WO2016143698A1 - 光電変換素子 - Google Patents

光電変換素子 Download PDF

Info

Publication number
WO2016143698A1
WO2016143698A1 PCT/JP2016/056789 JP2016056789W WO2016143698A1 WO 2016143698 A1 WO2016143698 A1 WO 2016143698A1 JP 2016056789 W JP2016056789 W JP 2016056789W WO 2016143698 A1 WO2016143698 A1 WO 2016143698A1
Authority
WO
WIPO (PCT)
Prior art keywords
amorphous semiconductor
island
semiconductor substrate
semiconductor film
shaped
Prior art date
Application number
PCT/JP2016/056789
Other languages
English (en)
French (fr)
Inventor
輝明 肥後
親扶 岡本
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Priority to JP2017505302A priority Critical patent/JP6770947B2/ja
Publication of WO2016143698A1 publication Critical patent/WO2016143698A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier
    • H01L31/072Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier the potential barriers being only of the PN heterojunction type
    • H01L31/0745Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier the potential barriers being only of the PN heterojunction type comprising a AIVBIV heterojunction, e.g. Si/Ge, SiGe/Si or Si/SiC solar cells
    • H01L31/0747Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier the potential barriers being only of the PN heterojunction type comprising a AIVBIV heterojunction, e.g. Si/Ge, SiGe/Si or Si/SiC solar cells comprising a heterojunction of crystalline and amorphous materials, e.g. heterojunction with intrinsic thin layer or HIT® solar cells; solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Definitions

  • the present invention relates to a photoelectric conversion element.
  • Patent Document 1 discloses a photoelectric conversion element in which linear irregularities are formed on the back surface of a semiconductor substrate and a semiconductor layer is formed on the irregularities.
  • Patent Document 1 since the shape of the unevenness formed on the back surface of the substrate is linear, the degree of freedom in designing the photoelectric conversion element is limited.
  • the present invention has been made in view of the above-described problems, and an object thereof is to provide a photoelectric conversion element having an improved degree of design freedom.
  • the photoelectric conversion element of the present invention includes a semiconductor substrate having a first surface and a second surface opposite to the first surface, a first amorphous semiconductor film, and a plurality of island-shaped second layers.
  • An amorphous semiconductor film, a first electrode, and a plurality of second electrodes are provided.
  • the semiconductor substrate has a plurality of island-shaped recesses on the second surface.
  • the semiconductor substrate is a single crystal semiconductor substrate.
  • the first amorphous semiconductor film is provided on a second surface between a plurality of adjacent island-shaped recesses.
  • the first amorphous semiconductor film has the first conductivity type.
  • the first amorphous semiconductor film has a plurality of openings corresponding to the plurality of island-shaped recesses.
  • the plurality of island-shaped second amorphous semiconductor films are provided on each of the plurality of island-shaped recesses.
  • the second amorphous semiconductor film has a second conductivity type different from the first conductivity type.
  • the first electrode is provided on the first amorphous semiconductor film.
  • the plurality of second electrodes are provided on each of the plurality of island-shaped second amorphous semiconductor films.
  • the photoelectric conversion element of the present invention can provide a photoelectric conversion element with improved design flexibility.
  • (A) is the schematic diagram of the photoelectric conversion element which concerns on Embodiment 1 and 2 planarly viewed from the 2nd surface side of the semiconductor substrate.
  • (B) is the schematic diagram of the photoelectric conversion element which concerns on Embodiment 1 and 2 except the 1st electrode and 2nd electrode planarly viewed from the 2nd surface side of the semiconductor substrate.
  • 2 is a schematic cross-sectional view of the photoelectric conversion element according to Embodiment 1 taken along a cross-sectional line II-II shown in FIG. 3 is a schematic cross-sectional view of the photoelectric conversion element according to Embodiment 1 taken along a cross-sectional line III-III shown in FIG.
  • FIG. 2 is a schematic cross-sectional view taken along line II-II in FIG.
  • FIG. 5 is a schematic cross-sectional view showing a step subsequent to the step shown in FIG. 4 in the method for manufacturing the photoelectric conversion element according to Embodiment 1.
  • FIG. 6 is a schematic cross-sectional view showing a step subsequent to the step shown in FIG. 5 in the method for manufacturing the photoelectric conversion element according to Embodiment 1.
  • FIG. 7 is a schematic cross-sectional view showing a step subsequent to the step shown in FIG. 6 in the method for manufacturing the photoelectric conversion element according to Embodiment 1.
  • FIG. 8 is a schematic cross-sectional view showing a step subsequent to the step shown in FIG. 7 in the method for manufacturing the photoelectric conversion element according to Embodiment 1.
  • FIG. 9 is a schematic cross-sectional view showing a step subsequent to the step shown in FIG. 8 in the method for manufacturing the photoelectric conversion element according to Embodiment 1.
  • FIG. 10 is a schematic cross-sectional view showing a step subsequent to the step shown in FIG. 9 in the method for manufacturing the photoelectric conversion element according to Embodiment 1.
  • FIG. 11 is a schematic cross-sectional view showing a step subsequent to the step shown in FIG. 10 in the method for manufacturing the photoelectric conversion element according to Embodiment 1.
  • 12 is a schematic cross-sectional view showing a step subsequent to the step shown in FIG. 11 in the method for manufacturing the photoelectric conversion element according to Embodiment 1.
  • FIG. FIG. 13 is a schematic cross-sectional view showing a step subsequent to the step shown in FIG.
  • FIG. 3 is a schematic cross-sectional view of the photoelectric conversion element according to Embodiment 2 taken along a cross-sectional line II-II shown in FIG.
  • A is the schematic diagram of the photoelectric conversion element which concerns on Embodiment 3 planarly viewed from the 2nd surface side of the semiconductor substrate.
  • B is the schematic diagram of the photoelectric conversion element which concerns on Embodiment 3 except the 1st electrode and 2nd electrode planarly viewed from the 2nd surface side of the semiconductor substrate.
  • A) is the schematic diagram of the photoelectric conversion element which concerns on Embodiment 4 planarly viewed from the 2nd surface side of the semiconductor substrate.
  • (B) is the schematic diagram of the photoelectric conversion element which concerns on Embodiment 4 except the 1st electrode and 2nd electrode planarly viewed from the 2nd surface side of the semiconductor substrate.
  • (A) is the schematic diagram of the photoelectric conversion element which concerns on Embodiment 5 planarly viewed from the 2nd surface side of the semiconductor substrate.
  • (B) is the schematic diagram of the photoelectric conversion element which concerns on Embodiment 5 except the 1st electrode and 2nd electrode planarly viewed from the 2nd surface side of the semiconductor substrate.
  • (A) is the schematic diagram of the photoelectric conversion element which concerns on Embodiment 6 planarly viewed from the 2nd surface side of the semiconductor substrate.
  • FIG. 19 is a schematic cross-sectional view of the photoelectric conversion element according to Embodiment 6 taken along a cross-sectional line XIX-XIX shown in FIG.
  • FIG. 19 is a schematic cross-sectional view of the photoelectric conversion element according to Embodiment 6 taken along a cross-sectional line XX-XX shown in FIG.
  • Embodiment 1 A photoelectric conversion element 1 according to Embodiment 1 will be described with reference to FIGS. 1 to 3.
  • the photoelectric conversion element 1 includes a semiconductor substrate 2, a first i-type amorphous semiconductor film 5, a first amorphous semiconductor film 6, and a second i-type amorphous semiconductor film. 10, a second amorphous semiconductor film 11, a first electrode 15, a second electrode 16, a third amorphous semiconductor film 3, and an antireflection film 4.
  • the semiconductor substrate 2 can be an n-type or p-type single crystal semiconductor substrate.
  • an n-type single crystal silicon substrate is used as the semiconductor substrate 2.
  • the semiconductor substrate 2 has a first surface 2a and a second surface 2b opposite to the first surface 2a.
  • the semiconductor substrate 2 has irregularities on the first surface 2a. Light enters the photoelectric conversion element 1 from the first surface 2a side.
  • the unevenness on the first surface 2 a of the semiconductor substrate 2 that is the light incident surface can suppress the reflection of incident light on the first surface 2 a of the semiconductor substrate 2. Thus, more light can be incident on the photoelectric conversion element 1.
  • the efficiency of converting light energy into electrical energy in the photoelectric conversion element 1 can be improved.
  • the semiconductor substrate 2 has a plurality of island-shaped recesses 8 on the second surface 2 b of the semiconductor substrate 2.
  • the plurality of island-shaped recesses 8 are arranged in a square lattice pattern on the second surface 2 b of the semiconductor substrate 2.
  • the arrangement pattern of the plurality of island-shaped recesses 8 is not limited to a square lattice, and may be a triangular lattice or an aperiodic pattern.
  • each of the plurality of island-shaped recesses 8 when viewed from the second surface 2b side of the semiconductor substrate 2, each of the plurality of island-shaped recesses 8 has a circular shape.
  • each of the plurality of island-shaped recesses 8 may have another shape.
  • the longest distance in each of the plurality of island-shaped recesses 8 when viewed from the second surface 2b side of the semiconductor substrate 2 may be 1 ⁇ 2 or less of the length of one side of the semiconductor substrate 2. It may be 3 or less. In the present embodiment, the longest distance is the diameter of each of the plurality of island-shaped recesses 8. In the present embodiment, the longest distance in each of the plurality of island-shaped recesses 8 when viewed from the second surface 2 b side of the semiconductor substrate 2 is 1 ⁇ 4 or less of the length of one side of the semiconductor substrate 2. .
  • the longest distance in each of the plurality of island-shaped recesses 8 when viewed from the second surface 2b side of the semiconductor substrate 2 is a semiconductor substrate of minority carriers generated in the semiconductor substrate 2 by light incident on the semiconductor substrate 2 2 or less may be used.
  • Minority carriers mean holes when the semiconductor substrate 2 is an n-type single crystal semiconductor substrate, and electrons when the semiconductor substrate 2 is a p-type single crystal semiconductor substrate.
  • the carrier diffusion length means a length at which the carrier diffuses and the carrier density becomes 1 / e.
  • e is the base of the natural logarithm.
  • the ratio of the area of the plurality of island-shaped recesses 8 to the area of the semiconductor substrate 2 when viewed from the second surface 2b side of the semiconductor substrate 2 is 5% to 50%, preferably 10% to 45%. % Or less, and more preferably 20% or more and 40% or less.
  • a third amorphous semiconductor film 3 is provided on the first surface 2 a of the semiconductor substrate 2 having a plurality of island-shaped recesses 8.
  • the third amorphous semiconductor film 3 reduces recombination of carriers (electrons or holes) generated in the semiconductor substrate 2 by light incident from the first surface 2a side of the semiconductor substrate 2. be able to. Therefore, according to the photoelectric conversion element 1 of the present embodiment including the third amorphous semiconductor film 3, the efficiency of converting light energy into electric energy can be improved.
  • the third amorphous semiconductor film 3 include an i-type amorphous silicon film or a stacked film of an i-type amorphous silicon film and an n-type amorphous silicon film.
  • the “i-type semiconductor” is not only a completely intrinsic semiconductor but also a sufficiently low concentration (the n-type impurity concentration is less than 1 ⁇ 10 15 / cm 3 and the p-type impurity concentration is 1 ⁇ Also included is a semiconductor mixed with n-type or p-type impurities of less than 10 15 / cm 3 .
  • “amorphous semiconductor” means not only an amorphous semiconductor in which dangling bonds of atoms constituting the semiconductor are not terminated with hydrogen, but also hydrogenated amorphous silicon, etc. Also included is an amorphous semiconductor in which dangling bonds of atoms constituting the semiconductor are terminated with hydrogen.
  • the antireflection film 4 is provided on the surface of the third amorphous semiconductor film 3 opposite to the semiconductor substrate 2.
  • the antireflection film 4 on the first surface 2 a of the semiconductor substrate 2, which is a light incident surface, can suppress incident light from being reflected on the first surface 2 a of the semiconductor substrate 2. In this way, more light can enter the photoelectric conversion element 1. The efficiency of converting light energy into electrical energy in the photoelectric conversion element 1 can be improved.
  • the antireflection film 4 include a dielectric film and a dielectric multilayer film. In the present embodiment, a silicon nitride film is used as the antireflection film 4.
  • the first amorphous semiconductor film 6 is provided on the second surface 2b of the semiconductor substrate 2 between the plurality of recesses 8 adjacent to each other.
  • the first amorphous semiconductor film 6 has the first conductivity type.
  • the first amorphous semiconductor film 6 can be an n-type or p-type amorphous semiconductor film. In the present embodiment, a p-type amorphous silicon film is used as the first amorphous semiconductor film 6.
  • the first amorphous semiconductor film 6 When viewed from the second surface 2 b side of the semiconductor substrate 2, the first amorphous semiconductor film 6 has a plurality of openings 7 corresponding to the plurality of island-shaped recesses 8.
  • the opening 7 is a region surrounded by the end 9 of the first amorphous semiconductor film 6 where the first amorphous semiconductor film 6 is not formed.
  • each of the plurality of openings 7 when viewed from the second surface 2b side of the semiconductor substrate 2, each of the plurality of openings 7 has a circular shape. When viewed from the second surface 2b side of the semiconductor substrate 2, each of the plurality of openings 7 may have another shape.
  • the longest distance in each of the plurality of openings 7 of the first amorphous semiconductor film 6 when viewed from the second surface 2b side of the semiconductor substrate 2 is 1 ⁇ 2 or less of the length of one side of the semiconductor substrate 2 It may be 1/3 or less. In the present embodiment, the longest distance is the diameter of each of the plurality of circular openings 7 of the first amorphous semiconductor film 6. In the present embodiment, the longest distance in each of the plurality of openings 7 of the first amorphous semiconductor film 6 when viewed from the second surface 2 b side of the semiconductor substrate 2 is the length of one side of the semiconductor substrate 2. It is 1/4 or less.
  • the ratio of the area of the first amorphous semiconductor film 6 to the area of the semiconductor substrate 2 when viewed from the second surface 2b side of the semiconductor substrate 2 is 50% or more and 95% or less, preferably 55%. It is 90% or less and more preferably 60% or more and 80% or less.
  • the longest distance w 1 of the region that does not contribute to carrier collection by the first amorphous semiconductor film 6 is the minority carrier generated in the semiconductor substrate 2 by the light incident from the first surface 2 a side of the semiconductor substrate 2. It may be equal to or shorter than the diffusion length in the semiconductor substrate 2.
  • the first amorphous semiconductor film 6 is formed in a region that does not contribute to carrier collection by the first amorphous semiconductor film 6 having the first conductivity type. No region, in other words, a region where a plurality of recesses 8 are formed.
  • the longest distance w 1 of the region that does not contribute to carrier collection by the first amorphous semiconductor film 6 is the maximum length in the plurality of openings 7 of the first amorphous semiconductor film 6, in other words, a plurality of distances. This is the maximum length in the island-shaped recess 8.
  • the plurality of openings 7 have a circular shape. Therefore, the longest distance w 1 of the region that does not contribute to carrier collection by the first amorphous semiconductor film 6 is the diameter of each of the plurality of openings 7 of the first amorphous semiconductor film 6.
  • the plurality of openings 7 of the first amorphous semiconductor film 6 are arranged in a square lattice pattern on the second surface 2 b of the semiconductor substrate 2.
  • the arrangement pattern of the plurality of openings 7 is not limited to a square lattice, and may be a triangular lattice or an aperiodic pattern.
  • the first amorphous semiconductor film 6 include a p-type amorphous silicon film and an n-type amorphous silicon film.
  • a p-type amorphous silicon film is used as the first amorphous semiconductor film 6.
  • the p-type first amorphous semiconductor film 6 is formed on the clean second surface 2 b excluding the plurality of recesses 8.
  • a high-quality p-type first amorphous semiconductor film 6 can be formed on the second surface 2 b of the semiconductor substrate 2. Therefore, holes generated in the semiconductor substrate 2 by light incident from the first surface 2a side of the semiconductor substrate 2 can be efficiently collected.
  • a first i-type amorphous semiconductor film 5 may be provided between the semiconductor substrate 2 and the first amorphous semiconductor film 6.
  • an i-type amorphous silicon film is used as the first i-type amorphous semiconductor film 5.
  • the first i-type amorphous semiconductor film 5 is also provided on the second surface 2 b of the semiconductor substrate 2 between the plurality of recesses 8 adjacent to each other.
  • the first i-type amorphous semiconductor film 5 may have the same shape and the same area as the first amorphous semiconductor film 6.
  • the photoelectric conversion element 1 may not have the first i-type amorphous semiconductor film 5.
  • the first electrode 15 is provided on the first amorphous semiconductor film 6.
  • An example of the first electrode 15 is a metal electrode.
  • silver (Ag) is used as the first electrode 15.
  • the first electrode 15 may be a p-type electrode.
  • a plurality of island-shaped second amorphous semiconductor films 11 are provided on each of the plurality of island-shaped recesses 8.
  • the second amorphous semiconductor film 11 has a second conductivity type, and this second conductivity type is different from the first conductivity type of the first amorphous semiconductor film 6.
  • the plurality of island-shaped second amorphous semiconductor films 11 may be n-type or p-type amorphous semiconductor films. In this embodiment, an n-type amorphous silicon film is used as the plurality of island-shaped second amorphous semiconductor films 11.
  • each of the plurality of island-shaped second amorphous semiconductor films 11 has a circular shape when viewed from the second surface 2b side of the semiconductor substrate 2 (FIG. 1B )).
  • each of the plurality of island-shaped second amorphous semiconductor films 11 may have another shape.
  • the longest distance in each of the plurality of island-shaped second amorphous semiconductor films 11 when viewed from the second surface 2 b side of the semiconductor substrate 2 is 1 ⁇ 2 or less of the length of one side of the semiconductor substrate 2. It may be 1/3 or less. In the present embodiment, the longest distance is the diameter of each of the plurality of island-shaped second amorphous semiconductor films 11. In the present embodiment, the longest distance in each of the plurality of island-like second amorphous semiconductor films 11 when viewed from the second surface 2 b side of the semiconductor substrate 2 is the length of one side of the semiconductor substrate 2. 1/4 or less.
  • the ratio of the area of the second amorphous semiconductor film 11 to the area of the semiconductor substrate 2 when viewed from the second surface 2b side of the semiconductor substrate 2 is 5% or more and 50% or less, preferably 10%. It is 45% or less and more preferably 20% or more and 40% or less.
  • the plurality of island-like second amorphous semiconductor films 11 are arranged in a square lattice pattern on the second surface 2b of the semiconductor substrate 2 (FIGS. 1A and 1). (See (B)).
  • the arrangement pattern of the plurality of island-shaped second amorphous semiconductor films 11 is not limited to a square lattice, and may be a triangular lattice or an aperiodic pattern.
  • a plurality of island-shaped second i-type amorphous semiconductor films 10 may be provided between the semiconductor substrate 2 and the plurality of island-shaped second amorphous semiconductor films 11.
  • an i-type amorphous silicon film is used as the plurality of island-shaped second i-type amorphous semiconductor films 10.
  • the second i-type amorphous semiconductor film 10 is also provided on each of the plurality of island-shaped recesses 8.
  • the plurality of island-shaped second i-type amorphous semiconductor films 10 may have the same shape and the same area as the plurality of island-shaped second amorphous semiconductor films 11. .
  • the photoelectric conversion element 1 may not have the second i-type amorphous semiconductor film 10.
  • a plurality of second electrodes 16 are provided on each of the plurality of island-shaped second amorphous semiconductor films 11.
  • the plurality of second electrodes 16 when viewed from the second surface 2b side of the semiconductor substrate 2, the plurality of second electrodes 16 have a circular shape (see FIG. 1A).
  • each of the plurality of second electrodes 16 may have another shape.
  • the plurality of second electrodes 16 are arranged in a square lattice pattern on the second surface 2b of the semiconductor substrate 2 (see FIG. 1A).
  • the arrangement pattern of the plurality of second electrodes 16 is not limited to a square lattice, and may be a triangular lattice or an aperiodic pattern.
  • An example of the second electrode 16 is a metal electrode.
  • silver (Ag) is used as the second electrode 16.
  • the second electrode 16 may be an n-type electrode.
  • the end portions of the plurality of island-shaped second i-type amorphous semiconductor films 10 and the end portions of the plurality of island-shaped second amorphous semiconductor films 11 are the first i
  • the end portion of the type amorphous semiconductor film 5 and the end portion 9 of the first amorphous semiconductor film 6 are covered.
  • An end portion of the second i-type amorphous semiconductor film 10 and an end portion of the second amorphous semiconductor film 11 protrude from the surface of the first amorphous semiconductor film 6.
  • the ends of the second i-type amorphous semiconductor film 10 are in contact with both the first amorphous semiconductor film 6 and the second amorphous semiconductor film 11, respectively.
  • the first amorphous semiconductor film 6 and the second amorphous semiconductor film 11 are separated by the second i-type amorphous semiconductor film 10.
  • the first amorphous semiconductor film 6 is not in contact with the second amorphous semiconductor film 11. Therefore, the efficiency of converting light energy into electrical energy can be improved.
  • the ends of the plurality of island-like second i-type amorphous semiconductor films 10 and the ends of the plurality of island-like second amorphous semiconductor films 11 are the first i-type amorphous semiconductor film. 5 and the end 9 of the first amorphous semiconductor film 6 may not be covered.
  • the second amorphous semiconductor film 11 is preferably formed so as not to contact the first amorphous semiconductor film 6.
  • irregularities are formed on the first surface 2 a of the semiconductor substrate 2.
  • the first surface 2a of the semiconductor substrate 2 which is an n-type single crystal silicon substrate, is anisotropically etched using potassium hydroxide (KOH) so that the first surface 2a of the semiconductor substrate 2 is uneven. May be formed.
  • KOH potassium hydroxide
  • the third amorphous semiconductor film 3 is formed on the first surface 2a of the semiconductor substrate 2 on which the irregularities are formed.
  • the method for forming the third amorphous semiconductor film 3 is not particularly limited, and for example, a plasma chemical vapor deposition (CVD) method can be used.
  • an antireflection film 4 is formed on the third amorphous semiconductor film 3.
  • the formation method of the antireflection film 4 is not particularly limited, for example, a plasma chemical vapor deposition (CVD) method can be used.
  • a first i-type amorphous semiconductor film 5 is formed on the second surface 2 b of the semiconductor substrate 2.
  • the method for forming the first i-type amorphous semiconductor film 5 is not particularly limited, and for example, a plasma chemical vapor deposition (CVD) method can be used.
  • a first amorphous semiconductor film 6 is formed on first i-type amorphous semiconductor film 5.
  • the formation method of the 1st amorphous semiconductor film 6 is not specifically limited, For example, a plasma chemical vapor deposition (CVD) method can be used.
  • a first mask 31 is placed on the first amorphous semiconductor film 6.
  • the first mask 31 has a plurality of island-shaped first openings.
  • An example of the first mask 31 is a metal mask.
  • first i-type amorphous semiconductor film 5, first amorphous semiconductor film 6, and semiconductor substrate 2 in the plurality of island-shaped first openings of first mask 31. are etched to form a plurality of island-shaped recesses 8 in the semiconductor substrate 2.
  • the etching method may be dry etching or wet etching.
  • second mask 33 is placed on first amorphous semiconductor film 6.
  • the second mask 33 has a plurality of island-shaped second openings.
  • a photoresist mask can be exemplified.
  • each of the plurality of island-shaped second openings of the second mask 33 is larger than the outer periphery of each of the plurality of island-shaped recesses 8.
  • Each of the plurality of island-shaped second openings of the second mask 33 is larger than the outer periphery of each of the plurality of island-shaped recesses 8.
  • the end portion of the amorphous semiconductor film 11 can cover the end portion of the first i-type amorphous semiconductor film 5 and the end portion 9 of the first amorphous semiconductor film 6.
  • second i-type amorphous semiconductor film 10 is formed on the entire surface of semiconductor substrate 2 on the second surface 2b side. Specifically, on the second mask 33, the first amorphous semiconductor film 6, the first i-type amorphous semiconductor film 5, and the plurality of island-shaped recesses 8, the second i-type non-layer is formed. A crystalline semiconductor film 10 is formed. Subsequently, a second amorphous semiconductor film 11 is formed on the entire surface of the second i-type amorphous semiconductor film 10.
  • a method for forming the second i-type amorphous semiconductor film 10 and the second amorphous semiconductor film 11 is not particularly limited, and for example, a plasma chemical vapor deposition (CVD) method can be used.
  • the second i-type amorphous semiconductor film 10 and the second amorphous semiconductor film 11 are lifted off using the second mask 33. Only the second i-type amorphous semiconductor film 10 and the second amorphous semiconductor film 11 in the second opening of the second mask 33 are the first amorphous semiconductor film 6 and the first amorphous semiconductor film 6. It is formed on the i-type amorphous semiconductor film 5 and the plurality of island-shaped recesses 8. In this manner, a plurality of island-shaped second i-type amorphous semiconductor films 10 and a plurality of island-shaped second amorphous semiconductor films 11 are formed on each of the plurality of island-shaped recesses 8. Is provided.
  • the first electrode 15 is formed on the first amorphous semiconductor film 6.
  • a plurality of second electrodes 16 are formed on each of the plurality of island-shaped second amorphous semiconductor films 11.
  • the first electrode 15 and the second electrode 16 may be formed using a third mask (not shown) having an opening in a region corresponding to the first electrode 15 and the second electrode 16. .
  • the photoelectric conversion element 1 of the present embodiment shown in FIGS. 1A to 3 can be obtained.
  • the photoelectric conversion element 1 of this Embodiment includes a semiconductor substrate 2 having a first surface 2a and a second surface 2b opposite to the first surface 2a, a first amorphous semiconductor film 6, A plurality of island-shaped second amorphous semiconductor films 11, a first electrode 15, and a plurality of second electrodes 16 are provided.
  • the semiconductor substrate 2 has a plurality of island-shaped recesses 8 on the second surface 2b.
  • the semiconductor substrate 2 is a single crystal semiconductor substrate.
  • the first amorphous semiconductor film 6 is provided on the second surface 2b between the plurality of island-shaped recesses 8 adjacent to each other.
  • the first amorphous semiconductor film 6 has the first conductivity type.
  • the first amorphous semiconductor film 6 has a plurality of openings 7 corresponding to the plurality of island-shaped recesses 8.
  • the plurality of island-shaped second amorphous semiconductor films 11 are provided on each of the plurality of island-shaped recesses 8.
  • the second amorphous semiconductor film 11 has a second conductivity type different from the first conductivity type.
  • the first electrode 15 is provided on the first amorphous semiconductor film 6.
  • the plurality of second electrodes 16 are provided on each of the plurality of island-shaped second amorphous semiconductor films 11. Therefore, the area ratio and pattern shape of the first amorphous semiconductor film 6 and the plurality of island-shaped second amorphous semiconductor films 11 can be freely changed.
  • the photoelectric conversion element 1 of the present embodiment can provide a photoelectric conversion element with improved design freedom.
  • the photoelectric conversion element 1 of the present embodiment includes a semiconductor substrate 2 having a first surface 2a and a second surface 2b opposite to the first surface 2a, a first amorphous semiconductor film 6, A plurality of island-shaped second amorphous semiconductor films 11, a first electrode 15, and a plurality of second electrodes 16 are provided.
  • the semiconductor substrate 2 has a plurality of island-shaped recesses 8 on the second surface 2b.
  • the first amorphous semiconductor film 6 is provided on the second surface 2b between the plurality of island-shaped recesses 8 adjacent to each other.
  • the plurality of island-shaped second amorphous semiconductor films 11 are provided on each of the plurality of island-shaped recesses 8.
  • the first electrode 15 is provided on the first amorphous semiconductor film 6.
  • the plurality of second electrodes 16 are provided on each of the plurality of island-shaped second amorphous semiconductor films 11. Therefore, the junction area between the semiconductor substrate 2 and the first amorphous semiconductor film 6 can be increased, and the junction area of the pn junction or the pin junction in the photoelectric conversion element 1 can be increased.
  • the junction area between the semiconductor substrate 2 made of an n-type single crystal semiconductor substrate and the p-type first amorphous semiconductor film 6 can be increased.
  • the efficiency of converting light energy into electrical energy can be improved.
  • the first electrode 15 and the second electrode 16 are provided on the second surface 2 b side of the semiconductor substrate 2.
  • the first electrode 15 and the second electrode 16 are not provided on the first surface 2a side of the semiconductor substrate 2 which is a light incident surface.
  • light incident on the photoelectric conversion element 1 is not blocked by the first electrode 15 and the second electrode 16. Therefore, according to the photoelectric conversion element 1 of this Embodiment, the high short circuit current JSC is obtained and the efficiency which converts light energy into electrical energy can be improved.
  • the semiconductor substrate 2 that is a single crystal semiconductor substrate is in contact with the first amorphous semiconductor film 6 and the plurality of island-shaped second amorphous semiconductor films 11.
  • the first i-type amorphous semiconductor film 5 and the plurality of island-shaped second i-type amorphous semiconductor films 10 are in contact with each other.
  • a semiconductor substrate 2 which is a single crystal semiconductor substrate and an amorphous semiconductor film (a first amorphous semiconductor film 6 and a plurality of island-shaped second amorphous semiconductor films) 11 or the first i-type amorphous semiconductor film 5 and the plurality of island-like second i-type amorphous semiconductor films 10) are heterojunctioned. Therefore, the photoelectric conversion element 1 having improved passivation properties and a high open circuit voltage V OC can be obtained. According to the photoelectric conversion element 1 of this Embodiment, the efficiency which converts light energy into electrical energy can be improved.
  • the plurality of island-shaped recesses 8 and the plurality of island-shaped second amorphous semiconductor films 11 are , May be arranged in a lattice pattern.
  • the semiconductor substrate 2 has a plurality of island-shaped recesses 8 on the second surface 2b.
  • a plurality of island-shaped second amorphous semiconductor films 11 are provided on each of the plurality of island-shaped recesses 8.
  • the photoelectric conversion element 1 of the present embodiment can provide a photoelectric conversion element with improved design freedom.
  • Each of the plurality of openings 7 of the semiconductor film 6 may have a circular shape.
  • Carriers (electrons or holes) generated in the semiconductor substrate 2 by light incident from the first surface 2 a side of the semiconductor substrate 2 are formed in a plurality of island shapes formed on the second surface 2 b of the semiconductor substrate 2. It moves to the second amorphous semiconductor film 11 or the first amorphous semiconductor film 6.
  • the plurality of island-shaped second amorphous semiconductor films 11 or the first amorphous semiconductor film 6 Due to the temperature rise of the plurality of island-shaped second amorphous semiconductor films 11 or the first amorphous semiconductor film 6, the plurality of island-shaped second amorphous semiconductor films 11 or the first Deterioration of the amorphous semiconductor film 6 or peeling of the plurality of island-like second amorphous semiconductor films 11 or first amorphous semiconductor films 6 from the semiconductor substrate 2 can be suppressed. .
  • the longest distance w 1 region which does not contribute to the collection of the carriers of the first amorphous semiconductor film 6 The diffusion length of minority carriers generated by light incident from the first surface 2a side of the semiconductor substrate 2 in the semiconductor substrate 2 may be equal to or shorter than the diffusion length. Therefore, the minority carriers can be efficiently collected through the first amorphous semiconductor film 6 and the first electrode 15.
  • the longest distance w 1 region which does not contribute to the collection of the carriers of the first amorphous semiconductor film 6 of p-type, n-type single crystal semiconductor The minority carriers (holes) generated in the semiconductor substrate 2 by light incident from the first surface 2a side of the semiconductor substrate 2 as the substrate are set to be equal to or less than the diffusion length in the semiconductor substrate 2. Therefore, the minority carriers (holes) can be efficiently collected through the p-type first amorphous semiconductor film 6 and the first electrode 15.
  • the photoelectric conversion element 1 of this embodiment may further include a first i-type amorphous semiconductor film 5 between the semiconductor substrate 2 and the first amorphous semiconductor film 6.
  • the first i-type amorphous semiconductor film 5 reduces recombination of carriers (electrons or holes) generated in the semiconductor substrate 2 by light incident from the first surface 2a side of the semiconductor substrate 2. can do. Therefore, according to the photoelectric conversion element 1 of this Embodiment, the efficiency which converts light energy into electrical energy can be improved.
  • the photoelectric conversion element 1 of this embodiment may further include a second i-type amorphous semiconductor film 10 between the semiconductor substrate 2 and the second amorphous semiconductor film 11.
  • the second i-type amorphous semiconductor film 10 reduces recombination of carriers (electrons or holes) generated in the semiconductor substrate 2 by light incident from the first surface 2a side of the semiconductor substrate 2. can do. Therefore, according to the photoelectric conversion element 1 of this Embodiment, the efficiency which converts light energy into electrical energy can be improved.
  • an n-type single crystal silicon substrate and an n-type amorphous semiconductor substrate 2, a first amorphous semiconductor film 6, and a second amorphous semiconductor film 11, respectively, are used.
  • a porous semiconductor film and a p-type amorphous semiconductor film may be used.
  • the first amorphous semiconductor film 6 having an area larger than that of the second amorphous semiconductor film 11 is an n-type amorphous semiconductor film. . Therefore, the passivation property in the photoelectric conversion element of the 1st modification of this Embodiment can be improved.
  • the p-type second amorphous semiconductor film 11 is provided on the bottom and side surfaces of the plurality of island-shaped recesses 8. Therefore, the junction area between the semiconductor substrate 2 which is an n-type single crystal semiconductor substrate and the p-type second amorphous semiconductor film 11 can be increased, and the photoelectric conversion of the first modified example of the present embodiment In the device, the junction area of the pn junction or the pin junction can be increased.
  • the photoelectric conversion element of the first modification of the present embodiment minority carriers (holes) generated in the semiconductor substrate 2 made of an n-type single crystal silicon substrate by light incident on the semiconductor substrate 2 are Collection can be efficiently performed through the second amorphous semiconductor film 11 and the second electrode 16. Thus, the efficiency of converting light energy into electrical energy can be improved.
  • the second region between the plurality of island-shaped second amorphous semiconductor films 11 adjacent to each other when viewed from the second surface 2b side of the semiconductor substrate 2 is used.
  • the longest distance w 2 of the region that does not contribute to carrier collection by the amorphous semiconductor film 11 is a semiconductor substrate of minority carriers generated in the semiconductor substrate 2 by light incident from the first surface 2 a side of the semiconductor substrate 2. 2 or less may be used.
  • the region that does not contribute to the collection of carriers by the second amorphous semiconductor film 11 having the second conductivity type is the first non-conductive region having the first conductivity type different from the second conductivity type.
  • a region where the crystalline semiconductor film 6 is formed in other words, a region between the plurality of recesses 8.
  • the plurality of island-shaped recesses 8 and the plurality of island-shaped second amorphous semiconductor films 11 are arranged in a square lattice pattern. Therefore, the longest distance w 2 between the plurality of island-shaped second amorphous semiconductor films 11 adjacent to each other and not contributing to carrier collection by the second amorphous semiconductor film 11 is a diagonal line of a square lattice. Is the distance between the plurality of recesses 8 adjacent to each other in the extending direction.
  • the longest distance w 2 of a region that does not contribute to carrier collection by the second amorphous semiconductor film 11 between the plurality of island-shaped second amorphous semiconductor films 11 adjacent to each other is defined as the first distance of the semiconductor substrate 2.
  • the diffusion length of minority carriers generated in the semiconductor substrate 2 by light incident from the surface 2a side of the semiconductor substrate 2 is equal to or shorter than the diffusion length in the semiconductor substrate 2. Therefore, the minority carriers can be efficiently collected through the plurality of island-shaped second amorphous semiconductor films 11 and the second electrode 16.
  • the longest distance w 2 of a region that does not contribute to carrier collection by the second amorphous semiconductor film 11 between the plurality of island-shaped p-type second amorphous semiconductor films 11 adjacent to each other is expressed as n.
  • the diffusion length of holes, which are minority carriers generated in the semiconductor substrate 2 by the light incident from the first surface 2a side of the semiconductor substrate 2 which is a type single crystal semiconductor substrate, is less than or equal to the diffusion length in the semiconductor substrate 2. Therefore, the holes that are minority carriers can be efficiently collected through the plurality of p-type island-shaped second amorphous semiconductor films 11 and the second electrode 16.
  • the semiconductor substrate 2, the first amorphous semiconductor film 6, and the second amorphous semiconductor film 11 are respectively a p-type single crystal silicon substrate and a p-type amorphous semiconductor.
  • a quality semiconductor film and an n-type amorphous semiconductor film may be used.
  • the n-type second amorphous semiconductor film 11 is provided on the bottom and side surfaces of the plurality of island-shaped recesses 8. Therefore, the junction area between the semiconductor substrate 2 which is a p-type single crystal semiconductor substrate and the n-type second amorphous semiconductor film 11 can be increased, and the photoelectric conversion according to the second modification of the present embodiment.
  • the junction area of the pn junction or the pin junction can be increased.
  • the efficiency of converting light energy into electric energy can be improved.
  • a semiconductor substrate 2, a first amorphous semiconductor film 6, and a second amorphous semiconductor film 11 are respectively a p-type single crystal silicon substrate and an n-type amorphous semiconductor.
  • a porous semiconductor film and a p-type amorphous semiconductor film may be used.
  • the photoelectric conversion element 1a of Embodiment 2 basically has the same configuration as the photoelectric conversion element 1 of the first embodiment shown in FIG. 1 and can obtain the same effects.
  • the photoelectric conversion element 1a is different from the photoelectric conversion element 1 of the first embodiment in the shape of the bottom of the plurality of island-shaped recesses 8a.
  • the bottoms of the plurality of island-shaped recesses 8a in the photoelectric conversion element 1a of the present embodiment have first round corners 18 in a cross section substantially perpendicular to the second surface 2b of the semiconductor substrate 2.
  • the radius of curvature of the first round corner 18 is greater than 0 ⁇ m and 10 ⁇ m or less, preferably 1 ⁇ m or more and 8 ⁇ m or less, more preferably 3 ⁇ m or more and 7 ⁇ m or less.
  • the bottoms of the plurality of island-shaped recesses 8a have first round corners 18 in a cross section substantially perpendicular to the second surface 2b.
  • Carriers (electrons or holes) generated in the semiconductor substrate 2 by light incident from the first surface 2 a side of the semiconductor substrate 2 are formed in a plurality of island shapes formed on the second surface 2 b of the semiconductor substrate 2. It moves to the second amorphous semiconductor film 11 or the first amorphous semiconductor film 6.
  • the bottoms of the plurality of island-shaped recesses 8 a have first round corners 18 in a cross section substantially perpendicular to the second surface 2 b of the semiconductor substrate 2.
  • the bottoms of the plurality of island-shaped recesses 8a have first round corners 18 in a cross section substantially perpendicular to the second surface 2b.
  • the radius of curvature of the first round corner 18 is greater than 0 ⁇ m and less than or equal to 10 ⁇ m. For this reason, carriers (electrons or holes) generated in the semiconductor substrate 2 by light incident from the first surface 2a side of the semiconductor substrate 2 are formed in the plurality of island-shaped second amorphous semiconductor films 11. Concentrating on a specific part can further suppress the temperature of the specific part from rising.
  • the plurality of island-shaped second amorphous semiconductor films 11 deteriorate due to the temperature rise of the plurality of island-shaped second amorphous semiconductor films 11, or the plurality of island-shaped second amorphous semiconductor films 11 It is possible to further suppress the second amorphous semiconductor film 11 from being peeled off from the semiconductor substrate 2.
  • the photoelectric conversion element 1b of the present embodiment basically has the same configuration as that of the photoelectric conversion element 1 of the first embodiment shown in FIG. 1 and can obtain the same effect.
  • the photoelectric conversion element 1b is different from the photoelectric conversion element 1 of Embodiment 1 in that a plurality of island-shaped recesses 8b (not shown) and a plurality of island-shaped second i-type amorphous semiconductor films 10b (FIG.
  • the arrangement of the plurality of island-shaped second amorphous semiconductor films 11b and the plurality of island-shaped second electrodes 16b is different.
  • the photoelectric conversion element 1b of the present embodiment when viewed from the second surface 2b side of the semiconductor substrate 2, the plurality of island-shaped recesses 8b and the first amorphous semiconductor film 6 are formed.
  • the plurality of island-shaped recesses 8b and the plurality of island-shaped second amorphous semiconductor films 11b are , May be arranged in a staggered pattern.
  • the semiconductor substrate 2 has a plurality of island-shaped recesses 8b on the second surface 2b.
  • the first amorphous semiconductor film 6b has a plurality of openings 7b corresponding to the plurality of island-shaped recesses 8b.
  • a plurality of island-shaped second amorphous semiconductor films 11b are provided on each of the plurality of island-shaped recesses 8b.
  • the photoelectric conversion element 1b of this embodiment can provide a photoelectric conversion element with improved design freedom.
  • the arrangement pattern of the crystalline semiconductor film 11b and the plurality of island-shaped second electrodes 16b is not limited to the staggered pattern of the present embodiment or the square lattice of the first embodiment, and may be a triangular lattice or an aperiodic arrangement. Other arrangement patterns may be used.
  • the photoelectric conversion element 1c of the present embodiment basically has the same configuration as that of the photoelectric conversion element 1 of the first embodiment shown in FIG. 1 and can obtain the same effect.
  • the photoelectric conversion element 1c is different from the photoelectric conversion element 1 of Embodiment 1 in that a plurality of island-shaped recesses 8c (not shown) and a plurality of island-shaped second i-type amorphous semiconductor films 10c (FIG.
  • the shape of the plurality of island-shaped second amorphous semiconductor films 11c and the plurality of island-shaped second electrodes 16c are different.
  • each of the plurality of island-shaped recesses 8c and the plurality of island-shaped second portions are formed.
  • Each of the amorphous semiconductor film 11c, each of the plurality of openings 7c of the first amorphous semiconductor film 6c, and each of the plurality of island-shaped second electrodes 16c has a second rounded corner. Having a rectangular shape.
  • the length of the short side of the rectangular recess 8c in the present embodiment is the same as the diameter of the circular recess 8 in the first embodiment, but the length of the long side of the rectangular recess 8c in the present embodiment is The diameter of the circular recess 8 in the first embodiment is larger.
  • the length of the short side of the rectangular second amorphous semiconductor film 11c in the present embodiment is the same as the diameter of the circular second amorphous semiconductor film 11 in the first embodiment.
  • the length of the long side of the rectangular second amorphous semiconductor film 11c in the embodiment is larger than the diameter of the circular second amorphous semiconductor film 11 in the first embodiment.
  • the length of the short side of the rectangular opening 7c in the present embodiment is the same as the diameter of the circular opening 7 in the first embodiment, but the length of the long side of the rectangular opening 7c in the present embodiment is the same.
  • the length is larger than the diameter of the circular opening 7 in the first embodiment.
  • the length of the short side of the rectangular second electrode 16c in the present embodiment is the same as the diameter of the circular second electrode 16 in the first embodiment, but the rectangular second electrode 16c in the present embodiment.
  • the length of the long side of the electrode 16c is larger than the diameter of the circular second electrode 16 in the first embodiment.
  • the long side length of the rectangular second amorphous semiconductor film 11c is larger than the diameter of the circular second amorphous semiconductor film 11 in the first embodiment. large.
  • the rectangular second amorphous semiconductor film 11c in the present embodiment is the circular second amorphous semiconductor film 11 in the first embodiment. Has a larger area. Therefore, carriers generated in the semiconductor substrate 2 can be efficiently collected through the second amorphous semiconductor film 11 c and the second electrode 16.
  • the length of the long side of the rectangular second electrode 16c is larger than the diameter of the circular second electrode 16 in the first embodiment. Therefore, the contact area between the external wiring (not shown) and the second electrode 16c can be increased. According to the photoelectric conversion element 1c of the present embodiment, the electric energy obtained by the photoelectric conversion element 1c can be transmitted to the external wiring with low loss.
  • Carriers generated in the semiconductor substrate 2 by light incident from the first surface 2a side of the semiconductor substrate 2 are a plurality of island-shaped second amorphous elements formed on the second surface 2b of the semiconductor substrate 2. It moves to the crystalline semiconductor film 11c or the first amorphous semiconductor film 6c.
  • each of the plurality of island-shaped second amorphous semiconductor films 11c and each of the plurality of openings 7c of the first amorphous semiconductor film 6c. Has a rectangular shape with second rounded corners. Therefore, the carriers are concentrated on a specific part of the plurality of island-like second amorphous semiconductor films 11c or the first amorphous semiconductor film 6c, and the temperature of the specific part rises.
  • the plurality of island-shaped second amorphous semiconductor films 11c or the first non-crystalline semiconductor film 11c or the first non-crystalline semiconductor film 11c due to the temperature rise of the plurality of island-shaped second amorphous semiconductor films 11c or the first amorphous semiconductor film 6c It is possible to suppress the deterioration of the crystalline semiconductor film 6c or the peeling of the plurality of island-shaped second amorphous semiconductor films 11c or the first amorphous semiconductor film 6c from the semiconductor substrate 2.
  • the photoelectric conversion element 1d of the present embodiment basically has the same configuration as that of the photoelectric conversion element 1 of the first embodiment shown in FIG. 1, and can obtain the same effects.
  • the photoelectric conversion element 1d is different from the photoelectric conversion element 1 of Embodiment 1 in that a plurality of island-shaped recesses 8d (not shown) and a plurality of island-shaped second i-type amorphous semiconductor films 10d (FIG.
  • the shape of the plurality of island-shaped second amorphous semiconductor films 11d and the plurality of island-shaped second electrodes 16d are different.
  • each of the plurality of island-shaped recesses 8d has a regular hexagonal shape when viewed from the second surface 2b side of the semiconductor substrate 2.
  • each of the plurality of island-shaped second i-type amorphous semiconductor films 10d has a regular hexagonal shape.
  • each of the plurality of island-shaped second amorphous semiconductor films 11d has a regular hexagonal shape.
  • each of the plurality of openings 7d of the first amorphous semiconductor film 6d has a regular hexagonal shape.
  • each of the plurality of island-shaped second electrodes 16d has a regular hexagonal shape.
  • each of the plurality of island-shaped recesses 8d has another polygonal shape, preferably a polygonal shape in which all the angles are obtuse. May be.
  • each of the plurality of island-shaped second i-type amorphous semiconductor films 10d has another polygonal shape, preferably all corners. You may have the polygonal shape which is an obtuse angle.
  • each of the plurality of island-shaped second amorphous semiconductor films 11d has another polygonal shape, preferably all the angles are obtuse. It may have a certain polygonal shape.
  • each of the plurality of openings 7d of the first amorphous semiconductor film 6d has another polygonal shape, preferably all the angles are obtuse. It may have a polygonal shape.
  • each of the plurality of island-shaped second electrodes 16d has another polygonal shape, preferably a polygonal shape in which all the angles are obtuse. You may have a shape.
  • each of the plurality of island-shaped recesses 8d may have a polygonal shape having a second rounded corner.
  • each of the plurality of island-shaped second i-type amorphous semiconductor films 10d has a polygonal shape having a second rounded corner. May be.
  • each of the plurality of island-shaped second amorphous semiconductor films 11d may have a polygonal shape having a second round corner. Good.
  • each of the plurality of openings 7d of the first amorphous semiconductor film 6d has a polygonal shape having a second rounded corner. Also good.
  • each of the plurality of island-shaped second electrodes 16d may have a polygonal shape having a second rounded corner.
  • the semiconductor substrate 2 has a plurality of island-shaped recesses 8d on the second surface 2b.
  • a plurality of island-shaped second amorphous semiconductor films 11d are provided on each of the plurality of island-shaped recesses 8d. Therefore, when viewed from the second surface 2b side of the semiconductor substrate 2, each of the plurality of island-shaped second amorphous semiconductor films 11d and the plurality of openings 7d of the first amorphous semiconductor film 6d are provided.
  • Each can have a polygonal shape or a polygonal shape with a second rounded corner.
  • the photoelectric conversion element 1d according to the present embodiment can provide a photoelectric conversion element with improved design freedom.
  • Each of the plurality of island-shaped second amorphous semiconductor films 11d and each of the plurality of openings 7d of the first amorphous semiconductor film 6d has a polygon or second shape in which all the angles are obtuse. It has a polygonal shape with rounded corners. Therefore, carriers generated in the semiconductor substrate 2 by light incident from the first surface 2a side of the semiconductor substrate 2 are a plurality of island-shaped second amorphous semiconductor films 11d or first amorphous semiconductors. Concentrating on a specific part of the film 6d can suppress an increase in temperature of the specific part.
  • a plurality of island-shaped second amorphous semiconductor films 11d or first non-crystalline semiconductor films 11d or first non-crystalline semiconductor films 11d due to the temperature rise of the plurality of island-shaped second amorphous semiconductor films 11d or first amorphous semiconductor films 6d It is possible to suppress the deterioration of the crystalline semiconductor film 6d or the peeling of the plurality of island-shaped second amorphous semiconductor films 11d or the first amorphous semiconductor film 6d from the semiconductor substrate 2.
  • the plurality of island-shaped recesses 8e of the present embodiment are larger than the plurality of island-shaped recesses 8 of the first embodiment. Specifically, the ratio of the area of the plurality of island-shaped recesses 8e to the area of the semiconductor substrate 2 when viewed from the second surface 2b side of the semiconductor substrate 2 is 50% or more and 95% or less, preferably 55% to 90%, more preferably 60% to 80%.
  • the plurality of island-shaped recesses 8 e are arranged in a square lattice pattern on the second surface 2 b of the semiconductor substrate 2. The arrangement pattern of the plurality of island-shaped recesses 8e is not limited to a square lattice.
  • Each of the plurality of island-shaped recesses 8e may have a square shape having a second round corner when viewed from the second surface 2b side of the semiconductor substrate 2.
  • Each of the plurality of island-shaped second i-type amorphous semiconductor films 10e has a square shape having a second round corner when viewed from the second surface 2b side of the semiconductor substrate 2. Also good.
  • Each of the plurality of island-shaped second amorphous semiconductor films 11e may have a square shape having a second rounded corner when viewed from the second surface 2b side of the semiconductor substrate 2. .
  • Each of the plurality of openings 7e of the first amorphous semiconductor film 6e may have a square shape having a second round corner when viewed from the second surface 2b side of the semiconductor substrate 2.
  • Each of the plurality of island-shaped second electrodes 16 e may have a square shape having a second rounded corner when viewed from the second surface 2 b side of the semiconductor substrate 2.
  • a plurality of island-shaped second i-type amorphous semiconductor films 10e are provided on each of the plurality of island-shaped recesses 8e.
  • a plurality of island-shaped second amorphous semiconductor films 11e are provided on the plurality of island-shaped second i-type amorphous semiconductor films 10e.
  • the ratio of the area of the plurality of island-shaped second i-type amorphous semiconductor films 10e to the area of the semiconductor substrate 2 when viewed from the second surface 2b side of the semiconductor substrate 2 and the plurality of island-shaped first The area ratio of the second amorphous semiconductor film 11e is 50% or more and 95% or less, preferably 55% or more and 90% or less, and more preferably 60% or more and 80% or less.
  • the end portions of the plurality of island-shaped second i-type amorphous semiconductor films 10e and the end portions 12e of the plurality of island-shaped second amorphous semiconductor films 11e are adjacent to each other. A part on the second surface 2b of the semiconductor substrate 2 between the plurality of island-shaped recesses 8e is covered.
  • the first i-type amorphous semiconductor film 5e and the first amorphous semiconductor film 6e are provided on the second surface 2b of the semiconductor substrate 2 between the plurality of recesses 8 adjacent to each other.
  • the ratio of the area of the first i-type amorphous semiconductor film 5e to the area of the semiconductor substrate 2 and the area of the first amorphous semiconductor film 6e when viewed from the second surface 2b side of the semiconductor substrate 2 The ratio is 5% or more and 50% or less, preferably 10% or more and 45% or less, and more preferably 20% or more and 40% or less.
  • the end of the first i-type amorphous semiconductor film 5e and the end of the first amorphous semiconductor film 6e are a plurality of island-shaped second i-type amorphous semiconductors.
  • the end portion of the film 10e and the end portions 12e of the plurality of island-like second amorphous semiconductor films 11e are covered.
  • the end of the first i-type amorphous semiconductor film 5e is in contact with both the first amorphous semiconductor film 6e and the second amorphous semiconductor film 11e.
  • the first amorphous semiconductor film 6e and the second amorphous semiconductor film 11e are separated by the first i-type amorphous semiconductor film 5e.
  • the first amorphous semiconductor film 6e is not in contact with the second amorphous semiconductor film 11e. Therefore, the efficiency of converting light energy into electrical energy can be improved.
  • the semiconductor substrate 2 can be an n-type or p-type single crystal semiconductor substrate.
  • an n-type single crystal silicon substrate is used as the semiconductor substrate 2.
  • the first amorphous semiconductor film 6e having the first conductivity type may be an n-type or p-type amorphous semiconductor film.
  • an n-type amorphous silicon film is used as the first amorphous semiconductor film 6e.
  • the first electrode 15e may function as an n electrode.
  • the plurality of island-shaped second amorphous semiconductor films 11e having the second conductivity type may be p-type amorphous semiconductor films.
  • a p-type amorphous silicon film is used as the second amorphous semiconductor film 11e.
  • the second electrode 16e may function as a p-electrode.
  • a method for manufacturing the photoelectric conversion element 1e of the present embodiment will be briefly described.
  • a plurality of island-shaped second i-type amorphous semiconductor films 10e and a second amorphous semiconductor film 2 are formed on the second surface 2b of the semiconductor substrate 2 where the plurality of island-shaped recesses 8e are formed using a mask.
  • the quality semiconductor film 11e is formed.
  • the first i-type amorphous semiconductor film 5e is formed on the semiconductor substrate 2 and the second amorphous semiconductor film 11e between the plurality of island-shaped recesses 8e.
  • a first amorphous semiconductor film 6e is formed.
  • the second amorphous semiconductor film 11e As seen from the second surface 2b side of the semiconductor substrate 2, carriers are collected by the second amorphous semiconductor film 11e between the plurality of adjacent island-like second amorphous semiconductor films 11e.
  • the longest distance w 3 of the non-contributing region may be equal to or less than the diffusion length in the semiconductor substrate 2 of minority carriers generated in the semiconductor substrate 2 by light incident from the first surface 2 a side of the semiconductor substrate 2.
  • the second amorphous semiconductor film 11e is formed in a region that does not contribute to carrier collection by the second amorphous semiconductor film 11e having the second conductivity type. There is no area.
  • the plurality of island-shaped recesses 8e and the plurality of island-shaped second amorphous semiconductor films 11e are arranged in a square lattice pattern. Therefore, the maximum distance w 3 regions that do not contribute to the collection of carriers by the second amorphous semiconductor layer 11e between the plurality of island-shaped second amorphous semiconductor film 11e adjacent to each other, the diagonal of the square lattice Is a distance between a plurality of island-shaped second amorphous semiconductor films 11e adjacent to each other in the extending direction.
  • the p-type second amorphous semiconductor film 11e is provided on the bottom and side surfaces of the plurality of island-shaped recesses 8e. Therefore, the junction area between the semiconductor substrate 2 which is an n-type single crystal semiconductor substrate and the p-type second amorphous semiconductor film 11e can be increased, and the junction area of the pn junction or the pin junction in the photoelectric conversion element 1e. Can be increased. As a result, according to the photoelectric conversion element 1e, the efficiency of converting light energy into electric energy can be improved.
  • the p-type second amorphous semiconductor film 11e is provided on the bottom and side surfaces of the plurality of island-shaped recesses 8e.
  • the p-type second amorphous semiconductor film 11e can be positioned near the first surface 2a of the semiconductor substrate 2 that is the incident surface.
  • the distance that carriers (particularly, holes that are minority carriers) generated in the semiconductor substrate 2 by the light incident on the semiconductor substrate 2 move to the second amorphous semiconductor film 11e can be reduced. Therefore, according to the photoelectric conversion element 1e of the present embodiment, carriers (particularly, holes that are minority carriers) generated in the semiconductor substrate 2 by light incident on the semiconductor substrate 2 are converted into the second amorphous state. Collection can be efficiently performed through the semiconductor film 11e and the second electrode 16e. As a result, according to the photoelectric conversion element 1e, the efficiency of converting light energy into electric energy can be improved.
  • a pn junction or a pin junction including the semiconductor substrate 2 which is an n-type single crystal semiconductor substrate and the p-type second amorphous semiconductor film 11e is formed in the plurality of recesses 8e.
  • a pn junction or a pin junction including the semiconductor substrate 2 which is an n-type single crystal semiconductor substrate and the p-type second amorphous semiconductor film 11e is mechanically formed by the semiconductor substrate 2 between the plurality of recesses 8e. Protected. As a result, a highly reliable photoelectric conversion element 1e can be obtained.
  • the semiconductor substrate 2 has a plurality of island-shaped recesses 8e on the second surface 2b.
  • the first amorphous semiconductor film 6e has a plurality of openings 7e corresponding to the plurality of island-shaped recesses 8e.
  • a plurality of island-shaped second amorphous semiconductor films 11e are provided on each of the plurality of island-shaped recesses 8e. Therefore, when viewed from the second surface 2b side of the semiconductor substrate 2, the plurality of island-shaped second amorphous semiconductor films 11e and the plurality of openings 7e of the first amorphous semiconductor film 6e are formed. It becomes possible to arrange in an arbitrary pattern similar to the arrangement pattern of the plurality of island-shaped recesses 8e. As a result, the photoelectric conversion element with improved design flexibility can be provided by the photoelectric conversion element 1e of the present embodiment.
  • the second amorphous semiconductor film 11e adjacent to each other has a second amorphous semiconductor film 11e longest distance w 3 regions that do not contribute to the collection of carriers by the minority carriers generated in the semiconductor substrate 2 by the light incident from the first surface 2a of the semiconductor substrate 2 (in this embodiment It may be less than the diffusion length of holes) in the semiconductor substrate 2 in the form. Therefore, the minority carriers can be efficiently collected through the plurality of island-shaped second amorphous semiconductor films 11e and the second electrode 16e.
  • the longest distance w 3 of the region that does not contribute to carrier collection by the second amorphous semiconductor film 11e between the plurality of island-shaped p-type second amorphous semiconductor films 11e adjacent to each other is expressed as n.
  • the diffusion length of holes, which are minority carriers generated in the semiconductor substrate 2 by the light incident from the first surface 2a side of the semiconductor substrate 2 which is a type single crystal semiconductor substrate, is less than or equal to the diffusion length in the semiconductor substrate 2. Therefore, holes that are minority carriers can be efficiently collected through the plurality of p-type island-shaped second amorphous semiconductor films 11e and the second electrode 16e.
  • Carriers (electrons or holes) generated in the semiconductor substrate 2 by light incident from the first surface 2 a side of the semiconductor substrate 2 are formed on the second surface 2 b of the semiconductor substrate 2. It moves to the crystalline semiconductor film 6e or the plurality of island-like second amorphous semiconductor films 11e.
  • each of the plurality of island-shaped second amorphous semiconductor films 11e and each of the plurality of openings 7e of the first amorphous semiconductor film 6e When viewed from the second surface 2b side of the semiconductor substrate 2, each of the plurality of island-shaped second amorphous semiconductor films 11e and each of the plurality of openings 7e of the first amorphous semiconductor film 6e. And has a square shape with a second rounded corner.
  • a step of removing the surface roughness may be performed after forming the plurality of island-shaped recesses 8e in the semiconductor substrate 2 by etching. After the step of removing the surface roughness, when the p-type second amorphous semiconductor film 11e is formed on the bottom and side surfaces of the plurality of island-shaped recesses 8e, the p-type second amorphous semiconductor film 11e is formed. Can prevent recombination of carriers (in particular, holes which are minority carriers). Therefore, it is possible to improve the efficiency of converting light energy into electrical energy in the photoelectric conversion element 1e.
  • the semiconductor substrate 2 As a first modification of the present embodiment, as the semiconductor substrate 2, the first amorphous semiconductor film 6e, and the second amorphous semiconductor film 11e, respectively, an n-type single crystal silicon substrate and a p-type amorphous film are used. A porous semiconductor film or an n-type amorphous semiconductor film may be used. In this way, when the ratio of the area of the n-type second amorphous semiconductor film 11e to the area of the semiconductor substrate 2 is increased, a photoelectric conversion element having improved passivation can be obtained.
  • the longest distance w 4 of the region not contributing to carrier collection by the first amorphous semiconductor film 6e when viewed from the second surface 2b side of the semiconductor substrate 2 is The diffusion length of minority carriers generated in the semiconductor substrate 2 by light incident on the semiconductor substrate 2 may be equal to or less than the diffusion length in the semiconductor substrate 2.
  • the region that does not contribute to carrier collection by the first amorphous semiconductor film 6e having the first conductivity type is a second conductivity type different from the first conductivity type. This is a region in which the second amorphous semiconductor film 11e having n is formed. Therefore, the first maximum distance w 4 regions which do not contribute to the collection of carriers by the amorphous semiconductor film 6e is the maximum length of the island-shaped second amorphous semiconductor film 11e.
  • the longest distance w 4 of the region that does not contribute to carrier collection by the first amorphous semiconductor film 6 e when viewed from the second surface 2 b side of the semiconductor substrate 2 is determined by the light incident on the semiconductor substrate 2.
  • the diffusion length of the minority carriers generated in the semiconductor substrate 2 is equal to or shorter than the diffusion length. Therefore, the minority carriers can be efficiently collected through the first amorphous semiconductor film 6e and the first electrode 15e.
  • the longest distance w 4 of the region that does not contribute to carrier collection by the p-type first amorphous semiconductor film 6e when viewed from the second surface 2b side of the semiconductor substrate 2 is defined as the n-type single crystal semiconductor substrate.
  • the minority carriers (holes) generated in the semiconductor substrate 2 by the light incident on the semiconductor substrate 2 are less than the diffusion length in the semiconductor substrate 2. Therefore, the minority carriers (holes) can be efficiently collected through the p-type first amorphous semiconductor film 6e and the first electrode 15e.
  • a semiconductor substrate 2, a first amorphous semiconductor film 6e, and a second amorphous semiconductor film 11e are respectively a p-type single crystal silicon substrate and a p-type amorphous film.
  • a porous semiconductor film or an n-type amorphous semiconductor film may be used.
  • a semiconductor substrate 2, a first amorphous semiconductor film 6e, and a second amorphous semiconductor film 11e are respectively a p-type single crystal silicon substrate and an n-type amorphous semiconductor.
  • a porous semiconductor film or a p-type amorphous semiconductor film may be used.
  • the first i-type amorphous semiconductor film 5e and the second i-type amorphous semiconductor film 10e may not be provided.
  • An embodiment disclosed herein includes a semiconductor substrate having a first surface and a second surface opposite to the first surface, a first amorphous semiconductor film, and a plurality of island shapes
  • This photoelectric conversion element comprises the second amorphous semiconductor film, the first electrode, and a plurality of second electrodes.
  • the semiconductor substrate has a plurality of island-shaped recesses on the second surface.
  • the semiconductor substrate is a single crystal semiconductor substrate.
  • the first amorphous semiconductor film is provided on a second surface between a plurality of adjacent island-shaped recesses.
  • the first amorphous semiconductor film has the first conductivity type.
  • the first amorphous semiconductor film has a plurality of openings corresponding to the plurality of island-shaped recesses.
  • the plurality of island-shaped second amorphous semiconductor films are provided on each of the plurality of island-shaped recesses.
  • the second amorphous semiconductor film has a second conductivity type different from the first conductivity type.
  • the first electrode is provided on the first amorphous semiconductor film.
  • the plurality of second electrodes are provided on each of the plurality of island-shaped second amorphous semiconductor films. According to the photoelectric conversion element of the embodiment disclosed herein, the area ratio and the pattern shape of the first amorphous semiconductor film and the plurality of island-shaped second amorphous semiconductor films can be freely changed. Thus, a photoelectric conversion element with improved design freedom can be provided.
  • the bottoms of the plurality of island-shaped recesses may have a first round corner in a cross section substantially perpendicular to the second surface. Good.
  • the bottoms of the plurality of island-shaped recesses have first rounded corners. Therefore, carriers (electrons or holes) generated in the semiconductor substrate by light incident from the first surface side of the semiconductor substrate are incident on a specific portion of the plurality of island-shaped second amorphous semiconductor films. It is possible to concentrate and suppress the temperature of this specific portion from rising.
  • Degradation of the plurality of island-shaped second amorphous semiconductor films due to the temperature rise of the plurality of island-shaped second amorphous semiconductor films, or the plurality of island-shaped second amorphous semiconductor films It can suppress that a quality semiconductor film peels from a semiconductor substrate.
  • the radius of curvature of the first round corner may be greater than 0 ⁇ m and equal to or less than 10 ⁇ m.
  • the bottoms of the plurality of island-shaped recesses have a first round corner having a radius of curvature greater than 0 ⁇ m and less than or equal to 10 ⁇ m. Therefore, carriers (electrons or holes) generated in the semiconductor substrate by light incident from the first surface side of the semiconductor substrate are incident on a specific portion of the plurality of island-shaped second amorphous semiconductor films. It is possible to further suppress an increase in the temperature of this specific portion by concentrating.
  • Degradation of the plurality of island-shaped second amorphous semiconductor films due to the temperature rise of the plurality of island-shaped second amorphous semiconductor films, or the plurality of island-shaped second amorphous semiconductor films It is possible to further suppress the quality semiconductor film from peeling from the semiconductor substrate.
  • a plurality of island-shaped recesses and a plurality of island-shaped second amorphous semiconductor films May be arranged in a lattice pattern or a staggered pattern.
  • the photoelectric conversion element of the embodiment disclosed herein can provide a photoelectric conversion element with improved design freedom.
  • each of the plurality of island-shaped second amorphous semiconductor films and the first non-conductive film are viewed from the second surface side of the semiconductor substrate.
  • At least one of the plurality of openings of the crystalline semiconductor film may have a circular shape, a polygonal shape, or a polygonal shape having a second rounded corner.
  • the photoelectric conversion element of the embodiment disclosed herein can provide a photoelectric conversion element with improved design freedom.
  • at least each of the plurality of island-shaped second amorphous semiconductor films and the plurality of openings of the first amorphous semiconductor film One has a circular, polygonal or polygonal shape with a second rounded corner.
  • carriers generated in the semiconductor substrate by light incident from the first surface side of the semiconductor substrate are a plurality of island-shaped second amorphous semiconductor films or first amorphous semiconductor films. It is possible to prevent the temperature of the specific portion from being increased by concentrating on a specific portion of the quality semiconductor film.
  • a plurality of island-shaped second amorphous semiconductor films or first amorphous semiconductors resulting from a temperature increase of the plurality of island-shaped second amorphous semiconductor films or the first amorphous semiconductor film Deterioration of the film, or peeling of the plurality of island-shaped second amorphous semiconductor films or first amorphous semiconductor films from the semiconductor substrate can be suppressed.
  • the longest distance of a region that does not contribute to carrier collection by the first amorphous semiconductor film when viewed from the second surface side of the semiconductor substrate is the first surface side of the semiconductor substrate. Or less than the diffusion length in the semiconductor substrate of minority carriers generated in the semiconductor substrate by the light incident from.
  • the longest distance of a region that does not contribute to carrier collection by the first amorphous semiconductor film when viewed from the second surface side of the semiconductor substrate, or a plurality of island-shaped second amorphous layers adjacent to each other is the minority carrier generated in the semiconductor substrate by the light incident from the first surface side of the semiconductor substrate.
  • the diffusion length in the semiconductor substrate is equal to or shorter than the diffusion length. Therefore, this minority carrier can be efficiently collected by the first electrode or the second electrode.
  • the photoelectric conversion element of the embodiment disclosed herein may further include a first i-type amorphous semiconductor film between the semiconductor substrate and the first amorphous semiconductor film.
  • the first i-type amorphous semiconductor film reduces recombination of carriers (electrons or holes) generated in the semiconductor substrate by light incident from the first surface side of the semiconductor substrate. Therefore, according to the photoelectric conversion element of this Embodiment, the efficiency which converts light energy into electrical energy can be improved.
  • the photoelectric conversion element of the embodiment disclosed herein may further include a second i-type amorphous semiconductor film between the semiconductor substrate and the second amorphous semiconductor film.
  • the second i-type amorphous semiconductor film reduces recombination of carriers (electrons or holes) generated in the semiconductor substrate by light incident from the first surface side of the semiconductor substrate. Therefore, according to the photoelectric conversion element of this Embodiment, the efficiency which converts light energy into electrical energy can be improved.

Abstract

 光電変換素子(1)は、半導体基板(2)と、第1の導電型を有する第1の非晶質半導体膜(6)と、第2の導電型を有する複数の島状の第2の非晶質半導体膜(11)とを備える。第1の非晶質半導体膜(6)は、半導体基板(2)は、第2の面(2b)に、複数の島状の凹部(8)を有する。第1の非晶質半導体膜(6)は、複数の島状の凹部(8)の間の第2の面(2b)上に設けられる。第2の非晶質半導体膜(11)は、複数の島状の凹部(8)のそれぞれの上に設けられる。これにより、光電変換素子(1)の設計の自由度が向上される。

Description

光電変換素子
 本発明は、光電変換素子に関する。
 太陽光などの光エネルギーを電気エネルギーに変換する光電変換素子は、近年、地球環境問題の観点から、次世代のエネルギー源としての期待が高まっている。光エネルギーを電気エネルギーに変換する効率を向上させるために、光の入射面と反対側である裏面のみに電極が形成されたバックコンタクト構造を有する光電変換素子が知られている(たとえば特許文献1参照)。特許文献1には、半導体基板の裏面に線状の凹凸が形成され、この凹凸上に半導体層が形成された光電変換素子が開示されている。
特開2011-155229号公報
 特許文献1では、基板の裏面に形成される凹凸の形状が線状であるため、光電変換素子の設計の自由度が制限されていた。
 本発明は、上記の課題を鑑みてなされたものであり、その目的は、設計の自由度が向上された光電変換素子を提供することである。
 本発明の光電変換素子は、第1の面と第1の面と反対側の第2の面とを有する半導体基板と、第1の非晶質半導体膜と、複数の島状の第2の非晶質半導体膜と、第1の電極と、複数の第2の電極とを備える。半導体基板は、第2の面に複数の島状の凹部を有する。半導体基板は、単結晶半導体基板である。第1の非晶質半導体膜は、互いに隣り合う複数の島状の凹部の間の第2の面上に設けられる。第1の非晶質半導体膜は、第1の導電型を有する。第1の非晶質半導体膜は、複数の島状の凹部に対応する複数の開口部を有する。複数の島状の第2の非晶質半導体膜は、複数の島状の凹部のそれぞれの上に設けられる。第2の非晶質半導体膜は第1の導電型とは異なる第2の導電型を有する。第1の電極は、第1の非晶質半導体膜上に設けられる。複数の第2の電極は、複数の島状の第2の非晶質半導体膜のそれぞれの上に設けられる。
 本発明の光電変換素子によれば、設計の自由度が向上された光電変換素子を提供することができる。
(A)は、半導体基板の第2の面側から平面視した、実施の形態1及び2に係る光電変換素子の模式図である。(B)は、半導体基板の第2の面側から平面視した、第1の電極及び第2の電極を除く実施の形態1及び2に係る光電変換素子の模式図である。 実施の形態1に係る光電変換素子の、図1(A)に示す断面線II-IIにおける概略断面図である。 実施の形態1に係る光電変換素子の、図1(A)に示す断面線III-IIIにおける概略断面図である。 実施の形態1に係る光電変換素子の製造方法における一工程を示す、図1のII-II線に沿う概略断面図である。 実施の形態1に係る光電変換素子の製造方法における、図4に示す工程の次工程を示す概略断面図である。 実施の形態1に係る光電変換素子の製造方法における、図5に示す工程の次工程を示す概略断面図である。 実施の形態1に係る光電変換素子の製造方法における、図6に示す工程の次工程を示す概略断面図である。 実施の形態1に係る光電変換素子の製造方法における、図7に示す工程の次工程を示す概略断面図である。 実施の形態1に係る光電変換素子の製造方法における、図8に示す工程の次工程を示す概略断面図である。 実施の形態1に係る光電変換素子の製造方法における、図9に示す工程の次工程を示す概略断面図である。 実施の形態1に係る光電変換素子の製造方法における、図10に示す工程の次工程を示す概略断面図である。 実施の形態1に係る光電変換素子の製造方法における、図11に示す工程の次工程を示す概略断面図である。 実施の形態1に係る光電変換素子の製造方法における、図12に示す工程の次工程を示す概略断面図である。 実施の形態2に係る光電変換素子の、図1(A)に示す断面線II-IIにおける概略断面図である。 (A)は、半導体基板の第2の面側から平面視した、実施の形態3に係る光電変換素子の模式図である。(B)は、半導体基板の第2の面側から平面視した、第1の電極及び第2の電極を除く実施の形態3に係る光電変換素子の模式図である。 (A)は、半導体基板の第2の面側から平面視した、実施の形態4に係る光電変換素子の模式図である。(B)は、半導体基板の第2の面側から平面視した、第1の電極及び第2の電極を除く実施の形態4に係る光電変換素子の模式図である。 (A)は、半導体基板の第2の面側から平面視した、実施の形態5に係る光電変換素子の模式図である。(B)は、半導体基板の第2の面側から平面視した、第1の電極及び第2の電極を除く実施の形態5に係る光電変換素子の模式図である。 (A)は、半導体基板の第2の面側から平面視した、実施の形態6に係る光電変換素子の模式図である。(B)は、半導体基板の第2の面側から平面視した、第1の電極及び第2の電極を除く実施の形態6に係る光電変換素子の模式図である。 実施の形態6に係る光電変換素子の、図18(A)に示す断面線XIX-XIXにおける概略断面図である。 実施の形態6に係る光電変換素子の、図18(A)に示す断面線XX-XXにおける概略断面図である。
 (実施の形態1)
 図1から図3を参照して、実施の形態1に係る光電変換素子1を説明する。
 本実施の形態の光電変換素子1は、半導体基板2と、第1のi型非晶質半導体膜5と、第1の非晶質半導体膜6と、第2のi型非晶質半導体膜10と、第2の非晶質半導体膜11と、第1の電極15と、第2の電極16と、第3の非晶質半導体膜3と、反射防止膜4とを備えている。
 半導体基板2は、n型またはp型の単結晶半導体基板であり得る。本実施の形態では、半導体基板2として、n型単結晶シリコン基板が用いられている。半導体基板2は、第1の面2aと、第1の面2aと反対側の第2の面2bとを有している。
 半導体基板2は、第1の面2aに凹凸を有する。第1の面2a側から光電変換素子1に光は入射する。光の入射面である半導体基板2の第1の面2a上の凹凸は、半導体基板2の第1の面2aにおいて入射光が反射されることを抑制することができる。こうして、より多くの光が光電変換素子1内に入射され得る。光電変換素子1において光エネルギーを電気エネルギーに変換する効率を向上させることができる。
 半導体基板2は、半導体基板2の第2の面2bに複数の島状の凹部8を有する。本実施の形態では、複数の島状の凹部8は、半導体基板2の第2の面2bに正方格子のパターンで配置されている。複数の島状の凹部8の配置パターンは、正方格子に限られず、三角格子や非周期パターンであってもよい。本実施の形態では、半導体基板2の第2の面2b側から見たときに、複数の島状の凹部8のそれぞれは円形を有している。半導体基板2の第2の面2b側から見たときに、複数の島状の凹部8のそれぞれは、他の形状を有していてもよい。
 半導体基板2の第2の面2b側から見たときの複数の島状の凹部8のそれぞれにおける最長距離は、半導体基板2の一辺の長さの1/2以下であってもよく、1/3以下であってもよい。本実施の形態では、この最長距離は、複数の島状の凹部8のそれぞれの直径である。本実施の形態では、半導体基板2の第2の面2b側から見たときの複数の島状の凹部8のそれぞれにおける最長距離は、半導体基板2の一辺の長さの1/4以下である。半導体基板2の第2の面2b側から見たときの複数の島状の凹部8のそれぞれにおける最長距離は、半導体基板2に入射する光によって半導体基板2内に生成される少数キャリアの半導体基板2内における拡散長以下であってもよい。少数キャリアは、半導体基板2がn型単結晶半導体基板である場合には正孔、半導体基板2がp型単結晶半導体基板である場合には電子を、それぞれ意味する。キャリアの拡散長は、キャリアが拡散して、キャリアの密度が1/eとなる長さを意味する。ここで、eは自然対数の底である。半導体基板2の第2の面2b側から見たときの半導体基板2の面積に対する複数の島状の凹部8の面積の割合は、5%以上50%以下であり、好ましくは、10%以上45%以下であり、より好ましくは、20%以上40%以下である。
 複数の島状の凹部8を有する半導体基板2の第1の面2a上に第3の非晶質半導体膜3が設けられている。第3の非晶質半導体膜3は、半導体基板2の第1の面2a側から入射される光によって半導体基板2内に生成されるキャリア(電子または正孔)が再結合することを低減することができる。そのため、第3の非晶質半導体膜3を備える本実施の形態の光電変換素子1によれば、光エネルギーを電気エネルギーに変換する効率を向上させることができる。第3の非晶質半導体膜3として、i型非晶質シリコン膜、またはi型非晶質シリコン膜とn型非晶質シリコン膜との積層膜を例示することができる。なお、本明細書において「i型半導体」は、完全な真性の半導体だけでなく、十分に低濃度(n型不純物濃度が1×1015個/cm3未満、かつp型不純物濃度が1×1015個/cm3未満)のn型またはp型の不純物が混入された半導体も含む。また、本明細書において「非晶質半導体」は、半導体を構成する原子の未結合手(ダングリングボンド)が水素で終端されていない非晶質半導体だけでなく、水素化非晶質シリコンなどの半導体を構成する原子の未結合手が水素で終端された非晶質半導体も含む。
 本実施の形態では、第3の非晶質半導体膜3の半導体基板2と反対側の面上に反射防止膜4が設けられている。光の入射面である半導体基板2の第1の面2a上の反射防止膜4は、半導体基板2の第1の面2aにおいて入射光が反射されることを抑制することができる。こうして、より多くの光を光電変換素子1内に入射させることができる。光電変換素子1において光エネルギーを電気エネルギーに変換する効率を向上させることができる。反射防止膜4として、誘電体膜、誘電体多層膜を例示することができる。本実施の形態では、反射防止膜4として、窒化シリコン膜が用いられている。
 互いに隣り合う複数の凹部8の間の半導体基板2の第2の面2b上に、第1の非晶質半導体膜6が設けられている。第1の非晶質半導体膜6は、第1の導電型を有する。第1の非晶質半導体膜6は、n型またはp型の非晶質半導体膜であり得る。本実施の形態では、第1の非晶質半導体膜6として、p型の非晶質シリコン膜が用いられている。
 半導体基板2の第2の面2b側から見たときに、第1の非晶質半導体膜6は、複数の島状の凹部8に対応する複数の開口部7を有している。開口部7は、第1の非晶質半導体膜6の端部9によって囲まれる、第1の非晶質半導体膜6が形成されていない領域である。本実施の形態では、半導体基板2の第2の面2b側から見たときに、複数の開口部7のそれぞれは、円形の形状を有している。半導体基板2の第2の面2b側から見たときに、複数の開口部7のそれぞれは、他の形状を有していてもよい。
 半導体基板2の第2の面2b側から見たときの第1の非晶質半導体膜6の複数の開口部7のそれぞれにおける最長距離は、半導体基板2の一辺の長さの1/2以下であってもよく、1/3以下であってもよい。本実施の形態では、この最長距離は、第1の非晶質半導体膜6の複数の円形の開口部7のそれぞれの直径である。本実施の形態では、半導体基板2の第2の面2b側から見たときの第1の非晶質半導体膜6の複数の開口部7のそれぞれにおける最長距離は、半導体基板2の一辺の長さの1/4以下である。半導体基板2の第2の面2b側から見たときの半導体基板2の面積に対する第1の非晶質半導体膜6の面積の割合は、50%以上95%以下であり、好ましくは、55%以上90%以下であり、より好ましくは、60%以上80%以下である。
 第1の非晶質半導体膜6によるキャリアの収集に寄与しない領域の最長距離wは、半導体基板2の第1の面2a側から入射する光によって半導体基板2内に生成される少数キャリアの半導体基板2内における拡散長以下であってもよい。本実施の形態の光電変換素子1では、第1の導電型を有する第1の非晶質半導体膜6によるキャリアの収集に寄与しない領域は、第1の非晶質半導体膜6が形成されていない領域、言い換えると複数の凹部8が形成された領域である。そのため、第1の非晶質半導体膜6によるキャリアの収集に寄与しない領域の最長距離wは、第1の非晶質半導体膜6の複数の開口部7内の最大長さ、言い換えると複数の島状の凹部8内の最大長さである。本実施の形態では、複数の開口部7は円形の形状を有する。そのため、第1の非晶質半導体膜6によるキャリアの収集に寄与しない領域の最長距離wは、第1の非晶質半導体膜6の複数の開口部7のそれぞれの直径である。
 本実施の形態では、第1の非晶質半導体膜6の複数の開口部7は、半導体基板2の第2の面2bに正方格子のパターンで配置されている。複数の開口部7の配置パターンは、正方格子に限られず、三角格子や非周期パターンであってもよい。第1の非晶質半導体膜6として、p型非晶質シリコン膜、n型非晶質シリコン膜を例示することができる。本実施の形態では、第1の非晶質半導体膜6として、p型非晶質シリコン膜が用いられている。p型の第1の非晶質半導体膜6は、複数の凹部8を除く清浄な第2の面2b上に形成されている。良質なp型の第1の非晶質半導体膜6が半導体基板2の第2の面2b上に形成され得る。そのため、半導体基板2の第1の面2a側から入射される光によって半導体基板2内に生成される正孔を効率的に収集することができる。
 半導体基板2と第1の非晶質半導体膜6との間に、第1のi型非晶質半導体膜5が設けられてもよい。本実施の形態では、第1のi型非晶質半導体膜5として、i型の非晶質シリコン膜が用いられている。第1のi型非晶質半導体膜5も、互いに隣り合う複数の凹部8の間の半導体基板2の第2の面2b上に設けられている。第1のi型非晶質半導体膜5は、第1の非晶質半導体膜6と同じ形状及び同じ面積を有してもよい。光電変換素子1は、第1のi型非晶質半導体膜5を有していなくてもよい。
 第1の非晶質半導体膜6上に、第1の電極15が設けられている。第1の電極15として、金属電極を例示することができる。本実施の形態では、第1の電極15として、銀(Ag)が用いられている。本実施の形態では、第1の電極15は、p型電極であってもよい。
 複数の島状の凹部8のそれぞれの上に、複数の島状の第2の非晶質半導体膜11が設けられている。第2の非晶質半導体膜11は第2の導電型を有し、この第2の導電型は、第1の非晶質半導体膜6が有する第1の導電型とは異なる。複数の島状の第2の非晶質半導体膜11は、n型またはp型の非晶質半導体膜であり得る。本実施の形態では、複数の島状の第2の非晶質半導体膜11として、n型の非晶質シリコン膜が用いられている。
 本実施の形態では、半導体基板2の第2の面2b側から見たときに、複数の島状の第2の非晶質半導体膜11のそれぞれは円形を有している(図1(B)を参照)。半導体基板2の第2の面2b側から見たときに、複数の島状の第2の非晶質半導体膜11のそれぞれは、他の形状を有していてもよい。
 半導体基板2の第2の面2b側から見たときの複数の島状の第2の非晶質半導体膜11のそれぞれにおける最長距離は、半導体基板2の一辺の長さの1/2以下であってもよく、1/3以下であってもよい。本実施の形態では、この最長距離は、複数の島状の第2の非晶質半導体膜11のそれぞれの直径である。本実施の形態では、半導体基板2の第2の面2b側から見たときの複数の島状の第2の非晶質半導体膜11のそれぞれにおける最長距離は、半導体基板2の一辺の長さの1/4以下である。半導体基板2の第2の面2b側から見たときの半導体基板2の面積に対する第2の非晶質半導体膜11の面積の割合は、5%以上50%以下であり、好ましくは、10%以上45%以下であり、より好ましくは、20%以上40%以下である。
 本実施の形態では、複数の島状の第2の非晶質半導体膜11は、半導体基板2の第2の面2bに正方格子のパターンで配置されている(図1(A)及び図1(B)を参照)。複数の島状の第2の非晶質半導体膜11の配置パターンは、正方格子に限られず、三角格子や非周期パターンであってもよい。
 半導体基板2と複数の島状の第2の非晶質半導体膜11との間に、複数の島状の第2のi型非晶質半導体膜10が設けられてもよい。本実施の形態では、複数の島状の第2のi型非晶質半導体膜10として、i型の非晶質シリコン膜が用いられている。第2のi型非晶質半導体膜10も、複数の島状の凹部8のそれぞれの上に設けられている。本実施の形態では、複数の島状の第2のi型非晶質半導体膜10は、複数の島状の第2の非晶質半導体膜11と同じ形状及び同じ面積を有してもよい。光電変換素子1は、第2のi型非晶質半導体膜10を有していなくてもよい。
 複数の島状の第2の非晶質半導体膜11のそれぞれの上に、複数の第2の電極16が設けられている。本実施の形態では、半導体基板2の第2の面2b側から見たときに、複数の第2の電極16は円形を有している(図1(A)を参照)。半導体基板2の第2の面2b側から見たときに、複数の第2の電極16のそれぞれは、他の形状を有していてもよい。本実施の形態では、複数の第2の電極16は、半導体基板2の第2の面2bに正方格子のパターンで配置されている(図1(A)を参照)。複数の第2の電極16の配置パターンは、正方格子に限られず、三角格子や非周期パターンであってもよい。第2の電極16として、金属電極を例示することができる。本実施の形態では、第2の電極16として、銀(Ag)が用いられている。本実施の形態では、第2の電極16は、n型電極であってもよい。
 本実施の形態では、複数の島状の第2のi型非晶質半導体膜10の端部と複数の島状の第2の非晶質半導体膜11の端部とは、第1のi型非晶質半導体膜5の端部と第1の非晶質半導体膜6の端部9を覆っている。第2のi型非晶質半導体膜10の端部と第2の非晶質半導体膜11の端部とは、第1の非晶質半導体膜6の表面から突出している。第2のi型非晶質半導体膜10の端部は、それぞれ、第1の非晶質半導体膜6および第2の非晶質半導体膜11の双方に接している。第1の非晶質半導体膜6と第2の非晶質半導体膜11とは第2のi型非晶質半導体膜10によって分離されている。第1の非晶質半導体膜6は第2の非晶質半導体膜11に接触していない。そのため、光エネルギーを電気エネルギーに変換する効率を向上させることができる。
 複数の島状の第2のi型非晶質半導体膜10の端部と複数の島状の第2の非晶質半導体膜11の端部とは、第1のi型非晶質半導体膜5の端部と第1の非晶質半導体膜6の端部9とを覆っていなくてもよい。光エネルギーを電気エネルギーに変換する効率を向上させるために、第1の非晶質半導体膜6に接触しないように、第2の非晶質半導体膜11を形成することが好ましい。
 以下、図4から図13を参照して、光電変換素子1の製造方法の一例について説明する。
 図4を参照して、半導体基板2の第1の面2aに凹凸を形成する。例えば、n型単結晶シリコン基板である半導体基板2の第1の面2aを水酸化カリウム(KOH)を用いて異方性的にエッチングすることによって、半導体基板2の第1の面2aに凹凸を形成してもよい。
 図5を参照して、凹凸が形成された半導体基板2の第1の面2a上に、第3の非晶質半導体膜3が形成される。第3の非晶質半導体膜3の形成方法は特に限定されないが、たとえばプラズマ化学的気相堆積(CVD)法を用いることができる。
 図6を参照して、第3の非晶質半導体膜3上に、反射防止膜4が形成される。反射防止膜4の形成方法は特に限定されないが、たとえばプラズマ化学的気相堆積(CVD)法を用いることができる。
 図7を参照して、半導体基板2の第2の面2b上に、第1のi型非晶質半導体膜5が形成される。第1のi型非晶質半導体膜5の形成方法は特に限定されないが、たとえばプラズマ化学的気相堆積(CVD)法を用いることができる。
 図8を参照して、第1のi型非晶質半導体膜5上に、第1の非晶質半導体膜6が形成される。第1の非晶質半導体膜6の形成方法は特に限定されないが、たとえばプラズマ化学的気相堆積(CVD)法を用いることができる。
 図9を参照して、第1の非晶質半導体膜6上に、第1のマスク31を載置する。第1のマスク31は、複数の島状の第1の開口部を有している。第1のマスク31として、メタルマスクを例示することができる。
 図10を参照して、第1のマスク31の複数の島状の第1の開口部にある第1のi型非晶質半導体膜5、第1の非晶質半導体膜6及び半導体基板2をエッチングして、半導体基板2に複数の島状の凹部8を形成する。エッチング方法は、ドライエッチングでもウエットエッチングでもよい。
 図11を参照して、第1のマスク31を除去した後、第2のマスク33が第1の非晶質半導体膜6上に載置される。第2のマスク33は、複数の島状の第2の開口部を有している。第2のマスク33として、フォトレジストマスクを例示することができる。本実施の形態では、第2のマスク33の複数の島状の第2の開口部のそれぞれは、複数の島状の凹部8のそれぞれの外周よりも大きい。第2のマスク33の複数の島状の第2の開口部のそれぞれは、複数の島状の凹部8のそれぞれの外周よりも大きい。そのため、後の工程で、第2のマスク33の第2の開口部に形成される複数の島状の第2のi型非晶質半導体膜10の端部と複数の島状の第2の非晶質半導体膜11の端部とは、第1のi型非晶質半導体膜5の端部と第1の非晶質半導体膜6の端部9とを覆うことができる。
 図12を参照して、半導体基板2の第2の面2b側の全面上に、第2のi型非晶質半導体膜10が形成される。具体的には、第2のマスク33、第1の非晶質半導体膜6、第1のi型非晶質半導体膜5及び複数の島状の凹部8の上に、第2のi型非晶質半導体膜10が形成される。続いて、第2のi型非晶質半導体膜10の全面上に、第2の非晶質半導体膜11が形成される。第2のi型非晶質半導体膜10及び第2の非晶質半導体膜11の形成方法は特に限定されないが、たとえばプラズマ化学的気相堆積(CVD)法を用いることができる。
 図13を参照して、第2のマスク33を用いて、第2のi型非晶質半導体膜10及び第2の非晶質半導体膜11をリフトオフする。第2のマスク33の第2の開口部にある第2のi型非晶質半導体膜10及び第2の非晶質半導体膜11のみが、第1の非晶質半導体膜6、第1のi型非晶質半導体膜5及び複数の島状の凹部8の上に形成される。このようにして、複数の島状の凹部8のそれぞれの上に、複数の島状の第2のi型非晶質半導体膜10と複数の島状の第2の非晶質半導体膜11とが設けられる。
 第1の非晶質半導体膜6上に第1の電極15を形成する。複数の島状の第2の非晶質半導体膜11のそれぞれの上に、複数の第2の電極16を形成する。第1の電極15及び第2の電極16に対応する領域に開口部を有する第3のマスク(図示せず)を用いて、第1の電極15及び第2の電極16が形成されてもよい。こうして、図1(A)から図3に示される本実施の形態の光電変換素子1を得ることができる。
 本実施の形態の光電変換素子1の効果を説明する。
 本実施の形態の光電変換素子1は、第1の面2aと第1の面2aと反対側の第2の面2bとを有する半導体基板2と、第1の非晶質半導体膜6と、複数の島状の第2の非晶質半導体膜11と、第1の電極15と、複数の第2の電極16とを備える。半導体基板2は、第2の面2bに複数の島状の凹部8を有する。半導体基板2は、単結晶半導体基板である。第1の非晶質半導体膜6は、互いに隣り合う複数の島状の凹部8の間の第2の面2b上に設けられる。第1の非晶質半導体膜6は、第1の導電型を有する。第1の非晶質半導体膜6は、複数の島状の凹部8に対応する複数の開口部7を有する。複数の島状の第2の非晶質半導体膜11は、複数の島状の凹部8のそれぞれの上に設けられる。第2の非晶質半導体膜11は第1の導電型とは異なる第2の導電型を有する。第1の電極15は、第1の非晶質半導体膜6上に設けられる。複数の第2の電極16は、複数の島状の第2の非晶質半導体膜11のそれぞれの上に設けられる。そのため、第1の非晶質半導体膜6と複数の島状の第2の非晶質半導体膜11との面積比やパターン形状を自由に変更することができる。例えば、半導体基板2の第2の面2b側から見たときのn型単結晶半導体基板からなる半導体基板2の面積に対するp型の第1の非晶質半導体膜6の面積の割合を大きくすると、光電変換素子1における電流収集を向上させることができる。他方、半導体基板2の第2の面2b側から見たときのn型単結晶半導体基板からなる半導体基板2の面積に対するn型の第2の非晶質半導体膜11の面積の割合を大きくすると、光電変換素子1におけるパッシベーション性を向上させることができる。その結果、本実施の形態の光電変換素子1により、設計の自由度が向上された光電変換素子を提供することができる。
 本実施の形態の光電変換素子1は、第1の面2aと第1の面2aと反対側の第2の面2bとを有する半導体基板2と、第1の非晶質半導体膜6と、複数の島状の第2の非晶質半導体膜11と、第1の電極15と、複数の第2の電極16とを備える。半導体基板2は、第2の面2bに複数の島状の凹部8を有する。第1の非晶質半導体膜6は、互いに隣り合う複数の島状の凹部8の間の第2の面2b上に設けられる。複数の島状の第2の非晶質半導体膜11は、複数の島状の凹部8のそれぞれの上に設けられる。第1の電極15は、第1の非晶質半導体膜6上に設けられる。複数の第2の電極16は、複数の島状の第2の非晶質半導体膜11のそれぞれの上に設けられる。そのため、半導体基板2と第1の非晶質半導体膜6との接合面積を増加させることができ、光電変換素子1においてpn接合またはpin接合の接合面積を増加させることができる。例えば、半導体基板の裏面に設けられた線状の凹凸に対応して線状のp型の非晶質半導体膜及び線状のn型の非晶質半導体膜を有する比較例の光電変換素子よりも、本実施の形態の光電変換素子1では、n型単結晶半導体基板からなる半導体基板2とp型の第1の非晶質半導体膜6との接合面積を増加させることができる。その結果、本実施の形態の光電変換素子1によれば、光エネルギーを電気エネルギーに変換する効率を向上させることができる。
 本実施の形態の光電変換素子1では、第1の電極15及び第2の電極16は、半導体基板2の第2の面2b側に設けられている。第1の電極15及び第2の電極16は、光の入射面である半導体基板2の第1の面2a側に設けられていない。本実施の形態の光電変換素子1では、光電変換素子1に入射する光が第1の電極15及び第2の電極16によって遮られない。そのため、本実施の形態の光電変換素子1によれば、高い短絡電流JSCが得られ、光エネルギーを電気エネルギーに変換する効率を向上させることができる。
 本実施の形態の光電変換素子1では、単結晶半導体基板である半導体基板2は、第1の非晶質半導体膜6及び複数の島状の第2の非晶質半導体膜11と接しているか、第1のi型非晶質半導体膜5及び複数の島状の第2のi型非晶質半導体膜10と接している。本実施の形態の光電変換素子1では、単結晶半導体基板である半導体基板2と非晶質半導体膜(第1の非晶質半導体膜6及び複数の島状の第2の非晶質半導体膜11、または、第1のi型非晶質半導体膜5及び複数の島状の第2のi型非晶質半導体膜10)とがヘテロ接合する。そのため、向上したパッシベーション性と高い開放電圧VOCとを有する光電変換素子1が得られる。本実施の形態の光電変換素子1によれば、光エネルギーを電気エネルギーに変換する効率を向上させることができる。
 本実施の形態の光電変換素子1では、半導体基板2の第2の面2b側から見たときに、複数の島状の凹部8及び複数の島状の第2の非晶質半導体膜11は、格子状に配置されてもよい。本実施の形態の光電変換素子1では、半導体基板2は第2の面2bに複数の島状の凹部8を有する。複数の島状の凹部8のそれぞれの上に複数の島状の第2の非晶質半導体膜11が設けられている。そのため、半導体基板2の第2の面2b側から見たときに、複数の島状の第2の非晶質半導体膜11を、正方格子、三角格子、非周期パターン等の任意のパターンで配置することが可能になる。その結果、本実施の形態の光電変換素子1により、設計の自由度が向上された光電変換素子を提供することができる。
 本実施の形態の光電変換素子1では、半導体基板2の第2の面2b側から見たときに、複数の島状の第2の非晶質半導体膜11のそれぞれと第1の非晶質半導体膜6の複数の開口部7のそれぞれとは、円形の形状を有してもよい。半導体基板2の第1の面2a側から入射する光によって半導体基板2内に生成されるキャリア(電子または正孔)は、半導体基板2の第2の面2b上に形成された複数の島状の第2の非晶質半導体膜11または第1の非晶質半導体膜6へ移動する。半導体基板2の第2の面2b側から見たときに、複数の島状の第2の非晶質半導体膜11のそれぞれと第1の非晶質半導体膜6の複数の開口部7のそれぞれとは、円形の形状を有している。そのため、複数の島状の第2の非晶質半導体膜11または第1の非晶質半導体膜6の特定の部分にこのキャリアが集中して、この特定の部分の温度が上昇することを抑制することができる。複数の島状の第2の非晶質半導体膜11または第1の非晶質半導体膜6の温度上昇に起因して、複数の島状の第2の非晶質半導体膜11または第1の非晶質半導体膜6が劣化すること、または、複数の島状の第2の非晶質半導体膜11または第1の非晶質半導体膜6が半導体基板2から剥がれることを抑制することができる。
 本実施の形態の光電変換素子1では、半導体基板2の第2の面2b側から見たときの、第1の非晶質半導体膜6によるキャリアの収集に寄与しない領域の最長距離wは、半導体基板2の第1の面2a側から入射する光によって生成される少数キャリアの半導体基板2内における拡散長以下であってもよい。そのため、この少数キャリアを、第1の非晶質半導体膜6及び第1の電極15を通じて効率的に収集することができる。例えば、半導体基板2の第2の面2b側から見たときの、p型の第1の非晶質半導体膜6によるキャリアの収集に寄与しない領域の最長距離wを、n型単結晶半導体基板である半導体基板2の第1の面2a側から入射する光によって半導体基板2内に生成される少数キャリア(正孔)の半導体基板2内における拡散長以下とする。このため、この少数キャリア(正孔)をp型の第1の非晶質半導体膜6及び第1の電極15を通じて効率的に収集することができる。
 本実施の形態の光電変換素子1は、半導体基板2と第1の非晶質半導体膜6との間に第1のi型非晶質半導体膜5をさらに備えていてもよい。第1のi型非晶質半導体膜5は、半導体基板2の第1の面2a側から入射する光によって半導体基板2内に生成されるキャリア(電子または正孔)が再結合することを低減することができる。そのため、本実施の形態の光電変換素子1によれば、光エネルギーを電気エネルギーに変換する効率を向上させることができる。
 本実施の形態の光電変換素子1は、半導体基板2と第2の非晶質半導体膜11との間に第2のi型非晶質半導体膜10をさらに備えていてもよい。第2のi型非晶質半導体膜10は、半導体基板2の第1の面2a側から入射する光によって半導体基板2内に生成されるキャリア(電子または正孔)が再結合することを低減することができる。そのため、本実施の形態の光電変換素子1によれば、光エネルギーを電気エネルギーに変換する効率を向上させることができる。
 本実施の形態の第1の変形例として、半導体基板2、第1の非晶質半導体膜6及び第2の非晶質半導体膜11として、それぞれ、n型単結晶シリコン基板、n型非晶質半導体膜及びp型非晶質半導体膜が用いられてもよい。本実施の形態の第1の変形例の光電変換素子では、第2の非晶質半導体膜11よりも大きな面積を有する第1の非晶質半導体膜6はn型非晶質半導体膜である。そのため、本実施の形態の第1の変形例の光電変換素子におけるパッシベーション性を向上させることができる。
 本実施の形態の第1の変形例では、複数の島状の凹部8の底面及び側面に、p型の第2の非晶質半導体膜11が設けられる。そのため、n型単結晶半導体基板である半導体基板2とp型の第2の非晶質半導体膜11との接合面積を増加させることができ、本実施の形態の第1の変形例の光電変換素子においてpn接合またはpin接合の接合面積を増加させることができる。本実施の形態の第1の変形例の光電変換素子によれば、半導体基板2に入射する光によってn型単結晶シリコン基板からなる半導体基板2内に生成される少数キャリア(正孔)を、第2の非晶質半導体膜11及び第2の電極16を通じて効率的に収集することができる。こうして、光エネルギーを電気エネルギーに変換する効率を向上させることができる。
 本実施の形態の第1の変形例では、半導体基板2の第2の面2b側から見たときの、互いに隣り合う複数の島状の第2の非晶質半導体膜11の間において第2の非晶質半導体膜11によるキャリアの収集に寄与しない領域の最長距離wは、半導体基板2の第1の面2a側から入射する光によって半導体基板2内に生成される少数キャリアの半導体基板2内における拡散長以下であってもよい。本実施の形態では、第2の導電型を有する第2の非晶質半導体膜11によるキャリアの収集に寄与しない領域は、第2の導電型と異なる第1の導電型を有する第1の非晶質半導体膜6が形成された領域、言い換えると複数の凹部8の間の領域である。そして、本実施の形態では、複数の島状の凹部8及び複数の島状の第2の非晶質半導体膜11は正方格子状に配置されている。そのため、互いに隣り合う複数の島状の第2の非晶質半導体膜11の間において第2の非晶質半導体膜11によるキャリアの収集に寄与しない領域の最長距離wは、正方格子の対角線が延在する方向において互いに隣り合う複数の凹部8の距離である。
 互いに隣り合う複数の島状の第2の非晶質半導体膜11の間において第2の非晶質半導体膜11によるキャリアの収集に寄与しない領域の最長距離wを、半導体基板2の第1の面2a側から入射する光によって半導体基板2内に生成される少数キャリアの半導体基板2内における拡散長以下とする。このため、この少数キャリアを、複数の島状の第2の非晶質半導体膜11及び第2の電極16を通じて効率的に収集することができる。例えば、互いに隣り合う複数の島状のp型の第2の非晶質半導体膜11の間において第2の非晶質半導体膜11によるキャリアの収集に寄与しない領域の最長距離wを、n型単結晶半導体基板である半導体基板2の第1の面2a側から入射する光によって半導体基板2内に生成される少数キャリアである正孔の半導体基板2内における拡散長以下とする。このため、この少数キャリアである正孔をp型の複数の島状の第2の非晶質半導体膜11及び第2の電極16を通じて効率的に収集することができる。
 本実施の形態の第2の変形例として、半導体基板2、第1の非晶質半導体膜6及び第2の非晶質半導体膜11として、それぞれ、p型単結晶シリコン基板、p型非晶質半導体膜及びn型非晶質半導体膜が用いられてもよい。本実施の形態の光電変換素子1の第2の変形例では、複数の島状の凹部8の底面及び側面に、n型の第2の非晶質半導体膜11が設けられる。そのため、p型単結晶半導体基板である半導体基板2とn型の第2の非晶質半導体膜11との接合面積を増加させることができ、本実施の形態の第2の変形例の光電変換素子においてpn接合またはpin接合の接合面積を増加させることができる。本実施の形態の第2の変形例の光電変換素子によれば、光エネルギーを電気エネルギーに変換する効率を向上させることができる。本実施の形態の第3の変形例として、半導体基板2、第1の非晶質半導体膜6及び第2の非晶質半導体膜11として、それぞれ、p型単結晶シリコン基板、n型非晶質半導体膜及びp型非晶質半導体膜が用いられてもよい。
 (実施の形態2)
 図14を参照して、実施の形態2の光電変換素子1aについて説明する。本実施の形態の光電変換素子1aは、基本的には、図1に示す実施の形態1の光電変換素子1と同様の構成を備え、同様の効果を得ることができるが、本実施の形態の光電変換素子1aは、実施の形態1の光電変換素子1とは、複数の島状の凹部8aの底部の形状において異なる。
 本実施の形態の光電変換素子1aにおける複数の島状の凹部8aの底部は、半導体基板2の第2の面2bに対して略垂直な断面において、第1の丸い角18を有する。この第1の丸い角18の曲率半径は、0μmより大きく10μm以下、好ましくは1μm以上8μm以下、より好ましくは、3μm以上7μm以下である。ウェットエッチングによって複数の島状の凹部8aを形成することによって、底部が第1の丸い角を有する複数の島状の凹部8aを製造することができる。
 本実施の形態の光電変換素子1aの効果を説明する。
 本実施の形態の光電変換素子1aでは、複数の島状の凹部8aの底部は、第2の面2bに対して略垂直な断面において、第1の丸い角18を有している。半導体基板2の第1の面2a側から入射する光によって半導体基板2内に生成されるキャリア(電子または正孔)は、半導体基板2の第2の面2b上に形成された複数の島状の第2の非晶質半導体膜11または第1の非晶質半導体膜6へ移動する。複数の島状の凹部8aの底部は、半導体基板2の第2の面2bに対して略垂直な断面において、第1の丸い角18を有している。そのため、複数の島状の第2の非晶質半導体膜11の特定の部分にこのキャリアが集中してこの特定の部分の温度が上昇することを抑制することができる。複数の島状の第2の非晶質半導体膜11の温度上昇に起因する、複数の島状の第2の非晶質半導体膜11が劣化すること、または、複数の島状の第2の非晶質半導体膜11が半導体基板2から剥がれることを抑制することができる。
 本実施の形態の光電変換素子1aでは、複数の島状の凹部8aの底部は、第2の面2bに対して略垂直な断面において、第1の丸い角18を有する。第1の丸い角18の曲率半径は、0μmより大きく10μm以下である。このため、半導体基板2の第1の面2a側から入射する光によって半導体基板2内に生成されるキャリア(電子または正孔)が、複数の島状の第2の非晶質半導体膜11の特定の部分に集中して、この特定の部分の温度が上昇することをさらに抑制することができる。そのため、複数の島状の第2の非晶質半導体膜11の温度上昇に起因する、複数の島状の第2の非晶質半導体膜11が劣化すること、または、複数の島状の第2の非晶質半導体膜11が半導体基板2から剥がれることをさらに抑制することができる。
 (実施の形態3)
 図15(A)及び図15(B)を参照して、実施の形態3の光電変換素子1bについて説明する。本実施の形態の光電変換素子1bは、基本的には、図1に示す実施の形態1の光電変換素子1と同様の構成を備え、同様の効果を得ることができるが、本実施の形態の光電変換素子1bは、実施の形態1の光電変換素子1とは、複数の島状の凹部8b(図示せず)、複数の島状の第2のi型非晶質半導体膜10b(図示せず)、複数の島状の第2の非晶質半導体膜11b、複数の島状の第2の電極16bの配置において異なる。特定的には、本実施の形態の光電変換素子1bでは、半導体基板2の第2の面2b側から見たときに、複数の島状の凹部8b、第1の非晶質半導体膜6の複数の開口部7b、複数の島状の第2のi型非晶質半導体膜10b、複数の島状の第2の非晶質半導体膜11b及び複数の島状の第2の電極16bが、千鳥状に配置されている。
 本実施の形態の光電変換素子1bでは、半導体基板2の第2の面2b側から見たときに、複数の島状の凹部8b及び複数の島状の第2の非晶質半導体膜11bは、千鳥状に配置されてもよい。本実施の形態の光電変換素子1bでは、半導体基板2は第2の面2bに複数の島状の凹部8bを有する。第1の非晶質半導体膜6bは複数の島状の凹部8bに対応する複数の開口部7bを有する。複数の島状の凹部8bのそれぞれの上に複数の島状の第2の非晶質半導体膜11bが設けられている。そのため、半導体基板2の第2の面2b側から見たときに、複数の島状の凹部8bと、第1の非晶質半導体膜6bの複数の開口部7bと、複数の島状の第2の非晶質半導体膜11bとを千鳥状などの任意のパターンで配置することが可能になる。その結果、本実施の形態の光電変換素子1bにより、設計の自由度が向上された光電変換素子を提供することができる。
 複数の島状の凹部8b、第1の非晶質半導体膜6の複数の開口部7b、複数の島状の第2のi型非晶質半導体膜10b、複数の島状の第2の非晶質半導体膜11b及び複数の島状の第2の電極16bの配置パターンは、本実施の形態の千鳥状や実施の形態1の正方格子に限られず、三角格子または非周期的な配置等の他の配置パターンであってもよい。
 (実施の形態4)
 図16(A)及び図16(B)を参照して、実施の形態4の光電変換素子1cについて説明する。本実施の形態の光電変換素子1cは、基本的には、図1に示す実施の形態1の光電変換素子1と同様の構成を備え、同様の効果を得ることができるが、本実施の形態の光電変換素子1cは、実施の形態1の光電変換素子1とは、複数の島状の凹部8c(図示せず)、複数の島状の第2のi型非晶質半導体膜10c(図示せず)、複数の島状の第2の非晶質半導体膜11c及び複数の島状の第2の電極16cの形状において異なる。
 特定的には、本実施の形態の光電変換素子1cでは、半導体基板2の第2の面2b側から見たときに、複数の島状の凹部8cのそれぞれと、複数の島状の第2の非晶質半導体膜11cのそれぞれと、第1の非晶質半導体膜6cの複数の開口部7cのそれぞれと、複数の島状の第2の電極16cのそれぞれとは、第2の丸い角を有する長方形の形状を有する。本実施の形態における長方形の凹部8cの短辺の長さは、実施の形態1における円形の凹部8の直径と同じであるが、本実施の形態における長方形の凹部8cの長辺の長さは、実施の形態1における円形の凹部8の直径よりも大きい。本実施の形態における長方形の第2の非晶質半導体膜11cの短辺の長さは、実施の形態1における円形の第2の非晶質半導体膜11の直径と同じであるが、本実施の形態における長方形の第2の非晶質半導体膜11cの長辺の長さは、実施の形態1における円形の第2の非晶質半導体膜11の直径よりも大きい。本実施の形態における長方形の開口部7cの短辺の長さは、実施の形態1における円形の開口部7の直径と同じであるが、本実施の形態における長方形の開口部7cの長辺の長さは、実施の形態1における円形の開口部7の直径よりも大きい。本実施の形態における長方形の第2の電極16cの短辺の長さは、実施の形態1における円形の第2の電極16の直径と同じであるが、本実施の形態における長方形の第2の電極16cの長辺の長さは、実施の形態1における円形の第2の電極16の直径よりも大きい。
 本実施の形態の光電変換素子1cでは、長方形の第2の非晶質半導体膜11cの長辺の長さは、実施の形態1における円形の第2の非晶質半導体膜11の直径よりも大きい。半導体基板2の第2の面2b側から見たときに、本実施の形態における長方形の第2の非晶質半導体膜11cは、実施の形態1における円形の第2の非晶質半導体膜11よりも大きな面積を有している。そのため、第2の非晶質半導体膜11c及び第2の電極16を通じて、半導体基板2内で生成されるキャリアを効率的に収集することができる。
 本実施の形態の光電変換素子1cでは、長方形の第2の電極16cの長辺の長さは、実施の形態1における円形の第2の電極16の直径よりも大きい。そのため、図示しない外部配線と第2の電極16cとの接触面積を大きくすることができる。本実施の形態の光電変換素子1cによれば、光電変換素子1cによって得られた電気エネルギーを低損失で外部配線に伝送することができる。
 半導体基板2の第1の面2a側から入射する光によって半導体基板2内に生成されるキャリアは、半導体基板2の第2の面2b上に形成された複数の島状の第2の非晶質半導体膜11cまたは第1の非晶質半導体膜6cへ移動する。半導体基板2の第2の面2b側から見たときに、複数の島状の第2の非晶質半導体膜11cのそれぞれと第1の非晶質半導体膜6cの複数の開口部7cのそれぞれとは、第2の丸い角を有する長方形の形状を有している。そのため、複数の島状の第2の非晶質半導体膜11cまたは第1の非晶質半導体膜6cのある特定の部分にこのキャリアが集中して、この特定の部分の温度が上昇することを抑制することができる。複数の島状の第2の非晶質半導体膜11cまたは第1の非晶質半導体膜6cの温度上昇に起因する、複数の島状の第2の非晶質半導体膜11cまたは第1の非晶質半導体膜6cが劣化すること、または、複数の島状の第2の非晶質半導体膜11cまたは第1の非晶質半導体膜6cが半導体基板2から剥がれることを抑制することができる。
 (実施の形態5)
 図17(A)及び図17(B)を参照して、実施の形態5の光電変換素子1dについて説明する。本実施の形態の光電変換素子1dは、基本的には、図1に示す実施の形態1の光電変換素子1と同様の構成を備え、同様の効果を得ることができるが、本実施の形態の光電変換素子1dは、実施の形態1の光電変換素子1とは、複数の島状の凹部8d(図示せず)、複数の島状の第2のi型非晶質半導体膜10d(図示せず)、複数の島状の第2の非晶質半導体膜11d及び複数の島状の第2の電極16dの形状において異なる。
 特定的には、本実施の形態の変形例の光電変換素子1dでは、半導体基板2の第2の面2b側から見たときに、複数の島状の凹部8dのそれぞれは、正六角形の形状を有する。半導体基板2の第2の面2b側から見たときに、複数の島状の第2のi型非晶質半導体膜10dのそれぞれは、正六角形の形状を有する。半導体基板2の第2の面2b側から見たときに、複数の島状の第2の非晶質半導体膜11dのそれぞれは、正六角形の形状を有する。半導体基板2の第2の面2b側から見たときに、第1の非晶質半導体膜6dの複数の開口部7dのそれぞれは、正六角形の形状を有する。半導体基板2の第2の面2b側から見たときに、複数の島状の第2の電極16dのそれぞれは、正六角形の形状を有する。
 半導体基板2の第2の面2b側から見たときに、複数の島状の凹部8dのそれぞれは、他の多角形の形状、好ましくは、全ての角が鈍角である多角形の形状を有してもよい。半導体基板2の第2の面2b側から見たときに、複数の島状の第2のi型非晶質半導体膜10dのそれぞれは、他の多角形の形状、好ましくは、全ての角が鈍角である多角形の形状を有してもよい。半導体基板2の第2の面2b側から見たときに、複数の島状の第2の非晶質半導体膜11dのそれぞれは、他の多角形の形状、好ましくは、全ての角が鈍角である多角形の形状を有してもよい。半導体基板2の第2の面2b側から見たときに、第1の非晶質半導体膜6dの複数の開口部7dのそれぞれは、他の多角形の形状、好ましくは、全ての角が鈍角である多角形の形状を有してもよい。半導体基板2の第2の面2b側から見たときに、複数の島状の第2の電極16dのそれぞれは、他の多角形の形状、好ましくは、全ての角が鈍角である多角形の形状を有してもよい。
 半導体基板2の第2の面2b側から見たときに、複数の島状の凹部8dのそれぞれは、第2の丸い角を有する多角形の形状を有してもよい。半導体基板2の第2の面2b側から見たときに、複数の島状の第2のi型非晶質半導体膜10dのそれぞれは、第2の丸い角を有する多角形の形状を有してもよい。半導体基板2の第2の面2b側から見たときに、複数の島状の第2の非晶質半導体膜11dのそれぞれは、第2の丸い角を有する多角形の形状を有してもよい。半導体基板2の第2の面2b側から見たときに、第1の非晶質半導体膜6dの複数の開口部7dのそれぞれは、第2の丸い角を有する多角形の形状を有してもよい。半導体基板2の第2の面2b側から見たときに、複数の島状の第2の電極16dのそれぞれは、第2の丸い角を有する多角形の形状を有してもよい。
 本実施の形態の光電変換素子1dでは、半導体基板2は第2の面2bに複数の島状の凹部8dを有する。複数の島状の凹部8dのそれぞれの上に複数の島状の第2の非晶質半導体膜11dが設けられている。そのため、半導体基板2の第2の面2b側から見たときに、複数の島状の第2の非晶質半導体膜11dのそれぞれと第1の非晶質半導体膜6dの複数の開口部7dのそれぞれとは、多角形または第2の丸い角を有する多角形の形状を有することが可能になる。その結果、本実施の形態の光電変換素子1dにより、設計の自由度が向上された光電変換素子を提供することができる。
 複数の島状の第2の非晶質半導体膜11dのそれぞれと、第1の非晶質半導体膜6dの複数の開口部7dのそれぞれとが、全ての角が鈍角である多角形または第2の丸い角を有する多角形の形状を有する。そのため、半導体基板2の第1の面2a側から入射する光によって半導体基板2内に生成されるキャリアが、複数の島状の第2の非晶質半導体膜11dまたは第1の非晶質半導体膜6dのある特定の部分に集中して、この特定の部分の温度が上昇することを抑制することができる。複数の島状の第2の非晶質半導体膜11dまたは第1の非晶質半導体膜6dの温度上昇に起因する、複数の島状の第2の非晶質半導体膜11dまたは第1の非晶質半導体膜6dが劣化すること、または、複数の島状の第2の非晶質半導体膜11dまたは第1の非晶質半導体膜6dが半導体基板2から剥がれることを抑制することができる。
 (実施の形態6)
 次に、図18から図20を参照して、実施の形態6の光電変換素子1eについて説明する。本実施の形態の光電変換素子1eは、基本的には、図1に示す実施の形態1の光電変換素子1と同様の効果を得ることができるが、以下の点で異なる。
 本実施の形態の複数の島状の凹部8eは、実施の形態1の複数の島状の凹部8よりも大きい。特定的には、半導体基板2の第2の面2b側から見たときの半導体基板2の面積に対する複数の島状の凹部8eの面積の割合は、50%以上95%以下であり、好ましくは、55%以上90%以下であり、より好ましくは、60%以上80%以下である。本実施の形態では、複数の島状の凹部8eは、半導体基板2の第2の面2bに正方格子状に配置されている。複数の島状の凹部8eの配置パターンは、正方格子に限られない。
 複数の島状の凹部8eのそれぞれは、半導体基板2の第2の面2b側から見たときに、第2の丸い角を有する正方形の形状を有してもよい。複数の島状の第2のi型非晶質半導体膜10eのそれぞれは、半導体基板2の第2の面2b側から見たときに、第2の丸い角を有する正方形の形状を有してもよい。複数の島状の第2の非晶質半導体膜11eのそれぞれは、半導体基板2の第2の面2b側から見たときに、第2の丸い角を有する正方形の形状を有してもよい。第1の非晶質半導体膜6eの複数の開口部7eのそれぞれは、半導体基板2の第2の面2b側から見たときに、第2の丸い角を有する正方形の形状を有してもよい。複数の島状の第2の電極16eのそれぞれは、半導体基板2の第2の面2b側から見たときに、第2の丸い角を有する正方形の形状を有してもよい。
 複数の島状の凹部8eのそれぞれの上に、複数の島状の第2のi型非晶質半導体膜10eが設けられる。複数の島状の第2のi型非晶質半導体膜10e上に複数の島状の第2の非晶質半導体膜11eが設けられる。半導体基板2の第2の面2b側から見たときの、半導体基板2の面積に対する、複数の島状の第2のi型非晶質半導体膜10eの面積の割合及び複数の島状の第2の非晶質半導体膜11eの面積の割合は、50%以上95%以下であり、好ましくは、55%以上90%以下であり、より好ましくは、60%以上80%以下である。本実施の形態では、複数の島状の第2のi型非晶質半導体膜10eの端部と複数の島状の第2の非晶質半導体膜11eの端部12eとは、互いに隣り合う複数の島状の凹部8eの間の半導体基板2の第2の面2b上の一部を覆っている。
 互いに隣り合う複数の凹部8の間の半導体基板2の第2の面2b上に、第1のi型非晶質半導体膜5eと第1の非晶質半導体膜6eが設けられている。半導体基板2の第2の面2b側から見たときの、半導体基板2の面積に対する、第1のi型非晶質半導体膜5eの面積の割合及び第1の非晶質半導体膜6eの面積の割合は、5%以上50%以下であり、好ましくは、10%以上45%以下であり、より好ましくは、20%以上40%以下である。本実施の形態では、第1のi型非晶質半導体膜5eの端部と第1の非晶質半導体膜6eの端部とは、複数の島状の第2のi型非晶質半導体膜10eの端部と複数の島状の第2の非晶質半導体膜11eの端部12eを覆っている。第1のi型非晶質半導体膜5eの端部は、第1の非晶質半導体膜6eおよび第2の非晶質半導体膜11eの双方に接している。第1の非晶質半導体膜6eと第2の非晶質半導体膜11eとは第1のi型非晶質半導体膜5eによって分離されている。第1の非晶質半導体膜6eは第2の非晶質半導体膜11eに接触していない。そのため、光エネルギーを電気エネルギーに変換する効率を向上させることができる。
 半導体基板2は、n型またはp型の単結晶半導体基板であり得る。本実施の形態では、半導体基板2として、n型単結晶シリコン基板が用いられている。第1の導電型を有する第1の非晶質半導体膜6eは、n型またはp型の非晶質半導体膜であり得る。本実施の形態では、第1の非晶質半導体膜6eとして、n型の非晶質シリコン膜が用いられている。本実施の形態では、第1の電極15eは、n電極として機能してもよい。第2の導電型を有する複数の島状の第2の非晶質半導体膜11eは、p型の非晶質半導体膜であり得る。本実施の形態では、第2の非晶質半導体膜11eとして、p型の非晶質シリコン膜が用いられている。本実施の形態では、第2の電極16eは、p電極として機能してもよい。
 本実施の形態の光電変換素子1eの製造方法を簡潔に説明する。マスクを用いて、複数の島状の凹部8eが形成された半導体基板2の第2の面2b上に、複数の島状の第2のi型非晶質半導体膜10eと第2の非晶質半導体膜11eとを形成する。それから、別のマスクを用いて、複数の島状の凹部8eの間の、半導体基板2上と第2の非晶質半導体膜11e上とに、第1のi型非晶質半導体膜5eと第1の非晶質半導体膜6eとを形成する。
 半導体基板2の第2の面2b側から見たときの、互いに隣り合う複数の島状の第2の非晶質半導体膜11eの間において第2の非晶質半導体膜11eによるキャリアの収集に寄与しない領域の最長距離wは、半導体基板2の第1の面2a側から入射する光によって半導体基板2内に生成される少数キャリアの半導体基板2内における拡散長以下であってもよい。本実施の形態の光電変換素子1eでは、第2の導電型を有する第2の非晶質半導体膜11eによるキャリアの収集に寄与しない領域は、第2の非晶質半導体膜11eが形成されていない領域である。本実施の形態の光電変換素子1eでは、複数の島状の凹部8e及び複数の島状の第2の非晶質半導体膜11eは正方格子状に配置されている。そのため、互いに隣り合う複数の島状の第2の非晶質半導体膜11eの間において第2の非晶質半導体膜11eによるキャリアの収集に寄与しない領域の最長距離wは、正方格子の対角線が延在する方向において隣り合う複数の島状の第2の非晶質半導体膜11eの間の距離である。
 本実施の形態の光電変換素子1eの効果を説明する。
 本実施の形態の光電変換素子1eでは、複数の島状の凹部8eの底面及び側面に、p型の第2の非晶質半導体膜11eが設けられる。そのため、n型単結晶半導体基板である半導体基板2とp型の第2の非晶質半導体膜11eとの接合面積を増加させることができ、光電変換素子1eにおいてpn接合またはpin接合の接合面積を増加させることができる。その結果、光電変換素子1eによれば、光エネルギーを電気エネルギーに変換する効率を向上させることができる。
 本実施の形態の光電変換素子1eでは、複数の島状の凹部8eの底面及び側面に、p型の第2の非晶質半導体膜11eが設けられる。p型の第2の非晶質半導体膜11eは、入射面である半導体基板2の第1の面2aの近くに位置され得る。半導体基板2に入射する光によって半導体基板2内に生成されるキャリア(特に、少数キャリアである正孔)が第2の非晶質半導体膜11eに移動する距離は減少され得る。そのため、本実施の形態の光電変換素子1eによれば、半導体基板2に入射する光によって半導体基板2内に生成されるキャリア(特に、少数キャリアである正孔)を、第2の非晶質半導体膜11e及び第2の電極16eを通じて効率的に収集することができる。その結果、光電変換素子1eによれば、光エネルギーを電気エネルギーに変換する効率を向上させることができる。
 本実施の形態の光電変換素子1eでは、n型単結晶半導体基板である半導体基板2とp型の第2の非晶質半導体膜11eとを含むpn接合またはpin接合が、複数の凹部8e内に設けられる。そのため、n型単結晶半導体基板である半導体基板2とp型の第2の非晶質半導体膜11eとを含むpn接合またはpin接合は、複数の凹部8eの間の半導体基板2によって機械的に保護される。その結果、信頼性が高い光電変換素子1eを得ることができる。
 本実施の形態の光電変換素子1eでは、半導体基板2は第2の面2bに複数の島状の凹部8eを有する。第1の非晶質半導体膜6eは、複数の島状の凹部8eに対応する複数の開口部7eを有する。複数の島状の凹部8eのそれぞれの上に複数の島状の第2の非晶質半導体膜11eが設けられている。そのため、半導体基板2の第2の面2b側から見たときに、複数の島状の第2の非晶質半導体膜11eと第1の非晶質半導体膜6eの複数の開口部7eとを、複数の島状の凹部8eの配置パターンと同様の任意のパターンで配置することが可能になる。その結果、本実施の形態の光電変換素子1eにより、設計の自由度が向上された光電変換素子を提供することができる。
 本実施の形態の光電変換素子1eでは、半導体基板2の第2の面2b側から見たときの、互いに隣り合う複数の島状の第2の非晶質半導体膜11eの間において第2の非晶質半導体膜11eによるキャリアの収集に寄与しない領域の最長距離wは、半導体基板2の第1の面2a側から入射する光によって半導体基板2内に生成される少数キャリア(本実施の形態では正孔)の半導体基板2内における拡散長以下であってもよい。そのため、この少数キャリアを複数の島状の第2の非晶質半導体膜11e及び第2の電極16eを通じて効率的に収集することができる。例えば、互いに隣り合う複数の島状のp型の第2の非晶質半導体膜11eの間において第2の非晶質半導体膜11eによるキャリアの収集に寄与しない領域の最長距離wを、n型単結晶半導体基板である半導体基板2の第1の面2a側から入射する光によって半導体基板2内に生成される少数キャリアである正孔の半導体基板2内における拡散長以下とする。そのため、この少数キャリアである正孔をp型の複数の島状の第2の非晶質半導体膜11e及び第2の電極16eを通じて効率的に収集することができる。
 半導体基板2の第1の面2a側から入射する光によって半導体基板2内に生成されるキャリア(電子または正孔)は、半導体基板2の第2の面2b上に形成された第1の非晶質半導体膜6eまたは複数の島状の第2の非晶質半導体膜11eへ移動する。半導体基板2の第2の面2b側から見たときに、複数の島状の第2の非晶質半導体膜11eのそれぞれと第1の非晶質半導体膜6eの複数の開口部7eのそれぞれとは、第2の丸い角を有する正方形の形状を有している。そのため、複数の島状の第2の非晶質半導体膜11eまたは第1の非晶質半導体膜6eの特定の部分にこのキャリアが集中して、この特定の部分の温度が上昇することを抑制することができる。複数の島状の第2の非晶質半導体膜11eまたは第1の非晶質半導体膜6eの温度上昇に起因する、複数の島状の第2の非晶質半導体膜11e若しくは第1の非晶質半導体膜6eが劣化すること、または、複数の島状の第2の非晶質半導体膜11e若しくは第1の非晶質半導体膜6eが半導体基板2から剥がれることを抑制することができる。
 エッチングによって半導体基板2に複数の島状の凹部8eを形成すると、複数の島状の凹部8eに表面荒れが生じることがある。この複数の島状の凹部8eにおける表面荒れを除去するために、エッチングによって半導体基板2に複数の島状の凹部8eを形成した後に、表面荒れを除去する工程を行ってもよい。表面荒れを除去する工程の後に、複数の島状の凹部8eの底面及び側面に、p型の第2の非晶質半導体膜11eを形成すると、p型の第2の非晶質半導体膜11eにおいてキャリア(特に、少数キャリアである正孔)が再結合することを抑制することができる。そのため、光電変換素子1eにおいて光エネルギーを電気エネルギーに変換する効率を向上させることができる。
 本実施の形態の第1の変形例として、半導体基板2、第1の非晶質半導体膜6e、第2の非晶質半導体膜11eとして、それぞれ、n型単結晶シリコン基板、p型非晶質半導体膜、n型非晶質半導体膜が用いられてもよい。このように、半導体基板2の面積に対するn型の第2の非晶質半導体膜11eの面積の割合を大きくすると、向上したパッシベーションを有する光電変換素子を得ることができる。
 本実施の形態の第1の変形例において、半導体基板2の第2の面2b側から見たときの第1の非晶質半導体膜6eによるキャリアの収集に寄与しない領域の最長距離wは、半導体基板2に入射する光によって半導体基板2内に生成される少数キャリアの半導体基板2内における拡散長以下であってもよい。本実施の形態の第1の変形例において、第1の導電型を有する第1の非晶質半導体膜6eによるキャリアの収集に寄与しない領域は、第1の導電型と異なる第2の導電型を有する第2の非晶質半導体膜11eが形成された領域である。そのため、第1の非晶質半導体膜6eによるキャリアの収集に寄与しない領域の最長距離wは、島状の第2の非晶質半導体膜11e内の最大長さである。
 半導体基板2の第2の面2b側から見たときの第1の非晶質半導体膜6eによるキャリアの収集に寄与しない領域の最長距離wを、半導体基板2に入射する光によって半導体基板2内に生成される少数キャリアの半導体基板2内における拡散長以下とする。そのため、この少数キャリアを、第1の非晶質半導体膜6e及び第1の電極15eを通じて効率的に収集することができる。例えば、半導体基板2の第2の面2b側から見たときのp型の第1の非晶質半導体膜6eによるキャリアの収集に寄与しない領域の最長距離wを、n型単結晶半導体基板である半導体基板2に入射する光によって半導体基板2内に生成される少数キャリア(正孔)の半導体基板2内における拡散長以下とする。そのため、この少数キャリア(正孔)をp型の第1の非晶質半導体膜6e及び第1の電極15eを通じて効率的に収集することができる。
 本実施の形態の第2の変形例として、半導体基板2、第1の非晶質半導体膜6e、第2の非晶質半導体膜11eとして、それぞれ、p型単結晶シリコン基板、p型非晶質半導体膜、n型非晶質半導体膜が用いられてもよい。本実施の形態の第3の変形例として、半導体基板2、第1の非晶質半導体膜6e、第2の非晶質半導体膜11eとして、それぞれ、p型単結晶シリコン基板、n型非晶質半導体膜、p型非晶質半導体膜が用いられてもよい。本実施の形態の第4の変形例として、第1のi型非晶質半導体膜5e及び第2のi型非晶質半導体膜10eを設けなくてもよい。
 [付記]
 (1)ここで開示された実施形態は、第1の面と第1の面と反対側の第2の面とを有する半導体基板と、第1の非晶質半導体膜と、複数の島状の第2の非晶質半導体膜と、第1の電極と、複数の第2の電極とを備える光電変換素子である。半導体基板は、第2の面に複数の島状の凹部を有する。半導体基板は、単結晶半導体基板である。第1の非晶質半導体膜は、互いに隣り合う複数の島状の凹部の間の第2の面上に設けられる。第1の非晶質半導体膜は、第1の導電型を有する。第1の非晶質半導体膜は、複数の島状の凹部に対応する複数の開口部を有する。複数の島状の第2の非晶質半導体膜は、複数の島状の凹部のそれぞれの上に設けられる。第2の非晶質半導体膜は第1の導電型とは異なる第2の導電型を有する。第1の電極は、第1の非晶質半導体膜上に設けられる。複数の第2の電極は、複数の島状の第2の非晶質半導体膜のそれぞれの上に設けられる。ここで開示された実施形態の光電変換素子によれば、第1の非晶質半導体膜と複数の島状の第2の非晶質半導体膜との面積比やパターン形状を自由に変更することができ、設計の自由度が向上された光電変換素子を提供することができる。
 (2)ここで開示された実施形態の光電変換素子において、複数の島状の凹部の底部は、第2の面に対して略垂直な断面において、第1の丸い角を有していてもよい。複数の島状の凹部の底部は、第1の丸い角を有している。そのため、半導体基板の第1の面側から入射する光によって半導体基板内に生成されるキャリア(電子または正孔)が、複数の島状の第2の非晶質半導体膜のある特定の部分に集中して、この特定の部分の温度が上昇することを抑制することができる。複数の島状の第2の非晶質半導体膜の温度上昇に起因する、複数の島状の第2の非晶質半導体膜が劣化すること、または、複数の島状の第2の非晶質半導体膜が半導体基板から剥がれることを抑制することができる。
 (3)ここで開示された実施形態の光電変換素子において、第1の丸い角の曲率半径は、0μmより大きく10μm以下であってもよい。複数の島状の凹部の底部は、0μmより大きく10μm以下の曲率半径を有する第1の丸い角を有している。そのため、半導体基板の第1の面側から入射する光によって半導体基板内に生成されるキャリア(電子または正孔)が、複数の島状の第2の非晶質半導体膜のある特定の部分に集中して、この特定の部分の温度が上昇することをさらに抑制することができる。複数の島状の第2の非晶質半導体膜の温度上昇に起因する、複数の島状の第2の非晶質半導体膜が劣化すること、または、複数の島状の第2の非晶質半導体膜が半導体基板から剥がれることをさらに抑制することができる。
 (4)ここで開示された実施形態の光電変換素子において、半導体基板の第2の面側から見たときに、複数の島状の凹部及び複数の島状の第2の非晶質半導体膜は、格子状または千鳥状に配置されていてもよい。ここで開示された実施形態の光電変換素子により、設計の自由度が向上された光電変換素子を提供することができる。
 (5)ここで開示された実施形態の光電変換素子において、半導体基板の第2の面側から見たときに、複数の島状の第2の非晶質半導体膜のそれぞれと第1の非晶質半導体膜の複数の開口部のそれぞれとの少なくとも1つは、円形、多角形または第2の丸い角を有する多角形の形状を有してもよい。ここで開示された実施形態の光電変換素子により、設計の自由度が向上された光電変換素子を提供することができる。また、半導体基板の第2の面側から見たときに、複数の島状の第2の非晶質半導体膜のそれぞれと第1の非晶質半導体膜の複数の開口部のそれぞれとの少なくとも1つは、円形、多角形または第2の丸い角を有する多角形の形状を有している。そのため、半導体基板の第1の面側から入射する光によって半導体基板内に生成されるキャリア(電子または正孔)が、複数の島状の第2の非晶質半導体膜や第1の非晶質半導体膜のある特定の部分に集中して、この特定の部分の温度が上昇することを抑制することができる。複数の島状の第2の非晶質半導体膜または第1の非晶質半導体膜の温度上昇に起因する、複数の島状の第2の非晶質半導体膜若しくは第1の非晶質半導体膜が劣化すること、または、複数の島状の第2の非晶質半導体膜若しくは第1の非晶質半導体膜が半導体基板から剥がれることを抑制することができる。
 (6)ここで開示された実施形態の光電変換素子において、半導体基板の第2の面側から見たときの、第1の非晶質半導体膜によるキャリアの収集に寄与しない領域の最長距離、または、互いに隣り合う複数の島状の第2の非晶質半導体膜の間において第2の非晶質半導体膜によるキャリアの収集に寄与しない領域の最長距離は、半導体基板の第1の面側から入射する光によって半導体基板内に生成される少数キャリアの半導体基板内における拡散長以下であってもよい。半導体基板の第2の面側から見たときの、第1の非晶質半導体膜によるキャリアの収集に寄与しない領域の最長距離、または、互いに隣り合う複数の島状の第2の非晶質半導体膜の間において第2の非晶質半導体膜によるキャリアの収集に寄与しない領域の最長距離を、半導体基板の第1の面側からに入射する光によって半導体基板内に生成される少数キャリアの半導体基板内における拡散長以下とする。そのため、この少数キャリアを、第1の電極または第2の電極によって効率的に収集することができる。
 (7)ここで開示された実施形態の光電変換素子において、半導体基板と第1の非晶質半導体膜との間に第1のi型非晶質半導体膜をさらに備えていてもよい。第1のi型非晶質半導体膜は、半導体基板の第1の面側から入射する光によって半導体基板内に生成されるキャリア(電子または正孔)が再結合することを低減する。そのため、本実施の形態の光電変換素子によれば、光エネルギーを電気エネルギーに変換する効率を向上させることができる。
 (8)ここで開示された実施形態の光電変換素子において、半導体基板と第2の非晶質半導体膜との間に第2のi型非晶質半導体膜をさらに備えていてもよい。第2のi型非晶質半導体膜は、半導体基板の第1の面側から入射する光によって半導体基板内に生成されるキャリア(電子または正孔)が再結合することを低減する。そのため、本実施の形態の光電変換素子によれば、光エネルギーを電気エネルギーに変換する効率を向上させることができる。
 今回開示された実施形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
 1,1a,1b,1c,1d,1e 光電変換素子、2 半導体基板、2a 第1の面、2b 第2の面、3 第3の非晶質半導体膜、4 反射防止膜、5,5e 第1のi型非晶質半導体膜、6,6b,6c,6d,6e 第1の非晶質半導体膜、7,7b,7c,7d,7e 開口部、8,8a,8b,8c,8d,8e 凹部、9 端部、10,10b,10e 第2のi型非晶質半導体膜、11,11b,11c,11d,11e 第2の非晶質半導体膜、12e 端部、15,15e 第1の電極、16,16b,16c,16d,16e 第2の電極、18 第1の丸い角、31 第1のマスク、33 第2のマスク。

Claims (7)

  1.  第1の面と前記第1の面と反対側の第2の面とを有する半導体基板を備え、前記半導体基板は前記第2の面に複数の島状の凹部を有し、前記半導体基板は単結晶半導体基板であり、さらに、
     互いに隣り合う前記複数の島状の凹部の間の前記第2の面上に設けられた第1の非晶質半導体膜を備え、前記第1の非晶質半導体膜は第1の導電型を有し、前記第1の非晶質半導体膜は、前記複数の島状の凹部に対応する複数の開口部を有し、さらに、
     前記複数の島状の凹部のそれぞれの上に設けられた複数の島状の第2の非晶質半導体膜を備え、前記第2の非晶質半導体膜は前記第1の導電型とは異なる第2の導電型を有し、さらに、
     前記第1の非晶質半導体膜上に設けられた第1の電極と、
     前記複数の島状の第2の非晶質半導体膜のそれぞれの上に設けられた複数の第2の電極とを備える、光電変換素子。
  2.  前記複数の島状の凹部の底部は、前記第2の面に対して略垂直な断面において、第1の丸い角を有する、請求項1に記載の光電変換素子。
  3.  前記半導体基板の前記第2の面側から見たときに、前記複数の島状の凹部及び前記複数の島状の第2の非晶質半導体膜は、格子状または千鳥状に配置される、請求項1または請求項2に記載の光電変換素子。
  4.  前記半導体基板の前記第2の面側から見たときに、前記複数の島状の第2の非晶質半導体膜のそれぞれと前記第1の非晶質半導体膜の前記複数の開口部のそれぞれとの少なくとも1つは、円形、多角形または第2の丸い角を有する多角形の形状を有する、請求項1から請求項3のいずれか一項に記載の光電変換素子。
  5.  前記半導体基板の前記第2の面側から見たときの、前記第1の非晶質半導体膜によるキャリアの収集に寄与しない領域の最長距離、または、互いに隣り合う前記複数の島状の第2の非晶質半導体膜の間において前記第2の非晶質半導体膜によるキャリアの収集に寄与しない領域の最長距離は、前記半導体基板の前記第1の面側から入射する光によって前記半導体基板内に生成される少数キャリアの前記半導体基板内における拡散長以下である、請求項1から請求項4のいずれか一項に記載の光電変換素子。
  6.  前記半導体基板と前記第1の非晶質半導体膜との間に第1のi型非晶質半導体膜をさらに備える、請求項1から請求項5のいずれか一項に記載の光電変換素子。
  7.  前記半導体基板と前記第2の非晶質半導体膜との間に第2のi型非晶質半導体膜をさらに備える、請求項1から請求項6のいずれか一項に記載の光電変換素子。
PCT/JP2016/056789 2015-03-11 2016-03-04 光電変換素子 WO2016143698A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017505302A JP6770947B2 (ja) 2015-03-11 2016-03-04 光電変換素子

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015048367 2015-03-11
JP2015-048367 2015-03-11

Publications (1)

Publication Number Publication Date
WO2016143698A1 true WO2016143698A1 (ja) 2016-09-15

Family

ID=56880481

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/056789 WO2016143698A1 (ja) 2015-03-11 2016-03-04 光電変換素子

Country Status (2)

Country Link
JP (1) JP6770947B2 (ja)
WO (1) WO2016143698A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019163786A1 (ja) * 2018-02-23 2019-08-29 株式会社カネカ 太陽電池の製造方法
WO2019163784A1 (ja) * 2018-02-23 2019-08-29 株式会社カネカ 太陽電池の製造方法
US11799040B2 (en) 2022-06-08 2023-10-24 Zhejiang Jinko Solar Co., Ltd. Solar cell and photovoltaic module

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0492478A (ja) * 1990-08-07 1992-03-25 Sharp Corp 光電変換装置
WO2009096539A1 (ja) * 2008-01-30 2009-08-06 Kyocera Corporation 太陽電池素子および太陽電池素子の製造方法
US20140096821A1 (en) * 2012-10-10 2014-04-10 Au Optronics Corp. Solar cell and method for making thereof
WO2014157525A1 (ja) * 2013-03-28 2014-10-02 シャープ株式会社 光電変換素子

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009188355A (ja) * 2008-02-08 2009-08-20 Sanyo Electric Co Ltd 太陽電池
JP5485062B2 (ja) * 2010-07-30 2014-05-07 三洋電機株式会社 太陽電池の製造方法及び太陽電池
JP2015191962A (ja) * 2014-03-27 2015-11-02 三菱電機株式会社 太陽電池およびその製造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0492478A (ja) * 1990-08-07 1992-03-25 Sharp Corp 光電変換装置
WO2009096539A1 (ja) * 2008-01-30 2009-08-06 Kyocera Corporation 太陽電池素子および太陽電池素子の製造方法
US20140096821A1 (en) * 2012-10-10 2014-04-10 Au Optronics Corp. Solar cell and method for making thereof
WO2014157525A1 (ja) * 2013-03-28 2014-10-02 シャープ株式会社 光電変換素子

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019163786A1 (ja) * 2018-02-23 2019-08-29 株式会社カネカ 太陽電池の製造方法
WO2019163784A1 (ja) * 2018-02-23 2019-08-29 株式会社カネカ 太陽電池の製造方法
CN111742416A (zh) * 2018-02-23 2020-10-02 株式会社钟化 太阳能电池的制造方法
JPWO2019163784A1 (ja) * 2018-02-23 2021-02-04 株式会社カネカ 太陽電池の製造方法
JPWO2019163786A1 (ja) * 2018-02-23 2021-02-04 株式会社カネカ 太陽電池の製造方法
JP7183245B2 (ja) 2018-02-23 2022-12-05 株式会社カネカ 太陽電池の製造方法
JP7237920B2 (ja) 2018-02-23 2023-03-13 株式会社カネカ 太陽電池の製造方法
CN111742416B (zh) * 2018-02-23 2024-03-19 株式会社钟化 太阳能电池的制造方法
US11799040B2 (en) 2022-06-08 2023-10-24 Zhejiang Jinko Solar Co., Ltd. Solar cell and photovoltaic module
JP2023180196A (ja) * 2022-06-08 2023-12-20 ジョジアン ジンコ ソーラー カンパニー リミテッド 太陽光電池及び太陽光発電モジュール
JP7444927B2 (ja) 2022-06-08 2024-03-06 ジョジアン ジンコ ソーラー カンパニー リミテッド 太陽光電池及び太陽光発電モジュール

Also Published As

Publication number Publication date
JP6770947B2 (ja) 2020-10-21
JPWO2016143698A1 (ja) 2017-12-21

Similar Documents

Publication Publication Date Title
US20100229928A1 (en) Back-contact photovoltaic cell comprising a thin lamina having a superstrate receiver element
JP2009135338A (ja) 太陽電池及び太陽電池の製造方法
JP2010080887A (ja) 太陽電池及びその製造方法
US20100218821A1 (en) Solar cell and method for manufacturing the same
US20100024864A1 (en) Solar cell, method of manufacturing the same, and solar cell module
US20130160840A1 (en) Solar cell
US9997647B2 (en) Solar cells and manufacturing method thereof
JP2016122749A (ja) 太陽電池素子および太陽電池モジュール
JP2013120863A (ja) 太陽電池の製造方法
WO2016143698A1 (ja) 光電変換素子
TWI699900B (zh) 具有鈍化層之太陽能電池及其製造方法
US20110168226A1 (en) Solar cell module and method of manufacturing the same
WO2012132835A1 (ja) 太陽電池
JP4641858B2 (ja) 太陽電池
US20090250102A1 (en) Photoelectric conversion device using semiconductor nanomaterials and method of manufacturing the same
JP2011142210A (ja) 太陽電池およびその製造方法
KR101198438B1 (ko) 양면 수광형 국부화 에미터 태양전지 및 그 제조 방법
JP6476015B2 (ja) 光電変換素子およびその製造方法
KR101181625B1 (ko) 국부화 에미터 태양전지 및 그 제조 방법
TWI443852B (zh) 太陽能電池形成方法
KR101995834B1 (ko) 태양 전지 및 그 제조 방법
JP5029921B2 (ja) 太陽電池セルの製造方法
JP2014056875A (ja) 光電変換素子および光電変換素子の製造方法
WO2017038733A1 (ja) 光電変換素子
KR101122048B1 (ko) 태양 전지 및 그 제조 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16761668

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017505302

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16761668

Country of ref document: EP

Kind code of ref document: A1