon film includes a first i-type amorphous silicon film between the semiconductor substrate and the first conductivity type amorphous silicon film, A second i-type amorphous silicon film between the semiconductor substrate and the second conductivity type amorphous silicon film may be further included. Also in this case, the cost of the solar cell can be reduced by reducing the metal oxide.
  • the semiconductor substrate may contain silicon. Also in this case, the cost of the solar cell can be reduced by reducing the metal oxide.
  • an amorphous silicon film is formed on a semiconductor substrate of the first conductivity type or the second conductivity type, and silver and a material other than silver are formed on the amorphous silicon film.
  • the metal other than silver is at least one selected from the group consisting of aluminum, titanium, copper, palladium, chromium, gallium, neodymium, and nickel. May be included. Also in this case, it is possible to manufacture a solar cell with reduced cost by reducing metal oxides.
  • the thickness of the contact region is preferably 10 nm or less. In this case, it is possible to manufacture a solar cell that can improve the adhesion between the electrode and the contact region and improve the passivation of the semiconductor substrate by the amorphous silicon film.
  • the thickness of the amorphous silicon film is preferably 5 nm or more. In this case, it is possible to manufacture a solar cell in which the passivation property of the semiconductor substrate with the amorphous silicon film is improved.
  • the thickness of the amorphous silicon film is preferably 8 nm or more. In this case, a solar cell in which the passivation property of the semiconductor substrate by the amorphous silicon film is further improved can be manufactured.
  • the thickness of the amorphous silicon film is preferably 10 nm or more. In this case, it is possible to manufacture a solar cell in which the passivation property of the semiconductor substrate by the amorphous silicon film is further improved.
  • the amorphous silicon film includes a first conductivity type amorphous silicon film and a second conductivity type amorphous material on one side of the semiconductor substrate. It may contain a quality silicon film. Also in this case, it is possible to manufacture a solar cell with reduced cost by reducing metal oxides.
  • the amorphous silicon film is a first i-type amorphous silicon between the semiconductor substrate and the first conductivity type amorphous silicon film.
  • the film may further include a second i-type amorphous silicon film between the semiconductor substrate and the second conductive amorphous silicon film. Also in this case, it is possible to manufacture a solar cell with reduced cost by reducing metal oxides.
  • the amorphous silicon film includes a first conductivity type amorphous silicon film on one side of the semiconductor substrate, and one side of the semiconductor substrate. May include the second conductive type amorphous silicon film on the opposite side. Also in this case, it is possible to manufacture a solar cell with reduced cost by reducing metal oxides.
  • the amorphous silicon film is a first i-type amorphous silicon between the semiconductor substrate and the first conductivity type amorphous silicon film.
  • the film may further include a second i-type amorphous silicon film between the semiconductor substrate and the second conductive amorphous silicon film. Also in this case, it is possible to manufacture a solar cell with reduced cost by reducing metal oxides.
  • the step of forming the metal film may be performed by a sputtering method. Also in this case, it is possible to manufacture a solar cell with reduced cost by reducing metal oxides.
  • the embodiment disclosed herein may be used for a solar cell and a method for manufacturing a solar cell, and particularly preferably a heterojunction back contact cell, a method for manufacturing a heterojunction back contact cell, and a double-sided electrode type solar cell. There is a possibility that it can be used in a battery and a method for manufacturing a double-sided electrode type solar battery.
  • first i-type amorphous semiconductor film first conductive amorphous semiconductor film, second i-type amorphous semiconductor film, second conductive Type amorphous semiconductor film, 6 first amorphous silicon film, 6a interface, 7 second amorphous silicon film, 7a interface, 8 first electrode, 8a first metal film, 9 second electrode, 9a second metal film, 11 first contact region, 11a interface, 12 second contact region, 12a interface, 31, 32 etching mask.

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Energy (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Photovoltaic Devices (AREA)

Abstract

太陽電池は、第1導電型または第2導電型の半導体基板(1)と、半導体基板(1)上の非晶質シリコン膜(6,7)と、非晶質シリコン膜(6,7)上の電極(8,9)と、を備えている。非晶質シリコン膜(6,7)の電極(8,9)側の領域と、電極(8,9)とが、銀と、銀以外の金属とを含んでいる。

Description

太陽電池および太陽電池の製造方法
 本出願は、2015年9月9日に出願された特願2015-177580号に対して、優先権の利益を主張するものであり、それを参照することにより、その内容のすべてを本書に含める。
 本発明は、太陽電池および太陽電池の製造方法に関する。
 太陽光エネルギを電気エネルギに直接変換する太陽電池は、近年、特に、地球環境問題の観点から、次世代のエネルギ源としての期待が急激に高まっている。
 たとえば、特開2015-060847号公報(特許文献1)には、一導電型の結晶シリコン基板の第1の主面上に真性の非晶質シリコン膜、他導電型の第1の非晶質シリコン膜、受光面電極層およびフィンガー電極が順次積層され、第2の主面上に真性の非晶質シリコン膜、一導電型の第2の非晶質シリコン膜、コンタクト層、Mgドープ酸化亜鉛層および裏面電極層が順次積層された太陽電池が開示されている。ここで、受光面電極層およびMgドープ酸化亜鉛層はともに金属酸化物であり、フィンガー電極は銀ペーストを印刷することにより形成することができ、裏面電極層は銅、銀などの金属膜から形成することができるとされている。
特開2015-060847号公報
 しかしながら、特許文献1の太陽電池は、金属酸化物である受光面電極層およびMgドープ酸化亜鉛層を用いており、これらの金属酸化物が太陽電池のコストを増加させていた。
 ここで開示された実施形態は、第1導電型または第2導電型の半導体基板と、半導体基板上の非晶質シリコン膜と、非晶質シリコン膜上の電極とを備え、非晶質シリコン膜と電極との界面から非晶質シリコン膜側の非晶質シリコン膜の領域と、電極とが、銀と、銀以外の金属とを含む太陽電池である。
 ここで開示された実施形態は、第1導電型または第2導電型の半導体基板上に非晶質シリコン膜を形成する工程と、非晶質シリコン膜上に、銀と銀以外の金属とを含む金属膜を形成する工程と、金属膜を加熱することによって、非晶質シリコン膜上の電極を形成するとともに、非晶質シリコン膜と電極との間に電極と接触し、銀と銀以外の金属とを含む接触領域を形成する工程と、を含む、太陽電池の製造方法である。
 ここで開示された実施形態によれば、太陽電池のコストを低減することができる。
実施形態1の太陽電池としてのヘテロ接合型バックコンタクトセルの模式的な断面図である。 図1に示すヘテロ接合型バックコンタクトセルの第1電極および第2電極近傍の模式的な拡大断面図である。 図1に示すヘテロ接合型バックコンタクトセルの製造方法の一例の製造工程の一部について図解する模式的な断面図である。 図1に示すヘテロ接合型バックコンタクトセルの製造方法の一例の製造工程の一部について図解する模式的な断面図である。 図1に示すヘテロ接合型バックコンタクトセルの製造方法の一例の製造工程の一部について図解する模式的な断面図である。 図1に示すヘテロ接合型バックコンタクトセルの製造方法の一例の製造工程の一部について図解する模式的な断面図である。 図1に示すヘテロ接合型バックコンタクトセルの製造方法の一例の製造工程の一部について図解する模式的な断面図である。 図1に示すヘテロ接合型バックコンタクトセルの製造方法の一例の製造工程の一部について図解する模式的な断面図である。 図1に示すヘテロ接合型バックコンタクトセルの製造方法の一例の製造工程の一部について図解する模式的な断面図である。 図1に示すヘテロ接合型バックコンタクトセルの製造方法の一例の製造工程の一部について図解する模式的な断面図である。 図1に示すヘテロ接合型バックコンタクトセルの製造方法の一例の製造工程の一部について図解する模式的な断面図である。 (a)は、図1に示すヘテロ接合型バックコンタクトセルの電極近傍の断面の透過型電子顕微鏡(TEM)写真であり、(b)は、図1に示すヘテロ接合型バックコンタクトセルの第1の接触領域のエネルギ分散型X線分光法(EDX)による成分分析結果である。 (a)は、比較例のヘテロ接合型バックコンタクトセルの電極近傍の断面の透過型電子顕微鏡(TEM)写真であり、(b)は、比較例のヘテロ接合型バックコンタクトセルの第1の非晶質シリコン膜のエネルギ分散型X線分光法(EDX)による成分分析結果である。 実施形態3の太陽電池としての両面電極型太陽電池セルの模式的な断面図である。
 以下、ここで開示される実施形態の太陽電池の例示である実施形態1~4の太陽電池について説明する。なお、実施形態の説明に用いられる図面において、同一の参照符号は、同一部分または相当部分を表わすものとする。
 [実施形態1]
 <ヘテロ接合型バックコンタクトセルの構造>
 図1に、実施形態の太陽電池の一例である実施形態1の太陽電池としてのヘテロ接合型バックコンタクトセルの模式的な断面図を示す。図1に示すヘテロ接合型バックコンタクトセルは、凹凸構造を有する一方の主面である受光面1aと受光面1aとは反対側の主面である裏面1bとを有する半導体基板1を備えている。半導体基板1の裏面1b上には第1のi型非晶質半導体膜2と第2のi型非晶質半導体膜4とが配置されている。本実施形態においては、半導体基板1がn型単結晶シリコン基板であり、第1のi型非晶質半導体膜2および第2のi型非晶質半導体膜4が、それぞれ、i型非晶質シリコン膜である場合について説明する。
 第1のi型非晶質半導体膜2上には第1導電型非晶質半導体膜3が配置されており、第1のi型非晶質半導体膜2と第1導電型非晶質半導体膜3との積層体から第1の非晶質シリコン膜6が構成されている。また、第2のi型非晶質半導体膜4上には第2導電型非晶質半導体膜5が配置されており、第2のi型非晶質半導体膜4と第2導電型非晶質半導体膜5との積層体から第2の非晶質シリコン膜7が構成されている。本実施形態においては、第1導電型非晶質半導体膜3がp型非晶質シリコン膜であり、第2導電型非晶質半導体膜5がn型非晶質シリコン膜である場合について説明する。
 なお、本実施形態において「i型」とは、完全な真性の状態だけでなく、十分に低濃度(n型不純物濃度が1×1015個/cm3未満、かつp型不純物濃度が1×1015個/cm3未満)であればn型またはp型の不純物が混入された状態のものも含む意味である。すなわち、本実施形態において「n型」はn型不純物濃度が1×1015個/cm3以上の状態を意味し、「p型」はp型不純物濃度が1×1015個/cm3以上の状態を意味する。
 また、本実施形態において「非晶質シリコン」には、シリコン原子の未結合手(ダングリングボンド)が水素で終端されていない非晶質シリコンだけでなく、水素化非晶質シリコンなどのシリコン原子の未結合手が水素等で終端されたものも含まれるものとする。
 第1導電型非晶質半導体膜3上には第1電極8が配置されており、第2導電型非晶質半導体膜5上には第2電極9が配置されている。本実施形態においては、第1電極8および第2電極9がそれぞれ銀(Ag)とチタン(Ti)とを含む場合について説明する。
 図2に、図1に示すヘテロ接合型バックコンタクトセルの第1電極8および第2電極9近傍の模式的な拡大断面図を示す。図2に示すように、第1電極8と第1導電型非晶質半導体膜3との間には第1電極8と接触する第1の接触領域11が位置しており、第2電極9と第2導電型非晶質半導体膜5との間には第2電極9と接触する第2の接触領域12が位置している。ここで、第1の接触領域11および第2の接触領域12には、それぞれ、シリコン(Si)に加えてAgとTiとが含まれている。
 第1の接触領域11の厚さD1および第2の接触領域12の厚さD2の少なくとも一方が10nm以下であることが好ましく、厚さD1および厚さD2の両方が10nm以下であることがより好ましい。厚さD1が10nm以下である場合には、第1電極8と第1の接触領域11との間の密着性を向上させることができるとともに、第1の非晶質シリコン膜6による半導体基板1の裏面1bのパッシベーション性も向上させることができる。また、厚さD2が10nm以下である場合には、第2電極9と第2の接触領域12との間の密着性を向上させることができるとともに、第2の非晶質シリコン膜7による半導体基板1の裏面1bのパッシベーション性も向上させることができる。さらに、厚さD1および厚さD2の両方が10nm以下である場合には、第1電極8と第1の接触領域11との間の密着性および第2電極9と第2の接触領域12との間の密着性をそれぞれ向上させることができるとともに、第1の非晶質シリコン膜6および第2の非晶質シリコン膜7による半導体基板1の裏面1bのパッシベーション性も向上させることができる。
 ここで、第1の接触領域11の厚さD1は、第1電極8と第1の接触領域11との界面11aから第1の非晶質シリコン膜6側に界面11aに垂直な方向における長さを意味する。また、第2の接触領域12の厚さD2は、第2電極9と第2の接触領域12との界面12aから第2の非晶質シリコン膜7側に界面12aに垂直な方向における長さを意味する。
 第1の非晶質シリコン膜6の厚さD3は、5nm以上であることが好ましく、8nm以上であることがより好ましく、10nm以上であることがさらに好ましい。第1の非晶質シリコン膜6の厚さD3が5nm以上、8nm以上、および10nm以上となるにつれて第1の非晶質シリコン膜6による半導体基板1の裏面1bのパッシベーション性が向上していく傾向にある。
 ここで、第1の非晶質シリコン膜6の厚さD3は、第1の接触領域11と第1の非晶質シリコン膜6との界面6aから第1の非晶質シリコン膜6側に界面6aに垂直な方向における長さを意味する。
 第2の非晶質シリコン膜7の厚さD4は、5nm以上であることが好ましく、8nm以上であることがより好ましく、10nm以上であることがさらに好ましい。第2の非晶質シリコン膜7の厚さD4が5nm以上、8nm以上および10nm以上となるにつれて第2の非晶質シリコン膜7による半導体基板1の裏面1bのパッシベーション性が向上していく傾向にある。
 ここで、第2の非晶質シリコン膜7の厚さD4は、第2の接触領域12と第2の非晶質シリコン膜7との界面7aから第2の非晶質シリコン膜7側に界面7aに垂直な方向における長さを意味する。
 <ヘテロ接合型バックコンタクトセルの製造方法>
 以下、図3~図11の模式的断面図を参照して、図1に示すヘテロ接合型バックコンタクトセルの製造方法の一例について説明する。
 まず、図3に示すように、半導体基板1の受光面1aに凹凸形状を形成する。半導体基板1の受光面1aの凹凸形状は、たとえば、半導体基板1の受光面1aをテクスチャエッチングすることにより形成することができる。なお、半導体基板1の受光面1a上には誘電体膜が形成されてもよい。
 次に、図4に示すように、半導体基板1の第1の主面1bの全面に接するように第1のi型非晶質半導体膜2を形成し、その後、第1のi型非晶質半導体膜2の全面に接するように第1導電型非晶質半導体膜3を形成する。第1のi型非晶質半導体膜2および第1導電型非晶質半導体膜3の形成方法は特に限定されないが、たとえばプラズマCVD(Chemical Vapor Deposition)法を用いることができる。
 次に、図5に示すように、第1導電型非晶質半導体膜3上に、第1のi型非晶質半導体膜2と第1導電型非晶質半導体膜3との積層体である第1の非晶質シリコン膜6を厚さ方向にエッチングする箇所に開口部を有するエッチングマスク31を設置する。
 次に、図6に示すように、エッチングマスク31をマスクとして、第1の非晶質シリコン膜6を厚さ方向にエッチングすることによって、半導体基板1の裏面1bの一部を露出させる。その後、図7に示すように、エッチングマスク31を除去する。
 次に、図8に示すように、半導体基板1の裏面1bおよび第1の非晶質シリコン膜6を覆うように第2のi型非晶質半導体膜4を形成し、その後、第2のi型非晶質半導体膜4の全面に接するように第2導電型非晶質半導体膜5を形成する。第2のi型非晶質半導体膜4および第2導電型非晶質半導体膜5の形成方法は特に限定されないが、たとえばプラズマCVD法を用いることができる。
 次に、図9に示すように、半導体基板1の裏面1b上の第2のi型非晶質半導体膜4と第2導電型非晶質半導体膜5との積層体である第2のシリコン膜7を残す部分にのみエッチングマスク32を設置する。
 次に、図10に示すように、エッチングマスク32をマスクとして、第2のシリコン膜7の一部を厚さ方向にエッチングすることによって、第1導電型非晶質半導体膜3の一部を露出させる。
 次に、図11に示すように、第1導電型非晶質半導体膜3に接するようにAgとTiとの合金からなる第1の金属膜8aを形成するとともに、第2導電型非晶質半導体膜5に接するようにAgとTiとの合金からなる第2の金属膜9aを形成する。第1の金属膜8aおよび第2の金属膜9aの形成方法は特に限定されないが、たとえばスパッタリング法などを用いることができる。なお、本実施形態において、合金とは、2種以上の金属を混合した金属材料、または2種以上の金属を混合した金属材料に少量の非金属が添加されているが、金属的性質を多分に有する材料を意味する。
 次に、第1導電型非晶質半導体膜3および第1の金属膜8a、ならびに第2導電型非晶質半導体膜5および第2の金属膜9aを半導体基板1とともにアニールする。これにより第1の金属膜8aからAgとTiとが第1導電型非晶質半導体膜3に移動して第1の接触領域11が形成されるとともに、第2の金属膜9aからAgとTiとが第2導電型非晶質半導体膜5に移動して第2の接触領域12が形成される。以上により、図1示す構造を有するヘテロ接合型バックコンタクトセルが完成する。なお、アニール条件は、AgとTiとを含む第1の接触領域11および第2の接触領域12をそれぞれ形成することができる条件であれば特に限定されないが、100℃以上250℃以下の温度でアニールすることが好ましい。
 <ヘテロ接合型バックコンタクトセルの分析>
 図12(a)に、上述のようにして作製された図1に示すヘテロ接合型バックコンタクトセルの電極近傍の断面の透過型電子顕微鏡(TEM)写真を示し、図12(b)に、当該ヘテロ接合型バックコンタクトセルの第1の接触領域11のエネルギ分散型X線分光法(EDX)による成分分析結果を示す。なお、図12(b)の横軸がX線のエネルギーを示し、図12(b)の縦軸がカウントを示している。
 図12(b)に示す結果から、上述のようにして作製されたヘテロ接合型バックコンタクトセルの第1の接触領域11にはSiとAgとTiとが含まれていることが確認された。また、第2の接触領域12についても第1の接触領域11と同様の成分分析を行ったところ、第2の接触領域12にもSiとAgとTiとが含まれていることが確認された。
 また、上述のようにして作製された図1に示すヘテロ接合型バックコンタクトセルの第1電極8および第2電極9のそれぞれに所定のテープ(テープ幅:25mm)を貼り付けた後にその長手方向に180°折り返して引っ張り、第1電極8および第2電極9のそれぞれの剥離の有無を確認することによって電極の密着性について評価した。その結果、第1電極8および第2電極9のそれぞれの密着強度は、非晶質シリコン膜上に金属酸化物を介して電極が設置された従来の特許文献1の太陽電池の電極の密着強度と同等以上であることが確認された。ここで、テープの粘着力は11N/25mmとし、引っ張り強度は130N/25mmとした。
 また、比較として、第1の金属膜8aおよび第2の金属膜9aの形成後にアニールをしなかったことによりSiとAgとTiとを含む第1の接触領域11および第2の接触領域12を形成しなかったこと以外は上述のようにして作製された図1に示すヘテロ接合型バックコンタクトセルと同様にして、比較例のヘテロ接合型バックコンタクトセルを作製した。
 図13(a)に、上述のようにして作製された比較例のヘテロ接合型バックコンタクトセルの電極近傍の断面の透過型電子顕微鏡(TEM)写真を示し、図13(b)に、比較例のヘテロ接合型バックコンタクトセルの第1の非晶質シリコン膜6のエネルギ分散型X線分光法(EDX)による成分分析結果を示す。なお、図13(b)の横軸がX線のエネルギーを示し、図13(b)の縦軸がカウントを示している。
 図13(b)に示す結果から、比較例のヘテロ接合型バックコンタクトセルの第1の非晶質シリコン膜6にはTiが含まれていないことが確認された。また、比較例のヘテロ接合型バックコンタクトセルの第2の非晶質シリコン膜7についても第1の非晶質シリコン膜6と同様の成分分析を行ったところ、第2の非晶質シリコン膜7にもTiが含まれていないことが確認された。
 なお、図12(a)および図13(a)において、黒色の箇所が電極を示し、灰色の箇所が非晶質シリコン膜を示している。
 また、比較例のヘテロ接合型バックコンタクトセルの第1電極8および第2電極9のそれぞれに所定のテープ(テープ幅:25mm)を貼り付けた後にその長手方向に180°折り返して引っ張り、第1電極8および第2電極9のそれぞれの剥離の有無を確認することによって電極の密着性について評価した。その結果、比較例のヘテロ接合型バックコンタクトセルの第1電極8および第2電極9のそれぞれの密着強度は、非晶質シリコン膜上に金属酸化物を介して電極が設置された従来の特許文献1の太陽電池の電極の密着強度よりも低いことが確認された。ここで、テープの粘着力は11N/25mmとし、引っ張り強度は130N/25mmとした。
 以上の結果から、図1に示すヘテロ接合型バックコンタクトセルの第1電極8および第2電極9は、非晶質シリコン膜上に金属酸化物を介して電極が設置された従来の特許文献1の太陽電池の電極と同等以上の密着強度を有している。そのため、金属酸化物を用いなくても電極の密着強度を担保することができるため、太陽電池のコストを低減することができる。
 なお、上記においては、第1の接触領域11および第2の接触領域12の双方を形成する場合について説明したが、第1の接触領域11または第2の接触領域12のいずれか一方のみを形成し、接触領域が形成された側には接触領域上に電極を形成し、接触領域を形成しなかった側には金属酸化物を介して電極を形成した構成とすることもできる。
 上記においては、半導体基板1の導電型がn型である場合について説明したが、半導体基板1の導電型はp型であってもよい。
 上記においては、第1導電型がp型であり、第2導電型がn型である場合について説明したが、第1導電型がn型であり、第2導電型がp型であってもよい。
 [実施形態2]
 実施形態の太陽電池の他の一例である実施形態2の太陽電池としてのヘテロ接合型バックコンタクトセルは、Tiとともに、またはTiに代えて、アルミニウム(Al)、銅(Cu)、パラジウム(Pd)、クロム(Cr)、ガリウム(Ga)、ネオジム(Nd)およびニッケル(Ni)からなる群から選択された少なくとも1つを用いている点で実施形態1の太陽電池としてのヘテロ接合型バックコンタクトセルと相違している。この場合にも、接触領域上の電極の密着強度を、非晶質シリコン膜上に金属酸化物を介して電極が設置された従来の特許文献1の太陽電池の電極と同等以上の密着強度とすることができるため、従来と比べて金属酸化物の使用量を低減することによって、太陽電池のコストを低減することができる。
 実施形態2における上記以外の説明は実施形態1と同様であるため、その説明については繰り返さない。
 [実施形態3]
 図14に、実施形態の太陽電池の他の一例である実施形態3の太陽電池としての両面電極型太陽電池セルの模式的な断面図を示す。図14に示す両面電極型太陽電池セルは、半導体基板1の受光面1a上に第1のi型非晶質半導体膜2と第1導電型非晶質半導体膜3とがこの順に積層されてなる積層体からなる第1の非晶質シリコン膜6を備え、半導体基板1の裏面1b上に第2のi型非晶質半導体膜4と第2導電型非晶質半導体膜5がこの順に積層されてなる積層体からなる第2の非晶質シリコン膜7を備えている。
 第1の非晶質シリコン膜6上にはAgとTiとを含む第1電極8が配置されており、第1の非晶質シリコン膜6と第1電極8との間には第1電極8に接触し、かつSiとAgとTiとを含む第1の接触領域11が位置している。また、第2の非晶質シリコン膜7上にはAgとTiとを含む第2電極9が配置されており、第2の非晶質シリコン膜7と第2電極9との間には第2電極9に接触し、かつSiとAgとTiとを含む第2の接触領域12が位置している。
 実施形態3においても、接触領域上の電極の密着強度を、非晶質シリコン膜上に金属酸化物を介して電極が設置された従来の特許文献1の太陽電池の電極と同等以上の密着強度とすることができるため、従来と比べて金属酸化物の使用量を低減することによって、太陽電池のコストを低減することができる。
 実施形態3における上記以外の説明は実施形態1と同様であるため、その説明については繰り返さない。
 [実施形態4]
 実施形態の太陽電池の他の一例である実施形態4の太陽電池としての両面電極型太陽電池セルは、Tiとともに、またはTiに代えて、アルミニウム(Al)、銅(Cu)、パラジウム(Pd)、クロム(Cr)、ガリウム(Ga)、ネオジム(Nd)およびニッケル(Ni)からなる群から選択された少なくとも1つを用いている点で実施形態3の太陽電池としての両面電極型太陽電池セルと相違している。この場合にも、接触領域上の電極の密着強度は、非晶質シリコン膜上に金属酸化物を介して電極が設置された従来の特許文献1の太陽電池の電極と同等以上の密着強度とすることができるため、従来と比べて金属酸化物の使用量を低減することによって、太陽電池のコストを低減することができる。
 実施形態4における上記以外の説明は実施形態3と同様であるため、その説明については繰り返さない。
 [付記]
 (1)ここで開示された実施形態は、第1導電型または第2導電型の半導体基板と、半導体基板上の非晶質シリコン膜と、非晶質シリコン膜上の電極と、非晶質シリコン膜と電極との間に電極と接触する接触領域と、を備え、電極および接触領域は、銀と、銀以外の金属とを含む太陽電池である。このような構成とすることにより、金属酸化物を削減して太陽電池のコストを低減することができる。
 (2)ここで開示された実施形態の太陽電池において、銀以外の金属は、アルミニウム、チタン、銅、パラジウム、クロム、ガリウム、ネオジムおよびニッケルからなる群から選択された少なくとも1つを含んでいてもよい。この場合にも、金属酸化物を削減して太陽電池のコストを低減することができる。
 (3)ここで開示された実施形態の太陽電池において、接触領域の厚さは、10nm以下であることが好ましい。この場合には、電極と接触領域との間の密着性が向上するとともに、非晶質シリコン膜による半導体基板のパッシベーション性を向上させることができる。
 (4)ここで開示された実施形態の太陽電池において、非晶質シリコン膜の厚さは、5nm以上であることが好ましい。この場合には、非晶質シリコン膜による半導体基板のパッシベーション性を向上させることができる。
 (5)ここで開示された実施形態の太陽電池において、非晶質シリコン膜の厚さは、8nm以上であることが好ましい。この場合には、非晶質シリコン膜による半導体基板のパッシベーション性をより向上させることができる。
 (6)ここで開示された実施形態の太陽電池において、非晶質シリコン膜の厚さは、10nm以上であることが好ましい。この場合には、非晶質シリコン膜による半導体基板のパッシベーション性をさらに向上させることができる。
 (7)ここで開示された実施形態の太陽電池において、非晶質シリコン膜は、半導体基板の一方の側の、第1導電型非晶質シリコン膜と、第2導電型非晶質シリコン膜とを含んでいてもよい。この場合にも、金属酸化物を削減して太陽電池のコストを低減することができる。
 (8)ここで開示された実施形態の太陽電池において、非晶質シリコン膜は、半導体基板と第1導電型非晶質シリコン膜との間の第1のi型非晶質シリコン膜と、半導体基板と第2導電型非晶質シリコン膜との間の第2のi型非晶質シリコン膜とをさらに含んでいてもよい。この場合にも、金属酸化物を削減して太陽電池のコストを低減することができる。
 (9)ここで開示された実施形態の太陽電池において、非晶質シリコン膜は、半導体基板の一方の側の第1導電型非晶質シリコン膜と、半導体基板の一方の側とは反対側の第2導電型非晶質シリコン膜とを含んでいてもよい。この場合にも、金属酸化物を削減して太陽電池のコストを低減することができる。
 (10)ここで開示された実施形態の太陽電池において、非晶質シリコン膜は、半導体基板と第1導電型非晶質シリコン膜との間の第1のi型非晶質シリコン膜と、半導体基板と第2導電型非晶質シリコン膜との間の第2のi型非晶質シリコン膜とをさらに含んでいてもよい。この場合にも、金属酸化物を削減して太陽電池のコストを低減することができる。
 (11)ここで開示された実施形態の太陽電池において、半導体基板は、シリコンを含んでいてもよい。この場合にも、金属酸化物を削減して太陽電池のコストを低減することができる。
 (12)ここで開示された実施形態は、第1導電型または第2導電型の半導体基板上に非晶質シリコン膜を形成する工程と、非晶質シリコン膜上に、銀と銀以外の金属とを含む金属膜を形成する工程と、金属膜を加熱することによって、非晶質シリコン膜上の電極を形成するとともに、非晶質シリコン膜と電極との間に電極と接触し、銀と銀以外の金属とを含む接触領域を形成する工程と、を含む、太陽電池の製造方法である。このような構成とすることにより、金属酸化物を削減してコストを低減した太陽電池を製造することができる。
 (13)ここで開示された実施形態の太陽電池の製造方法において、銀以外の金属は、アルミニウム、チタン、銅、パラジウム、クロム、ガリウム、ネオジムおよびニッケルからなる群から選択された少なくとも1つを含んでいてもよい。この場合にも、金属酸化物を削減してコストを低減した太陽電池を製造することができる。
 (14)ここで開示された実施形態の太陽電池の製造方法において、接触領域の厚さは10nm以下であることが好ましい。この場合には、電極と接触領域との間の密着性が向上するとともに、非晶質シリコン膜による半導体基板のパッシベーション性を向上させることができる太陽電池を製造することができる。
 (15)ここで開示された実施形態の太陽電池の製造方法において、非晶質シリコン膜の厚さは、5nm以上であることが好ましい。この場合には、非晶質シリコン膜による半導体基板のパッシベーション性を向上させた太陽電池を製造することができる。
 (16)ここで開示された実施形態の太陽電池の製造方法において、非晶質シリコン膜の厚さは、8nm以上であることが好ましい。この場合には、非晶質シリコン膜による半導体基板のパッシベーション性をより向上させた太陽電池を製造することができる。
 (17)ここで開示された実施形態の太陽電池の製造方法において、非晶質シリコン膜の厚さは、10nm以上であることが好ましい。この場合には、非晶質シリコン膜による半導体基板のパッシベーション性をさらに向上させた太陽電池を製造することができる。
 (18)ここで開示された実施形態の太陽電池の製造方法において、非晶質シリコン膜は、半導体基板の一方の側の、第1導電型非晶質シリコン膜と、第2導電型非晶質シリコン膜とを含んでいてもよい。この場合にも、金属酸化物を削減してコストを低減した太陽電池を製造することができる。
 (19)ここで開示された実施形態の太陽電池の製造方法において、非晶質シリコン膜は、半導体基板と第1導電型非晶質シリコン膜との間の第1のi型非晶質シリコン膜と、半導体基板と第2導電型非晶質シリコン膜との間の第2のi型非晶質シリコン膜とをさらに含んでいてもよい。この場合にも、金属酸化物を削減してコストを低減した太陽電池を製造することができる。
 (20)ここで開示された実施形態の太陽電池の製造方法において、非晶質シリコン膜は、半導体基板の一方の側の第1導電型非晶質シリコン膜と、半導体基板の一方の側とは反対側の第2導電型非晶質シリコン膜とを含んでいてもよい。この場合にも、金属酸化物を削減してコストを低減した太陽電池を製造することができる。
 (21)ここで開示された実施形態の太陽電池の製造方法において、非晶質シリコン膜は、半導体基板と第1導電型非晶質シリコン膜との間の第1のi型非晶質シリコン膜と、半導体基板と第2導電型非晶質シリコン膜との間の第2のi型非晶質シリコン膜とをさらに含んでいてもよい。この場合にも、金属酸化物を削減してコストを低減した太陽電池を製造することができる。
 (22)ここで開示された実施形態の太陽電池の製造方法において、金属膜を形成する工程は、スパッタリング法により行われてもよい。この場合にも、金属酸化物を削減してコストを低減した太陽電池を製造することができる。
 以上のように実施形態について説明を行なったが、上述の各実施形態および実施例の構成を適宜組み合わせることも当初から予定している。
 今回開示された実施形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
 ここで開示された実施形態は、太陽電池および太陽電池の製造方法に利用できる可能性があり、特に好適にはヘテロ接合型バックコンタクトセル、ヘテロ接合型バックコンタクトセルの製造方法、両面電極型太陽電池、および両面電極型太陽電池の製造方法に利用できる可能性がある。
 1 半導体基板、1a 受光面、1b 裏面、2 第1のi型非晶質半導体膜、3 第1導電型非晶質半導体膜、4 第2のi型非晶質半導体膜、5 第2導電型非晶質半導体膜、6 第1の非晶質シリコン膜、6a 界面、7 第2の非晶質シリコン膜、7a 界面、8 第1電極、8a 第1の金属膜、9 第2電極、9a 第2の金属膜、11 第1の接触領域、11a 界面、12 第2の接触領域、12a 界面、31,32 エッチングマスク。

Claims (5)

  1.  第1導電型または第2導電型の半導体基板と、
     前記半導体基板上の非晶質シリコン膜と、
     前記非晶質シリコン膜上の電極と、を備え、
     前記非晶質シリコン膜の前記電極側の領域と、前記電極とが、銀と、銀以外の金属とを含む、太陽電池。
  2.  前記銀以外の金属は、アルミニウム、チタン、銅、パラジウム、クロム、ガリウム、ネオジムおよびニッケルからなる群から選択された少なくとも1つを含む、請求項1に記載の太陽電池。
  3.  前記領域の厚さは、10nm以下である、請求項1または請求項2に記載の太陽電池。
  4.  前記非晶質シリコン膜の厚さは、5nm以上である、請求項1~請求項3のいずれか1項に記載の太陽電池。
  5.  第1導電型または第2導電型の半導体基板上に非晶質シリコン膜を形成する工程と、
     前記非晶質シリコン膜上に、銀と銀以外の金属とを含む金属膜を形成する工程と、
     前記金属膜を加熱することによって、前記非晶質シリコン膜上の電極を形成するとともに、前記非晶質シリコン膜の前記電極側に、銀と銀以外の金属とを含む領域を形成する工程と、を含む、太陽電池の製造方法。
PCT/JP2016/076286 2015-09-09 2016-09-07 太陽電池および太陽電池の製造方法 WO2017043522A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201680049532.1A CN107924957A (zh) 2015-09-09 2016-09-07 太阳能电池及太阳能电池的制造方法
JP2017539186A JPWO2017043522A1 (ja) 2015-09-09 2016-09-07 太陽電池および太陽電池の製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-177580 2015-09-09
JP2015177580 2015-09-09

Publications (1)

Publication Number Publication Date
WO2017043522A1 true WO2017043522A1 (ja) 2017-03-16

Family

ID=58239794

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/076286 WO2017043522A1 (ja) 2015-09-09 2016-09-07 太陽電池および太陽電池の製造方法

Country Status (3)

Country Link
JP (1) JPWO2017043522A1 (ja)
CN (1) CN107924957A (ja)
WO (1) WO2017043522A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116417522A (zh) * 2021-12-29 2023-07-11 泰州隆基乐叶光伏科技有限公司 一种太阳能电池及其制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59208789A (ja) * 1983-05-12 1984-11-27 Agency Of Ind Science & Technol 太陽電池
JPS6030183A (ja) * 1983-07-28 1985-02-15 Fuji Electric Corp Res & Dev Ltd 薄膜太陽電池
JPS62113483A (ja) * 1985-11-13 1987-05-25 Matsushita Electric Ind Co Ltd 薄膜太陽電池
JPH01310578A (ja) * 1988-06-08 1989-12-14 Sanyo Electric Co Ltd 光起電力装置
JP2005072388A (ja) * 2003-08-26 2005-03-17 Kyocera Corp 太陽電池素子の製造方法
JP5987127B1 (ja) * 2015-07-27 2016-09-07 長州産業株式会社 光発電素子及びその製造方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4502845B2 (ja) * 2005-02-25 2010-07-14 三洋電機株式会社 光起電力素子
US20070169808A1 (en) * 2006-01-26 2007-07-26 Kherani Nazir P Solar cell
CN101355110A (zh) * 2007-07-27 2009-01-28 鸿富锦精密工业(深圳)有限公司 太阳能电池及其制造设备和制造方法
JP5347409B2 (ja) * 2008-09-29 2013-11-20 三洋電機株式会社 太陽電池及びその製造方法
JP6103867B2 (ja) * 2012-09-12 2017-03-29 シャープ株式会社 光電変換素子および光電変換素子の製造方法
JP2015060847A (ja) * 2013-09-17 2015-03-30 三洋電機株式会社 太陽電池

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59208789A (ja) * 1983-05-12 1984-11-27 Agency Of Ind Science & Technol 太陽電池
JPS6030183A (ja) * 1983-07-28 1985-02-15 Fuji Electric Corp Res & Dev Ltd 薄膜太陽電池
JPS62113483A (ja) * 1985-11-13 1987-05-25 Matsushita Electric Ind Co Ltd 薄膜太陽電池
JPH01310578A (ja) * 1988-06-08 1989-12-14 Sanyo Electric Co Ltd 光起電力装置
JP2005072388A (ja) * 2003-08-26 2005-03-17 Kyocera Corp 太陽電池素子の製造方法
JP5987127B1 (ja) * 2015-07-27 2016-09-07 長州産業株式会社 光発電素子及びその製造方法

Also Published As

Publication number Publication date
JPWO2017043522A1 (ja) 2018-06-28
CN107924957A (zh) 2018-04-17

Similar Documents

Publication Publication Date Title
EP2624307A1 (en) Method for manufacturing photoelectric conversion device
KR20130048228A (ko) 표시 장치용 Cu 합금막 및 표시 장치
JP5174635B2 (ja) 太陽電池素子
KR101681695B1 (ko) 반도체 장치 및 그 제작 방법
JP6681878B2 (ja) 光電変換素子および光電変換素子の製造方法
JP2015514323A (ja) 薄膜太陽電池モジュールの製造方法、並びに、当該製造方法によって製造される薄膜太陽電池モジュール
JP2015514324A (ja) 光起電性薄膜太陽電池セル用の多層裏面電極、該多層裏面電極を薄膜太陽電池セル及びモジュールの製造に使用する方法、多層裏面電極を含んだ光起電性薄膜太陽電池セル及びモジュール並びにその製造方法
US9859454B2 (en) Photoelectric conversion device and fabrication method thereof
CN112133771A (zh) 太阳能电池及其制造方法
WO2017043522A1 (ja) 太陽電池および太陽電池の製造方法
CN112151625B (zh) 太阳电池及生产方法、电池组件
CN210200744U (zh) 太阳能电池
CN112673482B (zh) 具有包括差异化p型和n型区域的混合架构的太阳能电池
JP6936339B2 (ja) 太陽電池セル、及び、太陽電池セルの製造方法
JP2017118014A (ja) 積層体、半導体素子及び電気機器
JP5987127B1 (ja) 光発電素子及びその製造方法
JP4219264B2 (ja) 光起電力装置
CN210200742U (zh) 太阳能电池
WO2017017771A1 (ja) 光発電素子及びその製造方法
WO2019163786A1 (ja) 太陽電池の製造方法
JP2018190819A (ja) 光発電素子及びその製造方法
WO2017211629A1 (de) Verfahren zur herstellung einer solarzellenstruktur
WO2016125627A1 (ja) 光電変換素子および光電変換素子の製造方法
CN112133770A (zh) 太阳能电池及其制造方法
JP6191995B2 (ja) 太陽電池モジュール

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16844383

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017539186

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16844383

Country of ref document: EP

Kind code of ref document: A1