JP2015191962A - 太陽電池およびその製造方法 - Google Patents

太陽電池およびその製造方法 Download PDF

Info

Publication number
JP2015191962A
JP2015191962A JP2014066730A JP2014066730A JP2015191962A JP 2015191962 A JP2015191962 A JP 2015191962A JP 2014066730 A JP2014066730 A JP 2014066730A JP 2014066730 A JP2014066730 A JP 2014066730A JP 2015191962 A JP2015191962 A JP 2015191962A
Authority
JP
Japan
Prior art keywords
solar cell
groove
film
cell according
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014066730A
Other languages
English (en)
Other versions
JP2015191962A5 (ja
Inventor
古畑 武夫
Takeo Furuhata
武夫 古畑
裕介 白柳
Yusuke Shirayanagi
裕介 白柳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2014066730A priority Critical patent/JP2015191962A/ja
Publication of JP2015191962A publication Critical patent/JP2015191962A/ja
Publication of JP2015191962A5 publication Critical patent/JP2015191962A5/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/546Polycrystalline silicon PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/548Amorphous silicon PV cells

Landscapes

  • Photovoltaic Devices (AREA)

Abstract

【課題】低コストで信頼性の高い、裏面pn分離を実現できる太陽電池を得ること。
【解決手段】相対向する第1および第2の主面1A,1Bを有するn型単結晶基板からなる基板1と、第2の主面1Bに形成されたp型シリコン系層7と、第2の主面1Bに形成された溝10内に形成されたn型シリコン系層12と、p型シリコン系層7およびn型シリコン系層12にスパッタリング薄膜で構成された第1および第2の透光性導電膜14,16を介して形成された第1および第2の金属電極15,17とを備えている。この第2の透光性導電膜16は、溝10の底面に選択的に形成され、n型シリコン系層12に接続されるとともに、少なくとも溝10の側壁で分断される。そして第1の透光性導電膜14は、第2の主面1B上のp型シリコン系層7に形成される。
【選択図】図1

Description

本発明は、太陽電池およびその製造方法にかかり、特に裏面接合型の太陽電池における構造ならびに製造方法に関するものである。
従来、太陽電池において、太陽光をより効率よく発電させるためには、受光面から照射される光をできる限りロスなく基板内部で吸収することが不可欠である。そこで、表面電極が形成されていない構造にすることにより反射損失を減らすようにした技術が開示されている(特許文献1)。この構造の太陽電池は、一般的に、裏面接合型太陽電池(裏面電極型太陽電池とも呼ばれる)といい、裏面側にpn接合が形成されている。受光面に電極を有しないことで、電極によるシャドーロスがなくなり、シリコン基板の受光面と裏面にそれぞれ電極を有する太陽電池に比べて高い出力を得ることが可能になる。
裏面接合型太陽電池を作製する上で、p型領域とn型領域をシリコン基板の一主面上に形成する必要があるため、製造工程でp型領域とn型領域の分離が必要となる。分離する方法として、フォトリソグラフィによるパターニング、マスクによるパターニング成膜もしくはエッチングペーストによる印刷パターニングを利用している。フォトリソグラフィでは、パターニング(基板上に所定のパターンを形成すること)精度が高いという利点があるが、製造にかかるコストが高く、タクトタイムが長いという欠点がある。一方、マスクやエッチングペーストによるパターニングでは、タクトタイムが短く、低コストであるという利点があるが、パターニング精度が悪くなるといった欠点がある。パターニング精度が悪いとリークパスが形成される等により太陽電池の特性が悪化する。
特許第5213134号公報
しかしながら、上記特許文献1の技術によれば、シリコン基板の裏面上にシリコン酸化膜層があり、その上に、第1のパターンのp型-aSi(アモルファスシリコン)層、及び、第1のパターンに交互配置されている第2のパターンのn型-aSi層を具備している。そして、それぞれに、第1の導電性パターンと第2の導電性パターンが接続されて裏面電極型太陽電池を構成している。ここで、n-aSi層とシリコン基板との接続をとるためにp層の開口、p-aSi層と金属電極との接続をとるためにn層の開口、p,n-aSi層上の金属電極をp,n用それぞれに分離、計3つのパターニング工程が必要となる。パターニング工程は分離幅を大きくし過ぎると発電する有効面積が低下し、逆に小さくし過ぎるとリーク電流が発生し、いずれも太陽電池の特性を低下させる。
以上のように、裏面接合型太陽電池の製造工程において、裏面に形成する電極は、p層、n層にそれぞれ分離して接続するためのパターニングが必要である。太陽電池の特性を向上させるためには位置精度の高いパターニングが必要で、そのための技術として、フォトリソグラフィが考えられるが、製造にかかるコストが高いという問題がある。
本発明は、上記に鑑みてなされたものであって、裏面接合型太陽電池の製造工程において、低コストで信頼性の高い、裏面pn分離を実現できる太陽電池およびその製造方法を得ることを目的とする。
上述した課題を解決し、目的を達成するために、本発明は、相対向する第1および第2の主面を有する第1導電型の半導体基板と、第2の主面に形成された第2導電型の半導体領域と、第2の主面に形成された溝内に形成された第1導電型の半導体領域と、第1および第2導電型の半導体領域にコンタクト層を介して形成された第1および第2の電極とを備えている。このコンタクト層は、溝の底面に選択的に形成され、第1導電型の半導体領域に接続されるとともに、少なくとも溝の側壁で分断され、第2の主面上の第2導電型の半導体領域上に成膜された、薄膜で構成される。
本発明によれば、フォトリソグラフィを用いることなく、第1および第2の導電型層用にそれぞれ透光性導電膜などのコンタクト層を分離でき、しかも、位置精度が高く、コストを抑えた簡易な方法でこれを実現できるという効果を奏する。
図1は、本発明の実施の形態1の太陽電池の模式的な断面を示す図である。 図2(a)〜(c)は、実施の形態1の太陽電池の製造工程を示す工程断面図である。 図3(a)〜(c)は、実施の形態1の太陽電池の製造工程を示す工程断面図である。 図4(a)〜(c)は、実施の形態1の太陽電池の製造工程を示す工程断面図である。 図5は、本発明の実施形態1の太陽電池のp、n型領域を上面からみた模式図である。 図6は、本発明の実施形態2の太陽電池の模式的な断面を示す図である。 図7は、本発明の実施形態3の太陽電池の模式的な断面を示す図である。 図8は、本発明の実施形態4の太陽電池の模式的な断面を示す図である。 図9は、本発明の実施形態5の太陽電池の模式的な断面を示す図である。 図10(a)〜(c)は、実施の形態5の太陽電池の製造工程を示す工程断面図である。 図11(a)〜(c)は、実施の形態5の太陽電池の製造工程を示す工程断面図である。 図12(a)〜(c)は、実施の形態5の太陽電池の製造工程を示す工程断面図である。 図13は、本発明の実施形態1の太陽電池の変形例のp、n型領域を上面からみた模式図である。 図14は、本発明の実施形態1の太陽電池の変形例のp、n型領域を上面からみた模式図である。
以下に、本発明にかかる太陽電池およびその製造方法の実施の形態を図面に基づいて詳細に説明する。なお、この実施の形態によりこの発明が限定されるものではなく、その要旨を逸脱しない範囲において適宜変更可能である。また、以下に示す図面においては、理解の容易のため各層あるいは各部材の縮尺が現実と異なる場合があり、各図面間においても同様である。また、平面図であっても、図面を見易くするためにハッチングを付す場合がある。
実施の形態1.
図1は、本発明にかかる太陽電池の実施の形態1の模式的な断面を示す図である。受光面に電極を有しない、つまり裏面接合型太陽電池において、相対向する第1および第2の主面1A,1Bを有する第1導電型の半導体基板である、基板1としてはn型単結晶シリコン基板を用いる。基板1の第2の主面1Bに形成された第2導電型の半導体領域としてp型シリコン系層7、第2の主面に形成された溝10内に形成された第1導電型の半導体領域としてのn型シリコン系層12と、これらp型シリコン系層7およびn型シリコン系層12にコンタクト層を介して形成された第1および第2の金属電極15,17とを備えている。このコンタクト層は、溝10の底面に選択的に形成され、n型シリコン系層12に接続されるとともに、少なくとも溝10の側壁で分断され、第2の主面1B上のp型シリコン系層7上に形成された、スパッタリング薄膜からなる第1および第2の透光性導電膜14,16で構成される。n型結晶シリコン基板には、n型単結晶シリコン基板が好ましい。n型の単結晶は欠陥が少なく太陽電池の高い出力特性が期待できるためである。ただし、基板に多結晶シリコン基板を用いても良いし、また、p型基板でも良い。
基板1の第1の主面(受光面)1A側にはテクスチャー1Tが形成される。テクスチャー1Tは散乱面を構成するため、光を閉じ込めるのに効果があり太陽電池の出力特性が向上する。テクスチャー1Tが形成された基板1上に反射防止膜5が形成される。反射防止膜5としては窒化シリコン膜、酸化シリコン膜、これらを組み合わせた膜等が考えられる。その他、透光性導電膜でもよく、材料として、SnO2、In23、ZnO、CdO、CdIn24、CdSnO3、MgIn24、CdGa24、GaInO3、InGaZnO4、Cd2Sb27、Cd2GeO4、CuAlO2、CuGaO2、SrCu22、TiO2、Al23などを使用することができ、またこれらを積層して形成した透光性導電膜を使用することもできる。また、ドーパントとしては、Al、Ga、In、B、Y、Si、Zr、Ti、F、Ceから選択した1種類以上の元素を用いてもよい。
その他、基板1の屈折率と空気の屈折率の間の屈折率を有する膜を形成しても良い。これによって基板1表面から入射する太陽光の反射を抑える効果がある。また、反射防止膜5と基板1との間に真性シリコン系層3を挿入するのが好ましい。真性シリコン系層3は非晶質シリコンであることが好ましい。これは基板1表面の欠陥を修復する効果があるからである。また、基板1側に非晶質シリコンを形成しその上に微結晶シリコンを形成して積層する構造も考えられる。微結晶層にすることで透光性が向上し光吸収損失を抑えることができる。真性シリコン系層3の膜厚は1nm〜10nmが好ましい。基板1表面の欠陥を修復して再結合を抑制するために必要な厚さであり、また、厚すぎると太陽光を多く吸収して損失になるためである。
真性シリコン系層3と反射防止膜5との間にn型シリコン系層4を挿入するのが好ましい。これにより基板1との間で電界(Front Surface Field)が形成され、基板1で生成されたキャリアの再結合を抑制する効果がある。n型シリコン系層4としてはn型非晶質シリコンかn型微結晶シリコンが考えられる。n型シリコン系層4についても微結晶層にする方が好ましい。微結晶層にすることにより非晶質より透光性が向上するため光吸収損失を抑える効果がある。n型シリコン系層4の膜厚は1nm〜30nmが好ましい。電界を形成するのに必要な厚さであり、また、厚すぎると太陽光を多く吸収して損失になるためである。つまり1nmに満たないと電界を十分に形成できず、30nmを超えると、吸収損失が大きすぎるという問題がある。
基板1のもう一方の対向する第2の主面(裏面)1Bには、平面上に、第1のパターンであるp型シリコン系層7が形成されている。p型シリコン系層7にはp型非晶質シリコン、p型微結晶シリコン、これらを組み合わせた膜が考えられる。p型シリコン系層7の膜厚は1nm〜30nmが好ましい。薄すぎると基板1との間で電界が形成されず出力特性が低下し、厚すぎるとその上の第1の透光性導電膜14と基板1との間の距離が遠くなるため抵抗が増大し出力特性が低下する。つまり1nmに満たないと電界を十分に形成できず、30nmを超えると、抵抗増大により出力特性が低下するという問題がある。
また、p型シリコン系層7と基板1との間に真性シリコン系層6を挿入するのが好ましい。また、真性シリコン系層6は非晶質シリコンであることが好ましい。あるいは、基板1に接する膜に非晶質シリコンを用い、その上に微結晶シリコンを積層する構造でも良い。基板1に接する膜に非晶質を用いることで基板1表面の欠陥を修復する効果がある。その上を微結晶層にすることでp型微結晶シリコンの結晶化を促進する効果がありp型微結晶シリコンが低抵抗化し太陽電池の出力が向上する。この真性シリコン系層6の膜厚は1nm〜10nmが好ましい。基板1表面の欠陥を修復し再結合を抑制するために必要な厚さであり、また、厚すぎると抵抗が高くなるためである。つまり1nmに満たないと十分に欠陥修復ができず、10nmを超えると、抵抗が増大するという問題がある。
第2の主面(裏面)1B上に溝10が形成され、p型シリコン系層7から形成されるp領域からなる第1のパターンと交互に配置される第2のパターンとして、n型シリコン系層12が溝10の側面および底面に形成される。n型シリコン系層12は非晶質シリコン、微結晶シリコンが考えられる。n型シリコン系層12は、p型シリコン系層7との間で基板1を介して電界を形成し、太陽光により発生したキャリアを収集する。また、基板1とn型シリコン系層12との電界(Back Surface Field)効果により基板1で生成されたキャリアの再結合を抑制する効果がある。n型シリコン系層12は、第2の透光性導電膜16と接する部分では微結晶シリコンであることが好ましい。これは第2の透光性導電膜16とn型シリコン層とのコンタクト抵抗はn型微結晶シリコンにすることにより低抵抗化する効果があるからである。このn型シリコン系層12の膜厚は1nm〜30nmが好ましい。電界を形成するのに必要な厚さがあり、また、厚すぎると基板1と第2の透光性導電膜16までの距離が長くなり抵抗が増大して損失になるためである。つまり1nmに満たないと十分に電界を形成することができず、30nmを超えると、抵抗が増大して損失となるという問題がある。
さらにまた、n型シリコン系層12と基板1との間に真性シリコン系層11を挿入するのが好ましい。また、この真性シリコン系層11の膜厚は1nm〜10nmが好ましい。基板1の再結合を抑制する効果がある。このために必要な厚さがあり、厚すぎると抵抗が増大し損失になるためである。つまり1nmに満たないと再結合抑制の効果が十分でなく、10nmを超えると、抵抗が増大して損失となるという問題がある。
p型シリコン系層7上に順に第1の透光性導電膜14と第1の金属電極15を、n型シリコン系層12上に順に第2の透光性導電膜16と第2の金属電極17を有する。第1および第2の透光性導電膜14、16の膜厚は10nm〜5μmが好ましい。薄すぎると基板1平面方向の第1および第2の透光性導電膜14、16の抵抗が増大し、厚すぎると長波長光の吸収が増大し損失になるためである。金属電極15、17の膜厚は100nm〜500μmが好ましい。薄すぎると金属電極15、17の基板1平面方向の抵抗が増大し、厚すぎると金属電極15、17の加工が難しくなるためである。
第2の透光性導電膜16は、溝10の底面に形成されn型シリコン系層12と接しているが、溝10側面の上部には形成されていない。第2の透光性導電膜16から、p型シリコン系層7が溝10を形づくる側面までの距離は10nm以上100μm以下である。近すぎるとリーク電流が増大し、離しすぎると溝を深く掘る必要があるため基板1表面再結合が増大し出力特性が悪化する。さらに、その距離を100nm以下にすることで太陽電池の特性をより高めることができる。
第1のパターンとして形成されたp型シリコン系層7と溝10内に第2のパターンとして形成されたn型シリコン系層12は基板1裏面上にp型領域13p,n型領域9nとして交互に配置され、たとえば、図5に示すパターン配置が考えられる。ただし、基板1上に交互に配置されれば、このパターンに限定されない。
溝10の深さは、50nm〜100μm、幅は10μm〜2cmが好ましい。深さは浅すぎると第2の透光性導電膜16と、p型シリコン系層7が溝10を形づくる側面までの距離が短くなってリーク電流が発生する。溝10の深さが深すぎると基板1の表面積の増大により表面再結合が増大しセル特性が悪化する。溝10の幅は狭すぎるとn型領域9nが狭くなりすぎて十分に電流が収集できなくなり、幅が広すぎるとp層、n層を一組とした幅が広がりすぎて基板1表面上の電流が十分に収集できなくなる。
次に、図2(a)〜図4(c)の模式的断面図を参照して本発明の太陽電池の製造方法の一例である実施の形態1の裏面接合型太陽電池の製造方法について説明する。
まず、図2(a)に示すように、基板1の一例として、結晶面(100)を表面とするn型単結晶シリコン基板を用いる。
n型単結晶シリコン基板は、シリコンインゴットをスライスすることで得られる。これにより生じたスライスダメージを、例えば、フッ化水素水溶液(HF)と硝酸(HNO3)との混酸またはNaOHなどのアルカリ水溶液でエッチングして除去する。
基板1の形状および大きさは特に限定はされないが、厚さは60μm〜400μmが好ましい。基板1の大きさは例えば1辺の長さが30mm〜200mmの四角形状が好ましい。
次に、図2(b)に示すように、基板1の第1の主面(受光面)1A側のみにテクスチャー1Tを形成する。第2の主面(裏面1B)側においては、フラット面を維持する。裏面のフラットを維持する理由はパターニングの際、マスクの位置あわせが光の反射が無くなるので困難になること、フラット面の方が欠陥の少ない表面が得られ、出力特性が向上することが考えられる。
ここでは、受光面側のみにテクスチャー1Tを形成する方法を示す。まず、基板1の裏面側にアルカリ耐性のある保護膜2として窒化シリコン膜を形成する。保護膜2としてそれ以外に、酸化シリコン膜、酸化シリコン膜と窒化シリコン膜の積層膜などが考えられる。また、酸化インジウム等の導電性酸化物を保護膜2として利用してもよい。保護膜2の作製には、プラズマCVD(Chemical Vapor Deposition)法またはスパッタリング法、熱酸化法などの方法によって形成することができる。テクスチャー1T形成時、保護膜2がエッチングされて消失したり、保護膜2中に薬液が浸透して、基板1がエッチングされるのを防ぐ必要があり、このために、保護膜2の厚さとして20nm〜800nmが好ましい。
次に、基板1の表面にテクスチャー1Tを形成する。ウェットエッチングにより、基板1の受光面1A側の表面上に底辺長100nm〜30μmサイズのマイクロピラミッドがランダムに形成される。エッチング液は、NaOH、KOH、水酸化テトラメチルアンモニウム(TMAH)といったアルカリ液を用い、これにIPAなどのアルコール系添加剤、界面活性剤もしくはオルソケイ酸ナトリウムなどのケイ酸塩化合物を添加している。エッチング温度は30℃〜120℃が好ましく、エッチング時間は、2min〜60minが好ましい。
次に、まず、保護膜2をエッチング除去する。エッチング液には、HF、フッ化アンモニウム(NH4F)を用いる。なお、HF濃度が高いほど、保護膜2のエッチングレートが高く、除去が簡単である。保護膜2の耐性にもよるが、HF濃度0.5%以上が好ましい。
次に、基板1裏面を洗浄するために、以下の第1工程と第2工程を行う。第1工程では、濃硫酸と過酸化水素水を含む洗浄液で基板1表面の有機物を除去し、次にその時形成される酸化膜をHFで除去する。第2工程では、塩酸と過酸化水素水を含む洗浄液で金属不純物を除去し、その時形成される基板1表面上の酸化膜をフッ酸溶液で除去する。第1工程と第2工程は、基板1表面上の有機汚染、金属汚染、パーティクルによる汚染が十分に低減されるまで繰り返し行う。また、オゾン水による洗浄、炭酸水による洗浄など、機能水による洗浄でも良い。
次に、基板1の受光面側に真性シリコン系層3として真性非晶質シリコン層を成膜する。この形成には、プラズマCVD法により、シランと水素を用いる。上記の形成には、CH4、CO2、NH3、GeH4等のガスを混合することで合金化によるバンドギャップを変更して成膜しても良い。また、微結晶シリコン層を用いてもよい。真性シリコン系層3は単層構造でもよいが、温度、圧力、パワー、ガス流量を変えることで導電率、バンドギャップ、結晶化率などの物性値の異なるシリコン層を積層させても良い。膜厚は1nm〜10nmである。
次に、受光面にドーピングガスとしてPH3等を用いて、プラズマCVD法によりn型シリコン系層4としてn型微結晶シリコン層を形成する。n型シリコン系層4は、単層構造でもよいが、温度、圧力、Power、ガス流量を変えることで導電率、バンドギャップ、結晶化率などの物性値の異なるシリコン層を積層させても良い。膜厚は1nm〜30nmとした。
次に、基板1の裏面側に真性シリコン系層6として、真性非晶質シリコン層を成膜する。この形成には、プラズマCVD法により、SiH4ガスとH2ガスを利用する。SiH4ガス流量60sccm、H2ガス300sccmとし、圧力100Pa、基板温度170℃、及びRFパワー0.3W/cm2の条件で形成される。これ以外にも、CH4、CO2、NH3、GeH4等のガスを混合することで合金化によるバンドギャップを変更して成膜しても良い。真性シリコン系層6は単層構造でもよいが、導電率、バンドギャップ、結晶化率などの物性値の異なるシリコン層を積層させても良い。膜厚は1nm〜10nmである。
次に、ドーピングガスとしてB26等を用いて、プラズマCVD法によりp型シリコン系層7としてp型非晶質シリコン層を裏面の真性な非晶質シリコン層の上に成膜する。p型非晶質シリコン層の形成条件は、真性非晶質シリコンの形成条件にB26ガス(1%H2ベース)流量60sccmを添加する。これ以外に、CH4、CO2、NH3、GeH4等のガスを混合することで合金化によるバンドギャップを変更して成膜しても良い。また、p型シリコン系層7は、単層構造でもよいが、導電率、バンドギャップ、結晶化率などの物性値の異なるシリコン薄膜を積層させても良い。膜厚は1〜30nmである。
次に、テクスチャー1Tを形成した受光面側に、反射防止膜5を成膜する。反射防止膜5には、透光性導電膜である酸化インジウムを用いる。スパッタリング法により形成される。形成条件は、基板温度180℃、Arガス流量70sccm、O2ガス流量(5%Arベース)5sccm、圧力0.7Pa、RFパワー密度8W/cm2の条件で、その膜厚は10〜200nmである。
それ以外の方法として、イオンプレーティング蒸着法、電子ビーム蒸着法などが挙げられる。これらの成膜時に用いるプロセスガスには、Arガスを主体として、O2、H2、水蒸気、N2などが適宜添加される。シリコンが光吸収できる波長域全体において、光吸収の少ない材料を用いることが好ましい。
また、反射防止膜5として、シリコン酸化膜もしくはシリコン窒化膜を用いてもよい。シリコン酸化膜ならびにシリコン窒化膜はHFならびにアルカリ耐性が高く緻密な膜であることが好ましい。形成方法としてスパッタリング法もしくはプラズマCVD法により形成できる。形成時の温度は、プラズマCVDにより基板1上に形成したシリコン層へダメージを与えないよう300℃以下が好ましい。さらに、反射率を低減するため基板1と空気の間の屈折率が望ましく、空気と波長700nmでの屈折率が1.5〜2.5であることが好ましい。なお、シリコン酸化膜、シリコン窒化膜などのようにパッシベーション効果と反射防止効果を持ち合わせた膜にすることで、基板1の欠陥を修復し、より出力特性を向上させる効果がある。
次に、図2(c)に示すように、裏面側p型シリコン層をパターニングするマスクの役目をもつ、絶縁膜8としてシリコン窒化膜を形成する。この形成には、プラズマCVD法により、SiH4ガスとNH3ガスを利用する。SiH4ガス流量60sccm、NH3ガス60sccmとし、圧力100Pa、基板温度170℃、及びRFパワー密度1.5W/cm2の条件で形成される。スパッタリング法を用いてもよい。また、シリコン酸化膜を利用してもよい。温度は、300℃以下で、この絶縁膜8の膜厚は40〜500nmであることが好ましい。薄いとパターニング形成時にエッチングにより消失してしまい、厚すぎるとエッチングに時間がかかりすぎるためである。
次に、図3(a)に示すように、裏面側の絶縁膜8をエッチングし開口する。絶縁膜8のエッチングではレジストマスクでパターニングする。エッチング液にHFを用いて2分間処理する。エッチング時間はシリコン窒化膜の薬液耐性によって異なり、10秒から30分程度である。また、エッチング溶液には、これ以外に、フッ化アンモニウムや、HFとフッ化アンモニウムとの混合液などが用いられる。
絶縁膜8の開口、パターニングには、エッチングペーストを使用してもよい。エッチングペーストを塗布する方法は、ディスペンサによる塗布、スクリーン印刷による塗布、インクジェットによる塗布などがある。エッチングペーストは、絶縁膜8をエッチングできるエッチング成分とエッチング成分以外の成分として水、有機溶媒および増粘剤などを含んでいる。エッチング成分としては、リン酸、フッ化水素、フッ化アンモニウムおよびフッ化水素アンモニウムから選択された少なくとも1種を利用している。
次に、図3(a)に示すように、絶縁膜8をマスクに、p型シリコン系層7、真性シリコン系層6、基板1をエッチングし基板1に開口幅a1の溝10が形成される。エッチング液にはTMAH(水酸化テトラメチルアンモニウム)2.37%を用い、液を65℃に加熱して、10sec〜1時間エッチングする。エッチング液は、NaOH、KOHアルカリ試薬を用いてもよく、温度は25℃〜100℃が好ましい。
絶縁膜8とこれらの層とのエッチングレートの差から、すなわち、絶縁膜8が基板1に比べてエッチングレートを遅くするようなエッチング条件を選択することによって、図3(a)に示すように絶縁膜8はひさし8Rをもつ形状となる。
この出っ張り距離a0(図3(a)に位置記載)の制御は、絶縁膜8のエッチング耐性を変化させることや、エッチング液の濃度を変えるなどして可能である。絶縁膜8のエッチング耐性向上には、絶縁膜8の成膜条件の、圧力を下げる、基板温度をあげる、RFパワーをあげる等とすることで制御可能である。
溝10の開口幅a1は100μm、深さdは、基板1表面から500nmである。溝10の形状は断面からみて矩形である。ただし、これは楕円でもよいし半円でもよい。矩形の場合、そのコーナー部S(図3参照)の曲率半径は5nm〜100μmが好ましい。曲率半径が短いとその後にコーナー部に接して形成される真性シリコン層及びn型シリコン層に欠陥が発生しやすい。曲率半径の上限は溝10の深さの上限と同じ100μmである。また、局率半径を制御することにより、電界が均一となり、信頼性が向上する。
溝10の深さによって曲率半径の制御が可能で、溝10の深さを深くすれば曲率半径を大きくでき、溝10の深さを浅くすれば曲率半径は欠陥の発生を招くことなく小さくすることができる。
本実施の形態において、絶縁膜8のひさし8Rつまりひさし状領域の出っ張り距離a0は500nmである。出っ張り距離a0は50nm〜100μmが好ましい。この後、裏面にn型シリコン系層12形成後に透光性導電膜を形成する際、ひさし8Rによって、溝10側面上部への透光性導電膜の堆積を防止することができる。一方、絶縁膜8の開口幅a1(図3(a)に位置記載)は10μm以上2cm以下である。狭すぎると、この後成膜する、n型シリコン系層12および真性シリコン系層11が溝10側面に形成されなくなり(図3(b)参照)、幅が広すぎるとp層、n層を一組とした幅が広がりすぎて基板1表面上の電流を効率よく収集するのが困難となる。
溝10の深さdは、50nm〜100μm、幅は10μm〜2cmが好ましい。深さは浅すぎると、この後成膜する第2の透光性導電膜16と、p型シリコン系層7が形づくる溝10側面との間の距離が短くなってリーク電流が発生する(図3(c)参照)。深すぎると表面積増大により表面再結合が増大しセル特性が悪化する。幅は狭すぎるとn型領域であるn型シリコン系層12が狭くなりすぎて十分に電流が収集できなくなり、幅が広すぎるとp層、n層を一組とした幅が広がりすぎて基板1表面上の電流を効率よく収集するのが困難となる。
次に、フッ酸溶液中で溝10の基板1表面に形成された自然酸化膜を除去する。ただし、フッ酸溶液は、反射防止膜5ならびに絶縁膜8の酸耐性に応じて、消失しないようにHF濃度ならびに浸漬時間を制御する必要がある。
次に、図3(b)に示すように、基板1の裏面側に真性シリコン系層11として真性非晶質シリコン層を、n型シリコン系層12としてn型微結晶シリコン層を成膜する。この時、真性シリコン系層11、n型シリコン系層12はいずれも溝10の基板1側壁上部にも形成される。
真性シリコン系層11の形成には、プラズマCVD法により、SiH4ガス流量60sccm、H2ガス300sccmとし、圧力100Pa、基板温度170℃、及びRFパワー0.3W/cm2の条件で形成される。膜厚は1〜10nmである。また、微結晶シリコン層を形成してもよい。上記のシリコン層の形成には、CH4、CO2、NH3、GeH4等のガスを混合することで合金化によりバンドギャップを変更して成膜しても良い。温度、圧力、Power、ガス流量を変えることで導電率、バンドギャップ、結晶化率などの物性値の異なるシリコン層を単層もしくは積層させても良い。
n型シリコン系層12の形成には、ドーピングガスとしてPH3等を用いて、プラズマCVD法によりn型微結晶シリコンを成膜する。SiH4ガス流量6sccm、H2ガス1000sccm、PH3(1%H2ベース)2sccmとし、圧力800Pa、基板温度170℃、及びRFパワー2W/cm2の条件で形成される。また、非晶質シリコン層を用いてもよい。膜厚は1nmから30nmである。また、温度、圧力、Power、ガス流量を変えることで導電率、バンドギャップ、結晶化率などの物性値の異なるシリコン層を単層もしくは積層させても良い。
次に、図3(c)に示すように、電極との接続をとるためp型シリコン系層7上部の開口を行う。なお、p型領域は、セルを上から見ると図5で示すように、p型領域13pであり、n型領域はn型領域9nである。フォトリソグラフィを用い、レジストでパターン形成した後、n型シリコン系層12、その下の真性シリコン系層11、その下の絶縁膜8のエッチングを行う。n型シリコン系層12、その下の真性シリコン系層11のエッチング液にはTMAH、2.37%を用い、液を45℃に加熱して、10sec〜1時間エッチングする。エッチング液は、NaOH、KOHアルカリ試薬を用いてよく、温度は25℃〜100℃が好ましい。
絶縁膜8のエッチング液にはHFを用い、2分でエッチングする。時間はシリコン窒化膜の薬液耐性によって異なり、10秒から30分程度である。また、エッチング溶液には、これ以外に、フッ化アンモニウムやフッ化アンモニウムとHFとの混合液などが用いられる。
次に、図4(a)に示すように、スパッタリング法により、第2の透光性導電膜16がn型シリコン系層12上に、第1の透光性導電膜14がp型シリコン系層7上に形成される。ただし、スパッタ粒子の直進性により、溝10の側壁上部には、絶縁膜8のひさし8Rが影となって透光性導電膜は形成されない。
第1および第2の透光性導電膜14、16には、導電性酸化物である酸化インジウムを用い、形成方法は、直流マグネトロンスパッタリング法を用いた。基板温度180℃、Arガス流量70sccm、O2ガス流量(5%Arベース)5sccm、圧力0.7Pa、RFパワー8W/cm2の条件で、その膜厚は10〜200nmである。ここでターゲット材料には酸化インジウムを用いた。
このように、圧力が低いため平均自由工程が数cm程度と長いため、ひさし8Rで遮蔽されて、酸化インジウムは溝10の底面付近にのみ付着しそのまま堆積され、溝10の側壁上部には堆積しない。その結果、図4(a)に示すように、第1および第2の透光性導電膜14、16を同時に形成でき、かつ、第1の透光性導電膜14と第2の透光性導電膜16を分離できる。
第2の透光性導電膜16と、p型シリコン系層7が形づくる溝10側壁までの距離は10nm以上100μm以下が好ましい。10nm以上で両者のリーク電流が抑えられ、100μmより離れると基板表面再結合の影響で太陽電池の出力特性は低下する。さらに、この距離を100nm以下にすることで、太陽電池の特性をより高めることができる。
第1および第2の透光性導電膜14、16のスパッタリング法以外の形成方法として、イオンプレーティング法、真空蒸着法、などの低圧成膜法が挙げられる。イオンプレーティング法は、生成した蒸着粒子の一部をイオン化して加速し真空中に置かれた基板上に、蒸着粒子とそのイオンを照射して薄膜を形成する。イオンプレーティング法を用いた場合は、蒸着粒子をイオン化する方法に、蒸発源とアーク用電極との間にアーク放電を起こしプラズマ状態を生成し、蒸着粒子の生成と蒸着粒子のイオン化を行った。基板温度を室温に設定し、ターゲットに酸化インジウムを用い、圧力1Paから圧力1x10-1Paの間で行った。プラズマ生成用ガスとしてArを用いる。また、成膜装置内雰囲気としてAr100sccm供給し、さらに、酸化インジウム膜中キャリア濃度を調整するために酸素16sccmを供給した。真空蒸着法で成膜する場合には、電子ビームを酸化インジウムターゲットに当て、加熱して蒸着粒子を生成した。基板温度は室温から200℃の範囲に設定し、ターゲットに酸化インジウムを用い、圧力1x10-1Paから圧力1x10-3Paの間で行った。スパッタリング法、イオンプレーティング法、真空蒸着法、いずれも成膜時の圧力が1Paから1x10-3Paの範囲にあり、蒸着粒子の平均自由工程は10mmから10mの値となる。これによって、絶縁膜8のひさし8Rが影となって溝10側壁上部への堆積を防ぐことができる。いずれの手法においても、成膜時に用いるガスには、Arガスを主体として、O2、H2、水蒸気、N2などが適宜添加される。また、Ag、Al、Cu、Tiなどの金属を材料として用いてもよい。また、透光性導電膜14、16の材料として、SnO2、In23、ZnO、CdO、CdIn24、CdSnO3、MgIn24、CdGa24、GaInO3、InGaZnO4、Cd2Sb27、Cd2GeO4、CuAlO2、CuGaO2、SrCu22、TiO2、Al23などを使用することができ、また、ドーパントとしては、Al、Ga、In、B、Y、Si、Zr、Ti、F、Ceから選択した1種類以上の元素を用いてもよい。
以上のように、上記方法により、第1の透光性導電膜14と第2の透光性導電膜16の分離を高い位置精度でできるため、従来p型領域13pとn型領域9nに対する透光性導電膜の分離をレジストマスクによるパターニングで行っていたものが不要となりコスト削減ができる。
また、レジストによるパターニングでは、エッチングを行うために薬液を用いる。これが基板1や形成したシリコン層へのダメージとなって太陽電池の出力低下を招く場合がある。このため、上記方法により、ダメージを低減でき太陽電池特性の低下を抑えることができる。
次に、図4(b)に示すように、裏面電極として、スクリーン印刷によってAgペーストを用いて、Ag電極を形成する。これによって、第1の透光性導電膜14の上に第1の金属電極15を、第2の透光性導電膜16の上に第2の金属電極17が形成される。また、AgペーストはAg粒子と樹脂バインダーからなる導電ペーストを用いた。この他、インクジェット、銅線接着、スプレーなどによって形成される。生産性の観点からスクリーン印刷が好ましい。
次に、図4(c)に示すように、絶縁膜8の除去工程を行う。同時に、リフトオフにより絶縁膜8の側壁と上面に形成された、真性シリコン系層11とn型シリコン系層12及び第1の透光性導電膜14も除去する。絶縁膜8の除去を行うためのエッチング液にはHFを用い、2分間エッチングした。時間は絶縁膜8のシリコン窒化膜の薬液耐性によって異なり、10秒から30分程度である。また、絶縁膜8の除去を行う液には、これ以外に、フッ化アンモニウムや、フッ化アンモニウムとHFとの混合液などが用いられる。絶縁膜8を除去することによって、絶縁膜8が倒れることでリークが発生して特性が悪化するのを防ぐことができる。
一方、図4(c)の絶縁膜8の除去工程を行なわなくてもよい。この場合、工程の削減につながるためコスト削減のメリットがある。
さらにまた、絶縁膜8の除去工程は、図4(b)の第1および第2の金属電極15、17を形成する工程の前におこなってもよい。これによって、第1および第2の金属電極15、17の形成中に、絶縁膜8が倒れることによるリークパスの発生を防ぐメリットがある。
実施の形態2.
次に、本発明の実施の形態2について説明する。本実施の形態では、絶縁膜8の除去を行うことなく、図6に示すように、溝10内に張り出した絶縁膜8上にも第1の金属電極15を形成し、集電抵抗の低減を図るようにしたものである。他は前記実施の形態1と同様であるためここでは説明を省略するが、同一部位には同一符号を付した。
製造に際しては、図4(a)に示した第1および第2の透光性導電膜14,16の形成工程までは同様の工程を行い、次に、図6に示すように絶縁膜8の上も含めて第1の電極側の第1の金属電極15を形成し、また同時に第2の電極側の第2の金属電極17も形成する。形成には、実施形態1と同様にスクリーン印刷を用いた。
上記構成によれば、絶縁膜8の上にも第1の電極である第1の金属電極15が形成されるため、裏面のより広い面積で金属が堆積され、そのため、裏面の広い領域で光を反射でき太陽電池の出力特性が向上できる。
実施の形態3.
次に、本発明の実施の形態3について説明する。本実施の形態では、絶縁膜8の除去を行うことなく、図7に示すように、溝10内に張り出した絶縁膜8上にも第1の金属電極15を形成し、集電抵抗の低減を図るようにした、実施の形態2の構成に加え、溝10に絶縁材としての絶縁性樹脂20を充填したものである。他は前記実施の形態2と同様であるためここでは説明を省略するが、同一部位には同一符号を付した。
製造に際しては、第1の電極側の第1の金属電極15、第2の電極側の第2の金属電極17を形成したのち、ポリイミド樹脂などの絶縁性樹脂20を充填する。
上記構成によれば、実施の形態2の効果に加え、絶縁性樹脂の存在により、第2の金属電極17が補強された状態となり、第1および第2の金属電極15、17の形成後に、絶縁膜8が倒れるのを抑制することができる。また、第1および第2の金属電極15、17の間に絶縁性樹脂20が介在することにより、リークパスの発生をより確実に防ぐことができる。
実施の形態4.
次に、本発明の実施の形態4について説明する。本実施の形態では、絶縁膜8を除去した実施の形態1の構成において、図8に示すように、溝10に絶縁性樹脂20を充填したものである。他は前記実施の形態1と同様であるためここでは説明を省略するが、同一部位には同一符号を付した。
製造に際しては、第1の電極側の第1の金属電極15、第2の電極側の第2の金属電極17を形成したのち、絶縁膜8の除去工程を行い、その後、ポリイミド樹脂などの絶縁性樹脂20を充填する。
上記構成によれば、実施の形態1の効果に加え、絶縁性樹脂の存在により、第2の金属電極17が補強された状態となり、第1および第2の金属電極15、17の間に絶縁性樹脂20が介在することにより、リークパスの発生をより確実に防ぐことができる。
実施の形態5.
図9は、本発明にかかる太陽電池の実施の形態5の模式的な断面を示す図である。前記実施の形態1から4においては、ヘテロ接合型の太陽電池について説明したが、本実施の形態では、拡散によってpn接合を形成する拡散型の太陽電池について説明する。また、前記実施の形態1から4の太陽電池では、分離用の絶縁膜を溝10に突出するように形成したのちに、透光性導電膜をスパッタリングによって形成して、分離し、この上に印刷電極を形成することで、第1および第2の電極としての第1および第2の金属電極15,17を形成した。これに対し、本実施の形態では、ひさし状の絶縁膜上に、コンタクト層としてTiとCuとの2層構造のスパッタリング薄膜からなる下地層24,26を形成することで、下地層24,26をp層側とn層側とで分離し、この下地層24,26上にめっき層を形成することで金属電極25,37を形成するものである。
本実施の形態においても、基板1としてはn型単結晶シリコン基板を用いる。n型結晶シリコン基板には、n型単結晶シリコン基板が好ましい。n型の単結晶は欠陥が少なく太陽電池の高い出力特性が期待できるからである。ただし、基板に多結晶シリコン基板を用いても良いし、また、p型基板でも良い。
第1の主面(受光面)1A側にはテクスチャー1Tが形成される。テクスチャー1Tは散乱面を構成するため、光を閉じ込めるのに効果があり太陽電池の出力特性が向上する。テクスチャー1Tが形成された基板1上に反射防止膜5が形成される。反射防止膜5は窒化シリコン膜、酸化シリコン膜、これらを組み合わせた膜等が考えられる。その他、実施の形態1と同様、透光性導電膜でもよく、材料として、SnO2、In23、ZnO、CdO、CdIn24、CdSnO3、MgIn24、CdGa24、GaInO3、InGaZnO4、Cd2Sb27、Cd2GeO4、CuAlO2、CuGaO2、SrCu22、TiO2、Al23などを使用することができ、またこれらを積層して形成した透光性導電膜を使用することもできる。また、ドーパントとしては、Al、Ga、In、B、Y、Si、Zr、Ti、F、Ceから選択した1種類以上の元素を用いてもよい。
その他、基板1の屈折率と空気の屈折率の間の屈折率を有する膜を形成しても良い。これによって基板1表面から入射する太陽光の反射を抑える効果がある。また、反射防止膜5と基板1との間に不純物拡散で形成したn型シリコン系層を挿入してもよい。
基板1のもう一方の対向する第2の主面(裏面)1Bには、平面上に、第1のパターンであるp型拡散層27が形成されている。
主面上(裏面)1Bに溝10が形成され、p型拡散層27から形成されるp領域からなる第1のパターンと交互に配置される第2のパターンとして、n型拡散層22が溝10の底面に形成される。n型拡散層22は、p型拡散層27との間で基板1を介して電界を形成し、太陽光により発生したキャリアを収集する。また、基板1とn型拡散層22との電界効果(Back Surface Field)により基板1で生成されたキャリアの再結合を抑制する効果がある。
p型拡散層27上に順に第1の下地層24と第1の金属電極25を、n型拡散層22上に順に第2の下地層26と第2の金属電極37を有する。第1および第2の下地層24、26の膜厚は10nm〜200nmが好ましい。薄すぎるとその上に形成する金属電極25、37からのダメージにより基板に欠陥が増大し、厚すぎるとp型拡散層27と接近しすぎてリーク電流が増大するからである。金属電極(第1および第2の金属電極)25、37の膜厚は100nm〜500μmが好ましい。薄すぎると第1および第2の金属電極25、37の基板1平面方向の抵抗が増大し、厚すぎると成膜時間が長くなりコストが増大する。
第2の下地層26は、溝10の底面に形成されn型拡散層22と接しているが、溝10側面の上部は形成されていない。第2の下地層26から、p型拡散層27が溝10を形づくる側面までの距離は10nm以上100μm以下である。近すぎるとリーク電流が増大し、離しすぎると溝10を深く掘る必要があるため基板1表面再結合が増大し出力特性が悪化する。
第1のパターンとして形成されたp型拡散層27と溝10内に第2のパターンとして形成されたn型拡散層22は基板1裏面上にp型領域13p,n型領域9nとして交互に配置され、たとえば、図5に示すパターン配置が考えられる。ただし、基板1上に交互に配置されば、このパターンに限定されない。
溝10の深さは、50nm〜100μm、幅は10μm〜2cmが好ましい。深さは浅すぎると第2の下地層26と、p型拡散層27が溝10を形づくる側面までの距離が短くなってリーク電流が発生する。溝10の深さが深すぎると基板1の表面積の増大により表面再結合が増大しセル特性が悪化する。溝10の幅は狭すぎるとn型領域9nが狭くなりすぎて十分に電流が収集できなくなり、幅が広すぎるとp層、n層を一組とした幅が広がりすぎて基板1表面上の電流が十分に収集できなくなる。
次に、図10(a)〜図12(c)の模式的断面図を参照して本発明の太陽電池の製造方法の一例である実施の形態5の裏面接合型太陽電池の製造方法について説明する。
まず、図10(a)に示すように、実施の形態1と同様、基板1の一例として、結晶面(100)を表面とするn型単結晶シリコン基板を用いる。
次に、図10(b)に示すように、基板1の第1の主面(受光面)1A側のみにテクスチャー1Tを形成する。第2の主面(裏面)1B側においては、フラット面を維持する。裏面のフラットを維持する理由はパターニングの際、マスクの位置あわせが光の反射が無くなるので困難になること、フラット面の方が欠陥の少ない表面が得られ、出力特性が向上することが考えられる。
ここでは、実施の形態1と同様、保護膜2を用いて、受光面側のみにテクスチャー1Tを形成する。
次に、基板1裏面を洗浄した後、BSG膜を形成し、これを拡散源として、裏面側にp型拡散層27を形成する。この後、BSG膜はHF液で除去する。
次に、実施の形態1と同様、テクスチャー1Tを形成した受光面側に、反射防止膜5を成膜する。
次に、図10(c)に示すように、裏面側p型拡散層をパターニングするマスクの役目をもつ、絶縁膜28としてシリコン窒化膜を形成する。この形成には、プラズマCVD法により、SiH4ガスとNH3ガスを利用する。SiH4ガス流量60sccm、NH3ガス60sccmとし、圧力100Pa、基板温度170℃、及びRFパワー密度1.5W/cm2の条件で形成される。スパッタリング法を用いてもよい。また、シリコン酸化膜を利用してもよい。温度は、300℃以下で、この絶縁膜28の膜厚は40〜500nmであることが好ましい。薄いとパターニング形成時にエッチングにより消失してしまい、厚すぎるとエッチングに時間がかかりすぎるためである。
次に、裏面側の絶縁膜28をエッチングし開口する。絶縁膜28のエッチングではレジストマスクでパターニングする。エッチング液にHFを用いて2分間処理する。時間はシリコン窒化膜の薬液耐性によって異なり、10秒から30分程度である。また、エッチング溶液には、これ以外に、フッ化アンモニウムや、HFとフッ化アンモニウムとの混合液などが用いられる。
絶縁膜28の開口、パターニングには、エッチングペーストを使用してもよい。エッチングペーストを塗布する方法は、ディスペンサによる塗布、スクリーン印刷による塗布、インクジェットによる塗布などがある。エッチングペーストは、絶縁膜28をエッチングできるエッチング成分とエッチング成分以外の成分として水、有機溶媒および増粘剤などを含んでいる。エッチング成分としては、リン酸、フッ化水素、フッ化アンモニウムおよびフッ化水素アンモニウムから選択された少なくとも1種を利用している。
そして、図11(a)に示すように、絶縁膜28をマスクに、p型拡散層27、基板1をエッチングし基板1に開口幅a1の溝10が形成される。エッチング液にはTMAH2.37%を用い、液を65℃に加熱して、10sec〜1時間エッチングする。エッチング液は、NaOH、KOHアルカリ試薬を用いてもよく、温度は25℃〜100℃が好ましい。
絶縁膜28とこれらの層とのエッチングレートの差から、すなわち、絶縁膜28が基板1に比べてエッチングレートを遅くするようなエッチング条件を選択することによって、図11(a)に示すように絶縁膜28はひさし28Rをもつ形状となる。
この出っ張り距離a0(図11(a)に位置記載)の制御は、絶縁膜28のエッチング耐性を変化させることや、エッチング液の濃度を変えるなどして可能である。絶縁膜28のエッチング耐性向上には、絶縁膜28の成膜条件の、圧力を下げる、基板温度をあげる、RFパワーをあげる等とすることで制御可能である。
溝10の開口幅a1は100μm、深さdは、基板1表面から500nmである。溝10の形状は断面からみて矩形である。ただし、これは楕円でもよいし半円でもよい。矩形の場合、そのコーナー部S(図3参照)の曲率半径は5nm〜100μmが好ましい。曲率半径が短いとその後にコーナー部に接して形成されるn型拡散層に欠陥が発生しやすい。曲率半径の上限は溝10の深さdの上限と同じ100μmである。
溝10の深さdによって曲率半径を制御が可能で、溝10の深さdを深くすれば曲率半径を大きくでき、溝10の深さdを浅くすれば曲率半径は欠陥の発生を招くことなく小さくすることができる。
本実施の形態において、絶縁膜28のひさし28Rつまりひさし状の出っ張り距離a0は500nmである。出っ張り距離a0は50nm〜100μmが好ましい。この後、裏面にn型拡散層形成後に下地層を形成する際、ひさし28Rによって、溝10側面への下地層の堆積を防止することができる。一方、絶縁膜28の開口幅a1(図11(a)に位置記載)は10μm以上2cm以下である。狭すぎると、n型領域9nが狭くなりすぎて十分に電流が収集できなくなり、幅が広すぎるとp層、n層を一組とした幅が広がりすぎて基板1表面上の電流を効率よく収集するのが困難となる。
溝10の深さdは、50nm〜100μm、幅は10μm〜2cmが好ましい。深さは浅すぎると、この後成膜する下地層26と、p型拡散層27が形づくる溝10側面との間の距離が短くなってリーク電流が発生する(図12(a)参照)。深すぎると表面積増大により表面再結合が増大しセル特性が悪化する。幅は狭すぎるとn型領域であるn型拡散層22が狭くなりすぎて十分に電流が収集できなくなり、幅が広すぎるとp層、n層を一組とした幅が広がりすぎて基板1表面上の電流を効率よく収集するのが困難となる。
次に、図11(b)に示すように、溝10底部に選択的にPSG膜21を塗布して形成し、このPSG膜21からのリン拡散によりn型拡散層22を形成する。なお、p型拡散層27は、キャリア濃度を調整することでp型を維持できる。ここで絶縁膜28をマスクとしてn型拡散層22をイオン注入により形成するようにしてもよい。この後、PSG膜21はHF液で除去する。このとき絶縁膜28が消失しないように、HF濃度を比較的薄くし、時間短くして制御する。
次に、図11(c)に示すように、電極との接続をとるためp型拡散層27上部の開口を行う。すなわちフォトリソグラフィにより絶縁膜28をパターニングし、フッ酸溶液中で溝10および基板1表面に形成された自然酸化膜を除去する。ただし、フッ酸溶液は、反射防止膜5ならびに絶縁膜28の酸耐性に応じて、消失しないようにHF濃度ならびに浸漬時間を制御する必要がある。
絶縁膜28のエッチング液にはHFを用い、2分でエッチングする。時間はシリコン窒化膜の薬液耐性によって異なり、10秒から30分程度である。また、エッチング溶液には、これ以外に、フッ化アンモニウムやフッ化アンモニウムとHFとの混合液などが用いられる。
次に、図12(a)に示すように、スパッタリング法により、TiおよびCuを順次成膜する。このとき、スパッタ粒子の直進性により、第2の下地層26がn型拡散層22上に、第1の下地層24がp型拡散層27上に形成される。ただし、溝10の側壁上部には、絶縁膜28のひさし28Rが影となって下地層は形成されない。
第1および第2の下地層24、26には、Ti,Cuの2層膜を用い、形成方法は、直流マグネトロンスパッタリング法を用い、順次ターゲットをTiから、Cuに代えた。基板温度180℃、Arガス流量75sccm、圧力0.7Pa、RFパワー8W/cm2の条件で、その膜厚は10〜200nmである。
このように、圧力が低いため平均自由工程が数cm程度と長いため、ひさし28Rが影となってTi,Cuは溝10の底面付近にのみ付着しそのまま堆積され、溝10の側壁上部には堆積しない。その結果、図12(a)に示すように、第1および第2の下地層24、26を同時に形成でき、かつ、分離できる。
第2の下地層26と、p型拡散層27が形づくる溝10側壁までの距離は10nm以上100μm以下が好ましい。10nm以上で両者のリーク電流が抑えられ、100μmより離れると基板表面再結合の影響で太陽電池の出力特性は低下する。
第1および第2の下地層24、26のそれ以外の形成方法として、イオンプレーティング法、電子ビーム蒸着法などの低圧成膜法が挙げられる。いずれも圧力が1x10-1Paから1x10-3Paと低いため、溝10側壁上部への堆積を防ぐことができる。いずれの手法においても成膜時に用いるガスには、Arガスを主体として、O2、H2、水蒸気、N2などが適宜添加される。また、Ag,Al,などの他の金属を材料として用いてもよい。そのほかに、透光性材料を用いてもよく、SnO2、In23、ZnO、CdO、CdIn24、CdSnO3、MgIn24、CdGa24、GaInO3、InGaZnO4、Cd2Sb27、Cd2GeO4、CuAlO2、CuGaO2、SrCu22、TiO2、Al23などを使用することができ、また、ドーパントとしては、Al、Ga、In、B、Y、Si、Zr、Ti、F、Ceから選択した1種類以上の元素を用いてもよい。
また、溝10の側壁に選択的に側壁絶縁膜30を形成しておくようにすれば、無電解めっき法により、下地層を形成することも可能である。
以上のように、上記方法により、第1および第2の下地層24と26の分離を高い位置精度でできるため、従来p型領域13pとn型領域9nに対する透光性導電膜あるいは金属の分離をレジストマスクによるパターニングで行っていたものが不要となりコスト削減ができる。
また、レジストによるパターニングでは、エッチングを行うために薬液を用いる。これが基板1や形成したシリコン層へのダメージとなって太陽電池の出力低下を招く。このため、上記方法により、ダメージを低減でき太陽電池特性の低下を抑えることができる。
次に、図12(b)に示すように、側壁絶縁膜30を形成してから、絶縁膜28を除去する。側壁絶縁膜30の形成には、CVD法を用いる。酸化シリコン膜は、プラズマCVD法によりSiH4ガス流量50sccm、H2ガス350sccm、CO210sccmとし、圧力100Pa、基板温度170℃、及びRFパワー0.2W/cm2の条件で形成される。その後、下地層22、24をストッパーとして酸化シリコン膜の異方性エッチングを行い、溝の側壁と溝のひさしに隠れている領域にのみ酸化シリコン膜を残留せしめ側壁絶縁膜30とする。絶縁膜28の除去工程では、この時絶縁膜28上の下地層もリフトオフにより除去される。絶縁膜28の除去を行う液にはHFを用い、2分間エッチングした。時間は絶縁膜28のシリコン窒化膜の薬液耐性によって異なり、10秒から30分程度である。また、絶縁膜28の除去を行う液には、これ以外に、フッ化アンモニウムや、フッ化アンモニウムとHFとの混合液などが用いられる。絶縁膜28を除去することによって、絶縁膜28が倒れることでリークが発生して特性が悪化するのを防ぐことができる。これにより次に形成される、第1および第2の電極の絶縁分離を確実にすることができる。
また、もっと簡易に作製する方法として、第1および第2の下地層24、26の形成時に蒸着粒子の直進性をより高めることにより、下地層26を溝10の側壁からはなして形成することができる。これにより、側壁絶縁膜30の形成を省略することができる。第1および第2の下地層24、26の成膜時の圧力を0.01Pa以下となるように低圧に変更することで直進性を高めることができる。次に、同じ方法で絶縁膜28の除去、第1および第2の金属電極25,37を形成すればよい。
次に、図12(c)に示すように、Cu選択めっきにより、第1および第2下地層24,26上にCuパターンからなる第1および第2の金属電極25,37を形成する。
第1および第2の金属電極25,37では、実施形態1と同様にスクリーン印刷によってAgペーストを用いて、Ag電極を形成してもよい。
このようにして、拡散型の太陽電池についても、容易に作業性よく裏面取り出し構造の太陽電池を形成することが可能となる。
次に、平面構成の変形例について説明する。図13に示すように、角部にR形状を形成した例が有用である。他の構成については図5に示した実施の形態1と同様であり、ここでは説明を省略する。
また、図14に示すように第1のパターンとして形成されたp型領域13p内に円形の溝10Rを形成し、この円形の溝10R内にn型領域9nを形成してもよい。この場合は、n型領域9nの相互接続のためのインターコネクタの形状に工夫が必要であるが、深い溝を形成した場合にも応力歪を均一にすることができ、容易に集電性の高い太陽電池モジュールを形成することも可能となる。
本発明のいくつかの実施の形態を説明したが、これらの実施の形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施の形態やその変形は、発明の範囲や要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。
1 基板、1T テクスチャー、2 保護膜、3 真性シリコン系層、4 n型シリコン系層、5 反射防止膜、6 真性シリコン系層、7 p型シリコン系層、8 絶縁膜、8R ひさし、9n n型領域、10 溝、11 真性シリコン系層、12 n型シリコン系層、13p p型領域、14 第1の透光性導電膜、15 第1の金属電極、16 第2の透光性導電膜、17 第2の金属電極、21 PSG膜、22 n型拡散層、24 第1の下地層、25 第1の金属電極、26 第2の下地層、27 p型拡散層、28 絶縁膜、28R ひさし、30 側壁絶縁膜、37 第2の金属電極。

Claims (22)

  1. 相対向する第1および第2の主面を有する第1導電型の半導体基板と、
    前記第2の主面に形成された第2導電型の半導体領域と、
    前記第2の主面に形成された溝内に形成された第1導電型の半導体領域と、
    前記第2および第1導電型の半導体領域にコンタクト層を介して形成された第1および第2の電極とを備え、
    前記コンタクト層は、前記溝の底面に選択的に形成され、前記第1導電型の半導体領域に接続されるとともに、少なくとも前記溝の側壁で分断され、前記第2の主面上の第2導電型の半導体領域上に成膜された薄膜である太陽電池。
  2. 前記第1導電型の半導体基板は、n型シリコン系基板であり、
    前記第1および第2導電型の半導体領域は、それぞれn型拡散領域、p型拡散領域であり、
    前記コンタクト層は金属膜である請求項1に記載の太陽電池。
  3. 前記第1導電型の半導体基板は、n型単結晶シリコン基板であり、
    前記第1導電型の半導体領域は、真性非晶質シリコン層を介して形成されたn型非晶質シリコン層であり、
    前記第2導電型の半導体領域は、真性非晶質シリコン層を介して形成されたp型非晶質シリコン層であり、
    前記コンタクト層は、透光性導電膜である請求項1に記載の太陽電池。
  4. 前記溝内に、ひさし状の絶縁膜が形成されており、
    前記コンタクト層は、
    前記溝内に形成された第1のコンタクト層と、
    前記絶縁膜上に形成され、前記絶縁膜の側壁に至る第2のコンタクト層とで構成された請求項2または3に記載の太陽電池。
  5. 前記コンタクト層は、
    前記溝内に形成された第1のコンタクト層と、
    前記溝の周縁から一定の幅を隔てて形成された第2のコンタクト層とで構成された請求項2または3に記載の太陽電池。
  6. 前記第2導電型の半導体領域と、前記第1のコンタクト層との最短距離が10nm以上100nm以下である請求項4または5に記載の太陽電池。
  7. 前記コンタクト層に、第1および第2の金属電極が形成されており、
    前記第1の金属電極は、ひさし状に張り出した前記絶縁膜の上面にも形成されている請求項4に記載の太陽電池。
  8. 前記溝に絶縁材が充填された請求項1から7のいずれか1項に記載の太陽電池。
  9. 前記コンタクト層はめっき用の下地層であり、
    前記第1および第2の電極はめっき層である請求項1に記載の太陽電池。
  10. 前記薄膜は、スパッタリング薄膜である請求項1から9のいずれか1項に記載の太陽電池。
  11. 前記薄膜は、イオンプレーティング薄膜または真空蒸着膜である請求項1から9のいずれか1項に記載の太陽電池。
  12. 相対向する第1および第2の主面を有する第1導電型の半導体基板の前記第2の主面に第2導電型の半導体領域を形成する工程と、
    絶縁膜を形成し、前記絶縁膜に第1の開口部を形成する工程と、
    前記開口部からエッチングを行い、前記第2の主面に溝を形成する工程と、
    前記溝内に第1導電型の半導体領域を形成する工程と、
    前記絶縁膜に第2の開口部を形成し、前記第2導電型の半導体領域を露呈させる工程と、
    前記第1および第2の開口部と、前記溝の形成された前記第1および第2導電型の半導体領域に、前記溝の側壁で分断されるようにコンタクト層を圧力1Paから1×10-3Pa下で分離形成する工程と、
    前記第2および第1導電型の半導体領域に分離形成された前記コンタクト層に、第1および第2の電極を形成する工程とを含む太陽電池の製造方法。
  13. コンタクト層を分離形成する工程は金属膜を形成する工程である請求項12に記載の太陽電池の製造方法。
  14. 前記第1導電型の半導体基板は、n型単結晶シリコン基板であり、
    前記第1導電型の半導体領域は、真性非晶質シリコン層を介して形成されたn型非晶質シリコン層であり、
    前記第2導電型の半導体領域は、真性非晶質シリコン層を介して形成されたp型非晶質シリコン層であり、コンタクト層を分離形成する工程は透光性導電膜を形成する工程である請求項12に記載の太陽電池の製造方法。
  15. 前記溝を形成する工程は、前記溝内にひさし状の絶縁膜が形成されるように、等方性エッチングを行う工程である請求項12に記載の太陽電池の製造方法。
  16. 前記ひさし状の絶縁膜は、前記第1および第2の電極の形成に先立ち除去する工程を含む請求項15に記載の太陽電池の製造方法。
  17. 第1の電極を形成する工程は、ひさし状に張り出した前記絶縁膜の上面にも形成する工程を含む請求項15に記載の太陽電池の製造方法。
  18. 前記溝に絶縁材を充填する工程を含む請求項12から17のいずれか1項に記載の太陽電池の製造方法。
  19. 前記第1および第2の電極を形成する工程は、印刷工程である請求項12に記載の太陽電池の製造方法。
  20. 前記第1および第2の電極を形成する工程は、選択めっき工程である請求項12に記載の太陽電池の製造方法。
  21. 前記コンタクト層を分離形成する工程は、スパッタリング工程である請求項12から20のいずれか1項に記載の太陽電池の製造方法。
  22. 前記コンタクト層を分離形成する工程は、イオンプレーティング工程または真空蒸着工程である請求項12から20のいずれか1項に記載の太陽電池の製造方法。
JP2014066730A 2014-03-27 2014-03-27 太陽電池およびその製造方法 Pending JP2015191962A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014066730A JP2015191962A (ja) 2014-03-27 2014-03-27 太陽電池およびその製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014066730A JP2015191962A (ja) 2014-03-27 2014-03-27 太陽電池およびその製造方法

Publications (2)

Publication Number Publication Date
JP2015191962A true JP2015191962A (ja) 2015-11-02
JP2015191962A5 JP2015191962A5 (ja) 2016-02-04

Family

ID=54426247

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014066730A Pending JP2015191962A (ja) 2014-03-27 2014-03-27 太陽電池およびその製造方法

Country Status (1)

Country Link
JP (1) JP2015191962A (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2016143698A1 (ja) * 2015-03-11 2017-12-21 シャープ株式会社 光電変換素子
WO2018016548A1 (ja) * 2016-07-20 2018-01-25 国立研究開発法人科学技術振興機構 太陽電池素子
CN111095571A (zh) * 2017-10-04 2020-05-01 株式会社钟化 太阳能电池的制造方法、太阳能电池以及太阳能电池模块
JP2020161702A (ja) * 2019-03-27 2020-10-01 パナソニック株式会社 太陽電池セルの製造方法および割断用太陽電池セル
JP7389934B1 (ja) * 2023-03-16 2023-11-30 浙江愛旭太陽能科技有限公司 裏面接触太陽電池セル、裏面接触太陽電池アセンブリ及び太陽光発電システム
CN117712212A (zh) * 2024-02-05 2024-03-15 天合光能股份有限公司 太阳能电池和太阳能电池的制造方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006523025A (ja) * 2003-04-10 2006-10-05 サンパワー コーポレイション 太陽電池用金属コンタクト構造体及び製法
WO2011093329A1 (ja) * 2010-01-26 2011-08-04 三洋電機株式会社 太陽電池及びその製造方法
JP2012004565A (ja) * 2010-06-14 2012-01-05 Imec インターディジテイテッドバックコンタクト太陽電池の製造方法
US8574951B1 (en) * 2013-02-20 2013-11-05 National Tsing Hua University Process of manufacturing an interdigitated back-contact solar cell
JP2014022544A (ja) * 2012-07-18 2014-02-03 Sharp Corp 光電変換素子および光電変換素子の製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006523025A (ja) * 2003-04-10 2006-10-05 サンパワー コーポレイション 太陽電池用金属コンタクト構造体及び製法
WO2011093329A1 (ja) * 2010-01-26 2011-08-04 三洋電機株式会社 太陽電池及びその製造方法
JP2012004565A (ja) * 2010-06-14 2012-01-05 Imec インターディジテイテッドバックコンタクト太陽電池の製造方法
JP2014022544A (ja) * 2012-07-18 2014-02-03 Sharp Corp 光電変換素子および光電変換素子の製造方法
US8574951B1 (en) * 2013-02-20 2013-11-05 National Tsing Hua University Process of manufacturing an interdigitated back-contact solar cell

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2016143698A1 (ja) * 2015-03-11 2017-12-21 シャープ株式会社 光電変換素子
WO2018016548A1 (ja) * 2016-07-20 2018-01-25 国立研究開発法人科学技術振興機構 太陽電池素子
CN111095571A (zh) * 2017-10-04 2020-05-01 株式会社钟化 太阳能电池的制造方法、太阳能电池以及太阳能电池模块
JP2020161702A (ja) * 2019-03-27 2020-10-01 パナソニック株式会社 太陽電池セルの製造方法および割断用太陽電池セル
JP7278831B2 (ja) 2019-03-27 2023-05-22 パナソニックホールディングス株式会社 太陽電池セルの製造方法および割断用太陽電池セル
JP7389934B1 (ja) * 2023-03-16 2023-11-30 浙江愛旭太陽能科技有限公司 裏面接触太陽電池セル、裏面接触太陽電池アセンブリ及び太陽光発電システム
CN117712212A (zh) * 2024-02-05 2024-03-15 天合光能股份有限公司 太阳能电池和太阳能电池的制造方法
CN117712212B (zh) * 2024-02-05 2024-04-23 天合光能股份有限公司 太阳能电池和太阳能电池的制造方法

Similar Documents

Publication Publication Date Title
US9236505B2 (en) Solar cell and method for manufacturing the same
JP5421701B2 (ja) 結晶シリコン太陽電池及びその製造方法
US9337380B2 (en) Method for fabricating heterojunction interdigitated back contact photovoltaic cells
JP6422426B2 (ja) 太陽電池
JP2015191962A (ja) 太陽電池およびその製造方法
JP5813204B2 (ja) 太陽電池の製造方法
JP6692797B2 (ja) 太陽電池及びその製造方法
TW201234638A (en) Method for making a solar battery, and solar battery
US9761749B2 (en) Photoelectric conversion device
US9997647B2 (en) Solar cells and manufacturing method thereof
JP2015185808A (ja) 光電変換装置およびその製造方法
WO2015064354A1 (ja) 太陽電池
US9397239B2 (en) Insitu epitaxial deposition of front and back junctions in single crystal silicon solar cells
KR20120110728A (ko) 태양 전지 및 이의 제조 방법
JP6021392B2 (ja) 光電変換装置の製造方法
JP2014199875A (ja) 太陽電池、およびその製造方法、ならびに太陽電池モジュール
KR101160116B1 (ko) 후면 접합 태양전지의 제조방법
JP7281444B2 (ja) 太陽電池の製造方法
JP2015122347A (ja) 太陽電池およびその製造方法、太陽電池モジュール
JP2013115057A (ja) 結晶シリコン太陽電池の製造方法
KR101024322B1 (ko) 태양전지용 웨이퍼 제조 방법, 그 방법으로 제조된 태양전지용 웨이퍼 및 이를 이용한 태양전지 제조 방법
CN111742416A (zh) 太阳能电池的制造方法
JP6239156B2 (ja) 太陽電池の製造方法
JPWO2017203751A1 (ja) 太陽電池及びその製造方法、並びに太陽電池パネル
KR101397024B1 (ko) 광전소자의 제조방법

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151211

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20151211

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160928

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161004

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20170404