JP6021392B2 - 光電変換装置の製造方法 - Google Patents

光電変換装置の製造方法 Download PDF

Info

Publication number
JP6021392B2
JP6021392B2 JP2012086854A JP2012086854A JP6021392B2 JP 6021392 B2 JP6021392 B2 JP 6021392B2 JP 2012086854 A JP2012086854 A JP 2012086854A JP 2012086854 A JP2012086854 A JP 2012086854A JP 6021392 B2 JP6021392 B2 JP 6021392B2
Authority
JP
Japan
Prior art keywords
photoelectric conversion
conversion device
substrate
aluminum
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2012086854A
Other languages
English (en)
Other versions
JP2013219119A (ja
Inventor
勝俊 菅原
勝俊 菅原
弘也 山林
弘也 山林
敦文 井上
敦文 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2012086854A priority Critical patent/JP6021392B2/ja
Publication of JP2013219119A publication Critical patent/JP2013219119A/ja
Application granted granted Critical
Publication of JP6021392B2 publication Critical patent/JP6021392B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/547Monocrystalline silicon PV cells

Description

本発明は、光電変換装置の製造方法に関する。
基板として単結晶シリコンあるいは多結晶シリコンなどの結晶系シリコン基板を用いた光電変換装置において、pn結合を形成するためには結晶系シリコン基板上にp型導電層およびn型導電層を形成する必要がある。これらp型導電層およびn型導電層がこの結晶系シリコン基板を介することなく電気的に接触することで、光生成されたキャリアの一部がこの接触を通じて漏れ電流となって失われ、光電変換装置の特性を劣化させる原因となることがある。よって、光電変換装置においてはp型導電層とn型導電層を電気的に分離する必要がある。また、p型導電層あるいはn型導電層上に形成される電極とシリコン基板との間でも同様の問題が起きるため、電極とこの結晶系シリコン基板との間についても同様に、電気的な接触を分離する必要がある。一方、絶縁分離のための分離溝を形成することによって結晶系シリコン表面が自由空間に露出した部分では表面準位が形成されるため光電変換効率が低下する。シリコン基板の側面においても、パッシベーション膜の形成方法によっては同様の問題が起きる。
特許文献1では、レーザ照射により半導体素子を分離した部分に窒化シリコン膜を形成し、保護膜とする技術が開示されている。特許文献2では、裏面電極型の光電変換装置においてシリコン基板の側面にシリコンとショットキー接合を形成する金属薄膜を形成し、光電変換効率の低下を抑える技術が開示されている。
特開2009−147108号公報 特開2004−39751号公報
自由空間に露出した結晶系シリコン基板の表面には表面準位が形成されており、光生成されたキャリアは結晶系シリコン基板表面に到達すると表面準位に捕獲され、別種のキャリアと再結合して消滅する。光電変換装置においてはパッシベーション膜と呼ばれる保護層を形成し、シリコン基板とパッシベーション膜との間の界面準位形成を抑制し、光生成したキャリアが消滅するのを防いでいる。分離溝の形成、あるいは個別分離のための基板割断は光電変換装置の製造過程において最終に近い段階でおこなわれるため、自由空間に露出した結晶系シリコン基板表面の表面準位形成を抑制するために用いることのできるプロセスや加熱温度は限られる。
特許文献1の窒化シリコン膜を保護膜として用いる方法は、プラズマCVD法など、プラズマを用いた窒化シリコン膜の形成方法では光電変換装置にダメージを与えるため、光電変換装置に用いることは困難である。一方、特許文献2の裏面電極型光電変換装置のシリコン基板側面に、シリコンとショットキー障壁を形成する金属層を設ける方法は、両面接合型の光電変換装置に適用する場合、側面の金属薄膜により受光面電極と裏面電極の間で短絡を生じる虞がある。また、この方法は、厚さ200μm以下の薄いシリコン基板の側面のみに金属薄膜を形成する方法であるため、形成が難しい。以上の理由から、低温かつ低ダメージで、簡便に実現することの可能な絶縁分離技術および側面パッシベーション技術が求められている。
本発明は、上記に鑑みてなされたものであり、低温かつ低ダメージで、簡便に実現可能な絶縁分離技術および側面パッシベーション技術を実行した光電変換装置を得ることを目的とする。
上述した課題を解決し、目的を達成するために、本発明の光電変換装置の製造方法は、第1導電型の半導体領域を有する基板と、前記基板上に形成された第2導電型の半導体領域とで、pn接合を形成した光電変換部を備えた光電変換装置の製造方法である。基板に対して、第1及び第2導電型の半導体領域のパターンエッジを覆うように第2導電型の半導体領域上からアルミニウムを主成分とする薄膜を形成する第1の工程と、薄膜を250℃以下で酸化し、酸化アルミニウム薄膜に改質する第2の工程と、を含むことを特徴とする。
アルミニウムは容易に酸化される材料であるため、アルミニウムの酸化によって形成される酸化アルミニウム層は低温形成が可能である。従って本発明の光電変換装置によれば、高温処理により特性劣化の生じ易いセルに対しても容易に絶縁分離を実現するパッシベーション膜を形成することが可能となり、光電変換効率の向上を図ることが可能となる。
図1−1は、本発明の実施の形態1にかかる光電変換装置を説明するための受光面側から見た平面図である。 図1−2は、本発明の実施の形態1にかかる光電変換装置を説明するための裏面側すなわち、受光面に対向する面側から見た平面図である。 図1−3は、実施の形態1にかかる光電変換装置の図1−1および図1−2における線分A−Aにおける要部断面図である。 図2−1は、本発明の実施の形態1にかかる光電変換装置の製造方法の各工程を模式的に示す断面図である。 図2−2は、本発明の実施の形態1にかかる光電変換装置の製造方法の各工程を模式的に示す断面図である。 図2−3は、本発明の実施の形態1にかかる光電変換装置の製造方法の各工程を模式的に示す断面図である。 図3は、シリコン基板における分離溝形成後、基板割断後および未処理の場合の少数キャリアの寿命の変化を表す特性図である。 図4は、RFプラズマCVDを使用して非晶質シリコンを形成したシリコン基板の側面近傍における少数キャリアの寿命の変化を表す特性図である。 図5−1は、本発明の実施の形態2にかかる光電変換装置を説明するための受光面側から見た平面図である。 図5−2は、本発明の実施の形態2にかかる光電変換装置を説明するための裏面側すなわち、受光面に対向する面側から見た平面図である。 図5−3は、実施の形態2にかかる光電変換装置の図5−1および図5−2における線分A−Aにおける要部断面図である。 図6−1は、本発明の実施の形態2にかかる光電変換装置の製造方法の各工程を模式的に示す断面図である。 図6−2は、本発明の実施の形態2にかかる光電変換装置の製造方法の各工程を模式的に示す断面図である。 図6−3は、本発明の実施の形態2にかかる光電変換装置の製造方法の各工程を模式的に示す断面図である。 図7−1は、本発明の実施の形態3にかかる光電変換装置を説明するための受光面側から見た平面図である。 図7−2は、本発明の実施の形態3にかかる光電変換装置を説明するための裏面側すなわち、受光面に対向する面側から見た平面図である。 図7−3は、実施の形態2にかかる光電変換装置の図7−1および図7−2における線分A−Aにおける要部断面図である。 図8−1は、本発明の実施の形態3にかかる光電変換装置の製造方法の各工程を模式的に示す断面図である。 図8−2は、本発明の実施の形態3にかかる光電変換装置の製造方法の各工程を模式的に示す断面図である。 図8−3は、本発明の実施の形態3にかかる光電変換装置の製造方法の各工程を模式的に示す断面図である。 図8−4は、本発明の実施の形態3にかかる光電変換装置の製造方法の各工程を模式的に示す断面図である。
以下に、本発明にかかる光電変換装置およびその製造方法の実施の形態を図面に基づいて詳細に説明する。なお、本発明は以下の記述に限定されるものではなく、本発明の要旨を逸脱しない範囲において適宜変更可能である。また、以下に示す図面においては、理解の容易のため、各部材の縮尺が実際とは異なる場合がある。各図面間においても同様である。
実施の形態1.
図1−1は本発明の実施の形態1にかかる光電変換装置を説明するための受光面側から見た平面図である。図1−2は本発明の実施の形態1にかかる光電変換装置を説明するための裏面側すなわち、受光面に対向する面側から見た平面図である。図1−3は実施の形態1にかかる光電変換装置の図1−1および図1−2における線分A−Aにおける要部断面図である。本実施の形態1にかかる光電変換装置では光電変換部が、第1導電型の結晶系シリコン基板であるp型の単結晶シリコン基板11の第1の面11a(受光面側)に第2導電型のシリコン領域であるn型アモルファスシリコン層12を形成し、pn接合を形成したものである。そしてp型の単結晶シリコン基板11の第2の面11bには第1導電型のシリコン領域である高濃度のp型アモルファスシリコン層13を形成し、BSF効果を得るとともに、基板電位取り出しのためのコンタクト層を構成している。絶縁分離領域は、n型アモルファスシリコン層12およびp型アモルファスシリコン層13上からp型の単結晶シリコン基板11に到達する分離溝15に充填された、酸化アルミニウム層19からなるパッシベーション膜で構成されている。この酸化アルミニウム層はアルミニウム薄膜の酸化で形成される。この分離溝15は、基板周縁部に沿って、環状をなすように形成されている。このパッシベーション膜により、n型アモルファスシリコン層12とp型の単結晶シリコン基板11の高濃度のp型アモルファスシリコン層13の絶縁分離が実現される。
本実施の形態における光電変換装置においては、第1導電型の半導体基板としてのp型の単結晶シリコン基板11の受光面側である第1の面11a側に、第1導電型とは異なる導電型の第2導電型層としてのn型アモルファスシリコン層12が形成されていると共にn型アモルファスシリコン層12の表面にアルミニウムの酸化によって形成された酸化アルミニウム層19から形成されるパッシベーション膜が形成されている。なお、半導体基板としては、n型の単結晶シリコン基板の他、p型あるいはn型の単結晶、多結晶もしくはアモルファス構造のシリコン基板、さらにはガリウム砒素基板などの化合物半導体基板を用いることができる。
また、光電変換装置のp型の単結晶シリコン基板11の受光面側である第1の面11a側には、図示はしないが、光路長を延ばし、変換効率を向上させることを目的に異方性エッチングによる微小な凹凸からなるテクスチャ構造が形成されている。微小な凹凸は受光面側において外部からの光を吸収する面積を増加させ、受光面側における反射率を抑制し、光を閉じ込める構造となっている。
p型の単結晶シリコン基板11の受光面(第1の面11a)には、pn接合を形成するため基板とは逆の導電型である第2導電型のシリコン領域であるn型アモルファスシリコン層12が設けられている。この第2導電型のシリコン領域には、化学気相成長(CVD:Chemical Vapor Deposition)法などにより形成されるn型アモルファスシリコン層以外にも、熱拡散により形成されるn型シリコン層も有効である。特にアモルファスシリコン膜を用いる場合はヘテロ接合型と呼ばれる。一方、裏面には、BSF(Back Surface Field)と呼ばれる光生成された少数キャリアをポテンシャル障壁により光入射面側に戻す効果を得るため、及び基板電位取り出しのためのコンタクト領域として、基板と同じ導電型であってかつ、基板より高い導電率を備えた層が設けられる。すなわち、基板にp型シリコン基板(p型の単結晶シリコン基板11)を用いる場合には光入射面からn型導電層、p型シリコン基板、p型導電層の順の構造が、基板にn型シリコン基板を用いる場合にはp型導電層、n型シリコン基板、n型導電層の順の構造が、それぞれ用いられる。この構造に対して透光性電極14,14Rおよび第1および第2の取り出し電極16,17を形成し出力を取り出す。透光性電極14,14Rには酸化インジウム錫(ITO:Indium Tin Oxide)をはじめとした透光性の導電性酸化物(TCO:Transparent Conductive Oxide)が用いられる。なお、具体的材料は特に限定されるものではなく、周知の材料から適宜選択して用いることができる。これらはスパッタリング法や電子ビーム堆積法、原子層堆積法、化学気相成長法、有機金属化学気相成長(MOCVD:Metal Organic Chemical Vapor Deposition)法、ゾルゲル法、印刷法、スプレー法をはじめとした種々の製膜方法により製膜することができる。
これら透光性電極14、14R上には、受光面側取り出し電極16及び裏面側取り出し電極17がそれぞれ設けられている。これら、受光面側取り出し電極16及び裏面側取り出し電極17はいずれも、例えば銀、ガラスを含む電極材料により構成される。受光面側取り出し電極16は、複数のグリッド電極16Gとこのグリッド電極16Gに直交するバス電極16Bとで構成される。裏面側取り出し電極17についても、複数のグリッド電極17Gとこのグリッド電極17Gに直交するバス電極17Bとで構成される。これらグリッド電極16G、17Gとバス電極16B、17Gは同一材料から構成されることを限定するものではない。
グリッド電極16Gは、受光面の面内方向において長尺細長の電極として複数並べて設けられ、このグリッド電極16Gと導通するようにこの上層にバス電極16Bが形成されている。このグリッド電極16Gは透光性電極14を介してn型アモルファスシリコン層12に電気的に接続されている。なお、該グリッド電極16Gの底面部とn型アモルファスシリコン層12の間には窒化シリコン層などのパッシベーション膜が形成されていてもよい。たとえば、光電変換装置の製造工程における熱処理により、グリッド電極16Gのファイアースルーによってn型アモルファスシリコン層12との間が導通されていればよい。ファイアースルー(焼成貫通)とはAgなどを含むペースト電極が焼成された際にパッシベーション膜を貫通して、その下の導電型層に接続する技術として一般に知られている。この電極構造は裏面側取り出し電極17についても同様である。
受光面側取り出し電極16及び裏面側取り出し電極17には上述したように、銀を主成分とするものの他、アルミニウム(Al)などが用いられる。なお、これらの受光面側取り出し電極16および裏面側取り出し電極17の具体的材料は特に限定されるものではなく、周知の材料から適宜選択して用いることができる。また、光入射面側では、受光面側取り出し電極16の光反射によってp型の単結晶シリコン基板11への光入射量が減少するため、受光面側取り出し電極を細線状に加工する必要がある。裏面ではこの虞がないため、電極形状は任意である。これらの受光面側取り出し電極16および裏面側取り出し電極17は、細線状に形成する場合には印刷法やメッキ法などが用いられる。一方、裏面側取り出し電極17は細線状に加工せずに全面電極とすることも可能である、この場合にはこれらに加えてスパッタリング法や蒸着法なども用いることができる。
以上のようにn型アモルファスシリコン層12と、高濃度のp型アモルファスシリコン層13は熱拡散や各種の化学気相成長法により形成される。このとき、光入射面側に設けられたn型アモルファスシリコン層12と高濃度のp型アモルファスシリコン層13とが電気的に接触する虞がある。これらが電気的に接触することで、シリコン基板中で光生成されたキャリアがその接触部分に流入し、本来であれば受光面側取り出し電極16及び裏面側取り出し電極17によって外部に出力される電流の一部が失われる。そこで、この接触を電気的に切断するために、レーザ照射やメカニカルスクライブにより形成される分離溝15が用いられる。これらはp型の単結晶シリコン基板11と透光性電極14、14R、受光面側取り出し電極1及び裏面側取り出し電極17の接触を防ぐため、これら各電極が形成された後に設けられる。分離溝15ではp型の単結晶シリコン基板11表面が露出するため、この部分には表面準位が形成され、セル特性を劣化させる。そこで分離溝15を形成した後にアルミニウム薄膜あるいはアルミニウムを主成分とする層を形成し、これを酸化して酸化アルミニウム層を形成する。なお、このアルミニウム薄膜は、スパッタリング法や蒸着法、各種の化学気相成長法、原子層成長(ALD:Atomic Layer Deposition)法などにより形成される。
さらにまた、上記分離溝以外にも、上記p型の単結晶シリコン基板11などの半導体基板が自由空間に対して露出する部分には表面準位が形成され、光生成されたキャリアが再結合しセル特性を劣化させるため、導電層や電極のない部分にはパッシベーション膜と呼ばれる保護構造が設けられる。このパッシベーション膜には酸化シリコン(SiO)や窒化シリコン(Si)、酸化アルミニウム(Al)が用いられる。これらのパッシベーション膜はシリコン基板の直接酸化や直接窒化に加え、スパッタリング法や蒸着法、各種の化学気相成長法、原子層成長(ALD:Atomic Layer Deposition)法などにより形成される。直接酸化や直接窒化は1000度を超える高温処理が必要となるため、光電変換装置製造過程においては導電層を形成する前に用いられる場合が多い。なお、具体的材料は特に限定されるものではなく、周知の材料から適宜選択して用いることができる。
次に、本実施の形態にかかる光電変換装置の製造方法について図2−1〜図2−3を参照して説明する。図2−1〜図2−3は、本実施の形態にかかる光電変換装置の製造方法の各工程を示す断面図である。なお、図2−1〜図2−3は、図1−3と同様、図1−1及び図1−2の線分A−Aの位置の断面図である。
まず、図2−1に示すように、一導電型の半導体領域を有する結晶系シリコン基板として、p型の単結晶シリコン基板11を用意し、p型の単結晶シリコン基板11をウェットエッチングによりスライス時に形成されたダメージ層を除去する。
その後、レジストからなる保護膜が形成されたp型の単結晶シリコン基板11に対して、たとえばアルミナの砥粒を用いて高圧で射出し、保護膜にランダムに分散する微小な穴を開ける。次に、保護膜に穴を開けたp型の単結晶シリコン基板11に対して、アルカリ水溶液でエッチングを行うことでp型の単結晶シリコン基板11の受光面側の表面にテクスチャ構造として微小凹凸を形成する。その後、レジストからなる保護膜を除去し、フッ酸につけることで、パッシベーション膜を除去する。なお、レジストからなる保護膜はアルカリ水溶液のエッチング前に除去してもよいし、工程を簡略化するためアルカリ水溶液によってテクスチャ構造の形成と同時に除去しても良い。
このような構造をp型の単結晶シリコン基板11の受光面側に形成することで、表面で光の多重反射を生じさせて、実行的に反射率を低減し変換効率を向上させることができる。テクスチャ構造が形成された領域にプラズマCVD法などによりn型アモルファスシリコン層12を形成する。この後、さらに裏面側にプラズマCVD法などによりp型アモルファスシリコン層13を形成する。
次に、スパッタリング法により透光性電極14,14Rを形成する。そして図示しない窒化シリコン層などのパッシベーション膜の形成後、受光面とは逆側の面に裏面側取り出し電極17の電極材料であって例えば銀、ガラス等を含むペーストを、スクリーン印刷法により塗布し、乾燥する。その後、大気中において、例えば750℃〜900℃の温度で焼成を行う。これにより銀がパッシベーション膜を貫通する。そしてさらに、裏面取り出し電極17が形成される。
そして、銀、ガラス等を含む電極材料ペーストをスクリーン印刷法により塗布し、乾燥することで焼成を行い、受光面側電極16を形成する(図2−1)。
以上により、光電変換装置が完成したのち、図2−2に示すように、レーザ照射により分離溝15が形成される。この分離溝15の形成は、レーザ照射に限定されることなくメカニカルスクライブを用いてもよい。
この後、図2-3に示すように、蒸着法により、n型アモルファスシリコン層12およびp型アモルファスシリコン層13のパターンエッジ及び分離溝15を覆うように、アルミニウム薄膜を形成する。なお、このアルミニウム薄膜は、スパッタリング法や蒸着法、各種の化学気相成長法、原子層成長(ALD:Atomic Layer Deposition)法などにより形成される。アルミニウム薄膜19cの厚さは、5nm未満では、後続工程である酸化工程で形成される酸化アルミニウム層19の厚さが不十分となるため、5nmより厚いことが望ましい。100nmより厚い場合には十分に酸化されず、金属アルミニウム薄膜の一部が残存する虞があるため、100nmより薄い必要がある。
この後、酸化処理することで、アルミニウム薄膜19cを変質させ、酸化アルミニウム層19を得る。このようにして、図1−3に断面図を示したように、酸化アルミニウム層19からなるパッシベーション膜によって絶縁分離のなされた光電変換装置が形成される。酸化処理の方法としては熱酸化に加え、酸素イオンやラジカルによる酸化、薬液処理などを用いることができる。熱酸化はコストや安全の面から扱いやすい酸化方法と言える。熱酸化を用いる場合には、加熱処理の際の雰囲気の酸素含有量は10体積%以上、温度は250℃以下が望ましい。また、アルミニウム層19cは加工性に優れるため、分離溝15や割断面のみを残して他の部分に付着したアルミニウム薄膜19cを取り除くことや、アルミニウム薄膜19cを形成する際にマスクを使用し、目的の部分のみにアルミニウム薄膜19cを形成することも容易である。透光性電極14中へのアルミニウムの拡散が問題となる場合には、アルミニウム薄膜19cは分離溝15の存在する外周部分のみに形成してもよい。裏面側の全面を金属電極で覆う場合にはこの限りではない。
本実施の形態1にかかる製造方法では分離溝15に対してアルミニウム薄膜19cを形成し、酸化処理をおこなうことで酸化アルミニウム層19を得る。これによって分離溝15形成部分での表面準位形成を抑え、光電変換効率を改善することができる。
図3に分離溝の形成前後での少数キャリアの寿命(Lifetime)の変化を示す。少数キャリアの寿命はマイクロ波光導電減衰(μ−PCD:Microwave−PhotoConductivity Decay)法により測定した。横軸は割断面からの距離を、縦軸は規格化された少数キャリアの寿命を示す。図中の破線cは未処理つまり光電変換装置を形成したウェハ状態のままの基板を、実線bは基板割断後そのままの場合の基板表面からの距離とキャリアの寿命との関係を示す。破線aはレーザ照射による分離溝形成後の状態をそれぞれ表している。破線cのように未処理では少数キャリアの寿命は低下しない。そして実線bと破線aとの比較結果から、レーザ照射により少数キャリアの寿命が分離溝から約5mmにわたって低下することがわかる。
また図4に分離溝後、酸化アルミニウム層(パッシベーション膜)の形成前後での少数キャリアの寿命(Lifetime)の変化を示す。横軸は基板側面からの距離を、縦軸は規格化された少数キャリアの寿命を示す。図中の実線aは基板割断後未処理酸化アルミニウム層を形成した場合を、破線bは基板割断後そのままの場合の基板表面からの距離とキャリアの寿命との関係を示す。実線aと破線bとの比較結果から、酸化アルミニウムの形成により少数キャリアの寿命が基板側面でも良好となっていることがわかる。
以上説明してきたように、アルミニウムの酸化によって形成した酸化アルミニウムからなるパッシベーション膜を、分離溝に形成することで少数キャリアの寿命の低下を抑えることができる。パッシベーション膜を形成するためにアルミニウム薄膜の形成方法としては前述の、スパッタリング法、蒸着法、各種の化学気相成長法、原子層成長法が挙げられる。分離溝に対するパッシベーション膜形成に必要な条件として、光電変換装置の構造に悪影響を与えないために形成方法が低温かつ低ダメージである必要がある。このうち、直接酸化や直接窒化、熱を用いた化学気相成長法は加熱温度の点で、プラズマを用いた化学気相成長法やスパッタリング法はダメージの点で望ましい方法とは言えない。蒸着法は低温かつ低ダメージという条件を満たすが、これらのパッシベーション材料が高融点材料であることから電子ビーム蒸着を用いる必要があり、コストが高い。原子層成長法は酸化アルミニウムに対して用いることができるが、高コストかつ取り扱いの危険なトリメチルアルミニウム(TMA:Tri−Metyl Aluminium)を使用する必要がある。このような理由から、低温、低ダメージ、安価、安全の条件を満たす方法として、蒸着法によるアルミニウム薄膜形成と酸化による改質とを組み合わせて、酸化アルミニウムを形成する方法が極めて有効であることがわかる。
なお、アルミニウム層19cはアルミニウムを主な成分として有する薄膜であり、その他の物質を導入した化合物としていてもよい。アルミニウム層19cの厚さは、5nm未満では形成される酸化アルミニウム3の厚さが不十分となるため、5nmより厚いことが望ましいが、100nmより厚い場合には十分に酸化されず、金属アルミニウムの一部が残存する虞があるため、100nmより薄く形成する必要がある。次に、この構造を酸化処理することでアルミニウム層19cを変質させ、酸化アルミニウム層19からなるパッシベーション層を得る(図1−3)。酸化処理の方法としては熱酸化に加え、酸素イオンやラジカルによる酸化、薬液処理などを用いることができる。熱酸化はコストや安全の面から扱いやすい酸化方法と言える。熱酸化を用いる場合には、加熱処理の際の雰囲気の酸素含有量は10体積%以上、温度は250℃以下が望ましい。また、アルミニウム層19cは加工性に優れるため、分離溝15や割断面のみを残して他の部分に付着したアルミニウム層19cを取り除くことや、アルミニウム層19cを形成する際にマスクを使用し、目的の部分のみにアルミニウム層19cを形成することも容易である。透光性電極14R中へのアルミニウムの拡散が問題となる場合には、アルミニウム層19cは分離溝15の存在する外周部分のみに形成してもよい。透光性電極14Rに代えて裏面側の全面を金属電極で覆う場合にはこの限りではない。
実施の形態1にかかる製造方法では分離溝に対してアルミニウム層を形成し、酸化処理をおこなうことで酸化アルミニウムを得る。これにより分離溝形成部分での表面準位形成を抑え、光電変換効率を改善することができる。従って実施の形態によれば、低温形成が可能であるため、銀電極を印刷した後のセルや、ヘテロ接合型光電変換装置のような高温処理により特性劣化の生じ易いセルに対しても容易に絶縁分離を実現するパッシベーション膜を形成することが可能となり、光電変換効率の向上を図ることが可能となる。
実施の形態2.
図5−1は本発明の実施の形態2にかかる光電変換装置を説明するための受光面側から見た平面図である。図5−2は本発明の実施の形態2にかかる光電変換装置を説明するための裏面側すなわち、受光面に対向する面側から見た平面図である。図5−3は実施の形態2にかかる光電変換装置の図5−1および図5−2における線分A−Aにおける要部断面図である。本実施の形態2にかかる光電変換装置では、実施の形態1にかかる光電変換装置の形成方法と比較して、n型アモルファスシリコン層12とp型アモルファスシリコン層13との分離に基板割断を用いる点のみが異なる。つまり、分離溝15の部分で基板全体を割断し、この割断面に当接するように酸化アルミニウム層19からなるパッシベーション膜を形成したものである。酸化アルミニウム形成のためのアルミニウムの酸化方法としては熱酸化を例にとって説明する。以下において、実施の形態1と同じ部材については同じ符号を付す。
基板割断による分離では、まず実施の形態1にかかる分離溝形成と同様にレーザ照射やメカニカルスクライブによって割断溝となる分離溝15を形成する。このとき、図3に示したように5mm程度の長さにわたって少数キャリアの寿命が低下する。さらに、分離溝15に沿って基板を割断することで、その長さは10mm程度まで増加している。また、特に非晶質シリコン膜を用いたヘテロ接合型の光電変換装置の場合のシリコン基板側面では異なった問題がある。図4の破線はヘテロ接合型光電変換装置の側面近傍での少数キャリアの寿命を示している。アモルファスシリコン膜を形成するために一般に用いられるRFプラズマCVDでは、p型の単結晶シリコン基板側面への膜形成が不十分となりやすく、それに伴って側面ではパッシベーション膜が十分に形成されない。そのため、側面近傍では約5mmにわたって少数キャリアの寿命が低下している。よって、分離溝15や割断溝による割断面18を形成しない場合でも側面でのパッシベーションが不十分となることによりセル特性が劣化する場合がある。よって、これらの部分にパッシベーション膜としての酸化アルミニウム層19からなるパッシベーション膜を形成することで劣化したセル特性を改善することができる。
まず、実施の形態1と同様の方法でp型の単結晶シリコン基板11(ウェハ)に形成された光電変換装置1に対し、割断溝となる分離溝15を形成する(図6−1)。この工程までは前記実施の形態1における工程(図2−1、図2−2)と同様である。
次にこの分離溝15に沿って光電変換装置1を割断し、割断による分離を施した光電変換装置とする。このようにして割断面18の露呈する光電変換装置1を形成する(図6−2)。
そしてこの割断面18に当接するように、裏面側からアルミニウム層19cを形成し(図6−3)、さらに酸化を施し、酸化アルミニウム層19からなるパッシベーション膜に改質する。このようにして図5−1〜図5−3に示したように、割断面18が酸化アルミニウム層19からなるパッシベーション膜で覆われた光電変換装置を得る。
図4の実線aはシリコン基板上にプラズマCVDによるアモルファスシリコン層からなるシリコンパッシベーション膜を形成し、さらに、外周に酸化アルミニウム層19からなるパッシベーション膜を形成した場合の少数キャリアの寿命を示している。この結果から酸化アルミニウム層19からなるパッシベーション膜を基板であるp型の単結晶シリコン基板11の側面に形成することにより、側面近傍で少数キャリアの寿命が低下する領域が図4の破線bによる5mmから実線aによる2mmに小さくなっている。
本実施の形態2にかかる光電変換装置の製造方法では割断面に対してアルミニウム層19cを形成し、酸化処理をおこなうことで酸化アルミニウム層19からなるパッシベーション膜に改質する。これによって割断面や基板側面部分での表面準位形成を抑え、光電変換効率を改善することができる。
実施の形態3.
図7−1は本発明の実施の形態3にかかる光電変換装置を説明するための受光面側から見た平面図である。図7−2は本発明の実施の形態3にかかる光電変換装置を説明するための裏面側すなわち、受光面に対向する面側から見た平面図である。図7−3は実施の形態3にかかる光電変換装置の図7−1および図7−2における線分A−Aにおける要部断面図である。本実施の形態3にかかる光電変換装置では、実施の形態1にかかる光電変換装置の形成方法と比較して、さらにアルミニウム薄膜の形成と酸化とを複数回繰り返すことで、より確実に膜厚の大きい酸化アルミニウム層19からなるパッシベーション膜を形成した点が異なる。分離方法として分離溝形成を例にとって説明するが、実施の形態2にかかる基板割断を用いていてもよい。以下において、実施の形態1と同じ部材については同じ符号を付す。
光電変換装置1の構造については実施の形態1で説明したものと同様である。
まず、実施の形態1と同様の方法で形成された光電変換装置1に対し、レーザ照射により分離溝15を形成する(図8−1)。この工程までは前記実施の形態1における工程(図2−1、図2−2)と同様である。
この後、図8-2に示すように、蒸着法により、アルミニウム薄膜19cを形成する。この工程は前記実施の形態1における工程(図2−3)と同様である。このときのアルミニウム薄膜19cの厚さは10nm以下とする。
次に熱酸化によりアルミニウム薄膜19cに酸化を施し、酸化アルミニウム層19からなるパッシベーション膜に改質する(図8−3)。この酸化工程においては、10体積%以上の酸素を含有した雰囲気中で熱酸化し、酸化アルミニウム層19とする。
そしてさらに、再度裏面側からアルミニウム薄膜19cを形成し(図8−4)、さらに酸化を施し、酸化アルミニウム層19からなるパッシベーション膜に改質する。このようにして図7−1〜図7−3に示したように、厚い酸化アルミニウム層19からなるパッシベーション膜で覆われた光電変換装置1を得る。
このようにしてさらに熱酸化により酸化アルミニウム層19へ変質させることを繰り返しながら酸化アルミニウム層19を形成し、所望の厚さを備えた酸化アルミニウム層19とすることができる。低温で形成される酸化アルミニウム層19は、膜厚が薄い場合には十分なパッシベーション効果が得られない。また、前述のとおりアルミニウム層19cの厚さを増加させた場合にはアルミニウム層19cが十分に酸化されず、導電性の高い金属アルミニウムが残存する虞がある。
本実施の形態3にかかる方法によれば、アルミニウム薄膜の形成、酸化を繰り返すことにより、金属アルミニウムを残存させることなく、十分な厚さを備えた酸化アルミニウムを形成することが可能となるため、光電変換装置の特性を向上させることができる。
以下、本発明を実施例に基づいて具体的に説明するが、本発明はその趣旨を越えない限り以下の実施例に限定されるものではない。
<実施例1>
実施例1では、実施の形態1で述べたパッシベーション膜の製造方法および光電変換装置の製造方法により光電変換装置を作製した。まず、基板には(100)面を有するn型単結晶シリコン基板を使用した。この基板にアルカリによるウェットエッチングを施し、表面凹凸を設けテクスチャ構造を形成した。
次に、この基板に対し、RF(Radio Frequency)プラズマCVDを使用し、光入射面側には厚さ10nmのp型非晶質シリコン層および5nmのi型非晶質シリコン層を、シリコン基板を挟み裏面側には厚さ10nmのn型非晶質シリコン層および5nmのi型非晶質シリコン層をそれぞれ形成した。
次にこの構造の両側に厚さ80nmの透光性電極14,14Rとして酸化インジウム錫層ITOを製膜した。次に銀による櫛形の集電電極である受光面側取り出し電極16、裏面側取り出し電極17を印刷形成した(図2−1)。
次にこの構造の外周部に赤外線レーザを用いて分離溝15を形成し、図2−2に示す構造とした。この構造の裏面に蒸着法により厚さ20nmのアルミニウム層19cを形成し、図2−3に示す構造とした。
また、光電変換装置1の中央部分はマスクを施した。次にこの構造を、240℃、20体積%の酸素を含有した窒素雰囲気中で1時間加熱し、アルミニウム層19cを酸化アルミニウム層19からなるパッシベーション膜に変質させ、図1−1〜1−3に示す構造を有する光電変換装置とした。
次に、実施例1の光電変換装置の特性として、光電変換効率(η)、短絡電流密度(Jsc)、開放端電圧(V)、フィルファクター(FF)を評価した。その結果を表1に示す。
<実施例2>
実施例2では、実施の形態2で説明した割断面18にパッシベーション膜を形成した光電変換装置の製造方法により光電変換装置を作製した。まず、実施例1と同様にして光電変換装置を作製した。次にこの構造に裏面側から赤外線レーザを照射して分離溝15を形成し、図6−1に示す構造とした。
次に分離溝15に沿って基板を割断し、図6−2に示す構造とした。次にこの構造に対し真空蒸着法により、アルミニウム層19cを形成し、図6−3に示す構造とした。この真空蒸着に際し、蒸着源とシリコン基板は垂直に対向させず傾きを持たせて配置し、さらに基板を回転させることにより、シリコン基板側面に20nmのアルミニウム層19cを形成した。
次にこの構造を240℃の20体積%の酸素を含有した窒素雰囲気中で1時間加熱し、アルミニウム層19cを酸化アルミニウム層19からなるパッシベーション膜に変質させ、図5−1〜5−3に示す構造を有した光電変換装置とした。
次に、実施例2の光電変換装置の特性として、光電変換効率(η)、短絡電流密度(Jsc)、開放端電圧(V)、フィルファクター(FF)を評価した。その結果を表1に示す。
<実施例3>
実施例3では、実施の形態3で述べたパッシベーション膜の製造方法および光電変換装置の製造方法により光電変換装置を作製した。まず、実施例1と同様にして図8−1に示すように分離溝15を有する構造を作製した。
次にこの構造の裏面に実施例1と同様にして厚さ2nmのアルミニウム層19cを形成し、図8−2に示す構造とした。
次にこの構造を、アルミニウム薄膜19cを形成した蒸着装置内に留置したまま酸素を導入し、基板温度200℃、圧力100Paで5分間熱処理し、アルミニウム薄膜19cを酸化アルミニウム層19からなるパッシベーション膜に変質させ、図8−3に示す構造とした。
引き続きこの構造の裏面へのアルミニウム薄膜19cの形成(図8−4)と熱処理とを計10回繰り返し、約30nmの厚さの酸化アルミニウム層19からなるパッシベーション膜とし、図7−1〜図7−3に示す構造とした。次に、実施例3の光電変換装置の特性として、光電変換効率(η)、短絡電流密度(Jsc)、開放端電圧(V)、フィルファクター(FF)を評価した。その結果を表1に示す。
<比較例>
比較例では従来の製造方法で光電変換装置を作製した。比較例の製造方法では実施例1と同様にして光電変換装置を製作するが、分離溝形成までで光電変換装置の完成とし、酸化アルミニウムを形成しない点のみが実施例1および2と異なる。
比較例の光電変換装置の特性として、光電変換効率(η)、短絡電流密度(Jsc)、開放端電圧(V)、フィルファクター(FF)を評価した。その結果を表1に示す。
また、表1に示すように実施例1の光電変換装置の光電変換効率は18.7%、短絡電流密度は36.1mA/cm、開放端電圧は0.701mV、フィルファクターは0.740であった。また、表1に示すように比較例の光電変換装置の光電変換効率は18.7%、短絡電流密度は36.0mA/cm、開放端電圧は0.701mV、フィルファクターは0.741であった。
このことから、実施例1の分離溝に酸化アルミニウムによるパッシベーション膜を備えた光電変換装置は、比較例の酸化アルミニウムを備えていない光電変換装置と比較して、開放端電圧が増大したことにより、光電変換効率が向上したことがわかる。また、表1に示すように実施例2の光電変換装置の光電変換効率は18.8%、短絡電流密度は36.0mA/cm、開放端電圧は0.706mV、フィルファクターは0.739であった。
このことから、実施例2のシリコン基板側面に酸化アルミニウムによるパッシベーション膜を備えた光電変換装置は、比較例の光電変換装置と比較して、開放端電圧が増大したことにより、光電変換効率が向上したことがわかる。
また、表1に示すように実施例3の光電変換装置の光電変換効率は19.1%、短絡電流密度は36.0mA/cm、開放端電圧は0.711mV、フィルファクターは0.745であった。
このことから、実施例3の酸化アルミニウムによるパッシベーション膜を備えた光電変換装置は、比較例の光電変換装置と比較して、開放端電圧が増大したことにより、光電変換効率が向上したことがわかる。以上のように、本実施例は、光電変換効率に優れた光電変換装置の実現に有用である。
Figure 0006021392
なお、前記実施の形態では、基板として単結晶シリコン基板を用いたが、半導体基板に限らず、ガラス基板などの絶縁性基板にも適用可能であり、例えばガラス基板上にアモルファスシリコン膜を順次積層しpin構造を形成した光電変換装置などにおいても、適用可能である。そして、本実施の形態は、前記第1および第2導電型の半導体領域間、第1または第2導電型の半導体領域と電極との間の絶縁分離に対し、アルミニウムを主成分とする薄膜の酸化によって形成された酸化アルミニウムからなるパッシベーション膜でなされる。ここで第1および第2導電型の半導体領域間としては、第1導電型の基板と第2導電型の半導体領域との間を含む。
また、2個以上の光電変換装置を直列接続する等、複数の光電変換装置のセルを接続して形成した光電変換モジュールにも適用可能であることはいうまでもない。
以上のように、本発明にかかる光電変換装置およびその製造方法は、高温処理により特性劣化の生じ易いセルに対しても容易に絶縁分離領域を構成するパッシベーション膜を形成することが可能となり、光電変換効率の向上を図ることが可能となることから、特に、光電変換効率に優れた光電変換装置の製造に適している。
1 光電変換装置
11 p型の単結晶シリコン基板
12 n型アモルファスシリコン層
13 p型アモルファスシリコン層
14,14R 透光性電極
15 分離溝
16 受光面側取り出し電極
17 裏面側取り出し電極
18 割断面
19c アルミニウム薄膜
19 酸化アルミニウム層

Claims (5)

  1. 第1導電型の半導体領域を有する基板上に、第2導電型の半導体領域を形成してpn接合を有する光電変換部を形成する工程を含む光電変換装置の製造方法であって、
    前記基板に対して、前記第1及び第2導電型の半導体領域のパターンエッジを覆うように前記第2導電型の半導体領域上からアルミニウムを主成分とする薄膜を形成する第1の工程と、
    前記薄膜を250℃以下で酸化し、酸化アルミニウム薄膜に改質する第2の工程と、
    を含むことを特徴とする光電変換装置の製造方法。
  2. 前記光電変換部を形成する工程は、第1導電型の半導体領域を有する結晶系シリコン基板上に第2導電型のシリコン領域を形成する工程を含む光電変換装置の製造方法であって、
    前記第1または第2導電型のシリコン領域を貫通して前記結晶系シリコン基板に到達する溝部を形成する工程を含み、
    前記第1の工程は、前記第1または第2導電型のシリコン領域上から前記溝部に到達するようにアルミニウムを主成分とする薄膜を形成する工程であり、
    前記第2の工程は、前記薄膜を250℃以下で酸化し、酸化アルミニウム薄膜に改質し、前記溝部内の前記薄膜を酸化アルミニウムとする工程
    を含むことを特徴とする請求項に記載の光電変換装置の製造方法。
  3. 前記第1の工程および第2の工程は、交互に複数回繰り返し実施されることを特徴とする請求項に記載の光電変換装置の製造方法。
  4. 前記第2工程は熱酸化工程であること、
    を特徴とする請求項からのいずれか1項に記載の光電変換装置の製造方法。
  5. 前記溝部を形成する工程は、前記基板の周縁部に沿って環状溝を形成する工程であること、
    を特徴とする請求項に記載の光電変換装置の製造方法。
JP2012086854A 2012-04-05 2012-04-05 光電変換装置の製造方法 Expired - Fee Related JP6021392B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012086854A JP6021392B2 (ja) 2012-04-05 2012-04-05 光電変換装置の製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012086854A JP6021392B2 (ja) 2012-04-05 2012-04-05 光電変換装置の製造方法

Publications (2)

Publication Number Publication Date
JP2013219119A JP2013219119A (ja) 2013-10-24
JP6021392B2 true JP6021392B2 (ja) 2016-11-09

Family

ID=49590916

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012086854A Expired - Fee Related JP6021392B2 (ja) 2012-04-05 2012-04-05 光電変換装置の製造方法

Country Status (1)

Country Link
JP (1) JP6021392B2 (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6788657B2 (ja) * 2016-03-10 2020-11-25 株式会社カネカ 太陽電池モジュール
KR101846445B1 (ko) * 2016-10-13 2018-04-06 엘지전자 주식회사 태양 전지 및 이의 제조 방법
CN106611804B (zh) * 2016-12-28 2017-12-08 合肥海润光伏科技有限公司 一种全钝化太阳能电池结构
WO2019182243A1 (ko) * 2018-03-19 2019-09-26 엘지전자 주식회사 태양 전지 및 그 제조 방법
CN114464687A (zh) * 2021-12-28 2022-05-10 浙江爱旭太阳能科技有限公司 一种局部双面隧穿钝化接触结构电池及其制备方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008227002A (ja) * 2007-03-09 2008-09-25 Nichia Chem Ind Ltd 窒化物半導体レーザ素子
CN102388465B (zh) * 2009-09-29 2014-11-05 京瓷株式会社 太阳能电池元件及太阳能电池模块
JP5490231B2 (ja) * 2010-05-20 2014-05-14 京セラ株式会社 太陽電池素子およびその製造方法ならびに太陽電池モジュール

Also Published As

Publication number Publication date
JP2013219119A (ja) 2013-10-24

Similar Documents

Publication Publication Date Title
JP5019397B2 (ja) 太陽電池およびその製造方法
JP5425349B1 (ja) 太陽電池およびその製造方法、ならびに太陽電池モジュール
JP5236914B2 (ja) 太陽電池の製造方法
US20100218826A1 (en) Method for producing a silicon solar cell with a back-etched emitter as well as a corresponding solar cell
JP5414298B2 (ja) 太陽電池の製造方法
JP2010171464A (ja) へテロ接合およびインターフィンガ構造を有する半導体デバイス
JP6021392B2 (ja) 光電変換装置の製造方法
JP6410951B2 (ja) 太陽電池セルおよび太陽電池セルの製造方法
US9761749B2 (en) Photoelectric conversion device
US20170133545A1 (en) Passivated contacts for photovoltaic cells
TW201318030A (zh) 半導體光檢測裝置及其製備的方法
JP6207414B2 (ja) 光起電力素子およびその製造方法
KR100990108B1 (ko) 태양 전지 및 그 제조 방법
JP2015191962A (ja) 太陽電池およびその製造方法
JP2015138959A (ja) 光起電力装置および光起電力装置の製造方法
KR101153377B1 (ko) 개선된 후면구조를 구비한 후면접합 태양전지 및 그 제조방법
JP6164939B2 (ja) 太陽電池およびその製造方法、ならびに太陽電池モジュール
JP5745653B2 (ja) 光起電力装置およびその製造方法、光起電力モジュール
JPWO2014189058A1 (ja) 太陽電池、太陽電池モジュール、太陽電池の製造方法、並びに太陽電池モジュールの製造方法
JP4322199B2 (ja) 太陽電池セル、太陽電池セルユニットの製造方法および太陽電池モジュール
US11222991B2 (en) Solar cell and method for manufacturing the same
WO2017187623A1 (ja) 太陽電池の製造方法および太陽電池
TW201830719A (zh) 高光電變換效率太陽電池及高光電變換效率太陽電池之製造方法
JP5022743B2 (ja) 光電変換素子
JP5452535B2 (ja) 太陽電池の製造方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141006

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150722

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150728

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150909

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160223

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160421

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160906

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161004

R150 Certificate of patent or registration of utility model

Ref document number: 6021392

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees