WO2017042967A1 - 空気調和機 - Google Patents

空気調和機 Download PDF

Info

Publication number
WO2017042967A1
WO2017042967A1 PCT/JP2015/075868 JP2015075868W WO2017042967A1 WO 2017042967 A1 WO2017042967 A1 WO 2017042967A1 JP 2015075868 W JP2015075868 W JP 2015075868W WO 2017042967 A1 WO2017042967 A1 WO 2017042967A1
Authority
WO
WIPO (PCT)
Prior art keywords
refrigerant
pressure gas
expansion valve
low pressure
air conditioner
Prior art date
Application number
PCT/JP2015/075868
Other languages
English (en)
French (fr)
Inventor
内藤 宏治
浦田 和幹
和彦 谷
正圭 室伏
安田 源
Original Assignee
ジョンソンコントロールズ ヒタチ エア コンディショニング テクノロジー(ホンコン) リミテッド
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ジョンソンコントロールズ ヒタチ エア コンディショニング テクノロジー(ホンコン) リミテッド filed Critical ジョンソンコントロールズ ヒタチ エア コンディショニング テクノロジー(ホンコン) リミテッド
Priority to CN201580083029.3A priority Critical patent/CN108027179B/zh
Priority to JP2017538824A priority patent/JP6453475B2/ja
Priority to PCT/JP2015/075868 priority patent/WO2017042967A1/ja
Priority to US15/758,419 priority patent/US10527322B2/en
Priority to EP15903629.2A priority patent/EP3348934B1/en
Publication of WO2017042967A1 publication Critical patent/WO2017042967A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/30Expansion means; Dispositions thereof
    • F25B41/31Expansion valves
    • F25B41/34Expansion valves with the valve member being actuated by electric means, e.g. by piezoelectric actuators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/007Compression machines, plants or systems with reversible cycle not otherwise provided for three pipes connecting the outdoor side to the indoor side with multiple indoor units
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/023Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units
    • F25B2313/0231Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units with simultaneous cooling and heating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/023Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units
    • F25B2313/0233Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units in parallel arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/027Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means
    • F25B2313/02742Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means using two four-way valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/031Sensor arrangements
    • F25B2313/0314Temperature sensors near the indoor heat exchanger
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/031Sensor arrangements
    • F25B2313/0315Temperature sensors near the outdoor heat exchanger
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/23High amount of refrigerant in the system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/24Low amount of refrigerant in the system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2513Expansion valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2115Temperatures of a compressor or the drive means therefor
    • F25B2700/21151Temperatures of a compressor or the drive means therefor at the suction side of the compressor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2115Temperatures of a compressor or the drive means therefor
    • F25B2700/21152Temperatures of a compressor or the drive means therefor at the discharge side of the compressor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/30Expansion means; Dispositions thereof
    • F25B41/385Dispositions with two or more expansion means arranged in parallel on a refrigerant line leading to the same evaporator
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating

Definitions

  • the present invention relates to a simultaneous cooling and heating type multi-air conditioner that can be operated by mixing a cooling operation and a heating operation of a plurality of indoor units.
  • the cooling / heating simultaneous multi-type air conditioner is equipped with a cooling / heating switching unit that switches the piping connected to the indoor gas pipe to either the high-pressure gas pipe or the low-pressure gas pipe to cope with the case where the cooling operation and heating operation of the indoor unit coexist. It is installed between the outdoor unit and the indoor unit. Here, if you do not want the high-temperature high-pressure gas refrigerant to flow through the indoor unit during cooling operation, shutdown, heating thermo-off, or air blowing operation, use the cooling / heating switching unit to connect the indoor gas pipe to the low-pressure gas pipe, The circuit on the side is closed.
  • the gas refrigerant in the high-pressure gas branch pipe closed by the cooling / heating switching unit may condense and become liquid refrigerant. If the gas refrigerant is flowing, it does not condense, but the high-pressure gas branch pipe is closed, so that the gas refrigerant condenses.
  • condensation of the gas refrigerant occurs in the high-pressure gas branch pipe of the cooling / heating switching unit, there is a problem that the refrigerant circulation amount of the entire air conditioner is insufficient, and the refrigerant for heating other indoor units is insufficient.
  • Patent Document 1 relates to an indoor unit in which the heating operation is stopped or paused, on the high-pressure gas pipe side of the cooling / heating switching unit. Instead of opening the expansion valve on the low-pressure gas pipe side and collecting the refrigerant when the room temperature reaches a predetermined temperature, or opening the expansion valve on the high-pressure gas pipe side slightly, Connecting a bypass capillary tube is disclosed.
  • liquid refrigerant can be prevented from staying in the high-pressure gas branch pipe of the refrigerant switching unit.
  • a part of the high-pressure gas refrigerant that should be used for heating is bypassed, it is impossible to prevent a decrease in the operating efficiency of the entire air conditioner.
  • the surplus refrigerant may increase depending on the operating state, but if the liquid refrigerant stays in the high-pressure gas branch pipe is suppressed too much, the refrigerant may accumulate in the condenser and the operating efficiency may be reduced.
  • An object of the present invention is to provide a simultaneous cooling and heating type multi-air conditioner that prevents a decrease in operating efficiency.
  • an air conditioner having a plurality of indoor units of the present invention and switching between cooling and heating switching units connected to each of the indoor units and simultaneously operating cooling operation and heating operation is the cooling and heating switching unit.
  • a high-low pressure gas pipe expansion valve for adjusting the supply of high-temperature and high-pressure gas refrigerant to the indoor unit, and the high-low pressure gas pipe expansion valve of the cooling / heating switching unit connected to the indoor unit not in heating operation.
  • a refrigeration cycle control unit that adjusts the opening according to the determination result of the excess or shortage of refrigerant in the refrigeration cycle.
  • an air conditioner having a plurality of indoor units of the present invention and capable of simultaneously operating a cooling operation and a heating operation by switching between cooling and heating switching units connected to each of the indoor units is provided for each of the cooling and heating switching units. Heating is performed so that the supercooling degree of the refrigerant at the outlet of the indoor unit heat exchanger of the indoor unit during heating operation is within a predetermined range, and the expansion valve for the high and low pressure gas pipe that regulates the supply of high-temperature and high-pressure gas refrigerant to the indoor unit And a refrigeration cycle control unit for adjusting a valve opening degree of the expansion valve for the high / low pressure gas pipe of the cooling / heating switching unit connected to the indoor unit not in operation.
  • the present invention since the high-temperature and high-pressure gas refrigerant is appropriately bypassed, it is possible to prevent a decrease in operating efficiency due to excess or shortage of the refrigerant in the simultaneous heating and cooling type multi-air conditioner.
  • FIG. 1 is a refrigeration cycle system diagram of an air conditioner according to an embodiment of the present invention
  • FIG. 2 is a refrigeration cycle system diagram of an air conditioner of a comparative example.
  • the air conditioner according to the embodiment exists between the outdoor unit 10, the indoor units 40 a, 40 b, 40 c, and 40 d (hereinafter sometimes collectively referred to as the indoor unit 40), and the indoor unit 40 and the outdoor unit 10.
  • the cooling / heating switching units 30a, 30b, 30c, and 30d (hereinafter may be collectively referred to as the cooling / heating switching unit 30).
  • FIG. 1 the configuration of four indoor units 40 is shown. However, the configuration is not limited to this number, and a configuration of a plurality of units may be used.
  • the outdoor unit 10 has shown the structure of 1 unit
  • the indoor unit 40 has four states of heating operation, cooling operation, heating high-pressure stop, and stop (low-pressure stop), and is in any state.
  • the plurality of indoor units 40 can perform mixed operation of heating operation and cooling operation, and there is also a mixed state of heating or cooling operation and heating high-pressure stop or stop state.
  • FIG. 1 shows a case where the indoor unit 40a is in a heating operation, the indoor unit 40b is in a heating high-pressure stop, the indoor unit 40c is in a low-pressure stop, and the indoor unit 40d is in a cooling operation.
  • the indoor unit 40 and the cooling / heating switching unit 30 are connected to the outdoor unit 10 by a liquid main pipe 21, a high and low pressure gas main pipe 24, and a low pressure gas main pipe 27.
  • each of the liquid main pipe 21, the high and low pressure gas main pipe 24, and the low pressure gas main pipe 27 is branched and connected to the indoor unit 40 and the cooling / heating switching unit 30.
  • the high / low pressure gas main pipe 24 is branched into high / low pressure gas branch pipes 35a, 35b, 35c, 35d (hereinafter sometimes collectively referred to as high / low pressure gas branch pipes 35), and the cooling / heating switching units 30a, 30b, It is connected to each of 30c and 30d.
  • the low-pressure gas main pipe 27 is also branched and connected to the cooling / heating switching units 30a, 30b, 30c, 30d. Further, the liquid main pipe 21 is also branched and connected to the indoor units 40a, 40b, 40c, and 40d.
  • the cooling / heating switching unit 30 includes a high-low pressure gas pipe expansion valve 31 (a general term for high-low pressure gas pipe expansion valves 31a, 31b, 31c, 31d) and a low-pressure gas pipe expansion valve 32 (low-pressure gas pipe expansion valves 32a, 32b, 32c, 32d). And a two-branch circuit connecting the indoor unit 40, the high-low pressure gas main pipe 24, and the low-pressure gas main pipe 27.
  • the cooling / heating switching unit 30 changes the direction of the refrigerant flowing through the indoor unit 40 by opening and closing the high-low pressure gas pipe expansion valve 31 and the low-pressure gas pipe expansion valve 32, and an indoor unit expansion valve 42 (indoor unit expansion) described later.
  • the operation and condensation of the evaporator of the indoor unit heat exchanger 41 (generic term for the indoor unit heat exchangers 41a, 41b, 41c, 41d) in conjunction with the decompression throttling and opening / closing operation of the valves 42a, 42b, 42c, 42d) Switch the action of the vessel.
  • a throttle valve for reducing the pressure of a high-pressure liquid refrigerant or a gas-liquid two-phase refrigerant
  • a flow rate variable valve for adjusting the flow rate by controlling the opening degree without reducing the pressure
  • the control valve that opens and closes is also referred to as an expansion valve.
  • the indoor unit 40 includes an indoor unit heat exchanger 41, an indoor unit expansion valve 42, and an indoor unit fan 49 (a general term for indoor unit fans 49a, 49b, 49c, and 49d).
  • One end of the indoor unit heat exchanger 41 communicates with the liquid main pipe 21 via the indoor unit expansion valve 42, and the other end of the indoor unit heat exchanger 41 communicates with the cooling / heating switching unit 30.
  • the outdoor unit 10 includes a compressor 11, a high and low pressure gas pipe side four-way valve 12, a heat exchanger side four-way valve 13, an outdoor unit heat exchanger 14, an outdoor unit expansion valve 15, an outdoor unit fan 19, and an accumulator 18.
  • the accumulator 18 separates the liquid refrigerant from the low-pressure gas refrigerant in the gas-liquid mixed state, and sends the gaseous refrigerant to the compressor 11.
  • the accumulator 18 side of the compressor 11 is a low pressure side, and the compressor check valve 16 is connected to the four-way valve side of the compressor 11 to become a high pressure side.
  • the refrigerant is conveyed by the differential pressure of the compressor 11. Since the liquid refrigerant is separated into the compressor 11 by the accumulator 18 and the gas refrigerant is sucked, the compressor 11 is not liquid-compressed.
  • the high / low pressure gas pipe side four-way valve 12 switches whether the high / low pressure gas main pipe 24 is connected to the discharge side of the compressor 11 or the suction side of the accumulator 18.
  • the high-low pressure gas main pipe 24 and the discharge side of the compressor 11 are connected to supply high-temperature and high-pressure gas refrigerant to the high-low pressure gas main pipe 24.
  • the heat exchanger side four-way valve 13 switches whether the outdoor unit heat exchanger 14 is connected to the discharge side of the compressor 11 or to the suction side of the accumulator 18. Specifically, when the outdoor unit heat exchanger 14 is a condenser, the outdoor unit heat exchanger 14 is connected to the discharge side of the compressor 11 and when the outdoor unit heat exchanger 14 is an evaporator, The outdoor unit heat exchanger 14 is connected to the suction side of the accumulator 18.
  • the connection switching of the heat exchanger side four-way valve 13 is performed according to the heating load and cooling load of the air conditioner. Specifically, when the heating load of the air conditioner is large, the heat exchanger side four-way valve 13 is switched so that the outdoor unit heat exchanger 14 is connected to the suction side of the accumulator 18, and the outdoor unit expansion valve 15 is switched. The outdoor unit heat exchanger 14 is used as an evaporator by reducing the pressure so as to reduce the pressure. When the cooling load of the air conditioner is large, the heat exchanger side four-way valve 13 is switched so that the outdoor unit heat exchanger 14 is connected to the discharge side of the compressor 11, and the outdoor unit expansion valve 15 is switched. The outdoor unit heat exchanger 14 is opened as a condenser.
  • the outdoor unit capillary 20 connects the empty terminals of the high-low pressure gas pipe side four-way valve 12 and the heat exchanger side four-way valve 13 to the suction side of the accumulator 18. Thereby, a four-way valve can be used like a three-way valve.
  • the air conditioner of the comparative example shown in FIG. 2 and the air conditioner of the embodiment of FIG. 1 differ in the configuration of the cooling / heating switching unit 30, and the air conditioner of the comparative example has a refrigerant amount adjustment tank 17.
  • the difference is the configuration.
  • the refrigerant quantity adjustment tank 17 is provided to adjust the refrigerant quantity of the air conditioner.
  • the high / low pressure gas pipe expansion valve 38 (a general term for the high / low pressure gas pipe expansion valves 38a, 38b, 38c, 38d) of the cooling / heating switching unit 30 of the comparative example is an expansion valve that controls the opening and closing of the refrigerant flow.
  • a bypass capillary 37 (generic name for bypass capillaries 37a, 37b, 37c, and 37d) is provided in parallel with the expansion valve 38 for high and low pressure gas pipes.
  • the difference between the air conditioner of the comparative example shown in FIG. 2 and the air conditioner of the embodiment of FIG. 1 will be described in more detail below.
  • the refrigerant flow of the indoor unit 40 will be described with reference to FIGS.
  • the case where the indoor unit 40 is operated for heating will be described (see the indoor unit 40a and the cooling / heating switching unit 30a in FIG. 1).
  • the high-temperature and high-pressure gas refrigerant compressed by the compressor 11 is sent to the high and low pressure gas main pipe 24 by the high and low pressure gas pipe side four-way valve 12.
  • the low pressure gas pipe expansion valve 32 of the cooling / heating switching unit 30 is closed so that the low pressure gas main pipe 27 and the indoor unit heat exchanger 41 do not communicate with each other, and the high and low pressure gas pipe expansion valve 31 is connected to the high and low pressure gas main pipe 24.
  • the refrigerant is opened so that the refrigerant flows through the indoor unit heat exchanger 41.
  • the high-temperature and high-pressure gas refrigerant compressed by the compressor 11 is supplied to the indoor unit heat exchanger 41.
  • FIG. 1 the opening / closing / opening control states of the high / low pressure gas pipe expansion valve 31, the low pressure gas pipe expansion valve 32, and the indoor unit expansion valve 42 are shown as a legend.
  • the indoor unit heat exchanger 41 acts as a condenser and performs heating by the heat of condensation of the high-temperature and high-pressure gas refrigerant.
  • the condensed high-pressure liquid refrigerant or gas-liquid two-phase refrigerant flows through the indoor unit expansion valve 42 with the valve opened and is sent to the liquid main pipe 21.
  • the indoor unit 40 and the cooling / heating switching unit 30 are controlled to stop heating and high pressure by suppressing the flow of the refrigerant (see the indoor unit 40b and the cooling / heating switching unit 30b in FIG. 1).
  • the high-low pressure gas branch pipe 35, the high-low pressure gas pipe expansion valve 31 and the connection pipe between the indoor unit heat exchanger 41 and the high-temperature high-pressure gas refrigerant in the indoor unit heat exchanger 41 radiate heat on the pipe surface. Therefore, it condenses into a liquid refrigerant.
  • the refrigerant flow is suppressed by opening the high / low pressure gas pipe expansion valve 31 and setting the indoor unit expansion valve 42 (indoor unit expansion valve 42b) to a predetermined opening degree. Controls the flow of gas refrigerant.
  • the opening degree of the indoor unit expansion valve 42 at this time is opened when the liquid refrigerant is excessively accumulated, and is throttled when the refrigerant flows out as a gas-liquid two-phase refrigerant.
  • the high-low pressure gas pipe expansion valve 31 (high-low pressure gas pipe expansion valve 31b in FIG. 1) and the indoor unit expansion valve 42 (indoor unit expansion valve 42b in FIG. 1) are opened.
  • the flow rate of the refrigerant By controlling the flow rate of the refrigerant by adjusting the degree, the condensing liquid in the connection pipe of the high / low pressure gas branch pipe 35, the high / low pressure gas pipe expansion valve 31 and the indoor unit heat exchanger 41, and the indoor unit heat exchanger 41 Control the amount of refrigerant.
  • both the indoor expansion valve 42 and the high / low pressure gas pipe expansion valve 31 are squeezed, refrigerant is supplied to the connection pipe of the high / low pressure gas branch pipe 35, the high / low pressure gas pipe expansion valve 31 and the indoor unit heat exchanger 41. Can be stored. Conversely, if both the indoor expansion valve 42 and the high / low pressure gas pipe expansion valve 31 are fully opened, the refrigerant storage in the connection pipe of the high / low pressure gas branch pipe 35, the high / low pressure gas pipe expansion valve 31 and the indoor unit heat exchanger 41 is made. Can be suppressed.
  • the ratio of the high-temperature and high-pressure gas refrigerant in the indoor heat exchanger 41 is small, and the refrigerant accumulates. If the indoor expansion valve 42 is closed and the high and low pressure gas pipe expansion valve 31 is fully opened, the ratio of the high-temperature and high-pressure gas refrigerant in the indoor heat exchanger 41 is increased, and refrigerant accumulation can be suppressed.
  • the indoor unit 40 is air-cooled (see the indoor unit 40d and the cooling / heating switching unit 30d in FIG. 1).
  • the high-pressure liquid refrigerant or the gas-liquid two-phase refrigerant discharged from the outdoor unit heat exchanger 14 operating as a condenser is supplied to the indoor unit 40d via the liquid main pipe 21, or Alternatively, the condensed refrigerant is supplied from another indoor unit 40 that is performing the heating operation.
  • the indoor unit 40a in FIG. 1 performs a heating operation, and the refrigerant discharged from the indoor unit heat exchanger 41a operates as a condenser and flows through the indoor unit expansion valve 42a with the valve opened. , Supplied to the indoor unit 40d.
  • the opening degree of the indoor unit expansion valve 42 of the indoor unit 40 is adjusted so as to be a throttle valve that depressurizes high-pressure liquid refrigerant or gas-liquid two-phase refrigerant.
  • the decompressed refrigerant is evaporated by the indoor unit heat exchanger 41 acting as an evaporator, and becomes a low-pressure gas refrigerant. Cooling is performed by the heat of vaporization of the refrigerant at this time.
  • the low-pressure gas refrigerant vaporized by the indoor unit heat exchanger 41 is sent to the low-pressure gas main pipe 27 via the low-pressure gas pipe expansion valve 32 of the opened cooling / heating switching unit 30.
  • the low-pressure gas main pipe 27 is connected to the outdoor unit 10, and the gas refrigerant returns to the compressor 11 through the accumulator 18. Then, it is compressed again by the compressor 11 and circulated.
  • the high / low pressure gas pipe expansion valve 31 (high / low pressure gas pipe expansion valve 38) of the cooling / heating switching unit 30 in cooling operation of FIGS. 1 and 2 is closed, so that the high / low pressure gas branch pipe 35 is closed. .
  • heat can be dissipated on the pipe surface of the high and low-pressure gas branch pipe 35 to condense the refrigerant to become a liquid refrigerant. (See the high and low pressure gas branch pipe 35d in FIG. 1 and FIG. 2).
  • the bypass capillary 37 is provided in parallel with the expansion valve 38 for high and low pressure gas pipes.
  • the bypass capillary 37 allows a refrigerant having a flow rate corresponding to the pressure difference with the indoor heat exchanger 41 to flow, thereby preventing liquefaction due to condensation of the refrigerant in the high and low pressure gas branch pipe 35 (FIG. 2). See bypass capillary 37d).
  • the high-temperature and high-pressure gas refrigerant of the air conditioner for example, the indoor unit 40a in FIG. 2 It became a factor of the use efficiency fall.
  • the refrigerant amount adjustment tank 17 is installed on the liquid main pipe 21, but there is a mechanism in which the liquid pipe and the gas pipe are connected to each other by a valve + pipe and the liquid is stored and discharged by the valve. is there.
  • the high and low pressure gas is controlled by adjusting the opening of the high and low pressure gas pipe expansion valve 31 (high and low pressure gas pipe expansion valve 31d in FIG. 1) to control the flow rate of the refrigerant.
  • the amount of liquid refrigerant condensed in the branch pipe 35 is controlled. This eliminates the need for the bypass capillary 37 (bypass capillary 37d) and the refrigerant amount adjustment tank 17 in FIG.
  • the indoor unit heat exchanger 41 of the indoor unit 10 in FIGS. 1 and 2 has a low-pressure stop state that prevents high-temperature and high-pressure gas refrigerant or low-temperature liquid refrigerant (or gas-liquid two-phase refrigerant) from flowing therethrough. (See the indoor unit 40c and the cooling / heating switching unit 30c).
  • the high / low pressure gas pipe expansion valve 31 (high / low pressure gas pipe expansion valve 38) of the cooling / heating switching unit 30 is closed, and the indoor unit expansion valve 42 of the indoor unit 40 is also closed.
  • a bypass capillary 37 is provided in parallel with the expansion valve 38 for the high and low pressure gas pipe to prevent liquefaction due to the condensation of the refrigerant in the high and low pressure gas branch pipe 35.
  • the high and low pressure gas is controlled by adjusting the opening of the high and low pressure gas pipe expansion valve 31 (the high and low pressure gas pipe expansion valve 31c of FIG. 1) to control the flow rate of the refrigerant.
  • the amount of liquid refrigerant condensed in the branch pipe 35 is controlled.
  • the high / low pressure gas pipe expansion valve 31 of the cooling / heating switching unit 30 controls the flow rate of the refrigerant by adjusting the opening degree in addition to the opening and closing control.
  • the indoor unit expansion valve 42 becomes a throttle valve that performs opening and closing control and pressure reduction, and adjusts the opening to control the flow rate of the refrigerant such as the high and low pressure gas branch pipe 35. Allow control. This eliminates the need for the bypass capillary 37 and the refrigerant amount adjustment tank 17 and suppresses the decrease in the supply amount of the high-temperature and high-pressure gas refrigerant.
  • the air conditioner of this embodiment focusing on the fact that refrigerant condensation occurs in the closed portion of the high and low pressure gas branch pipe 35 and the like, it leads to insufficient refrigerant in the condenser.
  • Find and control That is, when the degree of supercooling of the condenser is smaller than a predetermined value, it is determined that the refrigerant is insufficient, and the refrigerant flow rate in the high and low pressure gas branch pipe 35 is increased to collect condensed refrigerant, and the degree of supercooling becomes larger than the predetermined value. Therefore, it is determined that the refrigerant is excessive, the high and low pressure gas branch pipes 35 and the like are closed, and the refrigerant is condensed and accumulated.
  • the degree of supercooling of the condenser can be obtained from the refrigerant pressure and temperature at the condenser outlet.
  • the refrigeration cycle control unit 300 of the air conditioner of the present embodiment includes a refrigerant temperature detection unit 301 that detects the refrigerant temperature and a refrigerant pressure detection unit 302 that detects the refrigerant pressure, and the evaporator outlet shown in the refrigeration cycle diagram of FIG. Sensors 45a, 45b, 45c, and 45d (hereinafter collectively referred to as evaporator outlet sensor 45) and condenser outlet sensors 46a, 46b, 46c, and 46d (hereinafter collectively referred to as condenser outlet sensor 46). Connected and detects refrigerant temperature and refrigerant pressure.
  • the evaporator outlet sensor 45 and the condenser outlet sensor 46 are respectively composed of a pressure sensor that detects the refrigerant pressure and a temperature sensor that detects the refrigerant temperature. Further, a high pressure side pressure sensor 47 is provided on the refrigerant discharge side of the compressor 11, and a low pressure side pressure sensor 48 is provided on the refrigerant suction side. Further, an evaporator outlet sensor 51 and a condenser outlet sensor 50 are also provided before and after the refrigerant flow path of the outdoor unit heat exchanger 14. The evaporator outlet sensor 51 and the condenser outlet sensor 50 are respectively composed of a pressure sensor for detecting the refrigerant pressure and a temperature sensor for detecting the refrigerant temperature.
  • the evaporator outlet sensor 45 and the condenser outlet sensor 46 are constituted only by temperature sensors, the refrigerant pressure at the evaporator outlet is replaced with the detected pressure of the low pressure side pressure sensor 48, and the refrigerant pressure at the condenser outlet is changed to the high pressure side pressure.
  • the detection pressure of the sensor 47 may be substituted.
  • the actuator state detection unit 303 detects the valve opening degree of the indoor unit expansion valve 42.
  • the refrigerant excess / deficiency determination unit 304 calculates the degree of refrigerant subcooling based on the detection result of the refrigerant temperature detection unit 301, the refrigerant pressure detection unit 302, or the actuator state detection unit 303, and determines whether the refrigerant is excessive or insufficient.
  • the expansion valve drive unit 305 opens the high-low pressure gas pipe expansion valve 31 of the cooling / heating switching unit 30 in the cooling operation or low-pressure stop state when the refrigerant is excessive. Drive to close the degree. Thereby, since the high and low pressure gas branch pipe 35 is closed, refrigerant condensation occurs in the high and low pressure gas branch pipe 35, and the amount of refrigerant in the refrigeration cycle can be adjusted. At this time, when there are a plurality of indoor units 40 in the cooling operation or the low pressure stopped state, the valve openings of the high and low pressure gas pipe expansion valves 31 are closed sequentially.
  • the indoor unit expansion valve 42 As described with reference to FIG. 1, even in the indoor unit 40 in the heating high pressure stopped state (see the indoor unit 40 b), by controlling the valve openings of the high and low pressure gas pipe expansion valve 31 and the indoor unit expansion valve 42, More condensed refrigerant can be stored than when the low-pressure gas pipe expansion valve 31 is closed. When the condensed refrigerant cannot be stored elsewhere, the indoor unit expansion valve 42 is closed to store the condensed refrigerant.
  • the expansion valve drive unit 305 determines that the refrigerant is insufficient based on the determination result of the refrigerant excess / deficiency determination unit 304, the expansion valve drive unit 305 is closed in the cooling operation, the low pressure stop state, or the heating high pressure stop state.
  • the high / low pressure gas pipe expansion valves 31 are sequentially opened. As a result, the refrigerant accumulated in the closed high and low pressure gas branch pipe 35 or the refrigerant accumulated in the indoor unit stopped at high pressure flows, and the condensed refrigerant is recovered to eliminate the refrigerant shortage.
  • FIG. 4 the control flow of the expansion valve 31 for the high and low pressure gas pipe that adjusts the refrigerant condensation of the closed portion such as the high and low pressure gas branch pipe 35 controlled by the refrigeration cycle control unit 300 of the air conditioner of the present embodiment. Will be described in detail.
  • the control flow of FIG. 4 is implemented with a predetermined period, and refrigerant
  • step S401 it is determined whether or not the air conditioner to be processed (for example, the outdoor unit 10 in FIG. 1) is in the cooling / heating simultaneous operation or the heating operation (S401). If the cooling / heating simultaneous operation or the heating operation is not being performed, it is not necessary to flow the high-temperature / high-pressure gas refrigerant through the high / low pressure gas pipe, and the control flow is terminated because the refrigerant does not accumulate. (No in S401) If the air conditioner to be processed is in simultaneous cooling / heating operation or heating operation, the process proceeds to step S402 (Yes in S401). In step S402, the average supercooling degree of the heating operation indoor unit is obtained.
  • the degree of supercooling of the indoor unit When there is one heating operation indoor unit, it is the degree of supercooling of the indoor unit, and when there are multiple units, the number of supercooling units may be averaged. You may ask for it.
  • the degree of subcooling of the indoor unit is that the refrigerant outlet pressure and outlet temperature of the indoor unit heat exchanger 41 are detected by the condenser outlet sensor 46 to obtain the refrigerant saturation temperature at the outlet pressure. The difference between the detected outlet temperature and the detected outlet temperature is calculated.
  • Whether the refrigerant is excessive or insufficient is determined by whether or not the average supercooling degree of the indoor unit heat exchanger 41 of the indoor unit 40 to be processed calculated in step S402 is within the range of the supercooling degree when the refrigerant amount is appropriate. To do. Specifically, if the calculated degree of supercooling is smaller than the appropriate range of the degree of supercooling, it is determined that the refrigerant is insufficient, and if the calculated degree of supercooling is greater than the appropriate range of the degree of supercooling, it is determined that the refrigerant is excessive.
  • step S403 and step S412 The processing between step S403 and step S412 is executed in order for the number of cooling / heating switching units 30 of the air conditioner of the embodiment.
  • step S404 it is determined whether a cooling / heating switching unit 30 to be processed is connected to a cooling operation or a low-pressure stop unit. If the indoor unit 40 for cooling operation or low-pressure stop is not connected, the process proceeds to step S412 (No in S404), and the next cooling / heating switching unit 30 is processed. If the indoor unit 40 for cooling operation or low-pressure stop is connected (indoor units 40c and 40d in FIG. 1), the process proceeds to step S406 (Yes in S404).
  • step S408 If it is determined that the refrigerant is excessive based on the degree of supercooling calculated in step S406, the process proceeds to step S408 (Yes in S406), and if not, the process proceeds to step S409 (No in S406). If it is determined that the refrigerant is insufficient based on the degree of supercooling calculated in step S409, the process proceeds to step S411 (Yes in S409). Otherwise, the process proceeds to step S412 (No in S409). Perform the process.
  • step S408 the valve opening degree of the high / low pressure gas pipe expansion valve 31 of the cooling / heating switching unit 30 to be processed is decreased to reduce the flow rate of the refrigerant, or the high / low pressure gas pipe expansion valve 31 is closed.
  • the condensed refrigerant is stored in the high and low pressure gas branch pipe 35 of the selected cooling / heating switching unit 30, so that the refrigeration cycle can be adjusted to an appropriate amount of refrigerant.
  • step S411 the valve opening degree of the high / low pressure gas pipe expansion valve 31 of the cooling / heating switching unit 30 to be processed is increased so that the refrigerant can flow therethrough or the refrigerant flow rate is increased (S411). .
  • the liquid refrigerant stored in the high / low pressure gas branch pipe 35 any of the high / low pressure gas branch pipes 35b, 35c, 35d) of the selected cooling / heating switching unit 30 is collected and adjusted to an appropriate refrigerant amount.
  • the refrigerant condensation is adjusted so that the refrigerant supercooling degree is in an appropriate range. Therefore, the appropriate range of the supercooling degree for determining whether the refrigerant is excessive or insufficient is determined from the viewpoint of the energy efficiency of the air conditioner. From the above, it is possible to provide a simultaneous cooling and heating type multi-air conditioner with high energy efficiency.
  • the condensed refrigerant is stored in the high and low pressure gas branch pipe 35 when the refrigerant is excessive, it is not necessary to provide the refrigerant amount adjusting tank 17.
  • a small-capacity refrigerant amount adjustment tank 17 may be provided. For this reason, there is an effect of cost reduction.
  • the high / low pressure gas pipe expansion valve 31 of the cooling / heating switching unit 30 is configured with a variable expansion valve that can control the flow rate of the refrigerant by adjusting the opening degree in addition to opening and closing.
  • a modification of the high / low pressure gas pipe expansion valve 31 will be described with reference to FIG.
  • the high / low pressure gas pipe expansion valve 31 controls the flow rate of the refrigerant by adjusting the opening degree in order to recover the liquid refrigerant of the high / low pressure gas branch pipe 35 and to prevent condensation of the gas refrigerant.
  • the control range of the valve opening to be controlled is not large. Therefore, in the cooling / heating switching unit 30 of FIG. 5, the two expansions are a main expansion valve 52 for high and low pressure gas pipes that opens and closes the refrigerant flow and a sub expansion valve 53 for high and low pressure gas pipes that can vary the flow rate although the absolute value of the flow rate is not large.
  • a valve was provided in parallel to provide an expansion valve for high and low pressure gas pipes.
  • the high / low pressure gas pipe main expansion valve 52 When recovering the liquid refrigerant in the high / low pressure gas branch pipe 35 or when passing the gas refrigerant to prevent condensation of the gas refrigerant, the high / low pressure gas pipe main expansion valve 52 is closed and the high / low pressure gas pipe sub-expansion is closed. The valve opening of the valve 53 is adjusted to allow the refrigerant to flow.
  • the high and low pressure gas pipe sub-expansion valve 53 is excellent in controllability at a minute flow rate because of its small diameter. If the high / low pressure gas pipe main expansion valve 52 is opened / closed, it is conceivable that the refrigerant is excessively recovered, or that the gas bypass amount increases and the heating capacity of other indoor units for heating operation decreases. It is effective to prevent these. Furthermore, it is suitable not only for the opening / closing operation but also for actively adjusting the refrigerant amount by increasing or decreasing the expansion valve opening degree.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Air Conditioning Control Device (AREA)
  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Abstract

複数の室内機(40)を有し、前記室内機(40)のそれぞれに接続する冷暖切替ユニット(30)を切替えて冷房運転と暖房運転を同時に運転できる空気調和機が、前記冷暖切替ユニット(30)ごとに設けられ、前記室内機(40)への高温高圧のガス冷媒の供給を調整する高低圧ガス管用膨張弁(31)と、暖房運転中でない室内機に接続する冷暖切替ユニット(30)の前記高低圧ガス管用膨張弁(31)の弁開度を、冷凍サイクルの冷媒過不足の判定結果に応じて調整する冷凍サイクル制御部(300)と、を備えるようにして、運転効率の低下を防止した冷暖同時型マルチ空気調和機を提供する。

Description

空気調和機
 本発明は、複数の室内機の冷房運転と暖房運転を混在して運転することができる冷暖同時型マルチ空気調和機に関する。
 冷暖同時型マルチ空気調和機では、室内機の冷房運転と暖房運転が混在する場合などに対応するため、室内ガス管につなぐ配管を高圧ガス管か低圧ガス管のいずれかに切り替える冷暖切替ユニットを室外機と室内機の間に設置している。
 ここで、冷房運転や停止や暖房サーモオフや送風運転する際に、室内機に高温高圧ガス冷媒を流したくない場合は、冷暖切替ユニットを使い室内ガス管を低圧ガス管に接続し、高圧ガス管側の回路は閉止されている。
 このように、高圧ガス管側の回路を閉止したことにより、冷暖切替ユニットの閉止された高圧ガス枝管のガス冷媒が、凝縮して液冷媒となることがある。ガス冷媒が通流していれば、凝縮することはないが、高圧ガス枝管が閉止状態となるために、ガス冷媒の凝縮が生じてしまう。
 冷暖切替ユニットの高圧ガス枝管でガス冷媒の凝縮が生じると、空気調和機全体の冷媒循環量が不足してしまい、他の室内機の暖房のための冷媒が不足する問題がある。
 上記の冷暖切替ユニットの高圧ガス枝管に液冷媒が滞留することを防止するために、特許文献1には、暖房運転が停止または休止している室内機に関し、冷暖切替ユニットの高圧ガス管側の膨張弁を微開の状態にして、室内温度が所定温度になると低圧ガス管側の膨張弁を開いて冷媒を回収することや、高圧ガス管側の膨張弁を微開とする代わりに、バイパスキャピラリチューブを接続することが開示されている。
特開2008-116073号公報
 上記の先行技術によれば、冷媒切替ユニットの高圧ガス枝管に液冷媒が滞留することを防止できる。
 しかし、暖房に使われるはずの高圧ガス冷媒の一部がバイパスされるため、空気調和機全体の運転効率の低下を防止することができない。また、運転状態によっては余剰冷媒は増える場合がありえるが、高圧ガス枝管の液冷媒滞留を抑制しすぎると、凝縮器に冷媒が溜まりすぎて運転効率が低下する恐れがある。
 本発明の目的は、運転効率の低下を防止した冷暖同時型マルチ空気調和機を提供することにある。
 上記課題を解決するために本発明の複数の室内機を有し、前記室内機のそれぞれに接続する冷暖切替ユニットを切替えて冷房運転と暖房運転を同時に運転できる空気調和機は、前記冷暖切替ユニットごとに設けられ、前記室内機への高温高圧のガス冷媒の供給を調整する高低圧ガス管用膨張弁と、暖房運転中でない室内機に接続する冷暖切替ユニットの前記高低圧ガス管用膨張弁の弁開度を、冷凍サイクルの冷媒過不足の判定結果に応じて調整する冷凍サイクル制御部と、を備えるようにした。
 また、本発明の複数の室内機を有し、前記室内機のそれぞれに接続する冷暖切替ユニットを切替えて冷房運転と暖房運転を同時に運転できる空気調和機は、前記冷暖切替ユニットごとに設けられ前記室内機への高温高圧のガス冷媒の供給を調整する高低圧ガス管用膨張弁と、暖房運転中の室内機の室内機熱交換器出口の冷媒の過冷却度が所定範囲になるように、暖房運転中でない室内機に接続する冷暖切替ユニットの前記高低圧ガス管用膨張弁の弁開度を調整する冷凍サイクル制御部と、を備えるようにした。
 本発明によれば、適宜、高温高圧のガス冷媒をバイパスするようにしたので、冷暖同時型マルチ空気調和機の冷媒過不足による運転効率の低下を防止することができる。
実施形態の空気調和機の冷凍サイクル系統図である。 比較例の空気調和機の冷凍サイクル系統図である。 空気調和機の制御回路の構成を示す図である。 実施形態の膨張弁制御フロー図である。 実施形態の冷暖切替ユニットの構成の変形例を示す図である。
 以下、図面を用いて本発明の実施形態を詳細に説明する。
 図1は、本発明の実施形態の空気調和機の冷凍サイクル系統図であり、図2は、比較例の空気調和機の冷凍サイクル系統図である。
 実施形態の空気調和機は、室外機10と、室内機40a,40b,40c,40d(以下、総称して室内機40と記す場合がある)と、室内機40と室外機10の間に存在する冷暖切替ユニット30a,30b,30c,30d(以下、総称して冷暖切替ユニット30と記す場合がある)から構成されている。
 図1では、室内機40が4台の構成を示しているが、この台数に限らず、複数台構成であってもよい。また、室外機10が1台の構成を示しているが、この台数に限らず、複数台構成であってもよい。
 室内機40は、暖房運転、冷房運転、暖房高圧停止、停止(低圧停止)の4つの状態をもち、いずれかの状態になっている。そして、複数の室内機40は、暖房運転と冷房運転の混在運転を行うことができ、暖房または冷房運転と、暖房高圧停止や停止の状態との混在状態もある。
 図1は、室内機40aが暖房運転、室内機40bが暖房高圧停止、室内機40cが低圧停止、室内機40dが冷房運転の混在運転の場合を示している。
 室内機40と冷暖切替ユニット30とは、液主管21と高低圧ガス主管24と低圧ガス主管27とにより室外機10に接続している。詳しくは、液主管21と高低圧ガス主管24と低圧ガス主管27のそれぞれは、分岐して室内機40と冷暖切替ユニット30とに接続する。例えば、高低圧ガス主管24は、高低圧ガス枝管35a,35b,35c,35d(以下、総称して高低圧ガス枝管35と記す場合がある)に分岐し、冷暖切替ユニット30a,30b,30c,30dのそれぞれに接続している。低圧ガス主管27も分岐して、冷暖切替ユニット30a,30b,30c,30dに接続している。また、液主管21も分岐して、室内機40a、40b、40c、40dに接続している。
 冷暖切替ユニット30は、高低圧ガス管用膨張弁31(高低圧ガス管用膨張弁31a、31b、31c、31dの総称)と低圧ガス管用膨張弁32(低圧ガス管用膨張弁32a、32b、32c、32dの総称)をもち、室内機40と高低圧ガス主管24と低圧ガス主管27とを接続する2分岐回路となっている。
 また、冷暖切替ユニット30は、高低圧ガス管用膨張弁31と低圧ガス管用膨張弁32の開閉により、室内機40を通流する冷媒の方向を変え、後述する室内機膨張弁42(室内機膨張弁42a、42b、42c、42dの総称)の減圧絞りや開閉動作と連係して室内機熱交換器41(室内機熱交換器41a、41b、41c、41dの総称)の蒸発器の作用と凝縮器の作用を切替える。
 なお、本明細書では、高圧の液冷媒または気液2相冷媒の減圧を行う絞り弁だけでなく、減圧が目的でなく開度制御して流量調整を行う流量可変弁や、冷媒通流の開閉を行う制御弁も膨張弁と記すこととする。
 室内機40は、室内機熱交換器41と室内機膨張弁42と室内機ファン49(室内機ファン49a、49b、49c、49dの総称)をもつ。そして、室内機熱交換器41の一端は、室内機膨張弁42を介して、液主管21に連通し、室内機熱交換器41の他端は、冷暖切替ユニット30に連通している。
 室外機10は、圧縮機11、高低圧ガス管側四方弁12、熱交換器側四方弁13、室外機熱交換器14、室外機膨張弁15、室外機ファン19及びアキュムレータ18から構成される。ここで、アキュムレータ18は、気液混合状態の低圧ガス冷媒から液状の冷媒を分離し、ガス状の冷媒を圧縮機11に送り出している。
 圧縮機11のアキュムレータ18側は低圧側であり、圧縮機11の四方弁側には圧縮機逆止弁16が接続され高圧側になる。この圧縮機11の差圧で冷媒を搬送する。圧縮機11には、アキュムレータ18で液冷媒が分離されて、ガス冷媒が吸入されるので、圧縮機11が液圧縮することがない。
 つぎに、高低圧ガス管側四方弁12と熱交換器側四方弁13について説明する。
 高低圧ガス管側四方弁12は、高低圧ガス主管24を、圧縮機11の吐出側に接続するか、アキュムレータ18の吸入側に接続するかを切換える。いずれかの室内機40を暖房運転する場合には、高低圧ガス主管24と圧縮機11の吐出側を接続して、高温高圧のガス冷媒を高低圧ガス主管24に供給する。
 熱交換器側四方弁13は、室外機熱交換器14を、圧縮機11の吐出側に接続するか、アキュムレータ18の吸入側に接続するかを切換える。詳しくは、室外機熱交換器14を凝縮器とする場合には、室外機熱交換器14を圧縮機11の吐出側に接続し、室外機熱交換器14を蒸発器とする場合には、室外機熱交換器14をアキュムレータ18の吸入側に接続する。
 この熱交換器側四方弁13の接続切換えは、空気調和機の暖房負荷と冷房負荷の状況に応じて行う。詳細には、空気調和機の暖房負荷が大きい場合には、室外機熱交換器14がアキュムレータ18の吸入側に接続するように熱交換器側四方弁13を切換えるとともに、室外機膨張弁15を減圧するように絞って、室外機熱交換器14を蒸発器とする。空気調和機の冷房負荷が大きい場合には、室外機熱交換器14が圧縮機11の吐出側に接続するように熱交換器側四方弁13を切換えるととものに、室外機膨張弁15を開放して、室外機熱交換器14を凝縮器とする。
 室外機キャピラリ20は、高低圧ガス管側四方弁12と熱交換器側四方弁13の空端子をアキュムレータ18の吸入側に接続する。これにより、四方弁を三方弁のように使うことができる。
 図2に示す比較例の空気調和機と、図1の実施形態の空気調和機とは、冷暖切替ユニット30の構成が異なり、また、比較例の空気調和機は、冷媒量調整タンク17をもつ構成である点が異なる。
 ここで、冷媒量調整タンク17は、空気調和機の冷媒量の調整を行うために設けられている。
 比較例の冷暖切替ユニット30の高低圧ガス管用膨張弁38(高低圧ガス管用膨張弁38a、38b、38c、38dの総称)は、冷媒通流の開閉を制御する膨張弁となっている。そして、高低圧ガス管用膨張弁38に並列にバイパスキャピラリ37(バイパスキャピラリ37a、37b、37c、37dの総称)が設けられている。
 図2に示す比較例の空気調和機と、図1の実施形態の空気調和機の違いは、以降でより詳細に説明する。
 つぎに図1と図2により室内機40の冷媒の流れを説明する。
 まず、室内機40を暖房運転する場合について説明する(図1の室内機40a、冷暖切替ユニット30aを参照)。圧縮機11で圧縮された高温高圧のガス冷媒は、高低圧ガス管側四方弁12により高低圧ガス主管24に送られる。
 このとき、冷暖切替ユニット30の低圧ガス管用膨張弁32は、低圧ガス主管27と室内機熱交換器41が連通しないように閉止され、高低圧ガス管用膨張弁31は、高低圧ガス主管24から室内機熱交換器41に冷媒が通流するように開放されている。これにより、圧縮機11で圧縮された高温高圧のガス冷媒が、室内機熱交換器41に供給される。
 なお、図1において、高低圧ガス管用膨張弁31と低圧ガス管用膨張弁32と室内機膨張弁42の弁の開放・閉止・開度制御の状態を凡例のように示している。
 室内機熱交換器41は、凝縮器として作用して、高温高圧のガス冷媒の凝縮熱により暖房を行う。凝縮した高圧の液冷媒または気液2相冷媒は、弁が開放された室内機膨張弁42を通流して液主管21に送られる。
 暖房運転中の室内機40の部屋が設定温度に到達し、室内機停止(サーモオフ)する場合には、冷媒との熱交換による温度上昇を少なくするため、室内ファン風量を落としたり停止すると同時に、室内機40と冷暖切替ユニット30を冷媒の通流を抑制して、暖房高圧停止の状態にする(図1の室内機40b、冷暖切替ユニット30bを参照)。
 このとき、高低圧ガス枝管35や高低圧ガス管用膨張弁31と室内機熱交換器41の接続管や室内機熱交換器41内の高温高圧のガス冷媒は、管表面で放熱しているため、凝縮して液冷媒になる。
 図2の比較例の空気調和機では、冷媒の通流抑制を、高低圧ガス管用膨張弁31を開放し、室内機膨張弁42(室内機膨張弁42b)を所定開度にすることで、ガス冷媒の通流抑制を行う。
 このときの室内機膨張弁42の弁開度は、液冷媒が溜まりすぎる場合には開き、気液2相冷媒として流出する場合には絞られる。
 図1の本実施形態の空気調和機では、高低圧ガス管用膨張弁31(図1の高低圧ガス管用膨張弁31b)と、室内機膨張弁42(図1の室内機膨張弁42b)の開度を調整して冷媒の流量を制御することで、高低圧ガス枝管35や高低圧ガス管用膨張弁31と室内機熱交換器41の接続管や室内機熱交換器41内の凝縮する液冷媒の量を制御する。
 詳しくは、室内膨張弁42と高低圧ガス管膨張弁31の両方を絞りぎみとすると、高低圧ガス枝管35や高低圧ガス管用膨張弁31と室内機熱交換器41の接続管に冷媒を貯留できる。逆に室内膨張弁42と高低圧ガス管膨張弁31の両方を開きぎみとすると、高低圧ガス枝管35や高低圧ガス管用膨張弁31と室内機熱交換器41の接続管の冷媒貯留を抑制できる。室内膨張弁42を開きぎみにし高低圧ガス管膨張弁31を絞りぎみとすると、室内熱交換器41での高温高圧ガス冷媒の比率が少なく冷媒が溜まる。室内膨張弁42を絞りぎみにし、高低圧ガス管膨張弁31を開きぎみとすると、室内熱交換器41での高温高圧ガス冷媒の比率が多くなり冷媒溜りを抑制できる。
 つぎに、室内機40を冷房運転する場合について説明する(図1の室内機40d、冷暖切替ユニット30dを参照)。このとき、凝縮器として運転している室外機熱交換器14の吐出している高圧の液冷媒または気液2相冷媒が、液主管21を経由して、室内機40dに供給されるか、または、暖房運転している他の室内機40から凝縮冷媒が供給される。例えば、図1の室内機40aは暖房運転を行っており、凝縮器として動作して室内機熱交換器41aの吐出している冷媒が、弁が開放された室内機膨張弁42aを通流して、室内機40dに供給される。
 室内機40の室内機膨張弁42は、高圧の液冷媒または気液2相冷媒の減圧を行う絞り弁となるように開度が調整される。減圧された冷媒は、蒸発器として作用する室内機熱交換器41により蒸発し、低圧のガス冷媒となる。このときの冷媒の気化熱により冷房を行う。
 室内機熱交換器41で気化した低圧のガス冷媒は、開放された冷暖切替ユニット30の低圧ガス管用膨張弁32を経由して、低圧ガス主管27に送られる。低圧ガス主管27は室外機10に接続され、ガス冷媒は、アキュムレータ18を通って圧縮機11に戻る。そして、圧縮機11で再び圧縮されて循環する。
 図1や図2の冷房運転している冷暖切替ユニット30の高低圧ガス管用膨張弁31(高低圧ガス管用膨張弁38)は、閉止状態なっているため、高低圧ガス枝管35が閉塞する。冷暖同時運転している場合には、高低圧ガス主管24に高温高圧ガス冷媒が供給されているので、高低圧ガス枝管35の管表面で放熱して冷媒が凝縮し、液冷媒になる可能性がある(図1や図2の高低圧ガス枝管35dを参照)。
 このため、図2の比較例の空気調和機では、高低圧ガス管用膨張弁38に並列にバイパスキャピラリ37を設ける。バイパスキャピラリ37により、室内機熱交換器41側との差圧に応じた流量の冷媒が通流するので、高低圧ガス枝管35の冷媒の凝縮のよる液化を防止することができる(図2のバイパスキャピラリ37dを参照)。
 しかし、図2の比較例の空気調和機では、バイパスキャピラリ37に一定量の高温高圧の冷媒が通流するため、空気調和機(例えば、図2の室内機40a)の高温高圧のガス冷媒の利用効率低下の要因となっていた。
 また、バイパスキャピラリ37が無い場合には、配管施工や運転条件によって冷媒が高低圧ガス枝管35等に溜まる量が変化するため、冷媒量調整が可能なように室外機側に冷媒量調整タンク17(図2を参照)を必要となっていた。なお、図2では液主管21上に冷媒量調整タンク17を設置しているが、液管とガス管にそれぞれ弁+配管で接続され、弁で液を溜めたり排出したり切り替える機構のものもある。
 図1の本実施形態の空気調和機では、高低圧ガス管用膨張弁31(図1の高低圧ガス管用膨張弁31d)の開度を調整して冷媒の流量を制御することで、高低圧ガス枝管35の凝縮する液冷媒の量を制御する。これにより、図2のバイパスキャピラリ37(バイパスキャピラリ37d)や冷媒量調整タンク17を不要にする。
 図1や図2の室内機10の室内機熱交換器41には、高温高圧のガス冷媒または低温の液冷媒(または気液2相冷媒)が通流しないようにする低圧停止の状態がある(室内機40c、冷暖切替ユニット30cを参照)。この低圧停止の状態では、冷暖切替ユニット30の高低圧ガス管用膨張弁31(高低圧ガス管用膨張弁38)が閉止されているとともに、室内機40の室内機膨張弁42も閉止されている。
 このため、高低圧ガス主管24に高温高圧ガス冷媒が供給されている場合には、高低圧ガス枝管35の管表面で放熱して冷媒が凝縮し、液冷媒になる可能性がある(図2の高低圧ガス枝管35cを参照)。
 図2の比較例の空気調和機では、上記の冷房運転の場合と同じく、高低圧ガス管用膨張弁38に並列にバイパスキャピラリ37を設けて高低圧ガス枝管35の冷媒の凝縮による液化を防止することができる(図2のバイパスキャピラリ37cを参照)。
 図1の本実施形態の空気調和機では、高低圧ガス管用膨張弁31(図1の高低圧ガス管用膨張弁31c)の開度を調整して冷媒の流量を制御することで、高低圧ガス枝管35の凝縮する液冷媒の量を制御する。これにより、図2のバイパスキャピラリ37(バイパスキャピラリ37c)や冷媒量調整タンク17を不要にする。
 上記のように、図1の本実施形態の空気調和機では、冷暖切替ユニット30の高低圧ガス管用膨張弁31が、開放と閉止の制御に加えて開度を調整して冷媒の流量を制御できるようにするか、または、室内機膨張弁42が、開放と閉止の制御と減圧を行う絞り弁となることに加えて開度を調整して高低圧ガス枝管35等の冷媒の流量を制御できるようにする。
 これにより、バイパスキャピラリ37や冷媒量調整タンク17を不要にするとともに、高温高圧ガス冷媒の供給量が低下を抑制する。
 詳しくは、本実施形態の空気調和機では、高低圧ガス枝管35等の閉塞部分で冷媒の凝縮が生じると、凝縮器での冷媒不足に繋がることに着目し、凝縮器の過冷却度を求めて制御を行う。つまり、凝縮器の過冷却度が所定値より小さくなると、冷媒不足と判断して、高低圧ガス枝管35等の冷媒流量を増して凝縮冷媒を回収し、過冷却度が所定値より大きくなると、冷媒過多と判断して、高低圧ガス枝管35等を閉塞し、冷媒を凝縮蓄積する。
 この凝縮器の過冷却度は、凝縮器出口の冷媒圧力と温度から求めることができる。
 つぎに、本実施形態の空気調和機の制御回路の構成を、図3により説明する。
 本実施形態の空気調和機の冷凍サイクル制御部300は、冷媒温度を検出する冷媒温度検出部301と冷媒圧力を検出する冷媒圧力検出部302をもち、図1の冷凍サイクル図に示す蒸発器出口センサ45a、45b、45c、45d(以下、総称して蒸発器出口センサ45と記す)と、凝縮器出口センサ46a、46b、46c、46d(以下、総称して凝縮器出口センサ46と記す)が接続され、冷媒温度と冷媒圧力を検出する。
 蒸発器出口センサ45と凝縮器出口センサ46は、それぞれ、冷媒圧力を検出する圧力センサと冷媒温度を検出する温度センサから構成されている。
 また、圧縮機11の冷媒吐出し側には高圧側圧力センサ47が設けられ、冷媒吸込み側には低圧側圧力センサ48が設けられている。
 さらに、室外機熱交換器14の冷媒の流路の前後にも、蒸発器出口センサ51と凝縮器出口センサ50が設けられている。蒸発器出口センサ51と凝縮器出口センサ50は、それぞれ、冷媒圧力を検出する圧力センサと冷媒温度を検出する温度センサから構成されている。
 なお、蒸発器出口センサ45と凝縮器出口センサ46を温度センサのみで構成し、蒸発器出口の冷媒圧力を低圧側圧力センサ48の検出圧力で代替し、凝縮器出口の冷媒圧力を高圧側圧力センサ47の検出圧力で代替してもよい。
 アクチュエータ状態検出部303は、室内機膨張弁42の弁開度を検出する。
 冷媒過不足判定部304は、冷媒温度検出部301または冷媒圧力検出部302またはアクチュエータ状態検出部303の検出結果に基づき、冷媒の過冷却度を算出し、冷媒の過不足を判定する。
 膨張弁駆動部305は、冷媒過不足判定部304の判定結果に基づいて、冷媒が過多の場合には、冷房運転または低圧停止状態の冷暖切替ユニット30の高低圧ガス管用膨張弁31の弁開度を閉じるように駆動する。これにより、高低圧ガス枝管35が閉塞するので、高低圧ガス枝管35で冷媒凝縮が生じて、冷凍サイクルの冷媒量を調整できる。
 このとき、冷房運転または低圧停止状態の室内機40が複数あった場合には、順次、高低圧ガス管用膨張弁31の弁開度を閉じるようにする。
 図1で説明したように、暖房高圧停止の状態の室内機40(室内機40bを参照)でも、高低圧ガス管膨張弁31と室内機膨張弁42の弁開度を制御することで、高低圧ガス管用膨張弁31を閉じる場合よりも、多くの凝縮冷媒を貯留できる。他に凝縮冷媒を貯留できない場合に、室内機膨張弁42を閉止して凝縮冷媒を貯留する。
 膨張弁駆動部305は、冷媒過不足判定部304の判定結果に基づいて、冷媒が不足していると判定した場合には、冷房運転または低圧停止状態または暖房高圧停止の状態の閉弁されている高低圧ガス管用膨張弁31を、順次、開放する。これにより、閉塞した高低圧ガス枝管35に蓄積されている冷媒、或いは高圧停止している室内機に蓄積されている冷媒が通流し、凝縮冷媒を回収されて冷媒不足を解消する。
 つぎに、図4により、本実施形態の空気調和機の冷凍サイクル制御部300が制御する、高低圧ガス枝管35等の閉塞部分の冷媒凝縮を調整する高低圧ガス管用膨張弁31の制御フローを詳細に説明する。
 図4の制御フローが所定周期で実施されて、実施形態の空気調和機の冷媒凝縮が調整される。
 まず、処理対象の空調機(例えば、図1の室外機10)が冷暖同時運転または暖房運転であるか否かを判定する(S401)。冷暖同時運転または暖房運転中でなければ、高低圧ガス管に高温高圧ガス冷媒を流す必要はなく、冷媒もたまらない為制御フローを終了する。(S401のNo)
 処理対象の空調機が冷暖同時運転または暖房運転中であれば、ステップS402に進む(S401のYes)。
 ステップS402では、暖房運転室内機の平均過冷却度を求める。暖房運転室内機が1台の場合はその室内機の過冷却度であり、複数台ある場合は過冷却度を台数平均してもよく、室内機容量の大きいものに補正を加えて平均値を求めてもよい。
 なお、室内機の過冷却度とは、室内機熱交換器41の冷媒の出口圧力と出口温度を、凝縮器出口センサ46により検出し、出口圧力における冷媒の飽和温度を求め、この飽和温度と検出した出口温度との差分をとって算出する。
 ステップS402で算出した処理対象の室内機40の室内機熱交換器41の平均過冷却度が、冷媒量が適正なときの過冷却度の範囲にあるか否かによって、冷媒の過不足を判定する。詳しくは、算出した過冷却度が過冷却度の適正範囲よりも小さければ、冷媒不足と判定し、算出した過冷却度が過冷却度の適正範囲よりも大きければ、冷媒過多と判定する。
 ステップS403とステップS412の間の処理は、実施形態の空気調和機の冷暖切替ユニット30の台数分、順に実行される。
 ステップS404では、処理対象の冷暖切替ユニット30に、冷房運転または低圧停止のものが接続しているか否かを判定する。
 冷房運転または低圧停止の室内機40が接続されてなければ、ステップS412に進み(S404のNo)、つぎの冷暖切替ユニット30の処理を行う。
 冷房運転または低圧停止の室内機40が接続されていれば(図1の室内機40c、40d)、ステップS406に進む(S404のYes)。
 ステップS406で算出した過冷却度により冷媒過多と判定した場合には、ステップS408に進み(S406のYes)、そうでない場合には、ステップS409に進む(S406のNo)。
 ステップS409において算出した過冷却度により冷媒不足と判定した場合には、ステップS411に進み(S409のYes)、そうでない場合には、ステップS412に進む(S409のNo)、つぎの冷暖切替ユニット30の処理を行う。
 ステップS408で、処理対象の冷暖切替ユニット30の高低圧ガス管用膨張弁31の弁開度を減少して、冷媒の通流量を少なくするか、または、高低圧ガス管用膨張弁31を閉止する。これにより、選択した冷暖切替ユニット30の高低圧ガス枝管35に凝縮冷媒を貯留するようになるので、冷凍サイクルを適正な冷媒量に調整することができる。
 ステップS411で、処理対象の冷暖切替ユニット30の高低圧ガス管用膨張弁31の弁開度を増大して、冷媒を通流できるようにするか、または、冷媒の通流量を増加する(S411)。これにより、選択した冷暖切替ユニット30の高低圧ガス枝管35(高低圧ガス枝管35b、35c、35dのいずれか)に貯留している液冷媒を回収して適正な冷媒量に調整する。
 上記の処理では、冷媒の過冷却度が、適正な範囲になるように冷媒凝縮が調整されるので、冷媒の過不足を判定する過冷却度の適正な範囲を空気調和機のエネルギー効率の観点から定めれば、高エネルギー効率の冷暖同時型マルチ空気調和機を提供することができる。
 実施形態の空気調和機では、冷媒過多の時に高低圧ガス枝管35に凝縮冷媒が貯留されるので、冷媒量調整タンク17を設ける必要がない。あるいは、小容量の冷媒量調整タンク17を設ければよい。このため、コスト低減の効果がある。
 上記の実施形態の空気調和機では、冷暖切替ユニット30の高低圧ガス管用膨張弁31を、開放と閉止に加えて開度を調整して冷媒の流量を制御できる可変膨張弁で構成する例を説明した。図5により、高低圧ガス管用膨張弁31の変形例を説明する。
 上記のとおり、高低圧ガス管用膨張弁31は、高低圧ガス枝管35の液冷媒の回収や、ガス冷媒の凝縮防止のために、開度を調整して冷媒の流量を制御しているが、このときの、制御する弁開度の制御範囲は大きくない。
 そこで、図5の冷暖切替ユニット30では、冷媒通流の開閉を行う高低圧ガス管用主膨張弁52と流量の絶対値は大きくないが流量可変できる高低圧ガス管用副膨張弁53の2つの膨張弁を並列に設けて、高低圧ガス管用膨張弁とした。
 高低圧ガス枝管35の液冷媒を回収する場合やガス冷媒の凝縮防止のためにガス冷媒を通流する場合には、高低圧ガス管用主膨張弁52を閉止し、高低圧ガス管用副膨張弁53の弁開度を調整して冷媒を通流する。高低圧ガス管用副膨張弁53は口径が小さいため微小流量での制御性に優れている。高低圧ガス管用主膨張弁52で開閉動作をすると過剰に冷媒回収しすぎたり、ガスバイパス量が増加して他の暖房運転室内機の暖房能力が低下することも考えられる。これらを防ぐのに効果的である。更に、開閉動作だけでなく、膨張弁開度を増やしたり減らしたりして、積極的に冷媒量調整するのにも適している。
 10 室外機
 11 圧縮機
 12 高低圧ガス管側四方弁
 13 熱交換器側四方弁
 14 室外機熱交換器
 15 室外機膨張弁
 21 液主管
 24 高低圧ガス主管
 27 低圧ガス主管
 30、30a、30b、30c、30d 冷暖切替ユニット
 31、31a、31b、31c、31d 高低圧ガス管用膨張弁
 32、32a、32b、32c、32d 低圧ガス管用膨張弁
 35、35a、35b、35c、35d 高低圧ガス枝管
 40、40a、40b、40c、40d 室内機
 41、41a、41b、41c、41d 室内機熱交換器
 42、42a、42b、42c、42d 室内機膨張弁
 52 高低圧ガス管用主膨張弁
 53 高低圧ガス管用副膨張弁
 300 冷凍サイクル制御部
 301 冷媒温度検出部
 302 冷媒圧力検出部
 304 冷媒過不足判定部
 305 膨張弁駆動部

Claims (10)

  1.  複数の室内機を有し、前記室内機のそれぞれに接続する冷暖切替ユニットを切替えて冷房運転と暖房運転を同時に運転できる空気調和機において、
     前記冷暖切替ユニットごとに設けられ、前記室内機への高温高圧のガス冷媒の供給を調整する高低圧ガス管用膨張弁と、
     暖房運転中でない室内機に接続する冷暖切替ユニットの前記高低圧ガス管用膨張弁の弁開度を、冷凍サイクルの冷媒過不足の判定結果に応じて調整する冷凍サイクル制御部と、
    を備えることを特徴とする空気調和機。
  2.  請求項1に記載の空気調和機において、
     前記冷凍サイクル制御部は、暖房運転中でない、冷房運転または低圧停止状態のいずれかの状態の室内機の前記高低圧ガス管用膨張弁の弁開度を調整する
    ことを特徴とする空気調和機。
  3.  請求項1に記載の空気調和機において、
     前記冷凍サイクル制御部は、
     冷凍サイクルの冷媒過多を判定した時に、前記高低圧ガス管用膨張弁を閉止または、前記高低圧ガス管用膨張弁の弁開度を減少させ、
     冷凍サイクルの冷媒不足を判定した時に、前記高低圧ガス管用膨張弁の弁開度を増大する
    ことを特徴とする空気調和機。
  4.  請求項1に記載の空気調和機において、
     前記冷凍サイクル制御部は、
     暖房運転している室内機の熱交換器出口の冷媒の過冷却度が所定の範囲値より小さいときに冷媒不足と判定し、
     前記過冷却度が前記所定の範囲値より大きいときに冷媒過多と判定する
    ことを特徴とする空気調和機。
  5.  請求項1に記載の空気調和機において、
     前記冷凍サイクル制御部は、前記高低圧ガス管用膨張弁の弁開度を調整して、前記高低圧ガス管用膨張弁の流入側の高低圧ガス枝管に貯留される凝縮冷媒の冷媒量を調整する
    ことを特徴とする空気調和機。
  6.  請求項1に記載の空気調和機において、
     前記高低圧ガス管用膨張弁は、冷媒の通流の開閉を行う開閉弁と、前記開閉弁より通流量が小さい範囲で弁開度が変わる可変弁が並列に設けられて構成され、
     前記冷凍サイクル制御部は、冷凍サイクルの冷媒過不足に応じて前記可変弁の弁開度を調整する
    ことを特徴とする空気調和機。
  7.  請求項1に記載の空気調和機において、
     前記室内機の熱交換器は、冷媒の減圧絞りを行うとともに弁開度を調整して冷媒の通流量を調整する室内機膨張弁を有し、
     前記冷凍サイクル制御部は、冷凍サイクルの冷媒過多を判定した時に、暖房高圧停止状態の室内機に接続する冷暖切替ユニットの前記高低圧ガス管用膨張弁を開放し、暖房高圧停止状態の室内機の前記室内機膨張弁の弁開度を調整して、暖房高圧停止状態の室内機の熱交換器に凝縮冷媒を貯留する
    ことを特徴とする空気調和機。
  8.  複数の室内機と、
     高温高圧冷媒の通流の開閉を行うとともに弁開度を調整して前記高温高圧冷媒の通流量を調整する高低圧ガス管用膨張弁と、低圧冷媒の通流の開閉を行う低圧ガス管用膨張弁と、を有し、前記室内機のそれぞれに接続して前記室内機の冷房運転と暖房運転を切替える複数の冷暖切替ユニットと、
     暖房運転中でない室内機に接続する冷暖切替ユニットの前記高低圧ガス管用膨張弁の弁開度を、冷凍サイクルの冷媒過不足の判定結果に応じて調整する冷凍サイクル制御部と、
    を備えることを特徴とする空気調和機。
  9.  請求項8に記載の空気調和機において、
     前記室内機のそれぞれの室内機熱交換器は、冷媒の減圧絞りを行うとともに弁開度を調整して冷媒の通流量を調整する室内機膨張弁を有し、
     前記冷凍サイクル制御部は、冷凍サイクルの冷媒過不足の判定結果に応じて、暖房高圧停止状態の室内機の室内機膨張弁と冷暖切替ユニットの高低圧ガス管用膨張弁の弁開度を調整する
    ことを特徴とする空気調和機。
  10.  複数の室内機を有し、前記室内機のそれぞれに接続する冷暖切替ユニットを切替えて冷房運転と暖房運転を同時に運転できる空気調和機において、
     前記冷暖切替ユニットごとに設けられ、前記室内機への高温高圧のガス冷媒の供給を調整する高低圧ガス管用膨張弁と、
     暖房運転中の室内機の室内機熱交換器出口の冷媒の過冷却度が所定範囲になるように、暖房運転中でない室内機に接続する冷暖切替ユニットの前記高低圧ガス管用膨張弁の弁開度を調整する冷凍サイクル制御部と、
    を備えることを特徴とする空気調和機。
PCT/JP2015/075868 2015-09-11 2015-09-11 空気調和機 WO2017042967A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201580083029.3A CN108027179B (zh) 2015-09-11 2015-09-11 空气调节机
JP2017538824A JP6453475B2 (ja) 2015-09-11 2015-09-11 空気調和機
PCT/JP2015/075868 WO2017042967A1 (ja) 2015-09-11 2015-09-11 空気調和機
US15/758,419 US10527322B2 (en) 2015-09-11 2015-09-11 Air conditioner
EP15903629.2A EP3348934B1 (en) 2015-09-11 2015-09-11 Air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/075868 WO2017042967A1 (ja) 2015-09-11 2015-09-11 空気調和機

Publications (1)

Publication Number Publication Date
WO2017042967A1 true WO2017042967A1 (ja) 2017-03-16

Family

ID=58240748

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/075868 WO2017042967A1 (ja) 2015-09-11 2015-09-11 空気調和機

Country Status (5)

Country Link
US (1) US10527322B2 (ja)
EP (1) EP3348934B1 (ja)
JP (1) JP6453475B2 (ja)
CN (1) CN108027179B (ja)
WO (1) WO2017042967A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018198726A1 (ja) * 2017-04-27 2018-11-01 日立ジョンソンコントロールズ空調株式会社 冷媒流路切換ユニットおよび空気調和機
CN108981083A (zh) * 2018-04-20 2018-12-11 青岛海尔空调器有限总公司 共享空调控制系统及控制方法
WO2019017388A1 (ja) * 2017-07-20 2019-01-24 ダイキン工業株式会社 空調機
WO2019021380A1 (ja) * 2017-07-26 2019-01-31 三菱電機株式会社 空気調和装置
JP2020153567A (ja) * 2019-03-19 2020-09-24 ダイキン工業株式会社 冷凍サイクル装置

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107356003B (zh) 2016-05-10 2021-04-20 比亚迪股份有限公司 热泵空调系统及电动汽车
CN107351624B (zh) * 2016-05-10 2020-08-25 比亚迪股份有限公司 热泵空调系统及电动汽车
JP6337937B2 (ja) * 2016-09-30 2018-06-06 ダイキン工業株式会社 空気調和装置
CN108775728B (zh) * 2018-07-20 2023-08-04 珠海格力电器股份有限公司 一种多联机冷热水机组
KR20200118968A (ko) * 2019-04-09 2020-10-19 엘지전자 주식회사 공기 조화 장치
KR20200134805A (ko) * 2019-05-23 2020-12-02 엘지전자 주식회사 공기조화장치
CN111473497B (zh) * 2020-04-29 2021-12-31 广东美的暖通设备有限公司 空调系统及其制冷辅助装置和控制方法
WO2021225177A1 (ja) * 2020-05-08 2021-11-11 ダイキン工業株式会社 冷凍サイクル装置
EP4148344A4 (en) * 2020-05-08 2023-11-01 Daikin Industries, Ltd. REFRIGERANT CIRCUIT SYSTEM
KR102422010B1 (ko) 2020-09-23 2022-07-18 엘지전자 주식회사 냉난방 멀티 공기조화기
CN112594871B (zh) 2020-12-31 2022-02-08 广东积微科技有限公司 一种具有双四通阀多功能多联机系统的化霜控制方法
CN113007830A (zh) * 2021-04-16 2021-06-22 广东积微科技有限公司 一种三管制多联机系统及其控制方法
EP4242552A1 (en) * 2022-03-07 2023-09-13 Panasonic Appliances Air-Conditioning Malaysia Sdn. Bhd. Heat ventilation and air conditioning unit
KR20240058222A (ko) * 2022-10-25 2024-05-03 엘지전자 주식회사 공기조화기

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004278813A (ja) * 2003-03-12 2004-10-07 Sanyo Electric Co Ltd 空気調和装置及び空気調和装置の制御方法
JP2011208928A (ja) * 2010-03-31 2011-10-20 Hitachi Appliances Inc 空気調和機

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3963192B1 (ja) * 2006-03-10 2007-08-22 ダイキン工業株式会社 空気調和装置
JP2008116073A (ja) 2006-11-01 2008-05-22 Daikin Ind Ltd 空気調和装置
JP4389927B2 (ja) * 2006-12-04 2009-12-24 ダイキン工業株式会社 空気調和装置
US9435549B2 (en) * 2009-09-09 2016-09-06 Mitsubishi Electric Corporation Air-conditioning apparatus with relay unit
KR101146460B1 (ko) * 2010-02-08 2012-05-21 엘지전자 주식회사 냉매시스템
KR101819745B1 (ko) * 2011-05-11 2018-01-17 엘지전자 주식회사 멀티형 공기조화기 및 그의 제어방법
JP5627620B2 (ja) * 2012-02-29 2014-11-19 日立アプライアンス株式会社 空気調和機
EP2835602B1 (en) * 2012-03-27 2022-06-01 Mitsubishi Electric Corporation Air conditioning device
JP6052488B2 (ja) * 2012-07-09 2016-12-27 株式会社富士通ゼネラル 空気調和装置
JP6064412B2 (ja) * 2012-07-30 2017-01-25 株式会社富士通ゼネラル 空気調和装置
JP6827279B2 (ja) * 2016-07-15 2021-02-10 日立ジョンソンコントロールズ空調株式会社 冷暖切替ユニット及びそれを備える空気調和機

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004278813A (ja) * 2003-03-12 2004-10-07 Sanyo Electric Co Ltd 空気調和装置及び空気調和装置の制御方法
JP2011208928A (ja) * 2010-03-31 2011-10-20 Hitachi Appliances Inc 空気調和機

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3348934A4 *

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018198726A1 (ja) * 2017-04-27 2018-11-01 日立ジョンソンコントロールズ空調株式会社 冷媒流路切換ユニットおよび空気調和機
JPWO2018198726A1 (ja) * 2017-04-27 2019-06-27 日立ジョンソンコントロールズ空調株式会社 冷媒流路切換ユニットおよび空気調和機
US10907871B2 (en) 2017-04-27 2021-02-02 Hitachi-Johnson Controls Air Conditioning, Inc. Refrigerant flow path switch and air conditioner
WO2019017388A1 (ja) * 2017-07-20 2019-01-24 ダイキン工業株式会社 空調機
JP2019020113A (ja) * 2017-07-20 2019-02-07 ダイキン工業株式会社 空調機
WO2019021380A1 (ja) * 2017-07-26 2019-01-31 三菱電機株式会社 空気調和装置
JPWO2019021380A1 (ja) * 2017-07-26 2020-02-06 三菱電機株式会社 空気調和装置
CN108981083A (zh) * 2018-04-20 2018-12-11 青岛海尔空调器有限总公司 共享空调控制系统及控制方法
WO2019200962A1 (zh) * 2018-04-20 2019-10-24 青岛海尔空调器有限总公司 共享空调控制系统及控制方法
JP2020153567A (ja) * 2019-03-19 2020-09-24 ダイキン工業株式会社 冷凍サイクル装置
JP7477738B2 (ja) 2019-03-19 2024-05-02 ダイキン工業株式会社 冷凍サイクル装置

Also Published As

Publication number Publication date
EP3348934A4 (en) 2019-04-24
CN108027179B (zh) 2020-02-11
US20180252443A1 (en) 2018-09-06
EP3348934B1 (en) 2021-10-27
JP6453475B2 (ja) 2019-01-16
US10527322B2 (en) 2020-01-07
EP3348934A1 (en) 2018-07-18
JPWO2017042967A1 (ja) 2018-04-19
CN108027179A (zh) 2018-05-11

Similar Documents

Publication Publication Date Title
JP6453475B2 (ja) 空気調和機
US9683768B2 (en) Air-conditioning apparatus
JP3925545B2 (ja) 冷凍装置
US8307668B2 (en) Air conditioner
EP2090849A1 (en) Refrigeration device
JP4725387B2 (ja) 空気調和装置
EP2833086A1 (en) Air conditioning device
US20090282849A1 (en) Refrigeration System
EP3273188B1 (en) Control device, air conditioner, and controlling method
JP6880204B2 (ja) 空気調和装置
WO2006013938A1 (ja) 冷凍装置
WO2017138108A1 (ja) 空気調和装置
JP2019086251A (ja) マルチ型空気調和装置の制御装置、マルチ型空気調和装置、マルチ型空気調和装置の制御方法及びマルチ型空気調和装置の制御プログラム
EP3236168B1 (en) Air conditioning device
WO2015115546A1 (ja) 冷凍装置
JP6448780B2 (ja) 空気調和装置
KR101414860B1 (ko) 공기 조화기 및 그의 제어방법
JP6964776B2 (ja) 冷凍サイクル装置
JP6336066B2 (ja) 空気調和装置
JP2006090683A (ja) 多室型空気調和機
JP7258129B2 (ja) 空気調和装置
JP5765278B2 (ja) 室外マルチ型空気調和装置
JP7450772B2 (ja) 冷凍サイクル装置
JP2019086252A (ja) マルチ型空気調和装置の制御装置、マルチ型空気調和装置、マルチ型空気調和装置の制御方法及びマルチ型空気調和装置の制御プログラム
KR20050006002A (ko) 냉동시스템

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15903629

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017538824

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15758419

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2015903629

Country of ref document: EP