JP5022743B2 - 光電変換素子 - Google Patents

光電変換素子 Download PDF

Info

Publication number
JP5022743B2
JP5022743B2 JP2007063612A JP2007063612A JP5022743B2 JP 5022743 B2 JP5022743 B2 JP 5022743B2 JP 2007063612 A JP2007063612 A JP 2007063612A JP 2007063612 A JP2007063612 A JP 2007063612A JP 5022743 B2 JP5022743 B2 JP 5022743B2
Authority
JP
Japan
Prior art keywords
electrode
separation band
film
highly doped
semiconductor substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007063612A
Other languages
English (en)
Other versions
JP2008227160A (ja
Inventor
祐司 栗本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP2007063612A priority Critical patent/JP5022743B2/ja
Publication of JP2008227160A publication Critical patent/JP2008227160A/ja
Application granted granted Critical
Publication of JP5022743B2 publication Critical patent/JP5022743B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Photovoltaic Devices (AREA)

Description

本発明は光電変換素子に関するものであり、さらに詳しくは、太陽光などの光の照射を受けてそのエネルギーを直接電気エネルギーに変える、太陽電池素子に代表される光電変換素子に関するものである。
光電変換素子の一種であるシリコン太陽電池素子の高効率化における課題の1つは、シリコン基板とシリコン熱酸化膜や反射防止膜などとの界面の不活性化にある。この界面が活性な状態では界面にエネルギー不整準位が存在する。その不整準位にキャリアが捕捉されることにより、太陽電池電極へのキャリア収集効率が低下し、電気的特性が低下する。そこで、界面を不活性化するために多くの試みがなされてきた。界面不活性化の考え方には2つの筋道が存在する。
(1)第1の考え方
第1の考え方は、界面に存在するシリコンの未結合種を終端し界面の不整準位を減らす、すなわち界面に由来する欠陥自体を減らす試みである。
SiO2膜による方法は、シリコン半導体が世に出て以来、有効な界面不活性化の方法であり続けてきた。SiO2膜は、それ自体にシリコンが含まれるので、表面シリコン結晶の秩序を維持したまま表面の未結合種を終端することができ、欠陥密度を低く抑えながら基板界面のシリコンに結合することが可能である。SiO2膜の太陽電池への応用も現在までに多くなされてきた。特許文献1では、SiO2を比較的低い温度でシリコン基板表面に生成する方法が示されている。
シリコンを含んだSi34膜もまた、シリコン基板界面に由来する欠陥を減らして表面を不活性化する。特許文献2では、Si34膜を用いた太陽電池作製のプロセスが示されている。さらに特許文献3では、水素およびハロゲン元素を含むSi34膜を生成するプロセスが示されている。
以上の例はシリコンを含んだ絶縁膜、誘電体膜の堆積であったが、特許文献4および特許文献5では、半導体である微結晶シリコンをシリコンウェハー表面に堆積させ、不活性化に用いることが示されている。
また、シリコン以外の不活性化膜材料の候補として、特許文献6ではアルカリ珪酸塩、特許文献3ではAl23膜、特許文献7ではダイアモンド薄膜などが挙げられている。
(2)第2の考え方
第2の考え方は、再結合速度の大きい部位にキャリアが存在する確率を下げる試みである。
単純なアイデアは、特許文献8または特許文献9で述べられている。これらでは、再結合速度の大きい電極近傍の面積が太陽電池の全面積に占める割合を極小化するために、電極のキャリア収集効率を上げるとともにその面積をできるだけ小さくし、太陽電池全体の再結合損失を低下させる試みが述べられている。
既に実用に供されている簡便な方法は高ドープ層を電極近傍に作ることである。電極近傍の高ドープ層に生じる電位勾配によって、少数キャリアが反射されて基板内部に押し戻されるので、高ドープ層内での少数キャリア密度が低下する。多数キャリアが再結合する相手を失うので、結果として再結合速度を下げることができる。再結合低減とは別に、高ドープ層はもう1つの作用を持っている。高ドープ層は半導体と金属との界面に生じる電位障壁の厚みを減らし界面でのキャリア移動を容易にする。電極下の高ドープ層は、上記2つの作用のために、太陽電池に限らず半導体に電極を作製する手段として一般的に用いられている。
また、逆に、半導体の極性を反転させた反転層、それに伴う空乏層を基板表面近傍に形成することにより、キャリアの表面再結合抑制が可能である。多数キャリアは空乏層、反転層に侵入できないので、再結合速度が抑制される。界面近傍にカウンタードープを行うか(非特許文献1)、あるいは、界面に異なったバンドギャップの半導体を挟むことによって(特許文献10)、反転層、空乏層を形成して表面再結合を減らす試みが報告されている。
特開平10−4204号公報 特開昭58−220477号公報 特開昭59−150483号公報 特開平10−214982号公報 特開平10−41531号公報 特開2001−203373号公報 特開平5−243597号公報 特開昭64−89569号公報 特開昭60−121779号公報 特開平9−199738号公報 S.R.Wenhamと他8名,「REAR SURFACE EFFECTS IN HIGH EFFICIENCY SILICON SOLAR CELLS」, Proc.,IEEE First World Conference on Photovoltaic Energy Conversion Conference Hawaii,December,1994,pp.1278〜1282
ところで、上記(2)に述べたような電界は、意図的ではなくても何らかの膜をシリコン基板表面に堆積させるだけで、自然に生じる。例えばSiN膜は負の電荷をシリコン基板との界面にもたらす。p型基板を用いた場合、SiN膜とシリコン基板との界面にもたらされた負電荷は、シリコン基板表面近傍に空乏層を、さらにはn型への反転層を生じさせる。空乏層に多数キャリアは侵入できないので、正孔のシリコン基板表面への到達は抑制される。一方、(1)で述べたように、SiN膜は界面準位自体も減らす。すなわち、SiN膜の堆積は、(1)界面準位の低減および(2)正孔の表面到達の抑制という、2通りの筋道で界面不活性化に寄与する。
上記の多くの例は、界面不活性化という1つの観点から見ると極めて有望に見える。しかし、実際の太陽電池セルに適用した場合の問題を含んでいる。太陽電池の受光面または裏面には、不活性膜で覆われた部分と電極とが隣り合って存在する。前者に関して理想的な条件が後者に悪影響を及ぼすか、またはその逆の現象が生じる可能性がある。例えば、不活性化膜直下のシリコン基板には空乏層または反転層が生じ、一方、電極下には電気的接触性の改善のための高ドープ層が存在する、全く性質の異なった2つの領域が電極近傍の狭い領域に並存しているような場合である。
従来技術の発明は、欠陥不活性化という単独の視点からのみ考えられた発明であって、上記のような相互作用を考慮した発明とは言いがたい。このような従来技術発明を実際に太陽電池セルに適用すると、かえって電気的特性を低下させる場合もある。
本発明は、このような実情に鑑みてなされたものであって、光電変換効率を向上させることができる光電変換素子を提供するものである。
本発明によれば、第1導電型の半導体基板と、この半導体基板の受光面側に設けられた第2導電型の半導体層と、前記半導体層上に設けられた受光面電極と、前記受光面の反対側表面である裏面に設けられた裏面電極とを備え、前記裏面には、前記裏面電極を完全に又は部分的に取り囲む分離帯を有する不活性化膜が設けられている光電変換素子が提供される。
不活性膜は、電荷を有していることがあり、この電荷によって半導体基板の裏面に反転層が形成されることがある。反転層とは、導電型が反転した領域である。例えば半導体基板がp型であり、不活性膜が強い正電荷を有している場合、半導体基板の裏面に少数キャリアである電子が蓄積され、n型の反転層が形成される。
このような場合、この反転層に蓄積されている少数キャリアが裏面電極に向かって半導体基板に実質的に平行な方向に流れ、裏面電極近傍において(裏面電極直下を含む領域に第1導電型の高ドープ層が形成されている場合には高ドープ層近傍においても)多数キャリアと再結合することがある。この再結合は、光電変換素子の出力電流損失や光電変換効率低下の原因となる。
本発明では、裏面電極を完全に又は部分的に取り囲む分離帯を有する不活性化膜が基板裏面に形成されている。分離帯には反転層は形成されないので、不活性膜直下の反転層と、裏面電極(又は高ドープ層)とが分離されることになり、裏面電極近傍でのキャリア再結合が抑制され、出力電流損失や光電変換効率低下が抑制される。従って、本発明によれば、光電変換効率を向上させることができる。
以下,本発明の実施形態を図面を用いて説明する。図面や以下の記述中で示す内容は,例示であって,本発明の範囲は,図面や以下の記述中で示すものに限定されない。以下、本発明の2つの実施形態を例示する。第1実施形態は、裏面電極直下を含む領域に第1導電型の高ドープ層が形成されている場合を示し、第2実施形態は、高ドープ層が形成されていない場合を示す。
1.第1実施形態の光電変換素子の構造
図1を用いて本発明の第1実施形態の光電変換素子の構造について説明する。図1は、本実施形態の光電変換素子の構造を示す断面図である。図1では、図示や説明の便宜上、電極や分離帯の構成を簡略化して表示している。
本発明の第1実施形態の光電変換素子は、第1導電型の半導体基板1と、この半導体基板1の受光面側に設けられた第2導電型の半導体層3と、半導体層3上に設けられた受光面電極5と、前記受光面の反対側表面である裏面に設けられた裏面電極7とを備え、前記裏面には、裏面電極7を完全に又は部分的に取り囲む分離帯9を有する不活性化膜11が設けられている。また、半導体基板1は、裏面電極7の直下を含む領域に第1導電型の高ドープ層13をさらに備え、分離帯9は、高ドープ層13がある領域の外側に高ドープ層13に近接して設けられている。半導体層3上には反射防止膜15が設けられている。
以下、第1導電型がp型である場合を例にとって説明を進める。また、以下の説明中の「p型」と「n型」、「正孔」と「電子」、「正電荷」と「負電荷」を入れ替える等必要な読み替えをすることによって、以下の説明は、第1導電型がn型である場合にも基本的に適用可能である。
1.半導体基板
半導体基板1は、p型半導体からなり、例えば、p型結晶質シリコン基板からなる。半導体基板1の厚さは、好ましくは10〜200μmであり、さらに好ましくは20〜60μmである。
2.半導体層
半導体層3は、n型であり、半導体基板1の受光面側に設けられる。半導体層3は、pn接合が形成されるように設けられるのであれば、その形成方法は限定されない。半導体層3は、半導体基板1内にn型ドーパント元素(例えば、リン)を導入することによって形成してもよく、半導体基板1上にn型半導体層をCVD法等によって別途形成することによって形成してもよい。半導体基板1へのn型ドーパント元素の導入は、例えば、n型ドーパント元素を含む材料を半導体基板1内に熱拡散させたり、n型ドーパント元素からなるイオンを半導体基板1内にイオン注入したりすることによって行うことができる。
熱拡散の方法としては、n型ドーパント元素を含む材料(例えばPOCl3)を含む高温気体中に半導体基板1を置く方法や、n型ドーパント元素を含む材料を含む溶液を半導体基板1表面にスプレー塗布した後に加熱したりする方法が挙げられる。
3.受光面電極
受光面電極5は、半導体層3上に形成される。受光面電極5は、半導体層3に電気的に接続されていて、半導体層3からの電子を集めることができるものであれば、その形状や材料は、特に限定されない。一例では、受光面電極5は、銀を主成分とするペースト材料を用いて魚骨状の受光面電極を印刷することによって形成される。
4.反射防止膜
反射防止膜15は、半導体層3上に形成される。反射防止膜15は、表面反射を抑制する機能を有するものであればその材料、厚さ及び製法等は特に限定されない。反射防止膜15は、例えば、厚さ80nmのSiN膜からなる。反射防止膜15は、例えば、プラズマCVD法によって形成することができる。
5.裏面電極
裏面電極7は、受光面の反対側表面である裏面に設けられている。裏面電極7は、半導体基板1に電気的に接続されていて、半導体基板1からの正孔を集めることができるものであれば、その形状、材料及び製法等は、特に限定されない。裏面電極7は、例えば、アルミニウムと銀とを主成分とするペースト材料を半導体基板1裏面の所望位置に印刷することによって形成することができる。裏面電極7は、スパッタ法や真空蒸着法などで形成してもよい。裏面電極7の形状の一例は、図2の底面図に示すような櫛形形状である。図2では、裏面電極7は、平行に並ぶ複数本の第1電極部7aと、第1電極部7aを互いに連結する第2電極部7bとで構成されている。図2では、第2電極部7bは、第1電極部7aの端で第1電極部7aを互いに連結しているが、これ以外の部分(例えば、第1電極部7aの長手方向の中央付近)で第1電極部7aを互いに連結してもよい。裏面電極7は、互いに分離された複数の電極部からなってもよい。この場合、導電性基板に複数の電極部をそれぞれ接触させる等の手段によって複数の電極部を互いに導通させることができる。
6.高ドープ層
高ドープ層13は、p型不純物が高濃度でドーピングされている層であり、裏面電極7の直下を含む領域に形成されている。高ドープ層13は、例えば、裏面電極7を形成する際に裏面電極形成材料中のp型不純物(例えば、アルミニウム)を熱拡散させることによって形成することができる。高ドープ層13は、電気的接触性を改善しまたは再結合損失を抑制する機能も有する。高ドープ層13は、基板1の半導体と、p型不純物である金属との合金であるため、半導体と金属との中間的な性質を有し、低品質であり、多くの不整準位を有する。高ドープ層13は、通常、裏面電極7の直下だけでなく、裏面電極7の周辺部にも広がっている。
7.不活性化膜
基板1の裏面には不活性化膜11が形成されている。不活性化膜11は、裏面を不活性化させる機能を有するものであればその材料、厚さ及び製法等は特に限定されない。しかし、不活性化膜11が有する電荷の影響によって不活性化膜11の直下の半導体基板1中に反転層17が形成される場合に、分離帯9を設ける意義があるので、不活性化膜11は、不活性化膜11の直下の半導体基板1中に反転層17が形成されるような電荷を有するものであることが好ましい。本実施形態では、基板1がp型であるので、不活性化膜11が強い正電荷を有する場合に、不活性化膜11の直下の半導体基板1にn型の反転層17が形成される。なお、基板1がn型である場合、不活性化膜11が強い負電荷を有する場合に、不活性化膜11の直下の半導体基板1にp型の反転層17が形成される。
不活性化膜11は、例えば、SiN膜からなる。SiN膜は、裏面を不活性化させる機能を有しており、且つ正電荷を持っていて反転層17を形成するので、本実施形態の不活性膜として適切である。不活性化膜11は、一例では、厚さ80nmのSiN膜であり、不活性化膜11は、プラズマCVD法によって形成することができる。
不活性化膜11は、裏面電極7を完全に又は部分的に取り囲む分離帯9を有する。分離帯9を形成する方法は、特に限定されない。分離帯9は、例えば、不活性化膜11を形成した後に機械的切削、化学エッチング又はレーザー加工等の手段によって不活性化膜11を部分的に除去することによって形成することができる。また、分離帯9となる領域をマスクで覆った状態で不活性化膜11を形成することによって分離帯9を形成してもよい。
ここで、図3(a)及び(b)を用いて、分離帯9の機能について説明する。図3(b)は、図1の点線で囲った領域Aに対応する部分の拡大図である。図3(a)は、図3(b)から分離帯9を除いたものである。どちらの場合でも、高ドープ層13内には正孔19が存在しており、反転層17には電子21が存在している。また、高ドープ層13と反転層17は部分的に重なっており、この重なり部分において正孔19と電子21が頻繁に再結合を起こし、正孔19と電子21が消失する。
図3(a)に示す構造の場合、再結合によって消失した電子21を補うために矢印23で示す方向に電子21が流れ、高ドープ層13と反転層17の重なり部分に電子21が次々と供給され、多くの再結合損失が生じる。このような電子の流れを寄生短絡電流と呼ぶ。寄生短絡電流については、非特許文献1でも言及されている。
再結合損失を抑制するには、寄生短絡電流が流れないようにすればよい。図3(b)に示す構造の場合でも高ドープ層13と反転層17の重なり部分において正孔19と電子21の再結合が起こるが、図3(b)の場合は、分離帯9において反転層17が分断されているので、矢印23で示す方向に電子21が移動することができない。このため、寄生短絡電流が流れず、再結合損失が抑制される。
分離帯9の幅は、特に限定されないが、例えば、5,6,7,7.5,8,9,10,11,12,12.5,13,14,15,16,17,17.5,18,19又は20μmである。分離帯9の幅は、これらの何れか2つの数値の間の範囲内であってもよい。分離帯9は、上記のように反転層17を分断することによって寄生短絡電流を抑制するという利点を有している反面、分離帯9では基板1の裏面の不活性化がなされないので分離帯9では裏面再結合速度が大きくなるという不利な点も有している。このため、分離帯9の幅は、適度な幅、例えば10μm程度が好ましい。分離帯9の幅が狭すぎると寄生短絡電流が十分に抑制されず、広すぎると基板1の裏面の、不活性化がなされていない領域が大きくなり却って特性が悪化することがあり得るからである。
分離帯9は、その一部又は全体が高ドープ層13の外側に位置するように設けることが好ましい。なぜなら、図4に示すように、高ドープ層13の内側に分離帯9を設けると、分離帯9の外側で高ドープ層13と反転層17とが重なり、寄生短絡電流を十分に抑制できないからである。但し、図4のような位置に分離帯9を設けた場合でも、(1)高ドープ層13と反転層17の重なり部分を小さくすることができ、(2)反転層17の電子21と、裏面電極7に流れ込む正孔19との間の再結合(図7(a),(b)を参照)は、抑制することができるので、分離帯9を設けたことによる効果は得られると考えられる。
分離帯9は、高ドープ層13に接触又は非接触で高ドープ層13に近接して配置することが好ましい。分離帯9が高ドープ層13から離れているとその分だけ、高ドープ層13近傍に近づく反転層17中の電子21の量が増えるからである。
分離帯9は、図2のように裏面電極7を完全に取り囲むように設けることが好ましいが、図5のように裏面電極7を部分的に取り囲むように設けてもよい。何れも場合でも分離帯9を設けたことによる効果が得られるからである。「取り囲むように」とは、「裏面電極7に向かう方向に流れる寄生短絡電流の流路を遮断するように」とも表現可能である。
2.第2実施形態の光電変換素子の構造
図6を用いて本発明の第2実施形態の光電変換素子の構造について説明する。図6は、本実施形態の光電変換素子の構造を示す断面図である。図6では、図示や説明の便宜上、電極や分離帯の構成を簡略化して表示している。
本実施形態の光電変換素子は、第1実施形態に類似しているが、高ドープ層13がない点が異なっている。従って、高ドープ層13が関係する部分以外については、第1実施形態で述べた内容は、基本的に第2実施形態にも当てはまる。
ここで、図7(a)及び(b)を用いて、分離帯9の機能について説明する。図7(b)は、図6の点線で囲った領域Aに対応する部分の拡大図である。図7(a)は、図7(b)から分離帯9を除いたものである。
本実施形態では高ドープ層13が形成されていないので、高ドープ層13中の正孔9と、反転層17中の電子21との再結合は起こらない。しかし、裏面電極7の近傍では裏面電極7に流れ込む正孔19と、反転層17中の電子21との間の再結合が生じることがある。
図7(a)に示す構造の場合、第1実施形態で説明したのと同じ原理によって寄生短絡電流が生じる。しかし、図7(b)に示す構造の場合は、第1実施形態で説明したのと同じ原理によって、反転層17が分断されて、寄生短絡電流が抑制される。
本実施形態では、分離帯9は、裏面電極7に接触又は非接触で裏面電極7に近接して配置することが好ましい。分離帯9が裏面電極7から離れているとその分だけ、裏面電極7近傍に近づく反転層17中の電子21の量が増えるからである。分離帯9は、図8に示すように、裏面電極7に接触させて配置することが好ましい。この場合、裏面電極7に流れ込む正孔19と、反転層17中の電子21との接触が遮断され、両者の再結合が抑制されるからである。
3.光電変換素子の具体的な製造方法
ここで、図9のフローチャートと図10(a)〜(c)を用いて、本発明の第1実施形態の光電変換素子の具体的な製造方法の一例を説明する。図10(a)〜(c)は、本実施形態の光電変換素子の製造工程を示す断面図である。以下の説明中の条件や、工程の順序は、例示であって、条件や順序は適宜変更可能である。
まず、p型単結晶シリコン基板からなる半導体基板1(大きさ10cm×10cm、厚さ100μm、抵抗率1Ωcm)をRCA法で洗浄する(ステップS1)。
次に、NaOH水溶液とイソプロピルアルコール(IPA)との混合液を用いて、液温約90℃でテクスチャエッチングを行い、半導体基板1の表面に高さ数μmの微小ピラミッドを形成する(ステップS2)。
次に、POCl3を含む高温気体中に半導体基板1を置くことでリンを熱拡散させ、厚さ1.0μm、不純物濃度1.2×1020cm-3のn型半導体層3を受光面及び裏面側に形成する。熱拡散時の半導体基板1の温度および拡散炉の温度は850℃とし、拡散時間は10分に設定する。続いて受光面全面にレジストを塗布しフッ硝酸溶液に浸潤し裏面側のn型半導体層3を除去し、さらにアルカリ溶液に浸潤し受光面側のレジストを除去する(ステップS3)。
続いて、プラズマCVD法によって、半導体基板1の受光面側に厚さ80nmのSiN膜からなる反射防止膜15を形成する。反射防止膜15は、不活性化膜としても機能する(ステップS4)。
さらに、半導体基板1の裏面側全面にプラズマCVD法により、厚さ80nmのSiN膜からなる不活性化膜11を形成する(ステップS5)。
次に、電極形成を行う。まず、受光面側には銀を主成分としガラスフリットを含むペースト材料を用いて魚骨状の受光面電極5を印刷する(ステップS6)。一方、裏面側の不活性化膜11にアルミニウムと銀とを主成分としガラスフリットを含むペースト材料を用いて裏面電極7を印刷する(ステップS7)。裏面電極7は、図5のような櫛状に印刷する。第1電極部7aは、幅20μm、間隔200μmで、基板1の裏面全面に形成する。第2電極部7bの幅は200μmとする。ここまでの工程で図10(a)に示す構造が得られる。
次に、焼成を行い、受光面側の反射防止膜15および裏面側の不活性化膜11をファイヤースルーして、半導体層3と受光面電極5、及び半導体基板1と裏面電極7とをそれぞれ導通させる(ステップS8)。焼成の温度は750℃、時間は1秒間とする。この際、裏面電極7中のアルミニウムが半導体基板1内に拡散して高ドープ層13が形成される。ここまでの工程によって、図10(b)に示す構造が得られる。
最後に、図10(c)及び図5に示すように、裏面電極7を取り囲む分離帯9を形成する。分離帯9は、工業用途のレーザー加工機を用いて不活性化膜11を焼き切ることによって形成し(ステップS9)、その後、ハンダディップを行う(ステップS10)。分離帯9は、裏面電極7と分離帯9の間の幅Xが10μmになる位置に形成する。レーザー光線の光線径とパワーを変えることにより、除去する線幅を5〜20μmの範囲で変化させる。
以上の工程によって、本実施形態の光電変換素子が得られる。
4.効果の検証
「3.光電変換素子の具体的な製造方法」で説明した条件で得られる光電変換素子について計算機シミュレーションを行い、分離帯9を設けたことによって得られる効果の検証を行った。計算機シミュレーションは、AM1.5下で擬似太陽光を照射するという条件で行った。その結果を図11(a)〜(c)に示す。図11(a)〜(c)は、それぞれ、分離帯9の幅と、短絡電流密度、開放電圧及び光電変換効率との関係を示すグラフである。
図11(a)を参照すると、分離帯9の幅が10μm以上の場合に短絡電流密度が大きくなっていることが分かる。まず、図11(b)を参照すると、分離帯9の幅が10μm以上の場合に開放電圧が低下していることが分かる。また、図11(c)を参照すると、分離帯9の幅が10μmの場合に光電変換効率が0.4%上昇したことが分かる。
このような結果が得られた理由は必ずしも明らかではないが、以下の通りであると推測される。
分離帯9の幅が5μmの場合に短絡電流密度が上昇していない点を鑑みると、分離帯幅が5μmの場合は、寄生短絡電流が十分に抑制されなかったので、光電変換効率の上昇が見られなかったと考えられる。なお、本シミュレーションではこのような結果が得られたが、不活性膜11の形成条件等によっては分離帯幅が5μm程度であっても寄生短絡電流が抑制できる場合もあると考えられ、その場合には光電変換効率が上昇すると考えられる。
また、分離帯9の幅が20μmの場合に短絡電流密度が上昇し且つ開放電圧が低下している点を鑑みると、分離帯9の幅が20μmの場合は、分離帯9の幅が太すぎて裏面全体面積に占める分離帯9の面積の割合が大きくなり、裏面再結合速度の面平均値が増大し開放電圧の低下を招き、そのために光電変換効率の上昇が見られなかったと考えられる。なお、本シミュレーションではこのような結果が得られたが、分離帯9の幅が20μm程度であっても、分離帯9を形成した後に別の表面処理を基板1の裏面の施す等によって裏面再結合速度の増大を抑制することによって光電変換効率を上昇させることができると考えられる。
そして、分離帯9の幅が10μmの場合は、寄生短絡電流が十分に抑制され、且つ裏面再結合速度の面平均値の増大が大きくなかったので、光電変換効率が向上したと考えられる。
本発明の第1実施形態の光電変換素子の構造を示す断面図である。 本発明の第1実施形態の光電変換素子の構造を示す底面図である。 (a),(b)は、図1の領域Aに対応する部分の拡大図であり、(a)は分離帯がない構造、(b)は、分離帯がある構造を示す。 図1の領域Aに対応する部分の拡大図であり、分離帯の位置が異なる実施形態を示す。 図2の対応した底面図であり、分離帯が裏面電極を部分的に囲むように形成されている実施形態を示す。 本発明の第2実施形態の光電変換素子の構造を示す断面図である。 (a),(b)は、図6の領域Aに対応する部分の拡大図であり、(a)は分離帯がない構造、(b)は、分離帯がある構造を示す。 図6の領域Aに対応する部分の拡大図であり、分離帯の位置が異なる実施形態を示す。 本発明の第1実施形態の光電変換素子の製造工程を示すフローチャートである。 (a)〜(c)は、本発明の第1実施形態の光電変換素子の製造工程を示す断面図である。 (a)〜(c)は、計算機シミュレーションの結果を示し、(a)〜(c)は、それぞれ、分離帯9の幅と、短絡電流密度、開放電圧及び光電変換効率との関係を示すグラフである。
符号の説明
1:半導体基板 3:半導体層 5:受光面電極 7:裏面電極 7a:裏面電極の第1電極部 7b:裏面電極の第2電極部 9:分離帯 11:不活性化膜 13:高ドープ層 15:反射防止膜 17:反転層 19:正孔 21:電子 23:電子の流れ X:裏面電極と分離帯の間の幅

Claims (5)

  1. 第1導電型の半導体基板と、この半導体基板の受光面側に設けられた第2導電型の半導体層と、前記半導体層上に設けられた受光面電極と、前記受光面の反対側表面である裏面に設けられた裏面電極とを備え、
    第1導電型はp型であり、第2導電型はn型であり、
    前記裏面には、前記裏面電極を完全に又は部分的に取り囲む分離帯を有する不活性化膜が設けられ、
    前記不活性化膜は、SiN膜であり、前記第1導電型の半導体基板と接触するように設けられた光電変換素子。
  2. 前記分離帯は、前記裏面電極に接触又は非接触で前記裏面電極に近接して設けられる請求項1に記載の素子。
  3. 前記半導体基板は、前記裏面電極直下を含む領域に第1導電型の高ドープ層をさらに備える請求項1に記載の素子。
  4. 前記分離帯は、その一部又は全体が前記高ドープ層の外側に位置するように設けられる請求項3に記載の素子。
  5. 前記分離帯は、前記高ドープ層に接触又は非接触で前記高ドープ層に近接して設けられる請求項4に記載の素子。
JP2007063612A 2007-03-13 2007-03-13 光電変換素子 Active JP5022743B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007063612A JP5022743B2 (ja) 2007-03-13 2007-03-13 光電変換素子

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007063612A JP5022743B2 (ja) 2007-03-13 2007-03-13 光電変換素子

Publications (2)

Publication Number Publication Date
JP2008227160A JP2008227160A (ja) 2008-09-25
JP5022743B2 true JP5022743B2 (ja) 2012-09-12

Family

ID=39845426

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007063612A Active JP5022743B2 (ja) 2007-03-13 2007-03-13 光電変換素子

Country Status (1)

Country Link
JP (1) JP5022743B2 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201515252A (zh) * 2013-10-02 2015-04-16 Mosel Vitelic Inc 太陽能電池之製造方法
CN109494264A (zh) * 2018-12-26 2019-03-19 苏州腾晖光伏技术有限公司 一种晶硅太阳能电池及其制作方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0745843A (ja) * 1993-06-29 1995-02-14 Sharp Corp 太陽電池素子
JP2001257371A (ja) * 2000-03-13 2001-09-21 Hitachi Ltd 太陽電池作製方法及び太陽電池並びに集光型太陽電池モジュール
JP4118187B2 (ja) * 2003-05-09 2008-07-16 信越半導体株式会社 太陽電池の製造方法

Also Published As

Publication number Publication date
JP2008227160A (ja) 2008-09-25

Similar Documents

Publication Publication Date Title
KR101225978B1 (ko) 태양전지 및 그 제조방법
KR101823709B1 (ko) 태양전지 및 그 태양전지의 제조방법
JP2013513964A (ja) 裏面接点・ヘテロ接合太陽電池
US20120094421A1 (en) Method of manufacturing solar cell
KR101370126B1 (ko) 탑햇 형태의 레이저 어닐링을 이용한 태양전지의 선택적에미터 형성방법 및 이를 이용한 태양전지의 제조방법
WO2011074280A1 (ja) 光起電力装置およびその製造方法
US20130112252A1 (en) Solar cell and manufacturing method thereof
JP6207414B2 (ja) 光起電力素子およびその製造方法
US20100139755A1 (en) Front connected photovoltaic assembly and associated methods
JP6021392B2 (ja) 光電変換装置の製造方法
KR101442011B1 (ko) 태양전지 및 그 제조방법
JP2008227269A (ja) 光電変換素子、太陽電池モジュール、太陽光発電システム
JP5022743B2 (ja) 光電変換素子
JP4489035B2 (ja) 光電変換素子
JP2017038060A (ja) 太陽電池及び太陽電池の製造方法
JP2007019259A (ja) 太陽電池およびその製造方法
JP5645734B2 (ja) 太陽電池素子
KR101223021B1 (ko) 태양전지의 제조방법 및 태양전지
JP2013110406A (ja) 光電変換素子の製造方法及び光電変換素子
KR101181625B1 (ko) 국부화 에미터 태양전지 및 그 제조 방법
TWI481060B (zh) 太陽能電池的製作方法
KR101114198B1 (ko) 국부화 에미터 태양전지 및 그 제조 방법
KR101199649B1 (ko) 국부화 에미터 태양전지 및 그 제조 방법
KR20180064265A (ko) 태양 전지 제조 방법 및 태양 전지
JP2003158275A (ja) 光電変換素子およびその製造方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090218

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101015

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120306

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120427

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120522

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120618

R150 Certificate of patent or registration of utility model

Ref document number: 5022743

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150622

Year of fee payment: 3