WO2018198726A1 - 冷媒流路切換ユニットおよび空気調和機 - Google Patents

冷媒流路切換ユニットおよび空気調和機 Download PDF

Info

Publication number
WO2018198726A1
WO2018198726A1 PCT/JP2018/014740 JP2018014740W WO2018198726A1 WO 2018198726 A1 WO2018198726 A1 WO 2018198726A1 JP 2018014740 W JP2018014740 W JP 2018014740W WO 2018198726 A1 WO2018198726 A1 WO 2018198726A1
Authority
WO
WIPO (PCT)
Prior art keywords
low pressure
refrigerant
refrigerant flow
gas pipe
switching unit
Prior art date
Application number
PCT/JP2018/014740
Other languages
English (en)
French (fr)
Inventor
博貴 木下
一浩 土橋
直之 伏見
俊希 望月
俊太郎 井上
正圭 室伏
岩品 吉律
和彦 谷
Original Assignee
日立ジョンソンコントロールズ空調株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立ジョンソンコントロールズ空調株式会社 filed Critical 日立ジョンソンコントロールズ空調株式会社
Priority to EP18791132.6A priority Critical patent/EP3617613B1/en
Priority to JP2018533704A priority patent/JP6591682B2/ja
Priority to CN201880000855.0A priority patent/CN109154458B/zh
Publication of WO2018198726A1 publication Critical patent/WO2018198726A1/ja
Priority to US16/200,889 priority patent/US10907871B2/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/80Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air
    • F24F11/83Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling the supply of heat-exchange fluids to heat-exchangers
    • F24F11/84Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling the supply of heat-exchange fluids to heat-exchangers using valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/06Separate outdoor units, e.g. outdoor unit to be linked to a separate room comprising a compressor and a heat exchanger
    • F24F1/26Refrigerant piping
    • F24F1/32Refrigerant piping for connecting the separate outdoor units to indoor units
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/20Disposition of valves, e.g. of on-off valves or flow control valves
    • F25B41/26Disposition of valves, e.g. of on-off valves or flow control valves of fluid flow reversing valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B47/00Arrangements for preventing or removing deposits or corrosion, not provided for in another subclass
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2221/00Details or features not otherwise provided for
    • F24F2221/54Heating and cooling, simultaneously or alternatively
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/007Compression machines, plants or systems with reversible cycle not otherwise provided for three pipes connecting the outdoor side to the indoor side with multiple indoor units
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/023Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units
    • F25B2313/0231Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units with simultaneous cooling and heating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/023Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units
    • F25B2313/0233Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units in parallel arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/027Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2507Flow-diverting valves

Definitions

  • the present invention relates to a refrigerant flow switching unit, and relates to a refrigerant flow switching unit and an air conditioner provided with a structure for partitioning the inside of the unit.
  • multi-type air conditioner in which an indoor unit is provided for each room and in each of the indoor units, cooling and heating can be operated independently and simultaneously.
  • Such an air conditioner is used in, for example, buildings and commercial facilities.
  • cooling and heating in each indoor unit can be changed by controlling the flow direction of the refrigerant for each indoor unit.
  • a refrigerant flow path switching unit for switching the flow direction of the refrigerant to each indoor unit is provided between the outdoor unit and the plurality of indoor units.
  • the refrigerant channel switching unit includes a collective type in which a plurality of indoor units are connected to one refrigerant channel switching unit, and an individual type provided with one refrigerant channel switching unit for each indoor unit. Two types are known.
  • the former collective type refrigerant flow switching unit includes a high-low pressure gas pipe and a low-pressure gas pipe connected to the outdoor unit, a gas pipe connected to each indoor unit, and a gas pipe.
  • a liquid pipe connected to each indoor unit is connected.
  • An electric valve is provided in the middle of the high-low pressure gas pipe and the low-pressure gas pipe, and the opening and closing of these valves is controlled to control the flow direction of the refrigerant in each indoor unit.
  • the refrigerant flow switching unit is mainly installed behind the ceiling, and it is necessary to insulate the inside of the unit so that condensed water from the unit does not leak from the ceiling. Therefore, the structure which improves heat insulation and prevents dew condensation by filling the inside of the unit with a heat insulating material such as a foaming agent is preferable.
  • the internal space becomes larger when the inside of the housing is shared, so even if an attempt is made to form a heat insulating material by injecting a liquid foaming agent into the housing, There is a risk that the product will harden before it reaches the center, creating a cavity in the housing. If a cavity is formed in the housing, it is conceivable that condensation occurs on the surface of the pipe in that portion and water drops fall from the housing.
  • a partition plate is disposed in a space in a casing in which a plurality of refrigerant pipe assemblies are disposed. Divides the space in the casing for each refrigerant pipe assembly. Each refrigerant pipe assembly is filled with a foaming agent to prevent condensation.
  • each refrigerant pipe assembly is partitioned by a partition plate to form a space, which increases the number of partition plates, increasing the weight, increasing the number of foam fillings, and increasing the cost.
  • the size of the housing is also increased.
  • foaming filling is performed for each refrigerant pipe assembly to fill the entire inside of the casing, so that the filling amount of the foaming agent is increased.
  • an object of the present invention is to provide a refrigerant flow path switching unit and an air conditioner that can be filled with a foaming agent without gaps inside the casing and can reduce the number of times of foam filling and the amount of filling.
  • Another object of the present invention is to provide a refrigerant flow switching unit and an air conditioner that can reduce the amount of foaming agent while suppressing the occurrence of condensation.
  • a refrigerant flow path switching unit is a refrigerant flow path switching unit that is disposed between an outdoor unit and a plurality of indoor units and controls the flow of refrigerant.
  • a refrigerant flow path switching circuit assembly having a plurality of refrigerant flow path switching circuits, a liquid pipe assembly having a plurality of liquid pipes arranged in the casing and connected to the plurality of indoor units, and in the casing, A first partition plate provided between adjacent refrigerant flow switching circuits and partitioning the internal space of the housing, wherein the space partitioned by the first partition plate has a substantially cubic shape, and the partition Departed into the space Agent is filled.
  • a refrigerant flow path switching unit is a refrigerant flow path switching unit that is disposed between an outdoor unit and a plurality of indoor units, and that controls the flow of refrigerant.
  • a housing having a first region and a second region; a high-low pressure motor valve disposed in the first region; a high-low pressure gas pipe provided in the high-low pressure gas pipe;
  • a refrigerant flow path switching circuit assembly having a plurality of refrigerant flow path switching circuits including a low-pressure electric valve provided, and a liquid pipe having a plurality of liquid pipes arranged in the second region and connected to the plurality of indoor units
  • the present invention it is possible to provide a refrigerant flow path switching unit and an air conditioner that can be filled with a foaming agent without gaps inside the casing and can reduce the number of times of foam filling and the amount of filling. Moreover, according to this invention, the refrigerant
  • the whole block diagram of an air-conditioning system provided with a refrigerant flow path switching unit is shown.
  • the refrigerant circuit figure of an individual type refrigerant flow path switching unit is shown.
  • coolant flow path switching unit is shown. It is the schematic which looked at the refrigerant
  • FIG. 1 shows a system diagram of an air conditioner 100 including the refrigerant flow switching unit 1 of the present embodiment.
  • the air conditioner 100 is a cooling / heating simultaneous type multi-type air conditioner capable of simultaneously operating cooling and heating for each indoor unit 3.
  • the air conditioner 100 includes a refrigerant flow switching unit 1, an outdoor unit 2, a plurality of indoor units 3 (3a, 3b, 3c, 3d), a first high-low pressure gas pipe 4, a first low-pressure gas pipe 5, And a first liquid pipe 6, a first gas pipe 7 (7a, 7b, 7c, 7d) and a second liquid pipe 8 (8a, 8b, 8c, 8d).
  • the first high / low pressure gas pipe 4, the first low pressure gas pipe 5, and the first liquid pipe 6 connect the refrigerant flow switching unit 1 and the outdoor unit 2.
  • the first gas pipe 7 connects the refrigerant flow path switching unit 1 and the plurality of indoor units 3.
  • the second liquid pipe 8 connects the outdoor unit 2 and the plurality of indoor units 3.
  • the first high-low pressure gas pipe 4 is also called a discharge gas pipe, and the first low-pressure gas pipe 5 is also called an intake gas pipe.
  • coolant flow path switching unit 1 and the outdoor unit 2 are connected by three piping of the 1st high-low pressure gas pipe 4, the 1st low-pressure gas pipe 5, and the 1st liquid pipe 6, air
  • the conditioner 100 is a so-called three-pipe air conditioner.
  • the outdoor unit 2 includes a compressor that compresses the refrigerant supplied to the refrigerant flow switching unit 1 and two outdoor heat exchangers that exchange heat between the outdoor air and the refrigerant ( A condenser and an evaporator), an outdoor expansion valve for expanding refrigerant before or after heat exchange in the outdoor heat exchanger (depending on whether it is a cooling main body or a heating main body), a cooling main body or a heating main body A four-way valve for switching the refrigerant flow path is provided.
  • the first high / low pressure gas pipe 4 is configured to be switchable to the high pressure gas pipe or the low pressure gas pipe in the outdoor unit 2 depending on the switching direction of the four-way valve.
  • a first low pressure gas pipe 5 is connected to the suction side of the compressor.
  • the first liquid pipe 6 is connected to the expansion valve side of the outdoor heat exchanger (condenser) of the outdoor unit 2.
  • the indoor unit 3 includes an indoor heat exchanger that performs heat exchange between indoor air and a refrigerant, and before or after heat exchange in the indoor heat exchanger (indoor And an indoor expansion valve that expands the refrigerant (depending on the operation mode of the unit).
  • a refrigeration cycle is formed between the outdoor unit 2 and the indoor unit 3 by allowing the refrigerant to flow through the piping.
  • the flow direction of the refrigerant supplied from the outdoor unit 2 to the indoor unit 3 is controlled, so that the indoor unit 3 Independently, cooling and heating can be operated simultaneously.
  • FIG. 2 shows a refrigerant circuit diagram of the individual type refrigerant flow path switching unit 1.
  • the individual type refrigerant flow switching unit 1 includes a second high / low pressure gas pipe 9, a second low pressure gas pipe 10, a high / low pressure electric valve 11, a low pressure electric valve 12, A gas pipe 13.
  • the second high / low pressure gas pipe 9 is connected to the first high / low pressure gas pipe 4
  • the second low pressure gas pipe 10 is connected to the first low pressure gas pipe 5
  • the second gas pipe 13 is connected to the first gas pipe 7. ing.
  • the high / low pressure motor valve 11 and the low pressure motor valve 12 are opened, and the second high / low pressure gas pipe 9 and the second low pressure gas pipe 10 are connected. Circulate.
  • the second high and low pressure gas pipes 9 flow, it is a case where all the indoor units 3 perform cooling operation. During the simultaneous cooling and heating operation, the second high and low pressure gas pipes 9 and the second gas pipes 13 are used. Is controlled so that the high / low pressure motor operated valve 11 is closed.
  • the high / low pressure motor valve 11 is opened, the high / low pressure gas pipe 9 and the second gas pipe 13 flow, and the low pressure motor valve. 12 is closed so that the low-pressure gas pipe 10 and the second gas pipe 13 do not flow. Then, the air flows from the second gas pipe 13 to the indoor unit 3 through the first gas pipe 7.
  • the refrigerant circuit of the refrigerant channel switching unit 1 is referred to as a refrigerant channel switching circuit 14.
  • the refrigerant circuit diagram of the refrigerant channel switching circuit 1 shown in FIG. 2 is an individual type in which one refrigerant channel switching unit 1 is provided for each indoor unit 3.
  • a collective type in which a plurality of indoor units 3 are connected to the refrigerant flow switching unit 1 is known.
  • FIG. 3 shows a refrigerant circuit diagram of the aggregate type refrigerant flow path switching unit 1.
  • FIG. 4 is a schematic view seen from the side view of the refrigerant flow path switching unit 1 and shows the foam filling range.
  • FIG. 5 is a schematic view seen from the upper side of the refrigerant flow path switching unit 1 and shows the inside of the housing 1.
  • FIG. 6 is a schematic view seen from the side of the refrigerant flow path switching unit 1 and shows the inside of the housing 1.
  • the aggregate type refrigerant flow switching unit 1 includes a casing 30 whose outer shape is a rectangular parallelepiped shape, an electric box 40 incorporating a control board, a refrigerant flow switching circuit assembly 15, A liquid pipe assembly 16.
  • the housing 30 includes a pair of first side plates 31 parallel to the longitudinal direction, a pair of second side plates 32 parallel to the short direction, a bottom plate 33, an upper plate 34, And an inner plate 35.
  • a plurality of first partition plates 18 (18a, 18b) and a second partition plate 17 are provided in the housing 30.
  • the second partition plate 17 has a portion extending vertically from the bottom plate 33 in a side view, a portion extending vertically from the side plate 31 opposite to the electric box 40, and a portion connecting the two portions. It extends along the longitudinal direction of 30.
  • the internal space of the housing 30 is partitioned into a first region X and a second region Y by the second partition plate 17.
  • the second region Y is partitioned by the second partition plate 17, the bottom plate 33, the first side plate 31, and the pair of second side plates. Thereby, the second region Y is formed with a simple configuration.
  • the electric box 40 is connected to one first side surface 31.
  • the refrigerant flow path switching assembly 15 is disposed in the first region X, and the liquid pipe assembly 16 is disposed in the second region Y.
  • the refrigerant flow switching circuit assembly 15 includes a high / low pressure common gas pipe 27, a low pressure common gas pipe 28, and a plurality of refrigerant flow switching circuits 14 (14a).
  • the refrigerant flow path switching circuit 14 includes the second high-low pressure gas pipe 9, the second low-pressure gas pipe 10, the high-low pressure electric valve 11 (11a), the low-pressure electric valve 12 (14a), 2 gas pipes 13.
  • the high / low pressure common gas pipe 27 extends along the longitudinal direction of the housing 30 and is connected to the second high / low pressure gas pipe 9 of each refrigerant flow switching circuit 14.
  • the low-pressure common gas pipe 28 extends along the longitudinal direction of the housing 30 and is connected to the second low-pressure gas pipe 10 of each refrigerant flow switching circuit 14.
  • the second gas pipe 13 of each refrigerant flow switching circuit 14 extends along the short direction of the housing 30 and is connected to the first gas pipe 7.
  • the refrigerant flow path switching circuit assembly 15 is configured by connecting 12 refrigerant flow path switching circuits 14 along the longitudinal direction.
  • the second gas pipe 13 passes through the upper side of the second partition plate 17 and penetrates the side plate 31.
  • each first partition plate 18 (18 a, 18 b) is provided between adjacent refrigerant flow path switching circuits 14, and a plurality (four in this embodiment) of refrigerant flow is provided. It is provided for each path switching circuit 14, and the internal space of the housing 30 is partitioned into a substantially cubic shape by the first partition plate 18. Further, each first partition plate 18 extends from the second partition plate 17 to the first side plate 31 on the electric box 40 side. In the present embodiment, the internal space of the housing 30 is partitioned by the first partition plate 18, the second partition plate 17, and the inner plate 34 to form a substantially cubic space A. The inner plate 34 is provided so as to cover the refrigerant flow path switching circuit assembly 15 from above.
  • the second high / low pressure gas pipe 9 At least a part of the second high / low pressure gas pipe 9, at least a part of the second low pressure gas pipe 10, a high / low pressure electric valve 11, a low pressure electric valve 12, and at least a second gas pipe 13.
  • a part is located in the upper part of the space A, and the heights of the first partition plate 18 and the second partition plate 17 are set lower than the upper part of the space A.
  • the first partition plate 18 is formed with a notch 18c that opens upward, and a low-pressure common gas pipe 28 passes through the lower portion of the notch 18c.
  • a heat insulating material 26 (shaded portion) is attached so as to fill the notch 18c.
  • the space A is filled with a foaming agent (heat insulating member) 21 in a range indicated by a dotted line portion 20.
  • a foaming agent heat insulating member
  • a liquid foaming agent is dropped from a hole formed in the inner plate 35, and then the foaming agent expands to fill the space A with the foaming agent (heat insulating member) 21.
  • the foaming agent for example, a mixed solution of INS-A and RIGID-200 is used.
  • the liquid pipe assembly 16 includes a common liquid pipe 16 a and a plurality of second liquid pipes 8 (8 a), and is located below the second gas pipe 13.
  • the common liquid pipe 16 a extends along the longitudinal direction of the housing 30.
  • Each second liquid pipe 8 is connected to the common liquid pipe 16 a and extends along the short direction of the housing 30.
  • the plurality of second liquid pipes 8 of the liquid pipe assembly 16 are not connected to the refrigerant flow path switching circuit 14 of the refrigerant flow path switching circuit assembly 15, that is, the refrigerant flow path switching circuit assembly 15, the liquid pipe assembly 16, and the like. Are configured independently of each other.
  • the liquid pipe assembly 16 since the liquid pipe assembly 16 is not related to switching of the refrigerant flow, the liquid pipe assembly 16 does not need to be provided in the refrigerant flow path switching unit 1. However, since there are a plurality of indoor units 3 in the construction type in the field construction, it is necessary to confirm which indoor unit 3 is connected to which piping, and workability is poor. Therefore, the liquid pipe assembly 16 is arranged in the refrigerant flow path switching unit 1 to determine the construction place to be collected and the first gas pipe 7 can be constructed together. Therefore, the liquid pipe assembly 16 is disposed in the refrigerant flow path switching unit 1.
  • the second liquid pipe 8 since the second liquid pipe 8 has a high piping temperature and is less likely to cause dew condensation, foam filling is not performed in order to reduce the foam filling amount and the foam filling time. However, the foaming agent is not filled, but the second liquid pipe 8 may be covered with a heat insulating member (for example, ept, polyethylene, etc.). Therefore, in FIG. 4, foam filling is not performed in the hatched portion 19 corresponding to the second region Y.
  • the second partition plate 17 since it is not necessary to perform foam filling to the liquid pipe assembly 16, the second partition plate 17 divides between the refrigerant flow path switching circuit assembly 15 and the liquid pipe assembly 16 that require foam filling. Yes. That is, since the refrigerant flow path switching circuit assembly 15 and the liquid pipe assembly 16 are independent from each other, the second partition plate 17 may simply partition the first region X and the second region Y. It can be simplified.
  • the first partition plate 18 (18a, 18b) is provided between the adjacent refrigerant flow path switching circuits 14 to form a space A.
  • the space in the housing 30 is large, and the foaming agent is solidified before it reaches the whole, forming a cavity in the housing 30, resulting in poor foaming.
  • the first partition plate 18 is provided between all the adjacent refrigerant flow switching circuits 14, the space is reduced, the range in which foam filling is performed is reduced, and the foaming agent can be filled to every corner of the space. .
  • the number of first partition plates 18 increases, the number of first partition plates 18 increases, resulting in an increase in weight and cost.
  • the foam filling time becomes long, and workability deteriorates.
  • the first partition plate 18 partitions the refrigerant flow path switching circuit assembly 15 into a plurality (four) of the refrigerant flow path switching circuits 14, and the space A formed thereby is substantially omitted.
  • the space A is filled with a foaming agent.
  • the foaming agent can inflate each side uniformly and fill the space A without any gaps, so the number of first partition plates 18 can be reduced. Further, it is possible to reduce the number of times of foam filling and reduce the filling amount while preventing poor filling. This shows that in the top view of the refrigerant flow switching unit 1 in FIG.
  • the refrigerant flow switching circuit assembly 15 is divided into four refrigerant flow switching circuits 14 by the first partition plate 18. Since the number of times of foam filling can be reduced and the amount of filling can be reduced, the cost of the refrigerant flow switching unit 1 can be reduced, and the cost of the air conditioner 100 can be reduced.
  • the height 22 of the 1st partition plate 18 is comprised lower than the height 23 of the foam filling range (space A).
  • the space A is formed in a substantially rectangular parallelepiped shape by partitioning for each of the plurality of refrigerant flow switching circuits 14 without partitioning for each refrigerant flow switching circuit 14.
  • the width 25 in the case of partitioning with a plurality of refrigerant flow switching circuits 14 becomes larger than the width 24 in the case of partitioning for each refrigerant flow switching circuit 14, and foam filling is performed. The amount of the foaming agent leaking to the adjacent refrigerant flow switching circuit 14 can be reduced.
  • the inside of the housing 30 is partitioned into the first region X and the second region Y by the second partition plate 17, and only the first region X is filled with the foaming agent 21 that is a heat insulating member, the filling amount of the foaming agent Can be reduced.
  • coolant flow path switching unit 1 can be provided, and the cost of the air conditioner 100 can be reduced by extension.
  • the refrigerant flow path switching circuit assembly 15 is partitioned into four refrigerant flow path switching circuits 14 by the first partition plate 18 to form the substantially cubic space A.
  • the number of 14 is not limited to four, and may be any number as long as a substantially cubic space can be formed.
  • SYMBOLS 1 Refrigerant flow path switching unit, 2 ... Outdoor unit, 3 ... Indoor unit, 8 ... 2nd liquid pipe, 9 ... 2nd high / low pressure gas pipe, 10 ... 2nd low pressure gas pipe, 11 ... High / low pressure electric valve, 12 ... Low pressure electric valve, 13 ... 2nd gas pipe, 14 ... Refrigerant flow path switching circuit, 15 ... Refrigerant flow path switching circuit assembly, 16 ... Liquid pipe assembly, 17 ... Second partition plate, 18 ... First partition plate, 21 ... Foaming agent

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Fluid Mechanics (AREA)
  • Other Air-Conditioning Systems (AREA)
  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Abstract

筐体内部に隙間なく発泡剤を充填可能であり、発泡充填の回数および充填量の低減が可能な冷媒流路切換ユニットおよび空気調和機を提供する。 冷媒流路切換ユニット1は、筐体30と、筐体30内に配置され、それぞれが第2高低圧ガス9管と第2低圧ガス管10と第2高低圧ガス管9に設けられる高低圧電動弁11と第2低圧ガス管10に設けられる低圧電動弁12とを含む複数の冷媒流路切換回路14を有する冷媒流路切換回路アセンブリ15と、筐体30内に配置され、複数の室内ユニット3に接続される複数の第2液管8を有する液管アセンブリ16と、筐体30内において、隣り合う冷媒流路切換回路14の間に設けられ、筐体30の内部空間を仕切る第1仕切板18と、を備え、第1仕切板18により、仕切られた空間は略立方体形状をなし、当該仕切られた空間に発泡剤21が充填されている。

Description

冷媒流路切換ユニットおよび空気調和機
本発明は、冷媒流路切換ユニットに関し、ユニット内を仕切る構造が設けられている冷媒流路切換ユニットおよび空気調和機に関する。
 部屋ごとに室内ユニットが備えられ、それぞれの室内ユニットにおいて冷房と暖房とを独立して同時に運転可能な所謂マルチ型の空気調和機が知られている。このような空気調和機は、例えばビルや商業施設等において使用されている。マルチ型の空気調和機では、室内ユニットごとに冷媒の通流方向が制御されることで、それぞれの室内ユニットでの冷房と暖房とが変更可能になっている。
 マルチ型の空気調和機において、室外ユニットと、複数の室内ユニットの間には、それぞれの室内ユニットへの冷媒の通流方向を切り換えるための冷媒流路切換ユニットが備えられている。この冷媒流路切換ユニットには、一台の冷媒流路切換ユニットに複数の室内ユニットが接続された集合タイプとそれぞれの室内ユニットに対して一台ずつの冷媒流路切換ユニットが備えられる個別タイプとの二種類が知られている。
 これらのうち、特に前者の集合タイプの冷媒流路切換ユニットには、室外ユニットに接続される高低圧ガス管及び低圧ガス管と、それぞれの室内ユニットに接続されるガス管と、ガス管とは別のアセンブリとして、それぞれの室内ユニットに接続される液管が接続される。そして、高低圧ガス管、低圧ガス管の途中には電動弁が備えられ、これらの弁の開閉が制御されることで、それぞれの室内ユニットでの冷媒の流通方向が制御可能になっている。
 冷媒流路切換ユニットでは、天井裏に設置されることが主であり、ユニットからの結露水が天井から漏れないようにユニット内部を断熱する必要がある。そのため、ユニット内を発泡剤などの断熱材で充填することにより、断熱性を高め、結露を防止する構造が好ましい。
 しかし、集合タイプの冷媒流路切換ユニットでは筐体内を共通化すると内部空間が大きくなるので、液状の発泡剤を筐体内部に注入して断熱材を形成しようとしても、発泡剤が筐体内全体に行き渡る前に固まってしまい、筐体内に空洞ができるおそれがある。筐体内に空洞ができると、その部分の配管表面で結露が生じて当該筐体から水滴が落下することも考えられる。
 このような課題を解決するため、例えば特許文献1の冷媒流路切換ユニットでは、内部に複数の冷媒配管アセンブリが配設されるケーシング内の空間に仕切板が配設されており、この仕切板は、ケーシング内の空間を冷媒配管アセンブリごとに区画している。そして、冷媒配管アセンブリごとに発泡剤を充填し、結露を防止している。
特許第5282666号公報
 しかし、特許文献1に記載の冷媒流路切換ユニットでは、冷媒配管アセンブリごとに仕切板で区画して空間を形成するため、仕切板の点数増加となり、重量増加や発泡充填回数の増加、コスト増加に加えて、筐体寸法も大きくなることに繋がる。また、特許文献1に記載の冷媒流路切換ユニットでは、冷媒配管アセンブリごとに発泡充填してケーシング内全域を充填しているため、発泡剤の充填量が多くなってしまう。
 そこで、本発明は、筐体内部に隙間なく発泡剤を充填可能であり、発泡充填の回数および充填量の低減が可能な冷媒流路切換ユニットおよび空気調和機を提供することを目的とする。また、本発明は、結露の発生を抑制しつつ、発泡剤の充填量を低減可能な冷媒流路切換ユニットおよび空気調和機を提供することを別の目的とする。
 上記目的を達成するために、本発明の一形態に係る冷媒流路切換ユニットは、室外ユニットと、複数の室内ユニットとの間に配置され、冷媒の通流を制御する冷媒流路切換ユニットであって、筐体と、前記筐体内に配置され、それぞれが高低圧ガス管と低圧ガス管と前記高低圧ガス管に設けられる高低圧電動弁と前記低圧ガス管に設けられる低圧電動弁とを含む複数の冷媒流路切換回路を有する冷媒流路切換回路アセンブリと、前記筐体内に配置され、前記複数の室内ユニットに接続される複数の液管を有する液管アセンブリと、前記筐体内において、隣り合う冷媒流路切換回路の間に設けられ、前記筐体の内部空間を仕切る第1仕切板と、を備え、前記第1仕切板により、仕切られた空間は略立方体形状をなし、当該仕切られた空間に発泡剤が充填されている。
 また、本発明の一形態に係る冷媒流路切換ユニットは、室外ユニットと、複数の室内ユニットとの間に配置され、冷媒の通流を制御する冷媒流路切換ユニットであって、内部に第1領域および第2領域とを有する筐体と、前記第1領域に配置され、それぞれが高低圧ガス管と低圧ガス管と前記高低圧ガス管に設けられる高低圧電動弁と前記低圧ガス管に設けられる低圧電動弁とを含む複数の冷媒流路切換回路を有する冷媒流路切換回路アセンブリと、前記第2領域に配置され、前記複数の室内ユニットに接続される複数の液管を有する液管アセンブリと、前記第1領域と前記第2領域とを仕切る仕切板と、前記第1領域に設けられた断熱部材と、を備える。
 本発明によれば、筐体内部に隙間なく発泡剤を充填可能であり、発泡充填の回数および充填量の低減が可能な冷媒流路切換ユニットおよび空気調和機を提供することができる。また、本発明によれば、結露の発生を抑制しつつ、発泡剤の充填量を低減可能な冷媒流路切換ユニットおよび空気調和機を提供することができる。
冷媒流路切換ユニットを備える空調システムの全体構成図を示す。 個別タイプの冷媒流路切換ユニットの冷媒回路図を示す。 集合タイプの冷媒流路切換ユニットの冷媒回路図を示す。 冷媒流路切換ユニットを側面から見た概要図であって、発泡充填範囲を示す。 冷媒流路切換ユニットの上側から見た概要図であって、筐体内部を示す。 冷媒流路切換ユニットの側面から見た概要図であって、筐体内部を示す。
 以下、図面を参照しながら、本発明を実施するための形態(本実施形態)を説明する。なお、各図は模式的なものであり、本発明を把握しやすくするため、本発明の要旨を損なわない範囲で、適宜、部材の一部を省略又は簡略化して示したり、内部構造を示すために可視化して示したりすることがある。
 図1は、本実施形態の冷媒流路切換ユニット1を備える空気調和機100の系統図を示している。
 空気調和機100は、室内ユニット3ごとに、冷房と暖房とを同時に運転できる冷暖同時タイプのマルチ型の空気調和機である。
 空気調和機100は、冷媒流路切換ユニット1と、室外ユニット2と、複数の室内ユニット3(3a,3b,3c,3d)と、第1高低圧ガス管4、第1低圧ガス管5、及び第1液管6と、第1ガス管7(7a,7b,7c,7d)と、第2液管8(8a,8b,8c,8d)を備える。第1高低圧ガス管4、第1低圧ガス管5、及び第1液管6は、冷媒流路切換ユニット1と室外ユニット2とを接続する。第1ガス管7は、冷媒流路切換ユニット1と複数の室内ユニット3とを接続する。第2液管8は、室外ユニット2と複数の室内ユニット3とを接続する。
 第1高低圧ガス管4は吐出ガス管ともいわれ、第1低圧ガス管5は吸入ガス管ともいわれるものである。そして、冷媒流路切換ユニット1と室外ユニット2とは、第1高低圧ガス管4、第1低圧ガス管5、及び第1液管6の三本の配管により接続されていることから、空気調和機100は所謂三管方式の空気調和機である。
 また、図示はしないが、室外ユニット2には、冷媒流路切換ユニット1に供給する冷媒を圧縮する圧縮機と、室外の空気と冷媒との間で熱交換を行う2つの室外熱交換器(凝縮器及び蒸発器)と、当該室外熱交換器において熱交換される前又はされた後(冷房主体又は暖房主体の別により異なる)の冷媒を膨張させる室外膨張弁と、冷房主体又は暖房主体の別に応じて冷媒の流路を切換える四方弁とが備えられている。なお、第1高低圧ガス管4は、四方弁の切換方向により、室外ユニット2内の高圧ガス配管または低圧ガス配管に切り換え可能に構成されている。圧縮機の吸入側には、第1低圧ガス管5が接続されている。第1液管6は、室外ユニット2の室外熱交換器(凝縮器)の膨張弁側に接続されている。
 さらに、同じく図示はしないが、室内ユニット3には、室内の空気と冷媒との間で熱交換を行う室内熱交換器と、当該室内熱交換器において熱交換される前又はされた後(室内ユニットの運転モードにより異なる)の冷媒を膨張させる室内膨張弁とが備えられている。
 そして、これらが相互に配管で接続され、当該配管の内部を冷媒が通流することで、室外ユニット2と室内ユニット3との間で冷凍サイクルが形成されている。特に、室外ユニット2と室内ユニット3との間に配置された冷媒流路切換ユニット1において、室外ユニット2から室内ユニット3に供給される冷媒の通流方向が制御されることで、室内ユニット3ごとに独立して、冷房と暖房とが同時に運転可能になっている。
 次に、冷媒流路切換ユニット1について説明する。
 図2は、個別タイプの冷媒流路切換ユニット1の冷媒回路図を示している。
 図2に示すように、個別タイプの冷媒流路切換ユニット1は、第2高低圧ガス管9と、第2低圧ガス管10と、高低圧電動弁11と、低圧電動弁12と、第2ガス管13とを備える。第2高低圧ガス管9は第1高低圧ガス管4に接続され、第2低圧ガス管10は第1低圧ガス管5に接続され、第2ガス管13は第1ガス管7に接続されている。冷房運転を行う室内ユニット3に接続された冷媒流路切換ユニット1では、高低圧電動弁11と低圧電動弁12とが開弁され、第2高低圧ガス管9及び第2低圧ガス管10に通流する。ただし、第2高低圧ガス管9が通流する場合は、全ての室内ユニット3が冷房運手を行う場合であり、冷暖同時運転時は、第2高低圧ガス管9と第2ガス配管13とが通流しないように高低圧電動弁11が閉弁するように制御される。
 また、暖房運転を行う室内ユニット3に接続された冷媒流路切換ユニット1では、高低圧電動弁11が開弁し、高低圧ガス管9と第2ガス配管13とが通流し、低圧電動弁12が閉弁し低圧ガス管10と第2ガス配管13とが通流しないように制御される。そして、第2ガス管13から第1ガス管7を介して室内ユニット3へ通流する。この冷媒流路切換ユニット1の冷媒回路を冷媒流路切換回路14とする。
 図2に示した冷媒流路切換回路1の冷媒回路図は、それぞれの室内ユニット3に対して一台ずつの冷媒流路切換ユニット1が備えられる個別タイプであり、これに対して、一台の冷媒流路切換ユニット1に複数の室内ユニット3が接続される集合タイプが知られている。
 次に、図3~図6に基づき、集合タイプの冷媒流路切換ユニット1について説明する。
 図3は、集合タイプの冷媒流路切換ユニット1の冷媒回路図を示している。図4は、冷媒流路切換ユニット1の側面図から見た概要図であって、発泡充填範囲を示している。図5は、冷媒流路切換ユニット1の上側から見た概要図であって、筐体1内部を示している。図6は、冷媒流路切換ユニット1の側面から見た概要図であって、筐体1内部を示している。
 図3~図6に示すように、集合タイプの冷媒流路切換ユニット1は、外形が直方体形状をなす筐体30、制御基板を内蔵する電気箱40と、冷媒流路切換回路アセンブリ15と、液管アセンブリ16とを備える。
 図4、5に示すように、筐体30は、長手方向に平行な一対の第1側板31と、短手方向に平行な一対の第2側板32と、底板33と、上板34と、内板35とを備える。筐体30内には、複数の第1仕切板18(18a、18b)と、第2仕切板17とが設けられている。第2仕切板17は、側面視において、底板33から垂直に延びる部分と、電気箱40とは反対側の側板31から垂直に延びる部分と、両部分を接続する部分とを有し、筐体30の長手方向に沿って延びている。第2仕切板17によって、筐体30の内部空間は、第1領域Xと第2領域Yとに仕切られる。第2領域Yは、第2仕切板17と、底板33と、第1側板31と、一対の第2側板とにより区画されている。これにより、簡易な構成で第2領域Yが形成される。また、電気箱40は、一方の第1側面31に接続されている。
 冷媒流路切換アセンブリ15は、第1領域Xに配置され、液管アセンブリ16は、第2領域Yに配置されている。
 冷媒流路切換回路アセンブリ15は、高低圧共通ガス管27と、低圧共通ガス管28と、複数の冷媒流路切換回路14(14a)とを備える。冷媒流路切換回路14は、上記と同様に、第2高低圧ガス管9と、第2低圧ガス管10と、高低圧電動弁11(11a)と、低圧電動弁12(14a)と、第2ガス管13とを備える。高低圧共通ガス管27は、筐体30の長手方向に沿って延び、各冷媒流路切換回路14の第2高低圧ガス管9に接続されている。低圧共通ガス管28は、筐体30の長手方向に沿って延び、各冷媒流路切換回路14の第2低圧ガス管10に接続されている。各冷媒流路切換回路14の第2ガス管13は、筐体30の短手方向に沿って延び、第1ガス管7に接続される。図3において、冷媒流路切換回路アセンブリ15は、冷媒流路切換回路14を長手方向に沿って12台分連結して構成されている。第2ガス管13は、第2仕切板17の上側を通り、側板31を貫通している。
 また、図3、5に示すように、各第1仕切板18(18a、18b)は、隣り合う冷媒流路切換回路14の間に設けられ、複数(本実施形態では4つ)の冷媒流路切換回路14ごとに設けられており、当該第1仕切板18により、筐体30の内部空間が略立方体形状に仕切られる。また、各第1仕切板18は、第2仕切板17から電気箱40側の第1側板31まで延びている。本実施形態では、筐体30の内部空間は、第1仕切板18、第2仕切板17および内板34により仕切られ、略立方体形状の空間Aが形成されている。また、内板34は、冷媒流路切換回路アセンブリ15を上側から覆うように設けられている。
 空間A内において、第2高低圧ガス管9の少なくとも一部と、第2低圧ガス管10の少なくとも一部と、高低圧電動弁11と、低圧電動弁12と、第2ガス管13の少なくとも一部は、空間Aの上部に位置し、第1仕切板18および第2仕切板17の高さは、空間Aの上部よりも低く設定されている。また、図6に示すように、第1仕切板18には、上側に開口する切欠き18cが形成され、切欠き18cの下部を、低圧共通ガス管28が貫通している。切欠き18cを埋めるように、断熱材26(斜線部)が貼り付けられている。
 また、図4に示すように、空間A内には、点線部20で示す範囲に、発泡剤(断熱部材)21が充填される。例えば、内板35に形成された穴から、液体状の発泡剤を滴下し、その後発泡剤が膨張することにより、空間A内に発泡剤(断熱部材)21が充填される。発泡剤としては、例えば、INS-AとRIGID-200の混合液が用いられる。
 液管アセンブリ16は、共通液管16aと、複数の第2液管8(8a)とを備え、第2ガス管13の下側に位置している。共通液管16aは、筐体30の長手方向に沿って延びている。各第2液管8は、共通液管16aに接続され、筐体30の短手方向に沿って延びている。液管アセンブリ16の複数の第2液管8は、冷媒流路切換回路アセンブリ15の冷媒流路切換回路14に接続されておらず、すなわち、冷媒流路切換回路アセンブリ15と液管アセンブリ16とは互いに独立して構成されている。
 図3、4に示すように、液管アセンブリ16は、冷媒の通流の切り換えに関係しないため、液管アセンブリ16を冷媒流路切換ユニット1内に設ける必要はない。しかし、現地施工において、集合タイプでは室内ユニット3が複数あるため、どの配管にどの室内ユニット3を接続しているか確認しなければならなく、作業性が悪い。そこで、液管アセンブリ16を冷媒流路切換ユニット1内に配置することで集約する施工場所が決まり、第1ガス管7も一緒に施工することができるため、確認作業の手間がなく、作業性をあげることができるため、液管アセンブリ16を冷媒流路切換ユニット1内に配置している。
 また、第2液管8は、配管温度が高く、結露する心配が少ないため、発泡充填量の削減及び発泡充填時間の短縮ため、発泡充填は行わない。ただし、発泡剤の充填は行わないが、第2液管8の周囲に断熱部材(例えば、エプト、ポリエチレン等)で覆うように構成してもよい。よって、図4において、第2領域Yに対応する斜線部19には、発泡充填は行わない。このように、液管アセンブリ16に対し発泡充填を行う必要がないので、第2仕切板17により、発泡充填が必要な冷媒流路切換回路アセンブリ15と液管アセンブリ16との間を分断している。すなわち、冷媒流路切換回路アセンブリ15と液管アセンブリ16とは互いに独立しているので、第2仕切板17により、単純に第1領域Xと第2領域Yとに仕切るだけでよく、構造を簡素化することができる。
 また、第1仕切板18(18a、18b)が隣り合う冷媒流路切換回路14の間に設けられ、空間Aを形成している。当該第1仕切板18がない場合には、筐体30内の空間が大きく、発泡剤が全体に行き渡る前に固まってしまい、筐体30内に空洞ができ、発泡不良となる。隣り合う冷媒流路切換回路14の間、全てに第1仕切板18を設けると、空間が小さくなり発泡充填を行う範囲も小さくなり、発泡剤を空間の隅々まで充填することが可能となる。しかし、第1仕切板18の枚数が多くなるので、第1仕切板18の点数が増加し、重量増、コストアップとなる。さらに、冷媒流路切換回路14ごとに発泡充填を行う必要があるので、発泡充填時間が長くなり、作業性が悪くなる。
 これに対し、本実施形態では、第1仕切板18により、冷媒流路切換回路アセンブリ15を、複数(4つ)の冷媒流路切換回路14ごとに仕切り、これにより形成される空間Aを略立方体形状にして、空間Aに発泡剤を充填している。これのように、略立方体形状の空間Aを形成することにより、発泡剤が各辺を均一にふくらまし、空間A内部を隙間なく充填することができるので、第1仕切板18の点数を削減でき、充填不良を防止しつつ、発泡充填の回数削減、充填量の削減を行うことができる。これは図5の冷媒流路切換ユニット1の上面図において、冷媒流路切換回路アセンブリ15が第1仕切板18によって4つごとの冷媒流路切換回路14に分かれていることがわかる。発泡充填の回数削減、充填量の削減が可能であるので、冷媒流路切換ユニット1のコストを低減することができ、ひいては空気調和機100のコストを低減することができる。
 また、図6に示すように、第1仕切板18の高さ22は、発泡充填範囲(空間A)の高さ23よりも低く構成されている。発泡剤をより隅々まで充填させるためには、上下方向で第1仕切板18を設置することで完全に仕切られた空間を作ったほうがよい。本実施形態では、冷媒流路切換回路14ごとに仕切らず、複数の冷媒流路切換回路14ごとに仕切って空間Aを略直方体状にしている。このため、図5に示すように、冷媒流路切換回路14ごとに仕切る場合の幅24よりも、複数の冷媒流路切換回路14で仕切る場合の幅25の方が大きくなり、発泡充填した場合に隣の冷媒流路切換回路14に発泡剤が漏れる量を少なくすることができる。
 よって、空間Aを完全に仕切られた空間にしなくても、当該空間Aに対し適量の液状の発泡剤を滴下することにより、空間Aの隅々まで発泡充填しつつ、隣の空間Aへ漏れる発泡剤の量を少なくすることができる。これにより、隣り合う空間Aを第1仕切板18により完全に仕切る必要がないので、上方向からの仕切板を増やす必要がなく、仕切板の点数増加やコストアップを抑制することができる。なお、仕切板18の切欠き18cには断熱材26が貼り付けられているため、発泡剤の隣の空間Aへ漏れが防止される。
 また、第2仕切板17により、筐体30内を第1領域Xと第2領域Yとに仕切、第1領域Xにのみ断熱部材である発泡剤21を充填するので、発泡剤の充填量の低減を行うことができる。これにより、安価な冷媒流路切換ユニット1のコストを提供することができ、ひいては空気調和機100のコストを低減することができる。
 なお、本発明は、上述した実施例に限定されない。当業者であれば、本発明の範囲内で、種々の追加や変更等を行うことができる。
 上記の実施形態では、第1仕切板18により、冷媒流路切換回路アセンブリ15を、4つの冷媒流路切換回路14ごとに仕切り、略立方体形状の空間Aを形成したが、冷媒流路切換回路14の数は4つに限らず、略立方体形状の空間が形成できれば何個であってもよい。
1…冷媒流路切換ユニット、2…室外ユニット、3…室内ユニット、8…第2液管、
9…第2高低圧ガス管、10…第2低圧ガス管、11…高低圧電動弁、12…低圧電動弁、
13…第2ガス管、14…冷媒流路切換回路、15…冷媒流路切換回路アセンブリ、
16…液管アセンブリ、17…第2仕切板、18…第1仕切板、21…発泡剤
 

Claims (11)

  1.  室外ユニットと、複数の室内ユニットとの間に配置され、冷媒の通流を制御する冷媒流路切換ユニットであって、
     筐体と、
     前記筐体内に配置され、それぞれが高低圧ガス管と低圧ガス管と前記高低圧ガス管に設けられる高低圧電動弁と前記低圧ガス管に設けられる低圧電動弁とを含む複数の冷媒流路切換回路を有する冷媒流路切換回路アセンブリと、
     前記筐体内に配置され、前記複数の室内ユニットに接続される複数の液管を有する液管アセンブリと、
     前記筐体内において、隣り合う冷媒流路切換回路の間に設けられ、前記筐体の内部空間を仕切る第1仕切板と、を備え、
     前記第1仕切板により、仕切られた空間は略立方体形状をなし、当該仕切られた空間に発泡剤が充填されている、冷媒流路切換ユニット。
  2.  前記第1仕切板は、複数の冷媒流路切換回路ごと設けられている、請求項1に記載の冷媒流路切換ユニット。
  3.  前記第1仕切板は、4つの冷媒流路切換回路ごとに設けられている、請求項2に記載の冷媒流路切換ユニット。
  4.  前記筐体内に設けられ、前記冷媒流路切換回路アセンブリと、前記液管アセンブリとを仕切る第2仕切板を有し、
     前記第1仕切板および前記第2仕切板により、前記筐体の内部空間は略立方体形状をなすように仕切られ、当該仕切られた空間に発泡剤が充填されている、請求項1から請求項3のいずれか一項に記載の冷媒流路切換ユニット。
  5.  各冷媒流路切換回路において、前記高低圧ガス管の一部、前記低圧ガス管の一部、前記高低圧電動弁、および前記低圧電動弁は、前記仕切られた空間の上部に位置し、
     前記第1仕切板の高さは、前記上部の位置よりも低く設定されている、請求項1から請求項4のいずれか一項に記載の冷媒流路切換ユニット。
  6.  室外ユニットと、
     複数の室内ユニットと、
     前記室外ユニットと前記複数の室内ユニットとの間に配置され、冷媒の通流を制御する請求項1から請求項5のいずれか一項に記載の冷媒流路切換ユニットと、を備える空気調和機。
  7.  室外ユニットと、複数の室内ユニットとの間に配置され、冷媒の通流を制御する冷媒流路切換ユニットであって、
     内部に第1領域および第2領域とを有する筐体と、
     前記第1領域に配置され、それぞれが高低圧ガス管と低圧ガス管と前記高低圧ガス管に設けられる高低圧電動弁と前記低圧ガス管に設けられる低圧電動弁とを含む複数の冷媒流路切換回路を有する冷媒流路切換回路アセンブリと、
     前記第2領域に配置され、前記複数の室内ユニットに接続される複数の液管を有する液管アセンブリと、
     前記第1領域と前記第2領域とを仕切る仕切板と、
     前記第1領域に設けられた断熱部材と、を備える、冷媒流路切換ユニット。
  8.  前記第2領域における前記液管の周囲のみに、断熱部材を設けた請求項7の冷媒流路切換ユニット。
  9.  前記冷媒流路切換回路アセンブリと前記液管アセンブリとは前記筐体内において互いに独立している、請求項7または請求項8の冷媒流路切換ユニット。
  10.  前記第2領域は、前記仕切板と前記筐体の底板および側板とで区画される、請求項7から請求項9のいずれか一項に記載の冷媒流路切換ユニット。
  11.  室外ユニットと、
     複数の室内ユニットと、
     前記室外ユニットと前記複数の室内ユニットとの間に配置され、冷媒の通流を制御する請求項7から請求項10のいずれか一項に記載の冷媒流路切換ユニットと、を備える空気調和機。
PCT/JP2018/014740 2017-04-27 2018-04-06 冷媒流路切換ユニットおよび空気調和機 WO2018198726A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP18791132.6A EP3617613B1 (en) 2017-04-27 2018-04-06 Refrigerant channel switching unit and air conditioner
JP2018533704A JP6591682B2 (ja) 2017-04-27 2018-04-06 冷媒流路切換ユニットおよび空気調和機
CN201880000855.0A CN109154458B (zh) 2017-04-27 2018-04-06 制冷剂流路切换单元及空调机
US16/200,889 US10907871B2 (en) 2017-04-27 2018-11-27 Refrigerant flow path switch and air conditioner

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2017087900 2017-04-27
JP2017087903 2017-04-27
JP2017-087900 2017-04-27
JP2017-087903 2017-04-27

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/200,889 Continuation US10907871B2 (en) 2017-04-27 2018-11-27 Refrigerant flow path switch and air conditioner

Publications (1)

Publication Number Publication Date
WO2018198726A1 true WO2018198726A1 (ja) 2018-11-01

Family

ID=63919036

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/014740 WO2018198726A1 (ja) 2017-04-27 2018-04-06 冷媒流路切換ユニットおよび空気調和機

Country Status (5)

Country Link
US (1) US10907871B2 (ja)
EP (1) EP3617613B1 (ja)
JP (1) JP6591682B2 (ja)
CN (1) CN109154458B (ja)
WO (1) WO2018198726A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021063624A (ja) * 2019-10-16 2021-04-22 株式会社富士通ゼネラル 切替ユニット

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6721546B2 (ja) * 2017-07-21 2020-07-15 ダイキン工業株式会社 冷凍装置
EP3889512A1 (en) * 2017-09-29 2021-10-06 Daikin Industries, Ltd. Air conditioning system
CN112178893B (zh) * 2020-09-22 2021-11-30 广东美的暖通设备有限公司 空调器、控制方法和计算机可读存储介质

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013174424A (ja) * 2012-01-23 2013-09-05 Fujitsu General Ltd 冷媒回路ユニット
JP2015158319A (ja) * 2014-02-25 2015-09-03 日立アプライアンス株式会社 空気調和機の冷媒流路切替装置
WO2017042967A1 (ja) * 2015-09-11 2017-03-16 ジョンソンコントロールズ ヒタチ エア コンディショニング テクノロジー(ホンコン) リミテッド 空気調和機

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW330977B (en) * 1996-06-04 1998-05-01 Jinkichi Aizawa Heat exchanger, method of reusing and recovering refrigerant thereof
JP3745211B2 (ja) * 2000-09-21 2006-02-15 柿沼金属精機株式会社 分岐ジョイント
CN1782622A (zh) * 2004-11-29 2006-06-07 乐金电子(天津)电器有限公司 一拖多式空调器
JP3885817B2 (ja) * 2005-04-19 2007-02-28 ダイキン工業株式会社 分岐冷媒中継ユニットおよびその製造方法
JP5282666B2 (ja) * 2009-06-09 2013-09-04 ダイキン工業株式会社 冷媒流路切換装置
CN102192624B (zh) * 2010-03-11 2014-11-26 Lg电子株式会社 室外机、分配单元及包括它们的空气调节装置
JPWO2011141959A1 (ja) * 2010-05-12 2013-07-22 三菱電機株式会社 切換装置及び空気調和装置
JP5447231B2 (ja) * 2010-06-30 2014-03-19 株式会社富士通ゼネラル 空気調和機の冷媒分岐ユニット
CN201954856U (zh) * 2010-12-15 2011-08-31 重庆美的通用制冷设备有限公司 冷媒流向转换与流量控制装置
KR101375718B1 (ko) * 2011-02-21 2014-03-20 삼성전자주식회사 냉매관의 연결구조 및 이를 포함하는 공기조화기
CN104094070B (zh) * 2012-03-09 2016-08-17 三菱电机株式会社 流路切换装置及具有该流路切换装置的空气调节装置
JP5971008B2 (ja) * 2012-07-30 2016-08-17 株式会社富士通ゼネラル 冷媒回路ユニット
JP6055754B2 (ja) * 2013-12-11 2016-12-27 ダイキン工業株式会社 冷媒流路切換ユニット及び冷媒流路切換ユニットを備える冷凍装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013174424A (ja) * 2012-01-23 2013-09-05 Fujitsu General Ltd 冷媒回路ユニット
JP2015158319A (ja) * 2014-02-25 2015-09-03 日立アプライアンス株式会社 空気調和機の冷媒流路切替装置
WO2017042967A1 (ja) * 2015-09-11 2017-03-16 ジョンソンコントロールズ ヒタチ エア コンディショニング テクノロジー(ホンコン) リミテッド 空気調和機

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3617613A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021063624A (ja) * 2019-10-16 2021-04-22 株式会社富士通ゼネラル 切替ユニット

Also Published As

Publication number Publication date
EP3617613A4 (en) 2021-01-13
EP3617613A1 (en) 2020-03-04
EP3617613B1 (en) 2023-03-22
US10907871B2 (en) 2021-02-02
CN109154458A (zh) 2019-01-04
CN109154458B (zh) 2021-01-08
JPWO2018198726A1 (ja) 2019-06-27
JP6591682B2 (ja) 2019-10-16
US20190093931A1 (en) 2019-03-28

Similar Documents

Publication Publication Date Title
JP6591682B2 (ja) 冷媒流路切換ユニットおよび空気調和機
KR100833560B1 (ko) 멀티형 공기 조화장치
JP2013011364A (ja) 空気調和装置
JP5282666B2 (ja) 冷媒流路切換装置
EP3385626B1 (en) Outdoor machine
CN105333500A (zh) 空调
WO2021059912A1 (ja) 冷媒流路切換装置及び空気調和システム
JP2021050840A (ja) 冷媒流路切換装置及び空気調和システム
KR102080836B1 (ko) 공기조화 시스템
JP2018138842A (ja) 空気調和装置の室内機
EP3514457B1 (en) Heat source unit
JP2017172869A (ja) 空気調和機
JP6854979B2 (ja) 冷凍サイクル装置
WO2018012036A1 (ja) 冷媒流路切換ユニット及びそれを備える空気調和機
KR20150096308A (ko) 공기 조화기의 실외 유닛
JP2019020004A (ja) 冷蔵庫
JP2007127354A (ja) 一体型空気調和装置
CN117120779B (zh) 空调机
KR102693083B1 (ko) 냉장고
JP3203017U (ja) 空調機
JP2024027209A (ja) 熱媒体循環装置
JP2021055933A (ja) 切替ユニット
JP2019184128A (ja) 熱交換器及びそれを備えた熱交換ユニット
JP2020003160A (ja) 屋外空気調和装置
JP2021055936A (ja) 切替ユニット

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018533704

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18791132

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018791132

Country of ref document: EP

Effective date: 20191127