WO2019163786A1 - 太陽電池の製造方法 - Google Patents

太陽電池の製造方法 Download PDF

Info

Publication number
WO2019163786A1
WO2019163786A1 PCT/JP2019/006135 JP2019006135W WO2019163786A1 WO 2019163786 A1 WO2019163786 A1 WO 2019163786A1 JP 2019006135 W JP2019006135 W JP 2019006135W WO 2019163786 A1 WO2019163786 A1 WO 2019163786A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
semiconductor layer
lift
solar cell
type semiconductor
Prior art date
Application number
PCT/JP2019/006135
Other languages
English (en)
French (fr)
Inventor
良太 三島
邦裕 中野
崇 口山
Original Assignee
株式会社カネカ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社カネカ filed Critical 株式会社カネカ
Priority to CN201980013505.2A priority Critical patent/CN111727508B/zh
Priority to JP2020500971A priority patent/JP7183245B2/ja
Publication of WO2019163786A1 publication Critical patent/WO2019163786A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/072Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type
    • H01L31/0745Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type comprising a AIVBIV heterojunction, e.g. Si/Ge, SiGe/Si or Si/SiC solar cells
    • H01L31/0747Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type comprising a AIVBIV heterojunction, e.g. Si/Ge, SiGe/Si or Si/SiC solar cells comprising a heterojunction of crystalline and amorphous materials, e.g. heterojunction with intrinsic thin layer
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Definitions

  • the technology disclosed herein belongs to a technical field related to a solar cell manufacturing method.
  • a general solar cell is a double-sided electrode type in which electrodes are arranged on both surfaces (light-receiving surface / back surface) of a semiconductor substrate. Recently, as a solar cell having no shielding loss due to an electrode, as shown in Patent Document 1 A back contact (back electrode) type solar cell in which an electrode is disposed only on the back surface has been developed.
  • a semiconductor layer pattern such as a p-type semiconductor layer and an n-type semiconductor layer must be formed on the back surface with high accuracy, and the manufacturing method becomes complicated as compared with a double-sided electrode type solar cell.
  • a semiconductor layer pattern forming technique by a lift-off method can be cited. That is, development of a patterning technique for forming a semiconductor layer pattern by removing the lift-off layer and removing the semiconductor layer formed on the lift-off layer has been underway.
  • a transparent electrode layer made of an oxide may be disposed between the semiconductor layer and the metal electrode layer. At this time, peeling of the transparent electrode layer from the semiconductor layer becomes a problem. There is.
  • the technology disclosed herein has been made in view of such a point, and an object of the technology is to provide a high-performance back contact solar cell with improved adhesion between the electrode layer and the semiconductor layer. It is to manufacture efficiently.
  • the technique disclosed herein includes a step of forming a first semiconductor layer of a first conductivity type on one main surface of two main surfaces facing each other in a semiconductor substrate, A step of laminating a lift-off layer on the first semiconductor layer; a step of selectively removing the first semiconductor layer and the lift-off layer; and the one main surface including the first semiconductor layer and the lift-off layer.
  • the second semiconductor layer covering the lift-off layer is removed.
  • the first semiconductor layer As part of the first semiconductor layer is covered by the lift-off layer, it has a configuration that removes the lift-off layer.
  • a high-performance back contact solar cell with improved adhesion between the electrode layer and the semiconductor layer is efficiently manufactured.
  • FIG. 1 is a schematic cross-sectional view partially showing a solar cell according to an exemplary embodiment. It is a top view which shows the back side main surface of the crystal substrate which comprises a solar cell. It is a partial schematic cross section which shows one process of the manufacturing method of a solar cell. It is a partial schematic cross section which shows one process of the manufacturing method of a solar cell. It is a partial schematic cross section which shows one process of the manufacturing method of a solar cell. It is a partial schematic cross section which shows one process of the manufacturing method of a solar cell. It is a partial schematic cross section which shows one process of the manufacturing method of a solar cell. It is a partial schematic cross section which shows one process of the manufacturing method of a solar cell. It is a partial schematic cross section which shows one process of the manufacturing method of a solar cell. It is a partial schematic cross section which shows one process of the manufacturing method of a solar cell.
  • FIG. 1 is a partial cross-sectional view of a solar cell (cell) according to this embodiment.
  • the solar cell 10 uses a crystal substrate 11 made of silicon (Si).
  • the crystal substrate 11 has two main surfaces 11S (11SU, 11SB) facing each other.
  • the main surface on which light is incident is referred to as a front-side main surface 11SU
  • the opposite main surface is referred to as a back-side main surface 11SB.
  • the front main surface 11SU has a light receiving side that is more positively received than the back main surface 11SB and a non-light receiving side that is not actively receiving light.
  • the solar cell 10 is a so-called heterojunction crystal silicon solar cell, and is a back contact type (back electrode type) solar cell in which an electrode layer is disposed on the back main surface 11SB.
  • the solar cell 10 includes a crystal substrate 11, an intrinsic semiconductor layer 12, a conductive semiconductor layer 13 (p-type semiconductor layer 13p, n-type semiconductor layer 13n), a low reflection layer 14, and an electrode layer 15 (transparent electrode layer 17, metal electrode). Layer 18).
  • first conductivity type first conductivity type
  • second conductivity type second conductivity type
  • the crystal substrate 11 may be a semiconductor substrate formed of single crystal silicon or a semiconductor substrate formed of polycrystalline silicon.
  • a single crystal silicon substrate will be described as an example.
  • the conductivity type of the crystal substrate 11 is an n-type single crystal silicon substrate into which an impurity (for example, phosphorus (P) atom) that introduces electrons into silicon atoms is introduced, holes are introduced into the silicon atoms.
  • an impurity for example, phosphorus (P) atom
  • a p-type single crystal silicon substrate into which impurities to be introduced for example, boron (B) atoms
  • B boron
  • the crystal substrate 11 has a texture structure TX (first texture structure) composed of peaks (convex) and valleys (concave) on the surfaces of the two main surfaces 11S from the viewpoint of confining received light. You may have.
  • TX first texture structure
  • the texture structure TX is obtained by, for example, anisotropic etching applying the difference between the etching rate of the crystal substrate 11 with the (100) plane orientation and the etching rate of the (111) plane orientation. Can be formed.
  • the size of the unevenness in the texture structure TX can be defined by the number of vertices, for example.
  • the number of vertices is preferably in the range of 50000 / mm 2 or more and 100000 / mm 2 or less, particularly 70000 / mm 2 or more. It is preferably 85000 pieces / mm 2 or less.
  • the thickness of the crystal substrate 11 may be 250 ⁇ m or less.
  • the measurement direction when measuring the thickness is a direction perpendicular to the average plane of the crystal substrate 11 (the average plane means a plane of the entire substrate independent of the texture structure TX).
  • this vertical direction that is, the direction in which the thickness is measured is defined as a perpendicular direction.
  • the thickness of the crystal substrate 11 is 250 ⁇ m or less, the amount of silicon used can be reduced, so that it becomes easy to secure the silicon substrate and the cost can be reduced.
  • the back contact structure that collects holes and electrons generated by photoexcitation in the silicon substrate only on the back side is preferable from the viewpoint of the free path of each exciton.
  • the thickness of the crystal substrate 11 is preferably 50 ⁇ m or more, and more preferably 70 ⁇ m or more.
  • the thickness of the crystal substrate 11 is represented by the distance between straight lines connecting the convex vertices in the light-receiving side and the back surface side. Is done.
  • the intrinsic semiconductor layer 12 (12U, 12p, 12n) covers the both main surfaces 11S (11SU, 11SB) of the crystal substrate 11, thereby performing surface passivation while suppressing diffusion of impurities into the crystal substrate 11.
  • intrinsic (i-type) is not limited to complete intrinsicity including no conductive impurities, but is “weak” including a small amount of n-type impurities or p-type impurities within a range in which a silicon-based layer can function as an intrinsic layer. Also included are layers that are substantially intrinsic of “n-type” or “weak p-type”.
  • the material of the intrinsic semiconductor layer 12 is not particularly limited, but may be an amorphous silicon thin film, or a hydrogenated amorphous silicon thin film (a-Si: H thin film) containing silicon and hydrogen. Also good.
  • amorphous means a structure having a long period and no order. That is, it includes not only complete disorder but also one having a short period of order.
  • the intrinsic semiconductor layer 12 (12U, 12p, 12n) is not essential, and may be appropriately formed as necessary.
  • the thickness of the intrinsic semiconductor layer 12 is not particularly limited, but may be 2 nm or more and 20 nm or less. This is because when the thickness is 2 nm or more, the effect as a passivation layer is enhanced, and when the thickness is 20 nm or less, the deterioration of the conversion characteristics caused by the increase in resistance can be suppressed.
  • the method for forming the intrinsic semiconductor layer 12 is not particularly limited, but a plasma CVD (plasma enhanced chemical vapor deposition) method is used. According to this method, passivation of the substrate surface can be effectively performed while suppressing the diffusion of impurities into the single crystal silicon. Further, in the case of the plasma CVD method, by changing the hydrogen concentration in the intrinsic semiconductor layer 12 in the thickness direction, it is possible to form an energy gap profile effective in recovering carriers.
  • a plasma CVD plasma enhanced chemical vapor deposition
  • the conditions for forming a thin film by plasma CVD include, for example, a substrate temperature of 100 ° C. to 300 ° C., a pressure of 20 Pa to 2600 Pa, and a high frequency power density of 0.003 W / cm 2 to 0.5 W / It may be cm 2 or less.
  • a silicon-containing gas such as monosilane (SiH 4 ) and disilane (Si 2 H 6 ), or those gases and hydrogen (H 2). ) May be mixed.
  • a gas containing a different element such as methane (CH 4 ), ammonia (NH 3 ), or monogermane (GeH 4 ) is added to the above gas, and silicon carbide (SiC), silicon nitride (SiN X). ) Or a silicon alloy such as silicon germanium (SIGe), the energy gap of the thin film may be changed as appropriate.
  • a gas containing a different element such as methane (CH 4 ), ammonia (NH 3 ), or monogermane (GeH 4 ) is added to the above gas, and silicon carbide (SiC), silicon nitride (SiN X).
  • SiN X silicon nitride
  • SiGe silicon germanium
  • Examples of the conductive semiconductor layer 13 include a p-type semiconductor layer 13p and an n-type semiconductor layer 13n. As shown in FIG. 1, the p-type semiconductor layer 13p is formed on a part of the back main surface 11SB of the crystal substrate 11 via the intrinsic semiconductor layer 12p. N-type semiconductor layer 13n is formed on the other part of the back main surface of crystal substrate 11 with intrinsic semiconductor layer 12n interposed. That is, the intrinsic semiconductor layer 12 is interposed between the p-type semiconductor layer 13p and the crystal substrate 11 and between the n-type semiconductor layer 13n and the crystal substrate 11 as an intermediate layer that plays a role of passivation.
  • the thicknesses of the p-type semiconductor layer 13p and the n-type semiconductor layer 13n are not particularly limited, but may be 2 nm or more and 20 nm or less. This is because when the thickness is 2 nm or more, the effect as a passivation layer is enhanced, and when the thickness is 20 nm or less, the deterioration of the conversion characteristics caused by the increase in resistance can be suppressed.
  • the p-type semiconductor layer 13p and the n-type semiconductor layer 13n are arranged on the back side of the crystal substrate 11 so that the p-type semiconductor layer 13p and the n-type semiconductor layer 13n are electrically separated via the intrinsic semiconductor layer 12.
  • the width of the conductive semiconductor layer 13 may be not less than 50 ⁇ m and not more than 3000 ⁇ m, and may be not less than 80 ⁇ m and not more than 500 ⁇ m.
  • the widths of the semiconductor layers 12 and 13 and the widths of the electrode layers 17 and 18 are the lengths of a part of each patterned layer, unless otherwise specified. It means the length in the direction orthogonal to the extending direction.
  • the p-type semiconductor layer 13p may be narrower than the n-type semiconductor layer 13n.
  • the width of the p-type semiconductor layer 13p may be not less than 0.5 times and not more than 0.9 times the width of the n-type semiconductor layer 13n, and is not less than 0.6 times and not more than 0.8 times. Also good.
  • the p-type semiconductor layer 13p is a silicon layer to which a p-type dopant (boron or the like) is added, and may be formed of amorphous silicon from the viewpoint of suppressing impurity diffusion or series resistance.
  • the n-type semiconductor layer 13n is a silicon layer to which an n-type dopant (phosphorus or the like) is added, and may be formed of an amorphous silicon layer similarly to the p-type semiconductor layer 13p.
  • a silicon-containing gas such as monosilane (SiH 4 ) or disilane (Si 2 H 6 ), or a mixed gas of a silicon-based gas and hydrogen (H 2 ) may be used.
  • the dopant gas diborane (B 2 H 6 ) or the like is used for forming the p-type semiconductor layer 13p, and phosphine (PH 3 ) or the like is used for forming the n-type semiconductor layer.
  • impurities such as boron (B) or phosphorus (P) may be small, a mixed gas obtained by diluting a dopant gas with a raw material gas may be used.
  • the energy gap of the p-type semiconductor layer 13p or the n-type semiconductor layer 13n different types such as methane (CH 4 ), carbon dioxide (CO 2 ), ammonia (NH 3 ), or monogermane (GeH 4 ) are used.
  • the p-type semiconductor layer 13p or the n-type semiconductor layer 13n may be alloyed by adding a gas containing these elements.
  • the low reflection layer 14 is a layer that suppresses reflection of light received by the solar cell 10.
  • the material of the low reflection layer 14 is not particularly limited as long as it is a light-transmitting material that transmits light.
  • silicon oxide (SiO x ), silicon nitride (SiN x ), zinc oxide (ZnO), or oxide titanium (TiO X) can be mentioned.
  • distributed the nanoparticle of oxides such as a zinc oxide or a titanium oxide, for example.
  • the electrode layer 15 is formed so as to cover the p-type semiconductor layer 13p or the n-type semiconductor layer 13n, and is electrically connected to each conductive semiconductor layer 13. Thereby, the electrode layer 15 functions as a transport layer for guiding carriers generated in the p-type semiconductor layer 13p or the n-type semiconductor layer 13n.
  • the electrode layers 15p and 15n corresponding to the semiconductor layers 13p and 13n are arranged so as to be separated from each other, thereby preventing a short circuit between the p-type semiconductor layer 13p and the n-type semiconductor layer 13n.
  • the electrode layer 15 made of a conductive oxide may be provided between the metal electrode layer and the p-type semiconductor layer 13p and between the metal electrode layer and the n-type semiconductor layer 13n.
  • the electrode layer 15 formed of a transparent conductive oxide is referred to as a transparent electrode layer 17, and the metal electrode layer 15 is referred to as a metal electrode layer 18.
  • an electrode layer formed on the comb back portion May be referred to as a bus bar portion, and an electrode layer formed on the comb tooth portion may be referred to as a finger portion.
  • the transparent electrode layer 17 is not particularly restricted but includes materials such as zinc (ZnO) or indium oxide (InO X), or various metal oxides in indium oxide, such as titanium oxide (TiO X), tin oxide ( Examples thereof include a transparent conductive oxide to which SnO X ), tungsten oxide (WO X ), molybdenum oxide (MoO X ), or the like is added in an amount of 1 wt% to 10 wt%.
  • materials such as zinc (ZnO) or indium oxide (InO X), or various metal oxides in indium oxide, such as titanium oxide (TiO X), tin oxide ( Examples thereof include a transparent conductive oxide to which SnO X ), tungsten oxide (WO X ), molybdenum oxide (MoO X ), or the like is added in an amount of 1 wt% to 10 wt%.
  • the thickness of the transparent electrode layer 17 may be 20 nm or more and 200 nm or less.
  • a method for forming a transparent electrode layer suitable for this thickness for example, a physical organic vapor deposition (PVD: physical vapor deposition) method such as a sputtering method, or a metal organic using a reaction between an organic metal compound and oxygen or water.
  • PVD physical organic vapor deposition
  • MOCVD Metal-Organic-Chemical-Vapor-Deposition
  • the material of the metal electrode layer 18 is not particularly limited, and examples thereof include silver (Ag), copper (Cu), aluminum (Al), and nickel (Ni).
  • the thickness of the metal electrode layer 18 may be 1 ⁇ m or more and 80 ⁇ m or less.
  • Examples of a method for forming the metal electrode layer 18 suitable for this thickness include a printing method in which a material paste is printed by inkjet or screen printing, or a plating method.
  • the present invention is not limited to this, and when a vacuum process is employed, vapor deposition or sputtering may be employed.
  • the width of the comb tooth portions in the p-type semiconductor layer 13p and the n-type semiconductor layer 13n may be approximately the same as the width of the metal electrode layer 18 formed on the comb tooth portions.
  • the width of the metal electrode layer 18 may be narrower than the width of the comb tooth portion.
  • the width of the metal electrode layer 18 may be wider than the width of the comb tooth portion as long as leakage between the metal electrode layers 18 is prevented.
  • the intrinsic semiconductor layer 12, the conductive semiconductor layer 13, the low reflection layer 14, and the electrode layer 15 are stacked on the back side main surface 11SB of the crystal substrate 11, and the passivation and conductive properties of each bonding surface are stacked.
  • a predetermined annealing treatment is performed for the purpose of suppressing the generation of defect levels at the type semiconductor layer 13 and its interface and crystallizing the transparent conductive oxide in the transparent electrode layer 17.
  • Examples of the annealing process according to the present embodiment include an annealing process in which the crystal substrate 11 on which each of the above layers is formed is placed in an oven heated to 150 ° C. or more and 200 ° C. or less.
  • the atmosphere in the oven may be air, and more effective annealing can be performed by using hydrogen or nitrogen.
  • this annealing treatment may be an RTA (Rapid Thermal Annealing) process in which the crystal substrate 11 on which each layer is formed is irradiated with infrared rays by an infrared heater.
  • RTA Rapid Thermal Annealing
  • a crystal substrate 11 having a texture structure TX on each of a front main surface 11SU and a back main surface 11SB is prepared.
  • an intrinsic semiconductor layer 12 ⁇ / b> U is formed on the front main surface 11 ⁇ / b> SU of the crystal substrate 11.
  • the low reflection layer 14 is formed on the formed intrinsic semiconductor layer 12U.
  • silicon nitride (SiN x ) or silicon oxide (SiO x ) having a suitable light absorption coefficient and refractive index is used from the viewpoint of light confinement.
  • an intrinsic semiconductor layer 12p using, for example, i-type amorphous silicon is formed on the back main surface 11SB of the crystal substrate 11.
  • a p-type semiconductor layer 13p is formed on the formed intrinsic semiconductor layer 12p.
  • the p-type semiconductor layer 13p is formed on the back-side main surface 11SB which is one main surface of the crystal substrate 11.
  • the step of forming the p-type semiconductor layer (first semiconductor layer) 13p is performed before one of the crystal substrates (semiconductor substrates) 11 is formed before the p-type semiconductor layer 13p is formed.
  • a lift-off layer LF is formed on the formed p-type semiconductor layer 13p.
  • a lift-off layer LF containing silicon oxide (SiOX) as a main component is formed on the p-type semiconductor layer 13p.
  • the lift-off layer LF and the p-type semiconductor layer 13 p are patterned on the back main surface 11 SB of the crystal substrate 11.
  • the p-type semiconductor layer 13p is selectively removed, resulting in a non-formed region NA where the p-type semiconductor layer 13p is not formed.
  • at least the lift-off layer LF and the p-type semiconductor layer 13p remain in the region that is not etched on the back-side main surface 11SB of the crystal substrate 11.
  • Such a patterning step can be realized by photolithography, for example, by forming a resist film (not shown) having a predetermined pattern on the lift-off layer LF and etching a region masked by the formed resist film. .
  • a resist film (not shown) having a predetermined pattern on the lift-off layer LF and etching a region masked by the formed resist film.
  • FIG. 6 by patterning each of the intrinsic semiconductor layer 12p, the p-type semiconductor layer 13p, and the lift-off layer LF, a non-forming region NA, that is, the back side An exposed area of main surface 11SB is generated. Details of the non-forming area NA will be described later.
  • etching solution used in the process shown in FIG. 6, for example, a mixed solution of hydrofluoric acid and an oxidizing solution (for example, hydrofluoric acid) or a solution in which ozone is dissolved in hydrofluoric acid (hereinafter referred to as ozone / hydrofluoric acid). Liquid).
  • the etching solution in this case corresponds to the second etching solution.
  • An etchant that contributes to the etching of the lift-off layer LF is hydrogen fluoride.
  • the patterning here is not limited to wet etching using an etching solution.
  • the patterning may be, for example, dry etching or pattern printing using an etching paste or the like.
  • the intrinsic semiconductor layer 12n and the n-type semiconductor layer 13n are formed on the back main surface 11SB of the crystal substrate 11 including the lift-off layer LF, the p-type semiconductor layer 13p, and the intrinsic semiconductor layer 12p. Sequentially formed.
  • the step of forming the n-type semiconductor layer (second semiconductor layer) 13n includes the lift-off layer of the crystal substrate (semiconductor substrate) 11 before the n-type semiconductor layer 13n is formed.
  • the stacked film of the intrinsic semiconductor layer 12n and the n-type semiconductor layer 13n is formed on the non-forming region NA, the surface and side surfaces (end faces) of the lift-off layer LF, the lift-off layer LF, the p-type semiconductor layer 13p, and the intrinsic semiconductor. It is formed so as to cover the side surface (end surface) of the layer 12p.
  • the n-type semiconductor layer 13 n and the intrinsic semiconductor layer 12 n covering the lift-off layer LF are removed from the crystal substrate 11 by removing the lift-off layer LF stacked using an etching solution.
  • an etching solution used for this patterning for example, hydrofluoric acid is used.
  • the lift-off layer LF is removed so that a part of the p-type semiconductor layer 13p is covered with the lift-off layer LF. That is, as shown in FIG. 10, a part of the lift-off layer LF remains on the p-type semiconductor layer 13, and a part of the surface of the p-type semiconductor layer 13p opposite to the crystal substrate 11 remains.
  • the lift-off layer LF is removed so as to be covered by the layer LF.
  • the separation groove is formed on the back main surface 11SB of the crystal substrate 11, that is, on each of the p-type semiconductor layer 13p and the n-type semiconductor layer 13n by, for example, sputtering using a mask.
  • the transparent electrode layer 17 (17p, 17n) is formed to generate 25.
  • the transparent electrode layer 17 (17p, 17n) may be formed as follows instead of the sputtering method. For example, a transparent conductive oxide film is formed on the entire surface of the back main surface 11SB without using a mask, and then the transparent conductive film is formed on the p-type semiconductor layer 13p and the n-type semiconductor layer 13n by photolithography. Alternatively, etching may be performed to leave the conductive oxide film.
  • the isolation trench 25 that isolates and insulates the p-type semiconductor layer 13p and the n-type semiconductor layer 13n from each other, leakage hardly occurs.
  • a linear metal electrode layer 18 (18p, 18n) is formed on the transparent electrode layer 17 by using, for example, a mesh screen (not shown) having an opening.
  • the back junction solar cell 10 is formed.
  • the intrinsic semiconductor layer 12n and the n-type semiconductor layer 13n deposited on the lift-off layer LF are also removed from the crystal substrate 11 at the same time.
  • lift-off This step does not require the resist coating step and the development step used in the photolithography method as compared with the case of using the photolithography method in the step shown in FIG. For this reason, the n-type semiconductor layer 13n is easily patterned.
  • the adhesion of the transparent electrode layer 17 in the region of the p-type semiconductor layer 13p is improved. That is, if a part of the lift-off layer LF (hereinafter referred to as the covering portion 19) remains as a residue on the p-type semiconductor layer 13p, the surface area increases by the amount of the covering portion 19, and in the region of the p-type semiconductor layer 13p. The contact area of the transparent electrode layer 17 is increased. Further, for example, when the transparent electrode layer 17 is composed of tin oxide-indium oxide (ITO), silicon oxide has higher adhesion to ITO than silicon, and thus the covering portion 19 mainly composed of silicon oxide. If there is, it becomes difficult for the transparent electrode layer 17 to peel from the p-type semiconductor layer 13p. As a result, the adhesion of the transparent electrode layer 17 in the region of the p-type semiconductor layer 13p is improved.
  • ITO tin oxide-indium oxide
  • the coverage defined by is preferably 0.2% or more and 16% or less. If the coverage is 0.2% or more and 16% or less, the contact area between the transparent electrode layer 17 and the p-type semiconductor layer 13p can be suitably secured while improving the adhesion of the transparent electrode layer 17.
  • the maximum length of the covering portion 19 is 2.0 ⁇ m or less as viewed from the back main surface SB11 side in the direction perpendicular to the crystal substrate 11.
  • the coverage can be adjusted, for example, by devising a process of depositing the lift-off layer LF on the p-type semiconductor layer 13p.
  • a process of depositing the lift-off layer LF on the p-type semiconductor layer 13p Specifically, as shown in FIG. 12, when the lift-off layer LF is deposited on the p-type semiconductor layer 13p, particles composed of the elements constituting the lift-off layer LF (here, silicon particles or silicon oxide particles). Hereinafter, crystal grains 20) are mixed.
  • the lift-off layer LF is made of an amorphous material so that it can be easily etched during lift-off.
  • the crystal grains 20 have a slower etching rate than amorphous, so even if the amorphous portion in the lift-off layer LF is dissolved, the crystal grains 20 remain on the p-type semiconductor layer 13p without being dissolved. Can do. For this reason, if the quantity of the crystal grain to mix is adjusted, the said coverage can be adjusted.
  • the coverage can be adjusted by adjusting the refractive index of the lift-off layer LF. That is, the refractive index is proportional to the density, and when the refractive index is high, the density basically increases. When the density is increased, the etching rate is decreased, so that the covering portion 19 is easily generated. For this reason, if the refractive index of the lift-off layer LF is increased, the coverage can be increased. From the viewpoint of setting the coverage to 0.2% or more and 16% or less, the refractive index is preferably 1.45 or more and 1.90 or less in light having a wavelength of 632 nm.
  • the refractive index can be adjusted, for example, by adjusting the pressure in film formation using the CVD method. Specifically, by increasing the pressure, it becomes easy to obtain a dense structure, and it is easy to obtain a lift-off layer LF having a high refractive index.
  • the method of mixing crystal grains in the lift-off layer LF and the method of adjusting the refractive index of the lift-off layer LF may be used alone or in combination.
  • the lift-off layer LF is preferably composed of a plurality of layers.
  • the lift-off layer LF is divided into two: a first lift-off layer LF1 stacked on the p-type semiconductor layer 13p and a second lift-off layer LF2 stacked on the first lift-off layer LF1.
  • the lift-off layer LF may be composed of three or more layers.
  • the lift-off layer LF is preferably composed of two layers.
  • the film thickness of the lift-off layer LF is preferably 20 nm or more and 600 nm or less, and particularly preferably 50 nm or more and 450 nm or less.
  • the thickest layer closest to the p-type semiconductor layer 13p is the thinnest within this range.
  • the crystal substrate 11 has a texture structure TX, and each surface of the p-type semiconductor layer 13p and the n-type semiconductor layer 13n formed on the back main surface 11SB of the crystal substrate 11 has a texture structure TX. It is preferable that a texture structure reflecting the above (second texture structure) is included.
  • the etching solution easily penetrates into the semiconductor layer 13 due to the unevenness of the texture structure TX. For this reason, the conductive semiconductor layer 13 is easily removed, that is, easily patterned.
  • the texture structure TX (first texture structure) is provided on both main surfaces 11S of the crystal substrate 11, that is, the front-side main surface 11SU and the back-side main surface 11SB. May be provided. That is, when the texture structure TX is provided on the front main surface 11SU, the effect of capturing received light and the effect of confinement are enhanced. On the other hand, when the texture structure TX is provided on the back main surface 11SB, the light capturing effect is improved and the patterning of the conductive semiconductor layer 13 is facilitated. Therefore, the texture structure TX of the crystal substrate 11 may be provided on at least one main surface 11S. In the present embodiment, the texture structure TX of both the main surfaces 11S has the same pattern. However, the present invention is not limited to this, and the size of the unevenness of the texture structure TX is changed between the front-side main surface 11SU and the back-side main surface 11SB. Also good.
  • the back side main surface 11SB of the crystal substrate 11 is exposed in the non-formation area
  • the intrinsic semiconductor layer 12p may remain on the non-formation area NA of the back side main surface 11SB.
  • the p-type semiconductor layer 13p is selectively removed, and the region from which the p-type semiconductor layer 13p is removed may be the non-forming region NA.
  • the process of forming the intrinsic semiconductor layer 12n before the n-type semiconductor layer 13n is deposited on the remaining lift-off layer LF and the non-forming region NA can be reduced.
  • the lift-off layer LF is composed of two layers of the first lift-off layer LF1 and the second lift-off layer LF2
  • an opening is formed in the second lift-off layer LF2
  • etching is performed.
  • the liquid may be attached to the first lift-off layer LF1 through the formed opening, and the layer to which the etching solution is attached may be removed.
  • the lift-off layer LF is removed as described above, and an etching solution is also attached to the p-type semiconductor layer 13p, and the p-type semiconductor layer 13p to which the etching solution is attached is removed. Also good.
  • this opening part generating a crack is mentioned, for example.
  • the etching solution reliably adheres to the second lift-off layer LF2 and further to the first lift-off layer LF1. For this reason, the entire lift-off layer LF is efficiently removed.
  • the etching solution reliably adheres to the p-type semiconductor layer 13p covered with the lift-off layer LF, so that the p-type semiconductor layer 13p is also removed. Thereby, the undissolved residue of the lift-off layer LF and the p-type semiconductor layer 13p is suppressed.
  • the semiconductor layer used in the process shown in FIG. 5 is the p-type semiconductor layer 13p, but is not limited thereto, and may be the n-type semiconductor layer 13n.
  • the conductivity type of the crystal substrate 11 is not particularly limited, and may be p-type or n-type.
  • Crystal substrate a single crystal silicon substrate having a thickness of 200 ⁇ m was employed as the crystal substrate. Anisotropic etching was performed on both main surfaces of the single crystal silicon substrate. As a result, a pyramidal texture structure was formed on the crystal substrate.
  • the crystal substrate was introduced into a CVD apparatus, and an intrinsic semiconductor layer (film thickness: 8 nm) made of silicon was formed on both main surfaces of the introduced crystal substrate.
  • the film forming conditions were a substrate temperature of 150 ° C., a pressure of 120 Pa, a SiH 4 / H 2 flow rate value of 3/10, and a power density of 0.011 W / cm 2 .
  • [P-type semiconductor layer (first conductivity type semiconductor layer)] A crystal substrate having an intrinsic semiconductor layer formed on both main surfaces was introduced into a CVD apparatus, and a p-type hydrogenated amorphous silicon-based thin film (film thickness 10 nm) was formed on the intrinsic semiconductor layer on the back main surface.
  • the film forming conditions were a substrate temperature of 150 ° C., a pressure of 60 Pa, a SiH 4 / B 2 H 6 flow ratio value of 1/3, and a power density of 0.01 W / cm 2 .
  • the flow rate of B 2 H 6 gas is the flow rate of the diluent gas B 2 H 6 was diluted by H 2 to 5000 ppm.
  • a lift-off layer whose main component is silicon oxide (SiO x ) was formed on the p-type hydrogenated amorphous silicon-based thin film so as to have a thickness of 200 nm.
  • Example 1 the lift-off layer deposition conditions were as follows: the substrate temperature was 150 ° C., the pressure was 50 Pa, the SiH 4 / CO 2 / H 2 flow rate value was 1/10/750, and the power density was 0.15 W / It was cm 2.
  • the value of the SiH 4 / CO 2 / H 2 flow rate ratio was set to 1/10/650, and other conditions were set to the same film forming conditions as in Example 1.
  • Example 3 the value of the SiH 4 / CO 2 / H 2 flow rate ratio was set to 1/10/550, and other conditions were set to the same film forming conditions as in Example 1.
  • Comparative Example 1 the film forming conditions were the same as in Examples 1 to 3 except that the value of the SiH 4 / CO 2 / H 2 flow rate ratio was set to 1/4/750.
  • Comparative Example 2 the film forming conditions were the same as in Examples 1 to 3 except that the value of the SiH 4 / CO 2 / H 2 flow rate ratio was 1/30/1000.
  • Comparative Example 3 the film forming conditions were the same as in Examples 1 to 3, except that the value of the SiH 4 / CO 2 / H 2 flow rate ratio was 1/10/350.
  • a photosensitive resist film was formed on the main surface of the back side of the crystal substrate on which the lift-off layer was formed. This was exposed and developed by a photolithography method to expose regions for removing the lift-off layer, p-type semiconductor layer, and intrinsic semiconductor layer.
  • the crystal substrate on which a plurality of layers were formed was immersed in hydrofluoric nitric acid containing 1% by weight of hydrogen fluoride as an etchant to remove the lift-off layer.
  • this process is referred to as a patterning process.
  • N-type semiconductor layer (second conductivity type semiconductor layer)
  • a crystal substrate in which the exposed backside main surface is cleaned with hydrofluoric acid having a concentration of 2% by weight is introduced into a CVD apparatus, and an intrinsic semiconductor layer (film thickness: 8 nm) is formed on the backside main surface. It formed on the film-forming conditions similar to the 1st intrinsic semiconductor layer. Subsequently, an n-type hydrogenated amorphous silicon-based thin film (film thickness: 10 nm) was formed on the formed intrinsic semiconductor layer.
  • the film forming conditions were a substrate temperature of 150 ° C., a pressure of 60 Pa, a SiH 4 / PH 3 / H 2 flow ratio value of 1/2, and a power density of 0.01 W / cm 2 .
  • the flow rate of the PH 3 gas is the flow rate of the diluent gas PH 3 is diluted by H 2 to 5000 ppm.
  • an oxide film (film thickness: 100 nm) serving as a base of the transparent electrode layer was formed on the conductive semiconductor layer of the crystal substrate. Further, a silicon nitride layer was formed on the light receiving surface side of the crystal substrate as a low reflection layer.
  • the transparent conductive oxide indium oxide (ITO) containing tin oxide at a concentration of 10% by weight was used as a target.
  • ITO indium oxide
  • a mixed gas of argon and oxygen was introduced into the chamber of the apparatus, and the pressure in the chamber was set to 0.6 Pa. The mixing ratio of argon and oxygen was set such that the resistivity was the lowest (so-called bottom).
  • film formation was performed at a power density of 0.4 W / cm 2 using a DC power source.
  • etching was performed by photolithography so as to leave only the transparent conductive oxide film on the conductive semiconductor layers (p-type semiconductor layer and n-type semiconductor layer), thereby forming a transparent electrode layer.
  • the transparent electrode layer formed by this etching prevented conduction between the transparent conductive oxide film on the p-type semiconductor layer and the transparent conductive oxide film on the n-type semiconductor layer.
  • a silver paste (manufactured by Fujikura Kasei Co., Ltd .: Dotite FA-333) was screen-printed on the transparent electrode layer without dilution, and a heat treatment was performed in an oven at a temperature of 150 ° C. for 60 minutes. Thereby, the metal electrode layer was formed.
  • the refractive index of the lift-off layer is the refractive index of a thin film formed on the glass substrate under the same conditions as those of Examples 1 to 3 and Comparative Examples 1 to 3, using spectroscopic ellipsometry (trade name M2000, JE). -Determined by measuring with A-Woolum Co.). From the fitting result, the refractive index of light having a wavelength of 632 nm was extracted.
  • Evaluation was performed by attaching an adhesive tape defined in JIS Z1522 to the solar battery cell on which the electrode was formed, and pulling it vertically. When the electrode layer was peeled when it was pulled, it was rated as “x”, and when the electrode layer was not peeled, it was marked as “ ⁇ ”.
  • Examples 1 to 3 were good in all of electrode adhesion, IV characteristics, solar cell characteristics and reliability.
  • the refractive index in light having a wavelength of 632 nm is 1.45 or more 1 It can be seen that it should be 90 or less. For this reason, in the technique of the present disclosure, a range of 1.45 or more and 1.90 or less is a preferable refractive index range.
  • the electrical contact (adhesion) between the first conductive type semiconductor layer and the electrode layer is improved by covering a part of the first conductive type semiconductor layer with the lift-off layer was obtained.
  • the example obtained the result that the solar cell characteristics were improved by setting the coverage to an appropriate range. This improves the adhesion between the first conductive type semiconductor layer and the electrode layer by appropriately leaving the material constituting the lift-off layer (here, silicon oxide) on the first conductive type semiconductor layer. It is thought that not only the rise in series resistance is suppressed.
  • the coverage can be adjusted to the appropriate range by setting the refractive index of the lift-off layer to an appropriate value.
  • the refractive index of the lift-off layer is too low, the lift-off layer is excessively removed in the patterning step, and therefore, a result that sufficient solar cell characteristics cannot be obtained was obtained.
  • Crystal substrate (semiconductor substrate) 12 Intrinsic Semiconductor Layer 13 Conductive Semiconductor Layer 13p P-type Semiconductor Layer [First Conductive First Semiconductor Layer / Second Conductive Second Semiconductor Layer] 13n n-type semiconductor layer [second conductive type second semiconductor layer / first conductive type first semiconductor layer] DESCRIPTION OF SYMBOLS 15 Electrode layer 17 Transparent electrode layer 18 Metal electrode layer 19 Coating

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Energy (AREA)
  • Electromagnetism (AREA)
  • Manufacturing & Machinery (AREA)
  • Photovoltaic Devices (AREA)

Abstract

選択的に除去されたp型半導体層(13p)及びリフトオフ層(LF)を含む結晶基板(11)の一方の主面上に、n型半導体層(13n)を形成する工程と、リフトオフ層(LF)を除去することにより、リフトオフ層(LF)を覆うn型半導体層(13n)を除去する工程と、p型半導体層(13p)及びn型半導体層(13n)のそれぞれの上に、透明電極層(17)を形成する工程を含み、リフトオフ層(LF)を除去する工程では、n型半導体層(13n)が除去された状態で、p型半導体層(13p)の一部がリフトオフ層(LF)によって被覆されるように、リフトオフ層(LF)を除去する。

Description

太陽電池の製造方法
 ここに開示された技術は、太陽電池の製造方法に関する技術分野に属する。
 一般的な太陽電池は、半導体基板の両面(受光面・裏面)に電極を配置させた両面電極型であるが、昨今、電極による遮蔽損のない太陽電池として、特許文献1に示されるような、裏面のみに電極を配置させたバックコンタクト(裏面電極)型太陽電池が開発されている。
 バックコンタクト型太陽電池は、裏面にp型半導体層及びn型半導体層等の半導体層パターンを高精度で形成しなければならず、両面電極型の太陽電池と比べて製造方法が煩雑となる。製造方法を簡略化するための技術として、特許文献1に示されるように、リフトオフ法による半導体層パターンの形成技術が挙げられる。すなわち、リフトオフ層を除去して、該リフトオフ層の上に形成された半導体層を除去することにより、半導体層パターンを形成するパターニング技術の開発が進められている。
特開2013-120863号
 しかしながら、特許文献1に記載の方法では、リフトオフ層と半導体層との溶解性が似ている場合には、意図しない層までが除去されることもあり、パターニング精度や生産性が高くならないおそれがある。
 また、バックコンタクト型太陽電池は、半導体層と金属電極層との間に酸化物からなる透明電極層を配置することがあるが、このとき、半導体層に対する透明電極層の剥離が問題となることがある。
 ここに開示された技術は、斯かる点に鑑みてなされたものであり、その目的とするところは、電極層と半導体層との密着性が向上された、高性能なバックコンタクト型太陽電池を効率良く製造することにある。
 前記課題を解決するために、ここに開示された技術は、半導体基板における互いに対向する2つの主面の一方の主面上に、第1導電型の第1半導体層を形成する工程と、前記第1半導体層上にリフトオフ層を積層する工程と、前記第1半導体層及び前記リフトオフ層を選択的に除去する工程と、前記第1半導体層及び前記リフトオフ層を含む前記一方の主面上に、第2導電型の第2半導体層を形成する工程と、前記リフトオフ層を除去することにより、前記リフトオフ層を覆う前記第2半導体層を除去する工程と、前記第1半導体層及び前記第2半導体層のそれぞれの上に、酸化物からなる透明電極層を形成する工程と、を含み、前記リフトオフ層を除去する工程では、前記リフトオフ層を覆う前記第2半導体層が除去された状態において、前記第1半導体層の一部が前記リフトオフ層によって被覆されるように、前記リフトオフ層を除去する、という構成とした。
 ここに開示された技術によると、電極層と半導体層との密着性が向上された、高性能なバックコンタクト型太陽電池が効率良く製造される。
例示的な実施形態に係る太陽電池を部分的に示す模式断面図である。 太陽電池を構成する結晶基板の裏側主面を示す平面図である。 太陽電池の製造方法の一工程を示す部分的な模式断面図である。 太陽電池の製造方法の一工程を示す部分的な模式断面図である。 太陽電池の製造方法の一工程を示す部分的な模式断面図である。 太陽電池の製造方法の一工程を示す部分的な模式断面図である。 太陽電池の製造方法の一工程を示す部分的な模式断面図である。 太陽電池の製造方法の一工程を示す部分的な模式断面図である。 太陽電池の製造方法の一工程を示す部分的な模式断面図である。 リフトオフ終了時において、p型半導体層の一部を拡大した拡大断面図である。 結晶粒を混入させたリフト層を示す部分的な模式断面図である。 リフトオフ層を2層で構成した場合を示す部分的な模式断面図である。 被覆率と太陽電池特性との関係を示すグラフである。 屈折率と太陽電池特性との関係を示すグラフである。
 以下、例示的な実施形態について図面を参照しながら説明する。
 図1は本実施形態に係る太陽電池(セル)の部分的な断面図を示す。図1に示すように、本実施形態に係る太陽電池10は、シリコン(Si)製の結晶基板11を用いている。結晶基板11は、互いに対向する2つの主面11S(11SU、11SB)を有している。ここでは、光が入射される主面を表側主面11SUと呼び、これと反対側の主面を裏側主面11SBと呼ぶ。便宜上、表側主面11SUは、裏側主面11SBよりも積極的に受光させる側を受光側とし、積極的に受光させない側を非受光側とする。
 本実施形態に係る太陽電池10は、いわゆるヘテロ接合結晶シリコン太陽電池であり、電極層を裏側主面11SBに配置したバックコンタクト型(裏面電極型)太陽電池である。
 太陽電池10は、結晶基板11、真性半導体層12、導電型半導体層13(p型半導体層13p、n型半導体層13n)、低反射層14、及び電極層15(透明電極層17、金属電極層18)を含む。
 以下では、便宜上、p型半導体層13p又はn型半導体層13nに個別に対応する部材には、参照符号の末尾に「p」又は「n」を付すことがある。また、p型、n型のように導電型が相違するため、一方の導電型を「第1導電型」、他方の導電型を「第2導電型」と称することもある。
 結晶基板11は、単結晶シリコンで形成された半導体基板であっても、多結晶シリコンで形成された半導体基板であってもよい。以下では、単結晶シリコン基板を例に挙げて説明する。
 結晶基板11の導電型は、シリコン原子に対して電子を導入する不純物(例えば、リン(P)原子)を導入されたn型単結晶シリコン基板であっても、シリコン原子に対して正孔を導入する不純物(例えば、ホウ素(B))原子)を導入されたp型単結晶シリコン基板であってもよい。以下では、キャリア寿命が長いといわれるn型の単結晶基板を例に挙げて説明する。
 また、結晶基板11は、受光した光を閉じこめておくという観点から、2つの主面11Sの表面に、山(凸)と谷(凹)とから構成されるテクスチャ構造TX(第1テクスチャ構造)を有していてもよい。なお、テクスチャ構造TX(凹凸面)は、例えば、結晶基板11における面方位が(100)面のエッチングレートと、面方位が(111)面のエッチングレートとの差を応用した異方性エッチングによって形成することができる。
 テクスチャ構造TXにおける凹凸の大きさは、例えば、頂点の数で定義することが可能である。本実施形態では、光取り込み性能と生産性との観点から、頂点の数が、50000個/mm以上100000個/mm以下の範囲であることが好ましく、特に、70000個/mm個以上85000個/mm以下であることが好ましい。
 結晶基板11の厚さは、250μm以下であってもよい。なお、厚さを測定する場合の測定方向は、結晶基板11の平均面(平均面とは、テクスチャ構造TXに依存しない基板全体としての面を意味する)に対する垂直方向である。これ以降、この垂直方向、すなわち、厚さを測定する方向を面直方向とする。
 結晶基板11の厚さは、250μm以下とすると、シリコンの使用量を減らせるため、シリコン基板を確保しやすくなり、低コスト化が図れる。その上、シリコン基板内で光励起により生成した正孔と電子とを裏面側のみで回収するバックコンタクト構造では、各励起子の自由行程の観点からも好ましい。
 一方で、結晶基板11の厚さが過度に小さいと、機械的強度の低下が生じたり、外光(太陽光)が十分に吸収されず、短絡電流密度が減少したりする。このため、結晶基板11の厚さは、50μm以上が好ましく、70μm以上がより好ましい。結晶基板11の主面にテクスチャ構造TXが形成されている場合には、結晶基板11の厚さは、受光側及び裏面側のそれぞれの凹凸構造における凸の頂点を結んだ直線間の距離で表される。
 真性半導体層12(12U、12p、12n)は、結晶基板11の両主面11S(11SU、11SB)を覆うことによって、結晶基板11への不純物の拡散を抑えつつ、表面パッシベーションを行う。なお、「真性(i型)」とは、導電性不純物を含まない完全な真性に限られず、シリコン系層が真性層として機能し得る範囲で微量のn型不純物又はp型不純物を含む「弱n型」又は「弱p型」の実質的に真性である層をも包含する。
 真性半導体層12の材料は、特に限定されないが、非晶質シリコン系薄膜であってもよく、シリコンと水素とを含む水素化非晶質シリコン系薄膜(a-Si:H薄膜)であってもよい。なお、ここでいう非晶質とは、長周期で秩序を有していない構造を意味する。すなわち、完全な無秩序なだけでなく、短周期で秩序を有しているものも含まれる。また、真性半導体層12(12U、12p、12n)は、必須ではなく、必要に応じて、適宜形成すればよい。
 また、真性半導体層12の厚さは、特に限定されないが、2nm以上20nm以下であってもよい。厚さが2nm以上であると、パッシベーション層としての効果が高まり、厚さが20nm以下であると、高抵抗化により生じる変換特性の低下を抑えられるためである。
 真性半導体層12の形成方法は、特に限定されないが、プラズマCVD(Plasma enhanced Chemical Vapor Deposition)法が用いられる。この方法によると、単結晶シリコンへの不純物の拡散を抑制しつつ、基板表面のパッシベーションを有効に行える。また、プラズマCVD法であれば、真性半導体層12における層中の水素濃度をその厚さ方向で変化させることにより、キャリアの回収を行う上で有効なエネルギーギャッププロファイルの形成をも行える。
 なお、プラズマCVD法による薄膜の成膜条件としては、例えば、基板温度が100℃以上300℃以下、圧力が20Pa以上2600Pa以下、及び高周波のパワー密度が0.003W/cm以上0.5W/cm以下であってもよい。
 また、薄膜の形成に使用される原料ガスとしては、真性半導体層12の場合は、モノシラン(SiH)及びジシラン(Si)等のシリコン含有ガス、又はそれらのガスと水素(H)とを混合したガスであってもよい。
 なお、上記のガスに、メタン(CH)、アンモニア(NH)若しくはモノゲルマン(GeH)等の異種の元素を含むガスを添加して、シリコンカーバイド(SiC)、シリコンナイトライド(SiN)又はシリコンゲルマニウム(SIGe)等のシリコン合金を形成することにより、薄膜のエネルギーギャップを適宜変更してもよい。
 導電型半導体層13としては、p型半導体層13pとn型半導体層13nとが挙げられる。図1に示すように、p型半導体層13pは、結晶基板11の裏側主面11SBの一部に真性半導体層12pを介して形成される。n型半導体層13nは、結晶基板11の裏側主面の他の一部に真性半導体層12nを介して形成される。すなわち、p型半導体層13pと結晶基板11との間、及びn型半導体層13nと結晶基板11との間に、それぞれパッシベーションの役割を果たす中間層として真性半導体層12が介在する。
 p型半導体層13p及びn型半導体層13nの各厚さは、特に限定されないが、2nm以上20nm以下であってもよい。厚さが2nm以上であると、パッシベーション層としての効果が高まり、厚さが20nm以下であると、高抵抗化により生じる変換特性の低下を抑えられるためである。
 p型半導体層13p及びn型半導体層13nは、結晶基板11の裏側において、p型半導体層13pとn型半導体層13nとが真性半導体層12を介して電気的に分離されるように配置される。導電型半導体層13の幅は、50μm以上3000μm以下であってよく、80μm以上500μm以下であってもよい。なお、半導体層12,13の幅及び電極層17,18の幅は、特に断りがない限り、パターン化された各層の一部分の長さで、パターン化により、例えば、線状になった一部分の延び方向と直交する方向の長さを意味する。
 結晶基板11内で生成した光励起子(キャリア)が導電型半導体層13を介して取り出される場合、正孔は電子よりも有効質量が大きい。このため、輸送損を低減させるという観点から、p型半導体層13pがn型半導体層13nよりも幅が狭くてもよい。例えば、p型半導体層13pの幅は、n型半導体層13nの幅の0.5倍以上0.9倍以下であってもよく、また、0.6倍以上0.8倍以下であってもよい。
 p型半導体層13pは、p型のドーパント(ホウ素等)が添加されたシリコン層であって、不純物拡散の抑制又は直列抵抗の抑制の観点から、非晶質シリコンで形成されてもよい。一方、n型半導体層13nは、n型のドーパント(リン等)が添加されたシリコン層であって、p型半導体層13pと同様に、非晶質シリコン層で形成されてもよい。
 導電型半導体層13の原料ガスとしては、モノシラン(SiH)若しくはジシラン(Si)等のシリコン含有ガス、又はシリコン系ガスと水素(H)との混合ガスを用いてもよい。ドーパントガスには、p型半導体層13pの形成にはジボラン(B)等が用いられ、n型半導体層の形成にはホスフィン(PH)等が用いられる。また、ホウ素(B)又はリン(P)といった不純物の添加量は微量でよいため、ドーパントガスを原料ガスで希釈した混合ガスを用いてもよい。
 また、p型半導体層13p又はn型半導体層13nのエネルギーギャップの調整のために、メタン(CH)、二酸化炭素(CO)、アンモニア(NH)又はモノゲルマン(GeH)等の異種の元素を含むガスを添加することにより、p型半導体層13p又はn型半導体層13nが合金化されてもよい。
 低反射層14は、太陽電池10が受けた光の反射を抑制する層である。低反射層14の材料には、光を透過する透光性の材料であれば、特に限定されないが、例えば、酸化ケイ素(SiO)、窒化ケイ素(SiN)、酸化亜鉛(ZnO)又は酸化チタン(TiO)が挙げられる。また、低反射層14の形成方法としては、例えば、酸化亜鉛又は酸化チタン等の酸化物のナノ粒子を分散させた樹脂材料で塗布してもよい。
 電極層15は、p型半導体層13p又はn型半導体層13nをそれぞれ覆うように形成されて、各導電型半導体層13と電気的に接続される。これにより、電極層15は、p型半導体層13p又はn型半導体層13nに生じるキャリアを導く輸送層として機能する。なお、各半導体層13p、13nに対応する電極層15p、15nは、乖離して配置されることで、p型半導体層13pとn型半導体層13nとの短絡を防止する。
 また、p型半導体層13p及びn型半導体層13nとのそれぞれの電気的な接合の観点から、又は電極材料である金属の両半導体層13p、13nに対する原子の拡散を抑制するという観点から、透明導電性酸化物で構成された電極層15を、金属製の電極層とp型半導体層13pとの間及び金属製の電極層とn型半導体層13nとの間にそれぞれ設けてもよい。
 本実施形態においては、透明導電性酸化物で形成される電極層15を透明電極層17と称し、金属製の電極層15を金属電極層18と称する。また、図2に示す結晶基板11の裏側主面11SBの平面図に示すように、それぞれ櫛歯形状を持つp型半導体層13p及びn型半導体層13nにおいて、櫛背部上に形成される電極層をバスバー部と称し、櫛歯部上に形成される電極層をフィンガ部と称することがある。
 透明電極層17は、材料としては特に限定されないが、例えば、酸化亜鉛(ZnO)若しくは酸化インジウム(InO)、又は酸化インジウムに種々の金属酸化物、例えば酸化チタン(TiO)、酸化スズ(SnO)、酸化タングステン(WO)若しくは酸化モリブデン(MoO)等を1重量%以上10重量%以下で添加した透明導電性酸化物が挙げられる。
 透明電極層17の厚さは、20nm以上200nm以下であってもよい。この厚さに好適な透明電極層の形成方法には、例えば、スパッタ法等の物理気相堆積(PVD:physical Vapor Deposition)法、又は有機金属化合物と酸素又は水との反応を利用した金属有機化学気相堆積法(MOCVD:Metal-Organic Chemical Vapor Deposition)法等が挙げられる。
 金属電極層18は、材料としては特に限定されないが、例えば、銀(Ag)、銅(Cu)、アルミニウム(Al)又はニッケル(Ni)等が挙げられる。
 金属電極層18の厚さは、1μm以上80μm以下であってもよい。この厚さに好適な金属電極層18の形成方法には、材料ペーストをインクジェットによる印刷若しくはスクリーン印刷する印刷法、又はめっき法が挙げられる。但し、これには限定されず、真空プロセスを採用する場合には、蒸着又はスパッタリング法を採用してもよい。
 また、p型半導体層13p及びn型半導体層13nにおける櫛歯部の幅と、該櫛歯部の上に形成される金属電極層18の幅とは、同程度であってもよい。但し、櫛歯部の幅と比べて、金属電極層18の幅が狭くてもよい。また、金属電極層18同士のリークが防止される構成であれば、櫛歯部の幅と比べて、金属電極層18の幅が広くてもよい。
 本実施形態においては、結晶基板11の裏側主面11SBの上に、真性半導体層12、導電型半導体層13、低反射層14及び電極層15を積層した状態で、各接合面のパッシベーション、導電型半導体層13及びその界面における欠陥準位の発生の抑制、並びに透明電極層17における透明導電性酸化物の結晶化を目的として、所定のアニール処理を施す。
 本実施形態に係るアニール処理には、例えば、上記の各層を形成した結晶基板11を150℃以上200℃以下に過熱したオーブンに投入して行うアニール処理が挙げられる。この場合、オーブン内の雰囲気は、大気でもよく、さらには、水素又は窒素を用いると、より効果的なアニール処理を行える。また、このアニール処理は、各層を形成した結晶基板11に、赤外線ヒータにより赤外線を照射させるRTA(Rapid Thermal Annealing)処理であってもよい。
 [太陽電池の製造方法]
 以下、本実施形態に係る太陽電池10の製造方法について図3~図9を参照しながら説明する。
 まず、図3に示すように、表側主面11SU及び裏側主面11SBにそれぞれテクスチャ構造TXを有する結晶基板11を準備する。
 次に、図4に示すように、結晶基板11の表側主面11SUの上に、例えば真性半導体層12Uを形成する。続いて、形成した真性半導体層12Uの上に低反射層14を形成する。低反射層14には、光閉じ込めの観点から、適した光吸収係数及び屈折率を有するシリコンナイトライド(SiN)又はシリコンオキサイド(SiO)が用いられる。
 次に、図5に示すように、結晶基板11の裏側主面11SBの上に、例えばi型非晶質シリコンを用いた真性半導体層12pを形成する。続いて、形成した真性半導体層12pの上に、p型半導体層13pを形成する。これにより、結晶基板11における一方の主面である裏側主面11SBの上に、p型半導体層13pが形成される。このように、本実施形態においては、p型半導体層(第1半導体層)13pを形成する工程は、p型半導体層13pを形成するよりも前に、結晶基板(半導体基板)11の一方の主面(裏側主面)11Sの上に真性半導体層(第1真性半導体層)12pを形成する工程を含む。
 その後、形成したp型半導体層13pの上に、リフトオフ層LFを形成する。具体的には、p型半導体層13pの上に、酸化ケイ素(SiOX)を主成分とするリフトオフ層LFを形成する。
 次に、図6に示すように、結晶基板11の裏側主面11SBにおいて、リフトオフ層LF及びp型半導体層13pをパターニングする。これにより、p型半導体層13pが選択的に除去されて、p型半導体層13pが形成されない非形成領域NAが生じる。一方、結晶基板11の裏側主面11SBでエッチングされなかった領域には、少なくともリフトオフ層LF及びp型半導体層13pが残る。
 このようなパターニング工程は、フォトリソグラフィ法、例えば所定のパターンを有するレジスト膜(不図示)をリフトオフ層LFの上に形成し、形成したレジスト膜によってマスクされた領域をエッチングすることにより実現され得る。図6に示すように、真性半導体層12p、p型半導体層13p及びリフトオフ層LFの各層をパターニングすることにより、結晶基板11の裏側主面11SBの一部の領域に非形成領域NA、すなわち裏側主面11SBの露出領域が生じる。なお、非形成領域NAについての詳細は後述する。
 図6に示す工程で使用するエッチング溶液として、例えばフッ化水素酸と酸化性溶液との混合溶液(例えばフッ硝酸)、又はオゾンをフッ化水素酸に溶解させた溶液(以下、オゾン/フッ酸液)が挙げられる。この場合のエッチング溶液は、第2エッチング溶液に相当する。また、リフトオフ層LFのエッチングに寄与するエッチング剤はフッ化水素である。なお、ここでのパターニングは、エッチング溶液を用いたウエットエッチングには限定されない。パターニングは、例えばドライエッチングであってもよく、エッチングペースト等を用いたパターン印刷であってもよい。
 次に、図7に示すように、リフトオフ層LF、p型半導体層13p及び真性半導体層12pを含め、結晶基板11の裏側主面11SBの上に、真性半導体層12n及びn型半導体層13nを順次形成する。このように、本実施形態においては、n型半導体層(第2半導体層)13nを形成する工程は、n型半導体層13nを形成するよりも前に、結晶基板(半導体基板)11のリフトオフ層LF及びp型半導体層を含む一方の主面(裏側主面)11Sの上に真性半導体層(第2真性半導体層)12nを形成する工程を含む。これにより、真性半導体層12nとn型半導体層13nとの積層膜が、非形成領域NA上と、リフトオフ層LFの表面及び側面(端面)と、リフトオフ層LF、p型半導体層13p及び真性半導体層12pの側面(端面)とを覆うように形成される。
 次に、図8に示すように、エッチング溶液を用いて、積層したリフトオフ層LFを除去することにより、リフトオフ層LFを覆うn型半導体層13n及び真性半導体層12nを結晶基板11から除去する。なお、このパターニングに使用するエッチング溶液としては、例えば、フッ化水素酸が用いられる。
 図8に示す工程では、p型半導体層13pの一部がリフトオフ層LFによって被覆されるように、リフトオフ層LFを除去する。すなわち、図10に示すように、リフトオフ層LFの一部がp型半導体層13上に残存して、p型半導体層13pにおける結晶基板11とは反対側の面の一部が、残存するリフトオフ層LFによって覆われるように、リフトオフ層LFが除去される。
 次に、図9に示すように、結晶基板11における裏側主面11SBの上、すなわち、p型半導体層13p及びn型半導体層13nのそれぞれに、例えば、マスクを用いたスパッタリング法により、分離溝25を生じさせるように透明電極層17(17p、17n)を形成する。なお、透明電極層17(17p、17n)の形成は、スパッタリング法に代えて、以下のようにしてもよい。例えば、マスクを用いずに透明導電性酸化物膜を裏側主面11SB上の全面に成膜し、その後、フォトリソグラフィ法により、p型半導体層13p上及びn型半導体層13n上にそれぞれ透明導電性酸化物膜を残すエッチングを行って形成してもよい。ここで、p型半導体層13pとn型半導体層13nとを互いに分離絶縁する分離溝25を形成することにより、リークが発生し難くなる。
 その後、透明電極層17の上に、例えば開口部を有するメッシュスクリーン(不図示)を用いて、線状の金属電極層18(18p、18n)を形成する。
 以上の工程により、裏面接合型の太陽電池10が形成される。
 (まとめ及び効果)
 上述した太陽電池10の製造方法から以下のことがいえる。
 まず、図8に示す工程では、エッチング液により、リフトオフ層LFを除去すると、このリフトオフ層LFの上に堆積していた真性半導体層12n及びn型半導体層13nも結晶基板11から同時に除去される(いわゆるリフトオフ)。この工程では、図6に示す工程での、例えばフォトリソグラフィ法を用いた場合と比べて、フォトリソグラフィ法に使用するレジスト塗布工程及び現像工程を要しない。このため、n型半導体層13nが簡便にパターン化される。
 また、p型半導体層13pの一部がリフトオフ層LFによって被覆されていることにより、p型半導体層13pの領域における透明電極層17の密着性が向上される。すなわち、p型半導体層13p上にリフトオフ層LFの一部(以下、被覆部19という)が残渣として残っていると、被覆部19の分だけ表面積が広がって、p型半導体層13pの領域において、透明電極層17の接触面積が広くなる。また、例えば、透明電極層17が酸化スズ-酸化インジウム(ITO)で構成されている場合、ケイ素よりも酸化ケイ素の方がITOに対する密着性が高いため、酸化ケイ素を主成分とする被覆部19があれば、透明電極層17がp型半導体層13pから剥がれにくくなる。これらの結果、p型半導体層13pの領域における透明電極層17の密着性が向上する。
 一方で、被覆部19が多すぎると、透明電極層17とp型半導体層13pとの接触面積が減るため、透明電極層17とp型半導体層13pとの間の直列抵抗が高くなったり、太陽電池10のI-V特性が悪化したりするおそれがある。このため、p型半導体層13pにおける被覆部19で覆われた部分の面積をS1とし、p型半導体層13pにおける結晶基板11とは反対側の面全体の面積をS2としたときに、以下の式:
 (被覆率(%))=100 × S1/S2
で定義される被覆率が0.2%以上16%以下であることが好ましい。被覆率が0.2%以上16%以下であれば、透明電極層17の密着性を向上させつつ、透明電極層17とp型半導体層13pとの接触面積を好適に確保することができる。
 また、前記被覆率が0.2%以上16%以下であったとしても、局所的にサイズの大きい被覆部19があると、p型半導体層13p中の励起子(p型半導体の場合は正孔)の有効質量と自由行程との関係から、p型半導体層13pから該励起子を適切に回収できなくなるおそれがある。このため、結晶基板11の面直方向における裏型主面SB11側から見て、被覆部19の最大の長さが2.0μm以下であることが好ましい。これにより、透明電極層17の密着性を向上させつつ、p型半導体層13pから励起子を適切に回収することができる。
 前記被覆率は、例えば、リフトオフ層LFをp型半導体層13p上に堆積する工程を工夫することで調整することができる。具体的には、図12に示すように、リフトオフ層LFをp型半導体層13p上に堆積する際に、リフトオフ層LFを構成する元素からなる粒子(ここでは、シリコン粒子又は酸化ケイ素の粒子。以下、結晶粒20という)を混入させるようにする。一般に、リフトオフ層LFは、リフトオフの際にエッチングしやすいようにアモルファスで構成される。密度の影響等から、結晶粒20はアモルファスに比べてエッチング速度が遅いため、リフトオフ層LFにおけるアモルファスの部分が溶解されても、結晶粒20は溶解されずにp型半導体層13p上に残ることができる。このため、混入させる結晶粒の量を調整すれば、前記被覆率を調整することができる。
 また、本実施形態のようにリフトオフ層LFが酸化ケイ素を主成分とする場合、リフトオフ層LFの屈折率を調整することにより、前記被覆率を調整することもできる。すなわち、屈折率は密度と比例関係にあり、屈折率が高い場合には基本的に密度も高くなる。密度が高くなると、エッチングレートが小さくなるため、被覆部19が発生しやすくなる。このため、リフトオフ層LFの屈折率を高くすれば、前記被覆率を大きくすることができる。前記被覆率を0.2%以上16%以下にする観点から、屈折率は、632nmの波長の光における値が1.45以上1.90以下であることが好ましい。
 なお、酸化ケイ素を主成分とするリフトオフ層LFにおいて、屈折率の調整は、例えば、CVD法を用いた成膜において圧力を調整することによって可能となる。詳しくは、圧力を高くすることにより、密な構造を得やすくなり、屈折率の高いリフトオフ層LFを得やすくなる。
 リフトオフ層LFに結晶粒を混入させる方法と、リフトオフ層LFの屈折率を調整する方法とは、それぞれ単独で用いてもよいし、両方用いてもよい。
 リフトオフ層LFに結晶粒20を混入させる方法、及び、リフトオフ層LFの屈折率を調整する方法のいずれの方法においても、リフトオフ層LFを複数の層で構成することが好ましい。例えば、図12に示すように、リフトオフ層LFを、p型半導体層13p上に積層される第1リフトオフ層LF1と、該第1リフトオフ層LF1上に積層される第2リフトオフ層LF2との2層で構成する場合、2層のうち第1リフトオフ層LF1のみ、結晶粒20を混入させたり屈折率を高くしたりする。これにより、リフトオフ層LFを除去するのにかかる時間をできる限り短くしつつ、前記被覆率を調整することができる。なお、リフトオフ層LFを複数の層で構成する場合、リフトオフ層LFを3層以上で構成してもよいが、製造コストや生産性を考慮すると、2層で構成することが好ましい。
 リフトオフ層LFが単数である場合も複数である場合も、リフトオフ層LFの膜厚は、全体として20nm以上600nm以下であることが好ましく、特には50nm以上450nm以下であると好ましい。リフトオフ層LFが複数である場合には、この範囲内で、p型半導体層13pに最も近い層の厚膜が最も薄いことが好ましい。
 また、結晶基板11がテクスチャ構造TXを有しており、この結晶基板11の裏側主面11SBの上に形成されるp型半導体層13p及びn型半導体層13nの各面には、テクスチャ構造TXを反映したテクスチャ構造(第2テクスチャ構造)が含まれると好ましい。
 表面にテクスチャ構造TXを有する導電型半導体層13であると、テクスチャ構造TXの凹凸に起因して、エッチング溶液が半導体層13に染み込みやすくなる。このため、導電型半導体層13が除去されやすく、すなわちパターニングされやすくなる。
 なお、本実施形態においては、結晶基板11の両主面11S、すなわち、表側主面11SUと裏側主面11SBとにテクスチャ構造TX(第1テクスチャ構造)を設けたが、いずれか一方の主面に設けてもよい。すなわち、テクスチャ構造TXを表側主面11SUに設けた場合は、受光した光の取り込み効果及び閉じ込め効果が高くなる。一方、テクスチャ構造TXを裏側主面11SBに設けた場合は、光の取り込み効果が向上すると共に、導電型半導体層13のパターニングが容易となる。従って、結晶基板11のテクスチャ構造TXは、少なくとも一方の主面11Sに設ければよい。また、本実施形態においては、両主面11Sのテクスチャ構造TXを同一パターンとしたが、これに限られず、表側主面11SUと裏側主面11SBとでテクスチャ構造TXの凹凸の大きさを変えてもよい。
 なお、図6に示す工程では、結晶基板11の裏側主面11SBが非形成領域NAにおいて露出しているが、これに限定されない。すなわち、裏側主面11SBの非形成領域NAの上に、真性半導体層12pが残っていても構わない。p型半導体層13pが選択的に除去されることであり、p型半導体層13pが除去された領域が非形成領域NAになっていればよい。
 このような場合には、残存したリフトオフ層LF及び非形成領域NAの上に、n型半導体層13nを堆積する前に、真性半導体層12nを形成する工程を減らすことができる。
 また、例えば、リフトオフ層LFを前記第1リフトオフ層LF1と前記第2リフトオフ層LF2との2層で構成する場合、図6に示す工程では、第2リフトオフ層LF2に開口部を形成し、エッチング液を、形成した開口部を通して、第1リフトオフ層LF1に付着させ、エッチング溶液が付着した層を除去してもよい。さらには、図6に示す工程では、上述のようにしてリフトオフ層LFを除去すると共に、p型半導体層13pにもエッチング溶液を付着させ、エッチング溶液が付着したp型半導体層13pを除去してもよい。なお、この開口部の形成には、例えば、クラックを発生させたりすることが挙げられる。
 このように、第2リフトオフ層LF2に開口部を形成し、その開口部からエッチング溶液を通すことにより、エッチング溶液が第2リフトオフ層LF2、さらには第1リフトオフ層LF1に確実に付着する。このため、リフトオフ層LFの全体が効率良く除去される。その上、リフトオフ層LFが除去されることにより、このリフトオフの層LFで覆われていたp型半導体層13pにもエッチング溶液が確実に付着することにより、p型半導体層13pも除去される。これにより、リフトオフ層LF及びp型半導体層13pの溶け残りが抑えられる。
 ここに開示された技術は、前記実施形態に限られるものではなく、請求の範囲の主旨を逸脱しない範囲で代用が可能である。
 例えば、前述の実施形態では、図5で示す工程で使用する半導体層は、p型半導体層13pであったが、これに限らず、n型半導体層13nであっても構わない。また、結晶基板11の導電型も特に限定されず、p型であってもn型であってもよい。
 上述の実施形態は単なる例示に過ぎず、本開示の技術の範囲を限定的に解釈してはならない。本開示の技術の範囲は請求の範囲によって定義され、請求の範囲の均等範囲に属する変形や変更は、全て本開示の技術の範囲内のものである。
 以下、本開示に係る技術を実施例により具体的に説明する。但し、本開示に係る技術はこれらの実施例に限定されない。実施例及び比較例は、以下のようにして作製した([表1]を参照)。なお、以下の説明では、実施例1~3及び比較例1~3において、条件が同じものについては、特に区別していない。
 [結晶基板]
 まず、結晶基板として、厚さが200μmの単結晶シリコン基板を採用した。単結晶シリコン基板の両主面に異方性エッチングを行った。これにより、結晶基板にピラミッド型のテクスチャ構造が形成された。
 [真性半導体層]
 結晶基板をCVD装置に導入し、導入した結晶基板の両主面に、シリコン製の真性半導体層(膜厚8nm)を形成した。製膜条件は、基板温度を150℃、圧力を120Pa、SiH/H流量比の値を3/10、及びパワー密度を0.011W/cmとした。
 [p型半導体層(第1導電型半導体層)]
 両主面に真性半導体層を形成した結晶基板をCVD装置に導入し、裏側主面の真性半導体層の上に、p型水素化非晶質シリコン系薄膜(膜厚10nm)を形成した。製膜条件は、基板温度を150℃、圧力を60Pa、SiH/B流量比の値を1/3、及びパワー密度を0.01W/cmとした。また、Bガスの流量は、BがHにより5000ppmまで希釈された希釈ガスの流量である。
 [リフトオフ層]
 プラズマCVD装置を用いて、p型水素化非晶質シリコン系薄膜の上に、主成分を酸化ケイ素(SiO)とするリフトオフ層を200nmの膜厚となるように形成した。
 実施例1では、リフトオフ層の製膜条件は、基板温度を150℃、圧力を50Pa、SiH/CO/H流量比の値を1/10/750、及びパワー密度を0.15W/cmとした。実施例2では、SiH/CO/H流量比の値を1/10/650とし、これ以外の条件は実施例1と同じ製膜条件にした。実施例3では、SiH/CO/H流量比の値を1/10/550とし、これ以外の条件は実施例1と同じ製膜条件にした。
 比較例1では、SiH/CO/H流量比の値を1/4/750としたこと以外は、実施例1~3と同様の製膜条件とした。
 比較例2では、SiH/CO/H流量比の値を1/30/1000としたこと以外は、実施例1~3と同様の製膜条件とした。
 比較例3では、SiH/CO/H流量比の値を1/10/350としたこと以外は、実施例1~3と同様の製膜条件とした。
 [リフトオフ層及び第1導電型半導体層のパターニング]
 まず、リフトオフ層が形成された結晶基板の裏側主面に感光性レジスト膜を製膜した。これをフォトリソグラフィ法により露光・現像を行い、リフトオフ層、p型半導体層及び真性半導体層を除去する領域を露出させた。複数の層が形成された結晶基板を、エッチング剤として1重量%のフッ化水素を含有する加水フッ硝酸に浸漬し、リフトオフ層を除去した。純粋によるリンスの後に、5.5重量%のフッ化水素酸に20ppmのオゾンを混合したオゾン/フッ酸液に浸漬し、リフトオフ層の除去により露出したp型半導体層とその直下の真性半導体層とを除去した。以下、この工程をパターニング工程という。
 [n型半導体層(第2導電型半導体層)]
 第1半導体層パターニング工程の後に、露出した裏側主面を濃度が2重量%のフッ化水素酸によって洗浄した結晶基板をCVD装置に導入し、裏側主面に真性半導体層(膜厚8nm)を1回目の真性半導体層と同様の成膜条件で形成した。続いて、形成した真性半導体層の上に、n型水素化非晶質シリコン系薄膜(膜厚10nm)を形成した。製膜条件は、基板温度が150℃、圧力が60Pa、SiH/PH/H流量比の値が1/2、及びパワー密度が0.01W/cmとした。また、PHガスの流量は、PHがHにより5000ppmまで希釈された希釈ガスの流量である。
 [リフトオフ層及び第2導電型半導体層の除去]
 n型半導体層が形成された結晶基板を、5重量%のフッ化水素酸に浸漬して、リフトオフ層、そのリフトオフ層を覆うn型半導体層、及びリフトオフ層とn型半導体層との間にある真性半導体層をまとめて除去した。以下、この工程をリフトオフ工程という。
 [電極層、低反射層]
 マグネトロンスパッタリング装置を用いて、透明電極層の基となる酸化物膜(膜厚100nm)を、結晶基板の導電型半導体層の上に形成した。また、低反射層として、結晶基板の受光面側に窒化シリコン層を形成した。透明導電性酸化物としては、酸化スズを濃度10重量%で含有した酸化インジウム(ITO)をターゲットとして使用した。装置のチャンバ内にアルゴンと酸素との混合ガスを導入し、チャンバ内の圧力を0.6Paに設定した。アルゴンと酸素との混合比率は、抵抗率が最も低くなる(いわゆるボトム)条件とした。また、直流電源を用いて、0.4W/cmの電力密度で成膜を行った。
 次に、フォトリソグラフィ法により、導電型半導体層(p型半導体層及びn型半導体層)上の透明導電性酸化物膜のみを残すようにエッチングして、透明電極層を形成した。このエッチングにより形成された透明電極層により、p型半導体層上の透明導電性酸化物膜と、n型半導体層上の透明導電性酸化物膜との間での導通が防止された。
 さらに、透明電極層の上に、銀ペースト(藤倉化成製:ドータイトFA-333)を希釈せずにスクリーン印刷し、温度が150℃のオーブンで60分間の加熱処理を行った。これにより、金属電極層が形成された。 
 次に、バックコンタクト型の太陽電池に対する評価方法について説明する。評価結果は、[表1]、図13及び図14を参照とする。
 [膜厚及びエッチング性の評価]
 リフトオフ層の膜厚又はエッチング状態は、SEM(フィールドエミッション型走査型電子顕微鏡S4800:日立ハイテクノロジーズ社製)を用いて評価した。第1半導体層パターニング工程の後に、設計上のパターニング除去領域に従ってエッチングされている場合には「○」とし、リフトオフ層が過剰にエッチングされ、太陽電池特性に悪影響が出た場合には「×」とした。
 [屈折率の評価]
 リフトオフ層の屈折率は、ガラス基板上に、実施例1~3及び比較例1~3の製膜条件と同じ条件で製膜された薄膜の屈折率を、分光エリプソメトリー(商品名M2000、ジェー・エー・ウーラム社製)にて測定することにより求めた。フィッティング結果から、632nmの波長の光における屈折率を抽出した。
 [被覆率の評価]
 リフトオフ工程後の結晶基板の裏面を、レーザーマイクロスコープ(装置名OPTELICS、レーザーテック社製)を用いて、100倍の倍率で第1導電型半導体層の表面を観察した。画像処理により、被覆部と第1導電型半導体層を色分けして、第1導電型半導体層における被覆部で覆われた部分の面積を計算した。そして、第1導電型半導体層における被覆部で覆われた部分の面積をS1とし、第1導電型半導体層における結晶基板とは反対側の面全体の面積をS2として、以下の式:
 (被覆率(%))=100 × S1/S2
によって、被覆率を算出した。
 [密着性の評価]
 電極を形成した太陽電池セルに対して、JIS Z1522に規定された粘着テープを
貼り付け、垂直に引っ張って評価した。引っ張ったときに電極層の剥離が起きた場合には「×」とし、電極層の剥離が起こらなければ「○」とした。
 [I-V特性の評価]
 AM(エアマス:air mass)1.5の基準太陽光を100mW/cmの光量で照射したときのI-Vカーブを観測した。-1.0V~+1.5Vで走査して、I-VカーブがS字状になっていた場合(-1.0V~+1.5Vの範囲に極値点が存在する場合)には「×」とし、I-VカーブにS字状の変化が見られなかった場合には「〇」とした。
 [変換効率の評価]
 ソーラシミュレータにより、AM(エアマス:air mass)1.5の基準太陽光を100mW/cmの光量で照射して、太陽電池の変換効率(Eff(%))を測定した。実施例1の変換効率(太陽電池特性)を1.00とし、その相対値を[表1]に記載した。
 [信頼性の評価]
 電極を形成した太陽電池セルをガラスとバックシートとでラミレートしたモジュールを、温度85℃、湿度85%の環境試験に投入して、3000時間後の変換効率(Eff(%))を測定した。変換効率の測定は、ソーラシミュレータにより、AM(エアマス:air mass)1.5の基準太陽光を100mW/cmの光量で照射して測定した。初期の変換効率を1.00として、その相対値を[表1]に記載した。
Figure JPOXMLDOC01-appb-T000001
 実施例1~3は、電極の密着性、I-V特性、太陽電池特性及び信頼性の全てにおいて良好であった。
 実施例1~3及び比較例1~3の結果をみると、被覆部が形成されているもの(比較例2以外のもの)については、電極層の密着性が良好であることが確認された。一方で、被覆率が高すぎる場合、I-V特性が悪化して、太陽電池特定が悪化することがわかった。これは、第1導電型半導体層における被覆部で覆われた部分からは励起子を取り出すことができないことが原因であると考えられる。すなわち、電極層の密着性を向上させつつ、太陽電池特性の悪化を抑制するには、被覆率を適切な範囲にする必要があることが確認された。図13を参照すると、実施例1の太陽電池特性を1.00としたときに、太陽電池特性を0.80以上にするためには、被覆率を0.2%以上16%以下にすればよいことが分かる。このことから、本開示の技術では、0.2%以上16%以下の範囲が好ましい被覆率の範囲であるとしている。
 また、実施例1~3及び比較例1~3の結果をみると、リフトオフ層の屈折率が高いほど、被覆率が高くなることが確認された。これは、屈折率が高いものほど、密度が高くなって、エッチングの際に溶解しにくくなるためであると考えられる。さらに、屈折率が低すぎると、パターニング工程においてリフトオフ層が過剰にエッチングされてしまうことが分かった。これは、密度が低くなってリフトオフ層の構造が疎になり、エッチングの際の溶解速度が大きくなったためと考えられる。図14を参照すると、実施例1の太陽電池特性を1.00としたときに、太陽電池特性を0.80以上にするためには、632nmの波長の光における屈折率を1.45以上1.90以下にすればよいことが分かる。このことから、本開示の技術では、1.45以上1.90以下の範囲が好ましい屈折率の範囲であるとしている。
 総括すると、第1導電型半導体層の一部をリフトオフ層によって被覆することで、第1導電型半導体層と電極層との電気的なコンタクト(密着性)が良好になるという結果が得られた。特に、実施例は比較例と比べ、被覆率を適切な範囲にすることにより、太陽電池特性が良好になるという結果を得た。これは、リフトオフ層を構成する物質(ここでは酸化ケイ素)を、第1導電型半導体層上に適度に残すことで、第1導電型半導体層と電極層との間において、密着性を向上させるだけで無く、直列抵抗の上昇をも抑制されるためと考えられる。
 また、リフトオフ層の屈折率を適切な値にすることで、被覆率を前記適切な範囲にすることが可能であるという結果を得た。特に、リフトオフ層の屈折率が低すぎると、パターニング工程において、リフトオフ層が過剰に除去されてしまうため、十分な太陽電池特性を得ることができないという結果が得られた。密着性が劣るものについては、特に信頼性に課題があることがわかった。
10   太陽電池
11   結晶基板(半導体基板)
12   真性半導体層
13   導電型半導体層
13p  p型半導体層[第1導電型の第1半導体層/第2導電型の第2半導体層]
13n  n型半導体層[第2導電型の第2半導体層/第1導電型の第1半導体層]
15   電極層
17   透明電極層
18   金属電極層
19   被覆部
20   結晶粒(リフトオフ層を構成する物質の結晶からなる粒)
LF   リフトオフ層

Claims (7)

  1.  半導体基板における互いに対向する2つの主面の一方の主面上に、第1導電型の第1半導体層を形成する工程と、
     前記第1半導体層上にリフトオフ層を積層する工程と、
     前記第1半導体層及び前記リフトオフ層を選択的に除去する工程と、
     前記第1半導体層及び前記リフトオフ層を含む前記一方の主面上に、第2導電型の第2半導体層を形成する工程と、
     前記リフトオフ層を除去することにより、前記リフトオフ層を覆う前記第2半導体層を除去する工程と、
     前記第1半導体層及び前記第2半導体層のそれぞれの上に、酸化物からなる透明電極層を形成する工程と、を含み、
     前記リフトオフ層を除去する工程では、前記リフトオフ層を覆う前記第2半導体層が除去された状態において、前記第1半導体層の一部が前記リフトオフ層によって被覆されるように、前記リフトオフ層を除去する太陽電池の製造方法。
  2.  請求項1に記載の太陽電池の製造方法において、
     前記第1半導体層を被覆する前記リフトオフ層を被覆部とし、前記第1半導体層における前記被覆部で覆われた部分の面積をS1とし、前記第1半導体層における前記半導体基板とは反対側の面の面積をS2としたときに、以下の式:
     (被覆率(%))=100 × S1/S2
    で定義される被覆率が0.2%以上16%以下である太陽電池の製造方法。
  3.  請求項2に記載の太陽電池の製造方法において、
     前記半導体基板の面直方向における前記一方の主面側から見て、前記被覆部の最大の長さが2.0μm以下である太陽電池の製造方法。
  4.  請求項1~3のいずれか1つに記載の太陽電池の製造方法において、
     前記リフトオフ層は、酸化ケイ素を主成分とするとともに、波長632nmの光における屈折率が1.45以上1.90以下となるように構成される太陽電池の製造方法。
  5.  請求項4に記載の太陽電池の製造方法において、
     前記リフトオフ層は、複数の層で構成されており、
     前記リフトオフ層を構成する複数の層のうち前記第1半導体層に最も近い層は、酸化ケイ素を主成分とするとともに、波長632nmの光における屈折率が1.45以上1.90以下となるように構成される太陽電池の製造方法。
  6.  請求項1~5のいずれか1つに記載の太陽電池の製造方法において、
     前記第1半導体層上に前記リフトオフ層を積層する工程では、前記リフトオフ層が単数である場合には当該リフトオフ層を積層するとき、前記リフトオフ層が複数の場合には前記第1半導体層に最も近い層を積層するときに、当該リフトオフ層に、当該リフトオフ層を構成する元素からなる粒子を混入させる太陽電池の製造方法。
  7.  請求項1~6のいずれか1つに記載の太陽電池の製造方法において、
     前記半導体基板は、前記2つの主面に第1テクスチャ構造をそれぞれ有しており、
     前記半導体基板の前記一方の主面に形成された前記第1半導体層及び前記第2半導体層は、前記第1テクスチャ構造を反映した第2テクスチャ構造を含む太陽電池の製造方法。
PCT/JP2019/006135 2018-02-23 2019-02-19 太陽電池の製造方法 WO2019163786A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201980013505.2A CN111727508B (zh) 2018-02-23 2019-02-19 太阳能电池的制造方法
JP2020500971A JP7183245B2 (ja) 2018-02-23 2019-02-19 太陽電池の製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-030800 2018-02-23
JP2018030800 2018-02-23

Publications (1)

Publication Number Publication Date
WO2019163786A1 true WO2019163786A1 (ja) 2019-08-29

Family

ID=67686824

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/006135 WO2019163786A1 (ja) 2018-02-23 2019-02-19 太陽電池の製造方法

Country Status (3)

Country Link
JP (1) JP7183245B2 (ja)
CN (1) CN111727508B (ja)
WO (1) WO2019163786A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7458834B2 (ja) 2020-03-12 2024-04-01 株式会社カネカ 太陽電池および太陽電池の製造方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009034926A1 (ja) * 2007-09-11 2009-03-19 National University Corporation Tohoku University 電子装置の製造方法
WO2012132655A1 (ja) * 2011-03-25 2012-10-04 三洋電機株式会社 裏面接合型の光電変換素子及び裏面接合型の光電変換素子の製造方法
JP2012526399A (ja) * 2009-05-08 2012-10-25 1366 テクノロジーズ インク. 堆積膜の選択的除去のための多孔質リフトオフ層
JP2013120863A (ja) * 2011-12-08 2013-06-17 Sharp Corp 太陽電池の製造方法
WO2016068711A2 (en) * 2014-10-31 2016-05-06 Technische Universiteit Delft Back side contacted wafer-based solar cells with in-situ doped crystallized silicon oxide regions
WO2016143698A1 (ja) * 2015-03-11 2016-09-15 シャープ株式会社 光電変換素子

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6032911B2 (ja) * 2012-03-23 2016-11-30 シャープ株式会社 光電変換素子およびその製造方法
JP2014220462A (ja) * 2013-05-10 2014-11-20 三菱電機株式会社 太陽電池の製造方法
JP2016096201A (ja) * 2014-11-13 2016-05-26 シャープ株式会社 太陽電池および太陽電池の製造方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009034926A1 (ja) * 2007-09-11 2009-03-19 National University Corporation Tohoku University 電子装置の製造方法
JP2012526399A (ja) * 2009-05-08 2012-10-25 1366 テクノロジーズ インク. 堆積膜の選択的除去のための多孔質リフトオフ層
WO2012132655A1 (ja) * 2011-03-25 2012-10-04 三洋電機株式会社 裏面接合型の光電変換素子及び裏面接合型の光電変換素子の製造方法
JP2013120863A (ja) * 2011-12-08 2013-06-17 Sharp Corp 太陽電池の製造方法
WO2016068711A2 (en) * 2014-10-31 2016-05-06 Technische Universiteit Delft Back side contacted wafer-based solar cells with in-situ doped crystallized silicon oxide regions
WO2016143698A1 (ja) * 2015-03-11 2016-09-15 シャープ株式会社 光電変換素子

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7458834B2 (ja) 2020-03-12 2024-04-01 株式会社カネカ 太陽電池および太陽電池の製造方法

Also Published As

Publication number Publication date
JPWO2019163786A1 (ja) 2021-02-04
JP7183245B2 (ja) 2022-12-05
CN111727508A (zh) 2020-09-29
CN111727508B (zh) 2023-09-29

Similar Documents

Publication Publication Date Title
JP5774204B2 (ja) 光起電力素子およびその製造方法、太陽電池モジュール
JP5863391B2 (ja) 結晶シリコン系太陽電池の製造方法
WO2013161127A1 (ja) 太陽電池およびその製造方法、ならびに太陽電池モジュール
JP5174635B2 (ja) 太陽電池素子
JP7361023B2 (ja) 太陽電池の製造方法及びそれに用いるホルダ
JP7228561B2 (ja) 太陽電池の製造方法
JP7281444B2 (ja) 太陽電池の製造方法
WO2019181834A1 (ja) 太陽電池の製造方法、および、太陽電池
TWI783063B (zh) 太陽電池之製造方法
TWI761662B (zh) 太陽能電池之製造方法
WO2019163786A1 (ja) 太陽電池の製造方法
JP7237920B2 (ja) 太陽電池の製造方法
JP2011077454A (ja) 結晶シリコン系太陽電池とその製造方法
JP7353865B2 (ja) 太陽電池の製造方法
JP7372946B2 (ja) 裏面電極型太陽電池の製造方法
US10930810B2 (en) Solar cell and method of manufacturing solar cell
JPWO2015145886A1 (ja) 電極パターンの形成方法及び太陽電池の製造方法
JP7361045B2 (ja) 太陽電池の製造方法
WO2020022044A1 (ja) 太陽電池の製造方法
JP2020096126A (ja) 裏面電極型太陽電池の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19758089

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020500971

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19758089

Country of ref document: EP

Kind code of ref document: A1