WO2006013938A1 - 冷凍装置 - Google Patents

冷凍装置 Download PDF

Info

Publication number
WO2006013938A1
WO2006013938A1 PCT/JP2005/014329 JP2005014329W WO2006013938A1 WO 2006013938 A1 WO2006013938 A1 WO 2006013938A1 JP 2005014329 W JP2005014329 W JP 2005014329W WO 2006013938 A1 WO2006013938 A1 WO 2006013938A1
Authority
WO
WIPO (PCT)
Prior art keywords
refrigerant
heat exchanger
refrigeration
temperature
compressor
Prior art date
Application number
PCT/JP2005/014329
Other languages
English (en)
French (fr)
Inventor
Masaaki Takegami
Kenji Tanimoto
Azuma Kondo
Original Assignee
Daikin Industries, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries, Ltd. filed Critical Daikin Industries, Ltd.
Priority to AU2005268121A priority Critical patent/AU2005268121B2/en
Priority to EP05768934A priority patent/EP1783443A4/en
Priority to US10/585,575 priority patent/US20080282728A1/en
Publication of WO2006013938A1 publication Critical patent/WO2006013938A1/ja

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • F25B1/10Compression machines, plants or systems with non-reversible cycle with multi-stage compression
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B5/00Compression machines, plants or systems, with several evaporator circuits, e.g. for varying refrigerating capacity
    • F25B5/02Compression machines, plants or systems, with several evaporator circuits, e.g. for varying refrigerating capacity arranged in parallel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/023Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units
    • F25B2313/0231Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units with simultaneous cooling and heating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/023Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units
    • F25B2313/0233Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units in parallel arrangements
    • F25B2313/02331Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units in parallel arrangements during cooling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/031Sensor arrangements
    • F25B2313/0314Temperature sensors near the indoor heat exchanger
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/13Economisers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/22Refrigeration systems for supermarkets
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/02Compressor control
    • F25B2600/021Inverters therefor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2507Flow-diverting valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/19Pressures
    • F25B2700/193Pressures of the compressor
    • F25B2700/1933Suction pressures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2104Temperatures of an indoor room or compartment
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2115Temperatures of a compressor or the drive means therefor
    • F25B2700/21151Temperatures of a compressor or the drive means therefor at the suction side of the compressor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2115Temperatures of a compressor or the drive means therefor
    • F25B2700/21152Temperatures of a compressor or the drive means therefor at the discharge side of the compressor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating

Definitions

  • the present invention relates to a refrigeration apparatus, and particularly relates to a refrigeration apparatus including an air conditioning heat exchanger for air-conditioning a room and a cooling heat exchanger for cooling the interior of the refrigerator.
  • a refrigeration apparatus that performs a refrigeration cycle is known, and is widely used as an air conditioner that cools and heats a room and a refrigerator such as a refrigerator that stores food.
  • Some of these refrigeration apparatuses perform both air conditioning and refrigeration.
  • the refrigeration apparatus includes a plurality of use side heat exchangers such as an air conditioning heat exchanger and a cooling heat exchanger, and is installed in a convenience store.
  • this refrigeration apparatus can be used for both air conditioning in a store and cooling of a showcase, etc. by installing only one refrigeration apparatus. It can be carried out.
  • the conventional refrigeration apparatus includes a plurality of compressors, and provides a difference in evaporation pressure between the compressor that sends the refrigerant to the air conditioning heat exchanger and the compressor that sends the refrigerant to the cooling heat exchanger.
  • the refrigerant evaporates at different temperatures between the air conditioning heat exchanger and the cooling heat exchanger. In this way, the operation can be performed by switching the flow path and performing only air conditioning, only refrigeration, or a combination of air conditioning and refrigeration.
  • the evaporation pressure in the air conditioning heat exchanger can be obtained without giving a difference in evaporation pressure between separate compressors. Is always kept above the set value, and each operation can be switched so that the refrigerant evaporates at different temperatures between the air conditioning heat exchanger and the cooling heat exchanger. Therefore, it is possible to simplify the refrigerant circuit.
  • the present invention has been made in view of the power, and the object of the present invention is simple. According to the configuration, the difference in the evaporation pressure between the air-conditioning heat exchanger and the cooling heat exchanger is made variable so that each operation can be switched efficiently.
  • Solution means taken by the present invention are as follows.
  • the first solving means includes a compressor (2), a heat source side heat exchanger (4), an expansion mechanism, and a first heat exchanger (41) for air conditioning the room.
  • the refrigeration apparatus including the refrigerant circuit (1E) connected to the second heat exchanger (45, 51) for cooling the inside of the refrigerator is an object.
  • the refrigerant circuit (1E) includes the first heat exchanger (1) so that the refrigerant evaporates at different temperatures by the first heat exchange (41) and the second heat exchange (45, 51). 41) and a second heat exchanger (45, 51), and a flow rate adjusting means (102) for switching the flow path between the compressor (2) to a variable amount of refrigerant.
  • the flow rate adjusting means (102) allows the flow path to be adjusted while keeping the evaporation temperature of the first heat exchanger (41) higher than the evaporation temperature of the second heat exchanger (45, 51). Each operation is switched by switching.
  • the second solving means includes a compressor (2), a heat source side heat exchanger (4), an expansion mechanism, a first heat exchanger (41) that evaporates at a first temperature, and a second
  • the target is a refrigeration system including a refrigerant circuit (1E) connected to a second heat exchanger (45, 51) that evaporates at a certain temperature.
  • the refrigerant circuit (1E) has the first heat exchange (41) and the second heat exchange (45, 51) connected in parallel, and the suction side of the compressor (2) has a first 1) It is provided with a flow rate adjusting means (102) for variably switching the amount of refrigerant from the heat exchanger (41) and the second heat exchanger (45, 51) to the compressor (2).
  • the flow rate adjusting means (102) provided on the suction side of the compressor (2) includes the first heat exchange (41) and the second heat exchange (45, 51) connected in parallel. Each operation is switched by switching the amount of refrigerant so that it evaporates at different temperatures.
  • a third solving means is the first or second solving means, wherein the flow rate adjusting means includes a suction pipe (6), a first heat exchanger (41) and a first heat exchanger (41) of the compressor (2). 2The switching valve (102) with adjustable flow rate is connected to the heat exchanger (45,51).
  • the refrigeration system operates the switching valve (102) to thereby operate the first heat exchanger.
  • the flow rate adjusting means (102) allows the flow path while maintaining the evaporation temperature of the first heat exchanger (41) higher than the evaporation temperature of the second heat exchanger (45, 51). Is switched. For this reason, the refrigeration system can efficiently switch between operations without giving a difference in evaporation pressure by a plurality of compressors or providing a separate pressure regulating valve.
  • FIG. 1 is a circuit diagram showing a refrigerant circuit of a refrigeration apparatus according to an embodiment.
  • FIG. 2 is a refrigerant circuit diagram showing a refrigerant flow during cooling operation.
  • FIG. 3 is a refrigerant circuit diagram showing a refrigerant flow during a refrigeration operation.
  • FIG. 4 is a refrigerant circuit diagram showing a refrigerant flow during a cooling / freezing operation.
  • FIG. 5 is a Mollier diagram showing the refrigerant behavior during the cooling / freezing operation.
  • FIG. 6 is a refrigerant circuit diagram showing the refrigerant flow during heating operation.
  • FIG. 7 is a refrigerant circuit diagram showing a refrigerant flow during the first heating / freezing operation.
  • FIG. 8 is a refrigerant circuit diagram showing a refrigerant flow during a second heating / freezing operation.
  • FIG. 9 is a refrigerant circuit diagram showing a refrigerant flow during the third heating / freezing operation.
  • FIG. 10 is a Mollier diagram showing the refrigerant behavior during the third heating / freezing operation.
  • the refrigeration apparatus (1) As shown in FIG. 1, the refrigeration apparatus (1) according to the present embodiment is provided in a supermarket at a convenience store, and cools a showcase (not shown) in the cabinet and indoors. It is intended for air conditioning in a store.
  • the refrigeration apparatus (1) includes an outdoor unit (1A), an indoor unit (1B), a refrigeration unit (1C), and a refrigeration unit (1D), and a refrigerant circuit that performs a vapor compression refrigeration cycle ( Prepare with 1E)!
  • the refrigerant circuit (1E) includes a booster unit (1F).
  • Indoor unit (1B) The refrigeration unit (1C) and the refrigeration unit (ID) are connected in parallel.
  • the cooling circuit (1E) is configured to switch between a cooling cycle and a heating cycle.
  • the indoor unit (1B) is configured to perform switching between a cooling operation and a heating operation, and is installed in, for example, a sales floor.
  • the refrigeration unit (1C) is installed in a refrigerated showcase to cool the air in the showcase.
  • the refrigeration unit (1D) is installed in a refrigeration showcase to cool the air in the showcase.
  • the outdoor unit (1A) includes an inverter compressor (2), a four-way switching valve (3A), a discharge-side three-way switching valve (101), and a suction-side three-way switching valve (102) as a flow rate adjusting means. It is equipped with outdoor heat exchange (4), which is heat source side heat exchange, and heat exchange for economizer (103)!
  • the inverter compressor (2) is composed of, for example, a hermetic screw compressor, and is configured such that the capacity is variable stepwise or continuously by being controlled by an electric motor power inverter.
  • the discharge pipe (5) of the inverter compressor (2) is connected to the first port of the discharge side three-way switching valve (101).
  • the operation capacity control of the inverter compressor (2) is always controlled so that the refrigerant pressure on the indoor unit (1B) side is constant.
  • the inverter compressor (2) may be a scroll compressor.
  • the gas side end (inverter compressor (2) side end) of the outdoor heat exchanger (4) is connected to the second port of the discharge side three-way switching valve (101) by an outdoor gas pipe (9). It is connected to the connection part of the pipe extending from the pipe and the pipe extending from the second port of the four-way selector valve (3A).
  • a heating-side electronic expansion valve (104) is provided at the liquid-side end of the outdoor heat exchange (4), and a first liquid pipe (10a), which is a liquid line, is connected to the heating-type electronic expansion valve (104). And one end of the second liquid pipe (10b) are connected.
  • the refrigerant is depressurized during heating when the outdoor heat exchanger (4) serves as an evaporator.
  • the control is performed based on the suction heating degree of the inverter compressor (2) obtained by the suction temperature sensor (67) described later.
  • the first liquid pipe (10a) is connected to the receiver (14) inlet.
  • the second liquid pipe (10b) is connected to the first flow path (105) of the economizer heat exchanger (103).
  • the outdoor heat exchange ⁇ (4) is, for example, a cross-fin type 'and' tube type heat exchange ⁇ , and the outdoor fan (4F) is arranged in close proximity! RU
  • the suction pipe (6) of the inverter compressor (2) is connected to the first port of the suction side three-way switching valve (102).
  • the third port of the suction side three-way switching valve (102) is connected to the low pressure gas pipe (15) via the closing valve (20).
  • the first port of the four-way selector valve (3A) is connected to a pipe extending from the third port of the discharge side three-way selector valve (101) and a connection part of a communication pipe (21) described later!
  • the pipe extending from the third port of the four-way selector valve (3A) is connected to the second port of the suction side three-way selector valve (102).
  • a communication gas pipe (17) is connected to the pipe extending from the fourth port of the four-way selector valve (3A) via a shut-off valve (20).
  • the four-way switching valve (3A) has a pipe extending from the third port of the discharge side three-way switching valve (101) and a connection portion of the communication pipe (21) and the communication gas pipe (17) communicating with each other.
  • the connection state of the pipe extending from the second port of the outdoor gas pipe (9) and the discharge side three-way switching valve (101) and the pipe extending from the second port of the suction side three-way switching valve (102) are in an ON state (see FIG.
  • the suction side three-way switching valve (102) is configured to switch to an OFF state (see the broken line in FIG. 2) in which the pipe extending from the second port communicates.
  • the communication gas pipe (17), the low-pressure gas pipe (15), and the connecting liquid pipe (19) are extended from the outdoor unit (1A) to the outside, and are closed in the outdoor unit (1A). are provided.
  • the economizer heat exchanger (103) includes a first channel (105) and a second channel (106).
  • the pipe extending at one end of the first flow path (105) is connected to the outlet of the receiver (14), and the other end is connected to the connecting section of the pipe extending at the inlet force of the connecting liquid pipe (19) and receiver (14). It has been.
  • One end of the second flow path (106) is connected to an intermediate pressure part (not shown) of the inverter compressor (2) via a check valve (7), and the other end is an electronic expansion valve for an economizer (107).
  • the check valve (7) prevents the reverse flow of the refrigerant having the intermediate pressure of the inverter compressor (2).
  • the supercooled low-pressure refrigerant is guided to the intermediate pressure portion of the inverter compressor (2), thereby preventing the inverter compressor (2) from being overheated.
  • a check valve (7) is provided on the first liquid pipe (10a) side at the inlet of the receiver (14) and on the first flow path (105) side of the heat exchanger (103) for the economizer.
  • the refrigerant flows only toward the inlet of the receiver (14).
  • a condensing pressure adjusting valve (108) is provided between the pipe extending from the inlet of the receiver (14) and the first flow path (105) side of the heat exchanger (103) for the economizer.
  • the condensation pressure regulating valve (108) prevents the refrigerant shortage on the indoor unit (1B) side when the outside air temperature is low during heating operation.
  • the communication pipe (21) is provided with a panel check valve (109).
  • the check valve with a panel (109) does not normally operate, and is configured to prevent liquid leakage when each receiver is closed when the receiver (14) is full of liquid refrigerant when operation is stopped.
  • the indoor unit (1B) includes an indoor heat exchange (41) as a first heat exchange and an indoor expansion valve (42) as an expansion mechanism.
  • a communication gas pipe (17) is connected to the gas side of the indoor heat exchanger (41).
  • the second communication liquid pipe (12) is connected to the liquid side of the indoor heat exchanger (41) via the indoor expansion valve (42), and the second communication liquid pipe (12) is connected to the outdoor unit (1A ) Is connected to a connecting liquid pipe (19).
  • the indoor heat exchanger (41) is, for example, a cross-fin type fin “and” tube heat exchanger, and the indoor fan (43) is disposed in close proximity.
  • the refrigeration unit (1C) has a refrigeration heat exchange (45) as the second heat exchange and an expansion mechanism.
  • the first communication liquid pipe (11) is connected to the liquid side of the refrigeration heat exchanger (45) via a solenoid valve (7a) and a refrigeration expansion valve (46).
  • the low temperature gas pipe (15) is connected to the gas side of the refrigeration heat exchanger (45).
  • the refrigeration heat exchanger (45) communicates with the third port of the suction side three-way switching valve (102) via the low pressure gas pipe (15), while the indoor heat exchanger (41) During operation, it communicates with the second port of the suction side three-way switching valve (102) via the communication gas pipe (17).
  • the refrigerant pressure (evaporation pressure) of the refrigeration heat exchanger (45) becomes lower than the refrigerant pressure (evaporation pressure) of the indoor heat exchanger (41).
  • the refrigerant evaporation temperature of the refrigerated heat exchanger (45) is, for example, 10 ° C.
  • the refrigerant evaporation temperature of the indoor heat exchanger (41) is, for example, + 5 ° C. 1E) constitutes a circuit for evaporation at different temperatures.
  • the refrigeration expansion valve (46) is a temperature-sensitive expansion valve, and a temperature-sensitive cylinder is attached to the gas side of the refrigeration heat exchanger (45).
  • the refrigeration heat exchanger (45) is, for example, a cross-fin type fin-and-tube heat exchanger, and a refrigeration fan (47) is disposed in close proximity.
  • the refrigeration unit (1D) includes a refrigeration heat exchange (51) as a second heat exchange and a refrigeration expansion valve (52) as an expansion mechanism.
  • a branch liquid pipe (13) branched from the first communication liquid pipe (11) is connected to the liquid side of the refrigeration heat exchanger (51) via a solenoid valve (7b) and a refrigeration expansion valve (52).
  • the refrigeration expansion valve (52) is a temperature-sensitive expansion valve, and a temperature-sensitive cylinder is attached to the gas side of the refrigeration heat exchanger (51).
  • the refrigeration heat exchanger (51) is, for example, a cross-fin type fin-and-tube heat exchanger, and a refrigeration fan (58) is arranged in close proximity.
  • the booster unit (IF) includes a booster compressor (53) and a supercooling heat exchanger (210).
  • the refrigerant evaporation temperature of the refrigeration heat exchanger (51) is a refrigeration heat exchanger.
  • the refrigerant evaporation temperature of the refrigeration heat exchanger (51) is set to ⁇ 40 ° C., for example.
  • a branch gas pipe (16) branched from the low pressure gas pipe (15) is connected to the discharge side of the booster compressor (53).
  • the branch gas pipe (16) is provided with a check valve (7) and an oil separator (55). Between the oil separator (55) and the connecting gas pipe (54), an oil return pipe (57) having a capillary tube is connected.
  • bypass pipe (59) with a check valve (7) is connected between the two!
  • the bypass pipe (59) is configured so that the refrigerant flows by bypassing the booster compressor (53) when the booster compressor (53) is stopped due to a failure or the like.
  • the supercooling heat exchanger (210) is composed of V, a so-called plate heat exchanger.
  • a plurality of first flow paths (211) and a plurality of second flow paths (212) are formed in the subcooling heat exchanger (210).
  • the third communication liquid pipe (18) branches off from the first communication liquid pipe (11).
  • the first flow path (211) of the supercooling heat exchanger (210) constitutes a part of the first communication liquid pipe (11).
  • the second channel (212) constitutes a part of the third communication liquid pipe (18).
  • a supercooling expansion valve (223) is provided between the branch point of the third communication liquid pipe (18) and the first communication liquid pipe (11) to the second flow path (212). It has been.
  • the supercooling expansion valve (223) is constituted by a temperature-sensitive expansion valve, and a temperature-sensitive cylinder is attached to the opposite side of the second flow path (212).
  • the supercooling heat exchange (210) includes the refrigerant flowing through the first flow path (211) and the second flow path (212) when the supercooling expansion valve (223) is opened.
  • Heat exchange with the refrigerant in the refrigeration system (10) flowing through The refrigerant that is supercooled through the first flow path (211) flows through the first communication liquid pipe (11) to the refrigeration heat exchange (45) and the refrigeration heat exchange (51).
  • the refrigerant circuit (1E) is provided with various sensors and various switches.
  • a high-pressure refrigerant pressure In the vicinity of the third port of the discharge side three-way selector valve (101) of the outdoor unit (1A) is a high-pressure refrigerant pressure.
  • a high pressure sensor (61) is provided for detecting the pressure.
  • the inverter compressor (2) is provided with a discharge temperature sensor (62) for detecting the high-pressure refrigerant temperature.
  • the outdoor unit (1A) is provided with an outdoor air temperature sensor (70) for detecting the outdoor air temperature.
  • the indoor heat exchanger (41) is provided with an indoor heat exchange sensor (71) for detecting a condensation temperature or an evaporation temperature, which is a refrigerant temperature in the indoor heat exchanger (41), and on the gas side.
  • a gas temperature sensor (72) for detecting the gas refrigerant temperature is provided.
  • the indoor unit (1B) is provided with a room temperature sensor (73) for detecting the indoor air temperature.
  • the refrigeration unit (1C) is provided with a refrigeration temperature sensor (74) for detecting the internal temperature in the refrigeration showcase.
  • the refrigeration unit (1D) is provided with a refrigeration temperature sensor (75) for detecting the internal temperature in the refrigeration showcase.
  • the output signals of the above various sensors and various switches are input to the controller (80) (shown only in FIG. 1).
  • the controller (80) is configured to control the capacity of the inverter compressor (2).
  • the controller (80) controls the operation of the refrigerant circuit (1E), and switches between the cooling operation, the refrigeration operation, the cooling refrigeration operation, the heating operation, and the first to third heating refrigeration operations. It is configured to do so.
  • the discharge side three-way switching valve (101) is completely closed at the second port, All the refrigerant flows through
  • the indoor heat exchanger (41) during the heating operation becomes a condenser and the thermostat is off
  • the third port side is completely closed, and all the refrigerant flows to the second port side.
  • the high-pressure pressure sensor (61) indicates that the discharge pressure of the inverter compressor (2) has exceeded a certain level.
  • the second port is controlled to open so as to keep the discharge pressure below a certain level.
  • the third port of the suction side three-way switching valve (102) is always closed when only the indoor unit (1B) is operated.
  • the cooling mode is switched between the cooling operation, the freezing operation, and the cooling / freezing operation!
  • this cooling operation is an operation that only cools the indoor unit (1B).
  • the four-way selector valve (3A) is switched to the OFF state as indicated by the solid line in FIG. Furthermore, the solenoid valve (7a) of the refrigeration unit (1C) and the solenoid valve (7b) of the refrigeration unit (1D) are closed.
  • the refrigerant discharged from the inverter compressor (2) is discharged from the discharge side three-way switching valve.
  • the opening degree of the indoor expansion valve (42) is superheat controlled based on the detected temperatures of the indoor heat exchange sensor (71) and the gas temperature sensor (72), and is the same in the cooling mode hereinafter. .
  • This refrigeration operation is an operation in which only the refrigeration unit (1C) and the refrigeration unit (1D) are cooled.
  • the four-way switching valve (3A) switches to the OFF state as shown by the solid line in FIG. Furthermore, the electromagnetic valve (7a) of the refrigeration unit (1C) and the electromagnetic valve (7b) of the refrigeration unit (ID) are opened, while the indoor expansion valve (42) is closed.
  • the refrigerant discharged from the inverter compressor (2) is discharged from the discharge side three-way switching valve. In (101), it is distributed to the outdoor gas pipe (9) side through the second port.
  • the refrigerant condenses in the outdoor heat exchanger (4).
  • the condensed liquid refrigerant flows through the first liquid pipe (10a), then into the receiver (14), through the connection liquid pipe (19), and through the first communication liquid pipe (11). It flows through the refrigeration expansion valve (46) to the refrigeration heat exchanger (45) and evaporates.
  • the other liquid refrigerant flowing through the first communication liquid pipe (11) flows through the branch liquid pipe (13), passes through the refrigeration expansion valve (52), flows into the refrigeration heat exchanger (51), and evaporates. .
  • the gas refrigerant evaporated in the refrigeration heat exchanger (51) is sucked and compressed by the booster compressor (53) and discharged to the branch gas pipe (16).
  • the refrigerant pressure in the refrigeration heat exchanger (51) is sucked by the booster compressor (53), and thus is lower than the refrigerant pressure in the refrigeration heat exchanger (45).
  • the refrigerant temperature (evaporation temperature) in the refrigeration heat exchanger (51) becomes ⁇ 40 ° C.
  • the refrigerant temperature (evaporation temperature) in the refrigeration heat exchanger (45) becomes 10 ° C.
  • the degree of opening of the refrigeration expansion valve (46) and the refrigeration expansion valve (52) is controlled by the temperature sensitive cylinder and is the same in each operation.
  • the cooling / freezing operation is an operation in which the cooling of the indoor unit (1B) and the cooling of the refrigeration unit (1C) and the refrigeration unit (1D) are performed simultaneously.
  • the four-way selector valve (3A) is switched to the OFF state as indicated by the solid line in FIG. Furthermore, the indoor expansion valve (42), the electromagnetic valve (7a) of the refrigeration unit (1C) and the electromagnetic valve (7b) of the refrigeration unit (1D) are opened.
  • the refrigerant discharged from the inverter compressor (2) is discharged from the discharge side three-way switching valve.
  • the liquid refrigerant flowing through the second communication liquid pipe (12) flows through the indoor expansion valve (42) to the indoor heat exchanger (41) and evaporates.
  • the evaporated gas refrigerant is reduced in pressure when passing through the communication gas pipe (17) and the second port of the suction side three-way switching valve (102) via the four-way switching valve (3A) and is supplied to the inverter compressor (2). Return.
  • a part of the liquid refrigerant flowing through the first communication liquid pipe (11) flows through the refrigeration expansion valve (46) to the refrigeration heat exchanger (45) and evaporates.
  • the other liquid coolant flowing through the first communication liquid pipe (11) flows through the branch liquid pipe (13), flows through the refrigeration expansion valve (52) to the refrigeration heat exchanger (51), and evaporates.
  • the gas refrigerant evaporated by this refrigeration heat exchange (51) is sucked and compressed by the booster compressor (53) and discharged to the branch gas pipe (16).
  • This circulation is repeated to cool the interior of the store, and at the same time, cool the interior of the refrigerator, which is a showcase for refrigeration and a showcase for freezing.
  • the inverter compressor (2) compresses the refrigerant to the point A.
  • the refrigerant at point A condenses and becomes refrigerant at point B.
  • Part of the refrigerant at point B is depressurized to point C by the indoor expansion valve (42), e.g., evaporates at + 5 ° C, and the second port of the suction side three-way switching valve (102) is connected at point D.
  • the indoor expansion valve (42) e.g., evaporates at + 5 ° C
  • the second port of the suction side three-way switching valve (102) is connected at point D.
  • the heating mode is switched to any one of the heating operation, the first heating / freezing operation, the second heating / freezing operation, and the third heating / freezing operation under the control of the controller (80).
  • This heating operation is an operation that only heats the indoor unit (1B). Also, the four-way selector valve (3A) switches to the ON state as shown by the solid line in FIG. The second port of the discharge side three-way selector valve (101) is closed. The third port of the suction side three-way switching valve (102) is closed. Furthermore, the solenoid valve (7a) of the refrigeration unit (1C) and the solenoid valve (7b) of the refrigeration unit (1D) are closed.
  • the refrigerant discharged from the inverter compressor (2) is discharged from the discharge side three-way switching valve.
  • the opening degree of the heating electronic expansion valve (104) is superheat controlled by the pressure equivalent saturation temperature based on the low pressure sensor (65, 66) and the temperature detected by the suction temperature sensor (67). .
  • the opening degree of the indoor expansion valve (42) is supercooled based on the temperature detected by the indoor heat exchange sensor (71).
  • the opening control of the heating electronic expansion valve (104) and the indoor expansion valve (42) is the same in the heating mode hereinafter.
  • This first heating / freezing operation is an operation for heating the indoor unit (1B) and cooling the refrigeration unit (1C) and the refrigeration unit (1D) without using the outdoor heat exchanger (4).
  • the four-way selector valve (3A) switches to the ON state.
  • the second port of the discharge side three-way selector valve (101) is closed.
  • the third port of the suction side three-way selector valve (102) is open. It is. Further, the electromagnetic valve (7a) of the refrigeration unit (1C) and the electromagnetic valve (7b) of the refrigeration unit (ID) are opened, while the heating electronic expansion valve (104) is closed.
  • the refrigerant discharged from the inverter compressor (2) is discharged from the discharge side three-way switching valve.
  • a part of the liquid refrigerant flowing through the first communication liquid pipe (11) flows through the refrigeration expansion valve (46) to the refrigeration heat exchanger (45) and evaporates.
  • the other liquid coolant flowing through the first communication liquid pipe (11) flows through the branch liquid pipe (13), flows through the refrigeration expansion valve (52) to the refrigeration heat exchanger (51), and evaporates.
  • the gas refrigerant evaporated by this refrigeration heat exchange (51) is sucked and compressed by the booster compressor (53) and discharged to the branch gas pipe (16).
  • the gas refrigerant evaporated in the refrigeration heat exchanger (45) and the gas refrigerant discharged from the booster compressor (53) are merged in the low-pressure gas pipe (15) and returned to the inverter compressor (2). .
  • This circulation is repeated to heat the interior of the store and at the same time cool the interior of the refrigerator, which is a showcase for refrigeration and a showcase for freezing.
  • the cooling capacity (evaporation heat amount) of the refrigeration unit (1C) and the refrigeration unit (1D) balances the heating capacity (condensation heat amount) of the indoor unit (1B), and 100% heat recovery is performed. .
  • this second heating / freezing operation is an overheating operation of the heating in which the heating capacity of the indoor unit (1B) is excessive during the first heating / freezing operation.
  • the second heating and refrigeration operation is a heat recovery operation when the heating capacity is excessive during the first heating and refrigeration operation.
  • the controller (80) controls the second port to open.
  • the refrigerant discharged from the inverter compressor (2) is distributed by the discharge side three-way switching valve (101). That is, only the refrigerant having a flow rate that can provide the heat of condensation necessary for the indoor heat exchange (41) flows through the third port to the indoor heat exchanger (41) and is condensed.
  • the condensed liquid refrigerant flows to the first communication liquid pipe (11) through the second communication liquid pipe (12).
  • the remaining refrigerant discharged from the inverter compressor (2) is distributed to the outdoor gas pipe (9) side through the second port by the discharge side three-way switching valve (101).
  • the refrigerant condenses by outdoor heat exchange (4).
  • the condensed liquid refrigerant flows through the first liquid pipe (10a), then to the receiver (14), passes through the connection liquid pipe (19), and passes through the indoor heat exchanger (11) in the first communication liquid pipe (11). It merges with the refrigerant that passed through 41).
  • the cooling capacity (evaporation heat amount) of the refrigeration unit (1C) and the refrigeration unit (1D) and the heating capacity (condensation heat amount) of the indoor unit (1B) are not balanced, and only the remaining condensation heat is transferred to the outdoor heat exchanger. Release to the room in (4).
  • This third heating / freezing operation is a heating-deficient operation in which the heating capacity of the indoor unit (1B) is insufficient during the first heating / freezing operation. In other words, this is a case where the heat of evaporation is insufficient.
  • the four-way selector valve (3A) switches to the ON state.
  • the second port of the discharge side three-way selector valve (101) is closed.
  • the suction side three-way switching valve (102) has the second port and the third port open. Furthermore, the indoor expansion valve (42), the electromagnetic valve (7a) of the refrigeration unit (1C) and the electromagnetic valve (7b) of the refrigeration unit (1D) are opened.
  • the other liquid refrigerant flowing into the receiver (14) flows through the second liquid pipe (10b) to the outdoor heat exchanger (4) through the heating electronic expansion valve (104). ,Evaporate.
  • the evaporated gas refrigerant flows through the outdoor gas pipe (9), returns to the inverter compressor (2) through the four-way switching valve (3A) and the suction side three-way switching valve (102).
  • This circulation is repeated to heat the interior of the store, and at the same time, cools the inside of the refrigerator, which is a showcase for refrigeration and a showcase for freezing.
  • the cooling capacity (evaporation heat amount) between the refrigeration unit (1C) and the refrigeration unit (1D) and the heating capacity (condensation heat amount) of the indoor unit (1B) are not balanced, and the insufficient evaporation heat is generated. Obtained from the outdoor heat exchanger (4).
  • the inverter compressor (2) compresses the refrigerant to the point A.
  • the refrigerant at point A condenses and becomes refrigerant at point B.
  • the refrigerant at point B is depressurized to point C by the heating electronic expansion valve (104), evaporates at, for example, -15 ° C, and sucked into the inverter compressor (2) at point D.
  • the refrigerant in the refrigerant circuit (1E) evaporates at different temperatures by the suction side three-way switching valve (102), and further becomes three kinds of evaporation temperatures by two-stage compression by the booster compressor (53). .
  • the controller (80) controls the inverter compressor (2) or the suction side three-way switching valve (102) to adjust the refrigerant flow rate of each heat exchanger ⁇ (41, 45, 51), and to control the air conditioning capacity. Adjust the cooling capacity. Specifically, the controller (80) determines whether the inverter compressor (2) or the three-way side of the suction side is based on the pressure difference between the low pressure of the refrigerant (evaporation pressure) and the target pressure (hereinafter simply referred to as the refrigerant pressure difference). The switching valve (102) is controlled.
  • the refrigerant pressure difference on the air conditioning side is the difference between the detected pressure of the low pressure sensor (65) and its target pressure
  • the refrigerant pressure difference on the cooling side is the difference between the detected pressure of the low pressure sensor (66) and its pressure. It is the difference from the target pressure.
  • the controller (80) operates the inverter compressor (2). Increase capacity. That is, in the suction side three-way switching valve (102), the flow rate distribution ratio of the second port and the third port does not change, but the flow rate of refrigerant flowing through each port increases. As a result, the refrigerant flow rates of the indoor heat exchanger (41), the refrigeration heat exchanger (45), and the refrigeration heat exchanger (51) are increased, and the cooling capacity and the refrigeration capacity are increased.
  • the load increases, the low pressure of the refrigerant becomes higher than the target pressure.
  • the controller (80) increases the operating capacity of the inverter compressor (2) and changes the flow distribution ratio of the suction side three-way switching valve (102). That is, the flow rate distribution ratio of the suction side three-way switching valve (102) is changed so that the overall flow rate of the suction side three-way switching valve (102) is increased and the increased amount flows through the port on the load increase side.
  • the controller (80) controls the suction side three-way switching valve (102) to give priority to the one with the larger refrigerant pressure difference.
  • Increase refrigerant flow For example, if the refrigerant pressure difference on the air conditioning side is larger than that on the cooling side, the refrigerant flow rate at the second port of the suction side three-way switching valve (102) increases and the refrigerant flow rate at the third port decreases accordingly. Change the flow distribution ratio. That is, the total flow rate of the refrigerant flowing through the suction side three-way switching valve (102) does not change.
  • controller (80) performs the same control in the third heating / freezing operation. Further, when the load increases in the cooling operation, the refrigeration operation, the heating operation, the first heating refrigeration operation, and the second heating refrigeration operation, the controller (80) increases the operation capacity of the inverter compressor (2).
  • the evaporating temperature of the first heat exchanger (41) is changed to the refrigeration heat exchanger (45) and the refrigeration by the suction side three-way switching valve (102).
  • the flow path is switched while keeping the temperature higher than the evaporation temperature of the heat exchanger (51).
  • the refrigeration system can efficiently switch between operations without giving a difference in evaporation pressure by a plurality of compressors or providing a separate pressure regulating valve.
  • the controller (80) controls the inverter compressor (2) and the suction side three-way switching valve (102) based on parameters other than the low pressure of the refrigerant.
  • the controller (80) has a temperature difference between the intake air temperature and its target temperature in each heat exchanger (41, 45, 51) (hereinafter, simply referred to as air temperature difference). Based on this, the inverter compressor (2) and so on are controlled.
  • the temperature difference of the air on the air conditioning side is the difference between the air temperature taken in by the indoor fan (43) and its target temperature.
  • the temperature difference between the air on the cooling side is the greater of the difference between the air temperature taken in by the refrigeration fan (47) and its target temperature, and the difference between the air temperature taken in by the refrigeration fan (58) and its target temperature. It is.
  • the controller (80) is configured so that the temperature difference between the evaporating temperature of the refrigerant and the target temperature (hereinafter referred to as the temperature of the refrigerant) It is simply called the temperature difference of the refrigerant.
  • the temperature difference of the refrigerant on the air conditioning side is the difference between the refrigerant temperature in the indoor heat exchanger (41) during cooling or the refrigerant temperature in the outdoor heat exchanger (4) during heating and its target temperature.
  • the temperature difference between the refrigerants on the cooling side is the greater of the difference between the refrigerant temperature and its target temperature in refrigeration heat exchange (45) and the difference between the refrigerant temperature and its target temperature in refrigeration heat exchange (51).
  • inverter compression Increase the operating capacity of the machine (2).
  • the suction side three-way switching valve (102) is controlled to increase the refrigerant flow rate by giving priority to the V-side direction.
  • Modification 3 is a case where a plurality of indoor heat exchangers (41), refrigeration heat exchangers (45), and refrigeration heat exchangers (51) are provided in parallel.
  • the controller (80) controls the inverter compressor (2) and the like based on the number of operating heat exchangers (41, 45, 51) or the ratio of the operating number. Basically, the controller (80) has the same number of heat exchangers ⁇ (41,45,51). If the number of units is different, it is based on the percentage of units in operation.
  • the operating capacity of the inverter compressor (2) increase.
  • the refrigerant on the refrigerant side is given priority by controlling the suction side three-way selector valve (102) and the one with the larger number of operating units or the one with the larger proportion of operating units. Increase the flow rate.
  • the controller (80) when the high pressure of the refrigerant, the condensation temperature of the refrigerant or the outside air temperature rises, the controller (80) is based on the above-described low pressure of the refrigerant! 102).
  • the high pressure of the refrigerant is the pressure detected by the high pressure sensor (61).
  • the refrigerant condensing temperature is the refrigerant temperature in the outdoor heat exchanger (4) during cooling or the refrigerant temperature in the indoor heat exchanger (41) during heating.
  • the outside air temperature is the temperature detected by the outside air temperature sensor (70).
  • the controller (80) increases the operating capacity of the inverter compressor (2). Make it.
  • the suction side three-way switching valve (102) is controlled to give priority to the one with the lower refrigerant low pressure on the air conditioning side and the cooling side. Increase refrigerant flow.
  • the controller (80) replaces the low pressure of the refrigerant with the suction side so that the target pressure, the evaporation temperature of the refrigerant, or the target temperature of the intake air temperature is low V and the refrigerant flow rate is increased.
  • the three-way selector valve (102) may be controlled.
  • the discharge side three-way switching valve (101) is provided as the flow rate adjusting means.
  • the same effect as the above embodiment can be obtained. can get.
  • the present invention is useful for a refrigeration apparatus equipped with an air conditioning heat exchanger and a cooling heat exchanger used in a convenience store, a supermarket, and the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Devices That Are Associated With Refrigeration Equipment (AREA)
  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

 冷媒回路(1E)に室内熱交換器(41)と、冷蔵熱交換器(45)及び冷凍熱交換器(51)とで冷媒が異温度蒸発するように、室内熱交換器(41)、冷蔵熱交換器(45)及び冷凍熱交換器(51)と、圧縮機(2)との流路を冷媒量可変に切り換える吸入側三方切換弁(102)を設ける。

Description

明 細 書
冷凍装置
技術分野
[0001] 本発明は、冷凍装置に関し、特に、室内を空調するための空調熱交換器と庫内を 冷却するための冷却熱交換器とを備えた冷凍装置に係るものである。
背景技術
[0002] 従来より、冷凍サイクルを行う冷凍装置が知られており、室内を冷暖房する空調機 や、食品等を貯蔵する冷蔵庫などの冷却機として広く利用されている。この冷凍装置 には、空調と冷蔵との両方を行うものがあり、例えば、空調熱交 及び冷却熱交換 器などの複数の利用側熱交換器を備え、コンビ-エンスストアなどに設置されて 、る 。この冷凍装置は、例えば特許第 3253283号公報ゃ特開 2003— 75022号公報に 開示されているように、 1つの冷凍装置を設置するだけで、店内の空調とショーケース などの冷却との両方を行うことができる。
[0003] 上記従来の冷凍装置は、複数の圧縮機を備え、上記空調熱交換器に冷媒を送る 圧縮機と冷却熱交換器に冷媒を送る圧縮機との間で蒸発圧力の差を与えることで、 空調熱交換器と冷却熱交換器とで冷媒が異温度蒸発するようにして 、る。このように して、流路を切り換えて、空調のみ、冷蔵のみ、空調と冷蔵の組み合わせの各運転を 行うことができる。
[0004] —解決課題—
ところで、上記従来の冷凍装置において、空調熱交換器のガス側に蒸発圧力調整 弁を設ければ、別々の圧縮機で蒸発圧力の差を与えなくても、空調熱交換器内の蒸 発圧力を常に設定値以上に保持し、空調熱交換器と冷却熱交換器とで冷媒が異温 度蒸発するようにして、各運転を切り換えることが可能である。したがって、冷媒回路 の簡略ィ匕が可能となる。
[0005] しかし、空調熱交換器のガス側に別途蒸発圧力調整弁を設けることは、部品点数 が増え、製造コストが高くなると共に、圧力損失が増加するという問題があった。
[0006] 本発明は、力かる点に鑑みてなされたものであり、その目的とするところは、簡単な 構成により、空調熱交^^と冷却熱交^^との間の蒸発圧力の差を可変にして各運 転切換を効率よく行うことにある。
発明の開示
[0007] 本発明が講じた解決手段は、以下に示すものである。
[0008] 具体的に、第 1の解決手段は、圧縮機 (2)と、熱源側熱交換器 (4)と、膨張機構と、 室内を空調するための第 1熱交換器 (41)と、庫内を冷却するための第 2熱交換器 (4 5,51)とが接続された冷媒回路(1E)を備える冷凍装置を対象とする。
[0009] そして、上記冷媒回路(1E)は、上記第 1熱交翻 (41)と第 2熱交翻 (45,51)とで 冷媒が異温度蒸発するように、第 1熱交換器 (41)及び第 2熱交換器 (45,51)と、圧縮 機 (2)との流路を冷媒量可変に切り換える流量調整手段(102)を備えて!/、る。
[0010] 上記の解決手段では、流量調整手段(102)によって、第 1熱交換器 (41)の蒸発温 度を第 2熱交 (45,51)の蒸発温度よりも高く保ちながら流路を切り換えることで、 各運転切換が行われる。
[0011] 第 2の解決手段は、圧縮機 (2)と、熱源側熱交換器 (4)と、膨張機構と、第 1の温度 で蒸発する第 1熱交換器 (41)と、第 2の温度で蒸発する第 2熱交換器 (45,51)とが接 続された冷媒回路(1E)を備える冷凍装置を対象とする。
[0012] そして、上記冷媒回路(1E)は、上記第 1熱交 (41)と第 2熱交 (45,51)とが 並列に接続され、圧縮機 (2)の吸入側には、第 1熱交換器 (41)及び第 2熱交換器 (4 5,51)から圧縮機 (2)への冷媒量を可変に切り換える流量調整手段(102)を備えて!/ヽ る。
[0013] 上記の解決手段では、圧縮機 (2)の吸入側に設けた流量調整手段(102)が、並列 に接続された第 1熱交 (41)と第 2熱交 (45,51)とにおいて、それぞれ異なる 温度で蒸発するように冷媒量を切り換えることで、各運転切換が行われる。
[0014] 第 3の解決手段は、上記第 1または第 2の解決手段において、上記流量調整手段 は、圧縮機 (2)の吸入管 (6)と、第 1熱交換器 (41)及び第 2熱交換器 (45,51)とに接 続された流量調整可能な切換弁(102)とする。
[0015] 上記の解決手段では、冷凍装置は、切換弁(102)を操作することで、第 1熱交換器
(41)と第 2熱交 (45,51)との間の蒸発温度の差を保ちながら流路を切り換えるこ とで各運転を行うことができる。
[0016] 効果
したがって、本願の解決手段によれば、流量調整手段(102)によって、第 1熱交換 器 (41)の蒸発温度を第 2熱交換器 (45,51)の蒸発温度よりも高く保ちながら流路を切 り換えるようにしている。このため、複数の圧縮機によって蒸発圧力の差を与えたり、 別途圧力調整弁を設けなくても、冷凍装置は効率よく各運転切換を行うことができる
図面の簡単な説明
[0017] [図 1]図 1は、実施形態に係る冷凍装置の冷媒回路を示す回路図である。
[図 2]図 2は、冷房運転時の冷媒流れを示す冷媒回路図である。
[図 3]図 3は、冷凍運転時の冷媒流れを示す冷媒回路図である。
[図 4]図 4は、冷房冷凍運転時の冷媒流れを示す冷媒回路図である。
[図 5]図 5は、冷房冷凍運転時における冷媒挙動を示すモリエル線図である。
[図 6]図 6は、暖房運転時の冷媒流れを示す冷媒回路図である。
[図 7]図 7は、第 1暖房冷凍運転時の冷媒流れを示す冷媒回路図である。
[図 8]図 8は、第 2暖房冷凍運転時の冷媒流れを示す冷媒回路図である。
[図 9]図 9は、第 3暖房冷凍運転時の冷媒流れを示す冷媒回路図である。
[図 10]図 10は、第 3暖房冷凍運転時における冷媒挙動を示すモリエル線図である。 発明を実施するための最良の形態
[0018] 以下、本発明の実施形態を図面に基づいて詳細に説明する。なお、以下の実施形 態は、本質的に好ましい例示であって、本発明、その適用物や用途の範囲を制限す ることを意図するものではな 、。
[0019] 図 1に示すように、本実施形態に係る冷凍装置(1)は、コンビ-エンスストアゃスー パーマーケットに設けられ、庫内であるショーケース(図示せず)の冷却と室内である 店内の冷暖房とを行うためのものである。
[0020] 上記冷凍装置(1)は、室外ユニット(1A)と室内ユニット(1B)と冷蔵ユニット(1C)と冷 凍ユニット(1D)とを有し、蒸気圧縮式冷凍サイクルを行う冷媒回路(1E)を備えて!/ヽる 。また、この冷媒回路(1E)は、ブースタユニット(1F)を備えている。室内ユニット(1B) と冷蔵ユニット(1C)と冷凍ユニット(ID)とは、並列に接続されている。そして、上記冷 媒回路(1E)は、冷房サイクルと暖房サイクルとに切り換わるように構成されている。
[0021] 上記室内ユニット(1B)は、冷房運転と暖房運転とを切り換えて行うように構成され、 例えば、売場などに設置される。また、上記冷蔵ユニット(1C)は、冷蔵用のショーケ ースに設置されて該ショーケースの庫内空気を冷却する。上記冷凍ユニット(1D)は、 冷凍用のショーケースに設置されて該ショーケースの庫内空気を冷却する。
[0022] 〈室外ユニット〉
上記室外ユニット(1A)は、インバータ圧縮機 (2)と、四路切換弁 (3A)と、吐出側三 方切換弁(101)と、流量調整手段としての吸入側三方切換弁(102)と、熱源側熱交 である室外熱交 (4)と、ェコノマイザ一用熱交 (103)とを備えて!/、る。
[0023] 上記インバータ圧縮機 (2)は、例えば、密閉型のスクリュー圧縮機で構成され、電 動機力 ンバータ制御されて容量が段階的又は連続的に可変となるように構成され ている。上記インバータ圧縮機 (2)の吐出管 (5)は、吐出側三方切換弁(101)の第 1 ポートに接続されている。インバータ圧縮機 (2)の運転容量制御は、常時、室内ュ- ット(1B)側の冷媒圧力が一定になるように制御される。後述する室内熱交換器 (41) 及び室外熱交換器 (4)が凝縮器となる熱回収運転時には、室内熱交換器 (41)内の 圧力を一定にするように、制御される。なお、インバータ圧縮機 (2)はスクロール圧縮 機で構成してもよい。
[0024] 上記室外熱交換器 (4)のガス側端部 (インバータ圧縮機 (2)側端部)は、室外ガス 管 (9)によって、上記吐出側三方切換弁(101)の第 2ポートから延びる配管及び四路 切換弁 (3A)の第 2ポートから延びる配管の接続部に接続されている。上記室外熱交 (4)の液側端部には、暖房用電子膨張弁(104)が設けられ、更にこの暖房用電 子膨張弁(104)に液ラインである第 1液管(10a)の一端と第 2液管(10b)の一端とが接 続されている。暖房用電子膨張弁 (104)は、室外熱交換器 (4)が蒸発器となる暖房 時に冷媒が減圧される。その制御は、後述する吸入温度センサ (67)によって得られ たインバータ圧縮機 (2)の吸入加熱度に基づいて行われる。第 1液管(10a)は、レシ ーバ(14)入口に接続されている。第 2液管(10b)には、上記ェコノマイザ一用熱交換 器(103)の第 1流路(105)が接続されて!ヽる。 [0025] なお、上記室外熱交^^ (4)は、例えば、クロスフィン式のフィン 'アンド'チューブ 型熱交^^であって、室外ファン (4F)が近接して配置されて!、る。
[0026] 上記インバータ圧縮機 (2)の吸入管 (6)は、吸入側三方切換弁(102)の第 1ポート に接続されている。吸入側三方切換弁(102)の第 3ポートは、閉鎖弁 (20)を介して低 圧ガス管(15)に接続されている。
[0027] 上記四路切換弁 (3A)の第 1ポートは、吐出側三方切換弁(101)の第 3ポートから延 びる配管及び後述する連通管 (21)の接続部に接続されて!、る。四路切換弁 (3A)の 第 3ポートから延びる配管は、吸入側三方切換弁(102)の第 2ポートに接続されてい る。四路切換弁 (3A)の第 4ポートから延びる配管には、閉鎖弁 (20)を介して連絡ガ ス管(17)が接続されている。
[0028] 上記四路切換弁 (3A)は、吐出側三方切換弁(101)の第 3ポートから延びる配管及 び連通管 (21)の接続部と連絡ガス管(17)とが連通し、且つ室外ガス管 (9)及び吐出 側三方切換弁(101)の第 2ポートから延びる配管の接続部と吸入側三方切換弁(102 )の第 2ポートから延びる配管とが連通する ON状態(図 2実線参照)と、吐出側三方 切換弁(101)の第 3ポートから延びる配管及び連通管 (21)の接続部と室外ガス管 (9 )とが連通し、且つ連絡ガス管(17)と吸入側三方切換弁(102)の第 2ポートから延び る配管とが連通する OFF状態(図 2破線参照)とに切り換わるように構成されている。
[0029] 上記連絡ガス管(17)と低圧ガス管(15)と接続液管(19)とは、室外ユニット(1A)から 外部に延長され、室外ユニット(1A)内に閉鎖弁 (20)がそれぞれ設けられている。
[0030] 上記ェコノマイザ一用熱交 (103)は、第 1流路(105)と第 2流路(106)とを備え て 、る。第 1流路(105)の一端力 延びる配管は上記レシーバ(14)の出口に接続さ れ、他端は上記接続液管(19)及びレシーバ(14)の入口力 延びる配管の接続部に 接続されて 、る。第 2流路(106)の一端は逆止弁 (7)を介してインバータ圧縮機 (2) の中間圧力部(図示せず)に接続され、他端はェコノマイザ一用電子膨張弁(107)を 介してレシーバ (14)の入口から接続液管(19)に向かって延びる配管の接続部に接 続されている。このように構成することで、レシーバ(14)の出口から出てきた液冷媒が 、一度ェコノマイザ一用熱交^^ (103)の第 1流路(105)を通過した後、ェコノマイザ 一用電子膨張弁(107)で減圧され、第 2流路(106)を通過中に上記第 1流路(105)内 の冷媒によって、低圧状態で過冷却された後、この低圧冷媒がインバータ圧縮機 (2) の中間圧力部に導かれるように構成されて 、る。ェコノマイザ一用電子膨張弁(107) の制御は、過冷却度とインバータ圧縮機 (2)の吐出管 (5)の冷媒温度に合わせて行 われる。なお、上記逆止弁 (7)によってインバータ圧縮機 (2)の中間圧力部力もの冷 媒の逆流が防がれる。この過冷却された低圧冷媒がインバータ圧縮機 (2)の中間圧 力部に導かれることで、インバータ圧縮機 (2)の過熱が防止される。
[0031] レシーバ(14)の入口における第 1液管(10a)側とェコノマイザ一用熱交 (103) の第 1流路(105)側とには、それぞれ逆止弁(7)が設けられ、レシーバ(14)の入口に 向かってのみ冷媒が流れるように構成されている。また、レシーバ(14)の入口から延 びる配管とェコノマイザ一用熱交 (103)の第 1流路(105)側との間には、凝縮圧 力調整弁(108)が設けられている。この凝縮圧力調整弁(108)によって、暖房運転時 で外気温度が低いときに、室内ユニット(1B)側の冷媒不足が防止される。
[0032] 上記四路切換弁 (3A)の第 1ポートから延びる配管及び吐出側三方切換弁(101)の 第 3ポートから延びる配管の接続部と接続液管(19)からレシーバ(14)に向かって延 びる配管との間には、補助ラインである連通管 (21)が接続されている。この連通管 (2 1)には、パネ付逆止弁(109)が設けられている。パネ付逆止弁(109)は、通常は作動 せず、運転停止時にレシーバ(14)が液状の冷媒で満タンのとき、各ノ レブを閉じた ときの液漏れを防止するように構成されて 、る。
[0033] 〈室内ユニット〉
上記室内ユニット(1B)は、第 1熱交 としての室内熱交 (41)と膨張機構で ある室内膨張弁 (42)とを備えている。上記室内熱交 (41)のガス側は、連絡ガス 管(17)が接続されている。一方、上記室内熱交換器 (41)の液側は、室内膨張弁 (42 )を介して第 2連絡液管(12)が接続され、この第 2連絡液管(12)が室外ユニット(1A) に延びる接続液管(19)に接続されている。なお、上記室内熱交 (41)は、例えば 、クロスフィン式のフィン 'アンド'チューブ型熱交換器であって、室内ファン(43)が近 接して配置されている。
[0034] 〈冷蔵ユニット〉
上記冷蔵ユニット (1C)は、第 2熱交翻としての冷蔵熱交翻 (45)と膨張機構で ある冷蔵膨張弁 (46)とを備えている。上記冷蔵熱交 (45)の液側は、電磁弁 (7a )及び冷蔵膨張弁 (46)を介して第 1連絡液管(11)が接続されている。一方、上記冷 蔵熱交換器 (45)のガス側は、低圧ガス管(15)が接続されて!ヽる。
[0035] 上記冷蔵熱交換器 (45)は、低圧ガス管(15)を介して吸入側三方切換弁(102)の 第 3ポートに連通する一方、上記室内熱交換器 (41)は、冷房運転時に連絡ガス管(1 7)を介して吸入側三方切換弁(102)の第 2ポートに連通する。上記吸入側三方切換 弁(102)の流量調整により、冷蔵熱交換器 (45)の冷媒圧力 (蒸発圧力)は室内熱交 換器 (41)の冷媒圧力 (蒸発圧力)より低くなる。この結果、上記冷蔵熱交換器 (45)の 冷媒蒸発温度は、例えば、 10°Cとなり、室内熱交換器 (41)の冷媒蒸発温度は、例 えば、 +5°Cとなって冷媒回路(1E)が異温度蒸発の回路を構成している。
[0036] なお、上記冷蔵膨張弁 (46)は、感温式膨張弁であって、感温筒が冷蔵熱交換器 ( 45)のガス側に取り付けられている。上記冷蔵熱交^^ (45)は、例えば、クロスフィン 式のフィン ·アンド ·チューブ型熱交換器であって、冷蔵ファン (47)が近接して配置さ れている。
[0037] 〈冷凍ユニット〉
上記冷凍ユニット (1D)は、第 2熱交翻としての冷凍熱交翻 (51)と膨張機構で ある冷凍膨張弁 (52)とを備えている。上記冷凍熱交 (51)の液側は、第 1連絡液 管(11)より分岐した分岐液管(13)が電磁弁 (7b)及び冷凍膨張弁 (52)を介して接続 されている。
[0038] なお、上記冷凍膨張弁 (52)は、感温式膨張弁であって、感温筒が冷凍熱交換器 ( 51)のガス側に取り付けられている。上記冷凍熱交^^ (51)は、例えば、クロスフィン 式のフィン ·アンド ·チューブ型熱交換器であって、冷凍ファン (58)が近接して配置さ れている。
[0039] 〈ブースタユニット〉
ブースタユニット(IF)は、ブースタ圧縮機 (53)と過冷却用熱交換器 (210)とを備え ている。
[0040] 上記ブースタ圧縮機 (53)は、冷凍熱交換器 (51)の冷媒蒸発温度が冷蔵熱交換器
(45)の冷媒蒸発温度より低くなるようにインバータ圧縮機 (2)との間で冷媒を 2段圧 縮している。上記冷凍熱交 (51)の冷媒蒸発温度は、例えば、—40°Cに設定さ れている。
[0041] 上記冷凍熱交換器 (51)のガス側とブースタ圧縮機 (53)の吸込側とは、接続ガス管
(54)によって接続されている。該ブースタ圧縮機 (53)の吐出側には、低圧ガス管(15 )より分岐した分岐ガス管(16)が接続されている。該分岐ガス管(16)には、逆止弁 (7 )とオイルセパレータ(55)とが設けられて 、る。該ォィルセパレータ (55)と接続ガス管 (54)との間には、キヤビラリチューブを有する油戻し管 (57)が接続されている。
[0042] また、上記ブースタ圧縮機 (53)の吸込側である接続ガス管 (54)とブースタ圧縮機 ( 53)の吐出側である分岐ガス管(16)の逆止弁(7)の下流側との間には、逆止弁(7)を 有するバイパス管 (59)が接続されて!、る。該バイパス管 (59)は、ブースタ圧縮機 (53 )の故障などの停止時に該ブースタ圧縮機 (53)をバイパスして冷媒が流れるように構 成されている。
[0043] 上記過冷却用熱交 (210)は、 V、わゆるプレート式熱交^^によって構成されて いる。過冷却用熱交 (210)には、第 1流路 (211)と第 2流路 (212)とが複数ずつ 形成されている。上記第 1連絡液管(11)力ゝら第 3連絡液管(18)が分岐している。上 記過冷却用熱交換器 (210)の第 1流路 (211)は、上記第 1連絡液管(11)の一部を構 成している。第 2流路 (212)は、上記第 3連絡液管(18)の一部を構成している。
[0044] 上記第 3連絡液管(18)における第 1連絡液管(11)との分岐点から第 2流路 (212)ま での間には、過冷却用膨張弁 (223)が設けられている。この過冷却用膨張弁 (223) は、感温式膨張弁によって構成されており、感温筒が第 2流路 (212)の反対側に取り 付けられている。
[0045] そして、上記過冷却用熱交翻 (210)は、過冷却用膨張弁 (223)が開いたときに、 第 1流路 (211)を流れる冷媒と、第 2流路 (212)を流れる冷凍装置(10)の冷媒とを熱 交換させる。この第 1流路 (211)を流れて過冷却された冷媒が第 1連絡液管(11)を通 つて冷蔵熱交 (45)と冷凍熱交 (51)とに流れるように構成されて ヽる。
[0046] 〈制御系統〉
上記冷媒回路(1E)には、各種センサ及び各種スィッチが設けられている。上記室 外ユニット(1A)の吐出側三方切換弁(101)の第 3ポートの近傍には、高圧冷媒圧力 を検出する高圧圧力センサ (61)が設けられて 、る。インバータ圧縮機 (2)には、高圧 冷媒温度を検出する吐出温度センサ (62)が設けられている。
[0047] 上記インバータ圧縮機 (2)の吸入管 (6)の近傍には、低圧冷媒圧力を検出する低 圧圧力センサ (65,66)と、低圧冷媒温度を検出する吸入温度センサ (67)とが設けら れている。
[0048] また、上記室外ユニット(1A)には、室外空気温度を検出する外気温センサ(70)が 設けられている。
[0049] 上記室内熱交換器 (41)には、室内熱交換器 (41)における冷媒温度である凝縮温 度又は蒸発温度を検出する室内熱交換センサ(71)が設けられると共に、ガス側にガ ス冷媒温度を検出するガス温センサ(72)が設けられている。また、上記室内ユニット( 1B)には、室内空気温度を検出する室温センサ(73)が設けられている。
[0050] 上記冷蔵ユニット(1C)には、冷蔵用のショーケース内の庫内温度を検出する冷蔵 温度センサ(74)が設けられている。上記冷凍ユニット(1D)には、冷凍用のショーケー ス内の庫内温度を検出する冷凍温度センサ(75)が設けられている。
[0051] 上記各種センサ及び各種スィッチの出力信号は、コントローラ(80) (図 1にのみ示 す)に入力されて 、る。該コントローラ (80)は、インバータ圧縮機 (2)の容量などを制 御するように構成されている。
[0052] また、上記コントローラ (80)は、冷媒回路(1E)の運転を制御し、冷房運転と冷凍運 転と冷房冷凍運転と暖房運転と第 1乃至第 3暖房冷凍運転とを切り換えて制御するよ うに構成されている。
[0053] 上記コントローラ (80)の制御により、上記吐出側三方切換弁(101)は、室外熱交換 器 (4)が蒸発器となるときには、第 2ポートが完全に閉じられ、第 3ポート側に冷媒が 全て流れる。一方、暖房運転中の室内熱交 (41)が凝縮器となるときで且つサー モオフのときには、第 3ポート側が完全に閉じられ、第 2ポート側に冷媒が全て流れる 。また、室内熱交換器 (41)及び室外熱交換器 (4)が凝縮器となる熱回収運転時には 、インバータ圧縮機 (2)の吐出圧力が一定以上になったことを高圧圧力センサ (61) によって検出したときに、吐出圧を一定以下とするように、第 2ポートが開くように制御 される。 [0054] 上記コントローラ (80)の制御により、吸入側三方切換弁(102)は、室内ユニット(1B) のみの運転時には、その第 3ポートは常に閉じられる。
[0055] 運転動作
次に、上記冷凍装置(1)が行う主な運転動作について説明する。
〈冷房モード〉
冷房モードは、冷房運転と冷凍運転と冷房冷凍運転との!/、ずれかに切り換わる。
[0056] 〈冷房運転〉
図 2に示すように、この冷房運転は、室内ユニット(1B)の冷房のみを行う運転である
[0057] また、四路切換弁 (3A)は、図 2の実線で示すように、それぞれ OFF状態に切り換 わる。更に、冷蔵ユニット(1C)の電磁弁(7a)及び冷凍ユニット(1D)の電磁弁(7b)が 閉鎖している。
[0058] この状態において、インバータ圧縮機 (2)から吐出した冷媒は、吐出側三方切換弁
(101)で第 2ポートを通って室外ガス管(9)側に分配される。そして、その冷媒は、室 外熱交換器 (4)で凝縮する。この凝縮した液冷媒は、第 1液管(10a)を流れた後、レ シーバ(14)に流れ、接続液管(19)を通って第 2連絡液管(12)を流れ、室内膨張弁( 42)を経て室内熱交換器 (41)に流れて蒸発する。蒸発したガス冷媒は、連絡ガス管( 17)から四路切換弁 (3A)を経て吸入側三方切換弁(102)の第 2ポートを通ってインバ ータ圧縮機 (2)に戻る。この循環を繰り返し、室内である店内を冷房する。
[0059] また、上記室内膨張弁 (42)の開度は、室内熱交換センサ(71)とガス温センサ(72) の検出温度に基づいて過熱度制御され、以下、冷房モードでは同じである。
[0060] 〈冷凍運転〉
この冷凍運転は、冷蔵ユニット(1C)と冷凍ユニット(1D)の冷却のみを行う運転であ る。
[0061] また、四路切換弁 (3A)は、図 3の実線で示すように、 OFF状態に切り換わる。更に 、冷蔵ユニット(1C)の電磁弁(7a)及び冷凍ユニット(ID)の電磁弁(7b)が開口される 一方、室内膨張弁 (42)が閉鎖している。
[0062] この状態において、インバータ圧縮機 (2)から吐出した冷媒は、吐出側三方切換弁 (101)で第 2ポートを通って室外ガス管(9)側に分配される。そして、その冷媒は、室 外熱交換器 (4)で凝縮する。この凝縮した液冷媒は、第 1液管(10a)を流れた後、レ シーバ(14)に流れ、接続液管(19)を通って第 1連絡液管(11)を流れ、一部が冷蔵 膨張弁 (46)を経て冷蔵熱交換器 (45)に流れて蒸発する。
[0063] 一方、第 1連絡液管(11)を流れる他の液冷媒は、分岐液管(13)を流れ、冷凍膨張 弁 (52)を経て冷凍熱交換器 (51)に流れて蒸発する。この冷凍熱交換器 (51)で蒸発 したガス冷媒は、ブースタ圧縮機 (53)に吸引されて圧縮され、分岐ガス管(16)に吐 出される。
[0064] 上記冷蔵熱交換器 (45)で蒸発したガス冷媒とブースタ圧縮機 (53)から吐出したガ ス冷媒とは、低圧ガス管(15)で合流し、吸入側三方切換弁(102)の第 3ポートを通つ てインバータ圧縮機 (2)に戻る。この循環を繰り返し、冷蔵用のショーケースと冷凍用 のショーケースである庫内を冷却する。
[0065] したがって、上記冷凍熱交換器 (51)における冷媒圧力は、ブースタ圧縮機 (53)で 吸引されるので、冷蔵熱交換器 (45)における冷媒圧力より低圧となる。この結果、例 えば、上記冷凍熱交換器 (51)における冷媒温度 (蒸発温度)がー 40°Cとなり、上記 冷蔵熱交 (45)における冷媒温度 (蒸発温度)が 10°Cとなる。
[0066] また、上記冷蔵膨張弁 (46)及び冷凍膨張弁 (52)の開度は、感温筒による過熱度 制御が行われ、以下、各運転で同じである。
[0067] 〈冷房冷凍運転〉
図 4に示すように、この冷房冷凍運転は、室内ユニット(1B)の冷房と冷蔵ユニット(1 C)及び冷凍ユニット(1D)の冷却とを同時に行う運転である。
[0068] また、四路切換弁 (3A)は、図 4の実線で示すように、それぞれ OFF状態に切り換 わる。更に、室内膨張弁 (42)、冷蔵ユニット(1C)の電磁弁(7a)及び冷凍ユニット(1D )の電磁弁(7b)が開口されて 、る。
[0069] この状態において、インバータ圧縮機 (2)から吐出した冷媒は、吐出側三方切換弁
(101)で第 2ポートを通って室外ガス管(9)側に分配される。そして、その冷媒は、室 外熱交換器 (4)で凝縮する。この凝縮した液冷媒は、第 1液管(10a)を流れた後、レ シーバ(14)に流れ、接続液管(19)を通って第 1連絡液管(11)と第 2連絡液管(12)と に分かれて流れる。
[0070] 上記第 2連絡液管(12)を流れる液冷媒は、室内膨張弁 (42)を経て室内熱交換器 ( 41)に流れて蒸発する。蒸発したガス冷媒は、連絡ガス管(17)カゝら四路切換弁 (3A) を経て吸入側三方切換弁(102)の第 2ポートを通るときに減圧されてインバータ圧縮 機 (2)に戻る。
[0071] 一方、上記第 1連絡液管(11)を流れる液冷媒の一部が冷蔵膨張弁 (46)を経て冷 蔵熱交換器 (45)に流れて蒸発する。また、上記第 1連絡液管(11)を流れる他の液冷 媒は、分岐液管(13)を流れ、冷凍膨張弁 (52)を経て冷凍熱交換器 (51)に流れて蒸 発する。この冷凍熱交翻 (51)で蒸発したガス冷媒は、ブースタ圧縮機 (53)に吸引 されて圧縮され、分岐ガス管(16)に吐出される。
[0072] 上記冷蔵熱交換器 (45)で蒸発したガス冷媒とブースタ圧縮機 (53)から吐出したガ ス冷媒とは、低圧ガス管(15)で合流し、吸入側三方切換弁(102)の第 3ポートを通つ てインバータ圧縮機 (2)に戻る。
[0073] この循環を繰り返し、室内である店内を冷房すると同時に、冷蔵用のショーケースと 冷凍用のショーケースである庫内を冷却する。
[0074] そこで、上記冷房冷凍運転時における冷媒挙動を図 5を用いて説明する。なお、こ の場合、簡略化のために、ェコノマイザ一用熱交換器 (103)や過冷却用熱交換器 (2 10)での過冷却の作用につ!/、ては省略する。
[0075] まず、上記インバータ圧縮機 (2)によって冷媒カ A点まで圧縮される。 A点の冷媒 は、凝縮して B点の冷媒となる。この B点の冷媒の一部は、室内膨張弁 (42)で C点ま で減圧し、例えば、 + 5°Cで蒸発し、 D点で吸入側三方切換弁(102)の第 2ポートを 通るときに E点まで減圧され、インバータ圧縮機 (2)に吸引される。
[0076] また、上記 B点の冷媒の一部は、冷蔵膨張弁 (46)で F点まで減圧し、例えば、 10 °Cで蒸発し、 E点でインバータ圧縮機 (2)に吸引される。
[0077] また、上記 B点の冷媒の一部は、ブースタ圧縮機 (53)で吸引されるので、冷凍膨張 弁 (52)で G点まで減圧し、例えば、 40°Cで蒸発し、 H点でブースタ圧縮機 (53)に 吸引される。このブースタ圧縮機 (53)で I点まで圧縮された冷媒は、 E点でインバータ 圧縮機 (2)に吸引される。 [0078] このように、冷媒回路(IE)の冷媒は、吸入側三方切換弁(102)によって異温度蒸 発し、更に、ブースタ圧縮機 (53)による 2段圧縮によって 3種類の蒸発温度となる。 〈暖房モード〉
暖房モードは、上記コントローラ(80)の制御により、暖房運転と第 1暖房冷凍運転と 第 2暖房冷凍運転と第 3暖房冷凍運転のいずれに切り換わる。
[0079] 〈暖房運転〉
この暖房運転は、室内ユ ット(1B)の暖房のみを行う運転である。また、四路切換 弁 (3A)は、図 6の実線で示すように、 ON状態に切り換わる。吐出側三方切換弁(10 1)の第 2ポートは閉じている。吸入側三方切換弁(102)の第 3ポートは閉じている。更 に、冷蔵ユニット(1C)の電磁弁(7a)及び冷凍ユニット (1D)の電磁弁(7b)が閉鎖して いる。
[0080] この状態において、インバータ圧縮機 (2)から吐出した冷媒は、吐出側三方切換弁
(101)の第 3ポートを通って、四路切換弁 (3A)から連絡ガス管(17)を経て室内熱交 換器 (41)に流れて凝縮する。凝縮した液冷媒は、第 2連絡液管(12)を流れ、レシ一 バ(14)に流れる。その後、上記液冷媒は、暖房用電子膨張弁(104)を経て室外熱交 換器 (4)に流れて蒸発する。蒸発したガス冷媒は、室外ガス管 (9)から四路切換弁 (3 A)及び吸入側三方切換弁(102)を経て、インバータ圧縮機 (2)に戻る。この循環を繰 り返し、室内である店内を暖房する。
[0081] また、上記暖房用電子膨張弁(104)の開度は、低圧圧力センサ(65,66)に基づく圧 力相当飽和温度と吸入温度センサ(67)の検出温度によって過熱度制御される。上 記室内膨張弁 (42)の開度は、室内熱交換センサ(71)の検出温度に基づ!/、て過冷 却制御される。この暖房用電子膨張弁(104)及び室内膨張弁 (42)の開度制御は、 以下、暖房モードで同じである。
[0082] 〈第 1暖房冷凍運転〉
この第 1暖房冷凍運転は、室外熱交換器 (4)を用いず、室内ユニット(1B)の暖房と 冷蔵ユニット(1C)及び冷凍ユニット (1D)の冷却を行う運転である。
[0083] 図 7の実線で示すように、四路切換弁 (3A)は、 ON状態に切り換わる。吐出側三方 切換弁(101)の第 2ポートは閉じて 、る。吸入側三方切換弁(102)の第 3ポートは開 いている。更に、冷蔵ユニット(1C)の電磁弁(7a)及び冷凍ユニット(ID)の電磁弁(7 b)が開口する一方、暖房用電子膨張弁(104)が閉鎖して 、る。
[0084] この状態において、インバータ圧縮機 (2)から吐出した冷媒は、吐出側三方切換弁
(101)において、全て第 3ポート側に送られる。この冷媒が四路切換弁 (3A)力 連絡 ガス管(17)を経て室内熱交換器 (41)に流れて凝縮する。凝縮した液冷媒は、第 2連 絡液管(12)から第 1連絡液管(11)を流れる。
[0085] 上記第 1連絡液管(11)を流れる液冷媒は、その一部が冷蔵膨張弁 (46)を経て冷 蔵熱交換器 (45)に流れて蒸発する。また、上記第 1連絡液管(11)を流れる他の液冷 媒は、分岐液管(13)を流れ、冷凍膨張弁 (52)を経て冷凍熱交換器 (51)に流れて蒸 発する。この冷凍熱交翻 (51)で蒸発したガス冷媒は、ブースタ圧縮機 (53)に吸引 されて圧縮され、分岐ガス管(16)に吐出される。
[0086] 上記冷蔵熱交換器 (45)で蒸発したガス冷媒とブースタ圧縮機 (53)から吐出したガ ス冷媒とは、低圧ガス管(15)で合流し、インバータ圧縮機 (2)に戻る。この循環を繰り 返し、室内である店内を暖房すると同時に、冷蔵用のショーケースと冷凍用のショー ケースである庫内を冷却する。つまり、冷蔵ユニット(1C)と冷凍ユニット(1D)との冷却 能力(蒸発熱量)と、室内ユ ット(1B)の暖房能力(凝縮熱量)とがバランスし、 100 %の熱回収が行われる。
[0087] 〈第 2暖房冷凍運転〉
図 8に示すように、この第 2暖房冷凍運転は、上記第 1暖房冷凍運転時に室内ュニ ット(1B)の暖房能力が余る暖房の能力過剰運転である。
[0088] この第 2暖房冷凍運転は、上記第 1暖房冷凍運転時において、暖房能力が余る場 合の熱回収運転である。
[0089] インバータ圧縮機 (2)の吐出圧力が一定以上になったことを高圧圧力センサ (61) によって検出したときに、上記コントローラ(80)の制御により、第 2ポートが開くように 制御され、インバータ圧縮機 (2)から吐出した冷媒は、吐出側三方切換弁(101)によ つて分配される。すなわち、室内熱交 (41)で必要な凝縮熱を与えることのできる 流量の冷媒のみを、その第 3ポートを通して室内熱交換器 (41)に流し、凝縮する。凝 縮した液冷媒は、第 2連絡液管(12)を通って第 1連絡液管(11)に流れる。 [0090] 一方、インバータ圧縮機 (2)から吐出した残りの冷媒は、吐出側三方切換弁(101) で第 2ポートを通って室外ガス管 (9)側に分配される。そして、その冷媒は、室外熱交 (4)で凝縮する。この凝縮した液冷媒は、第 1液管(10a)を流れた後、レシーバ( 14)に流れ、接続液管(19)を通って第 1連絡液管(11)において上記室内熱交換器( 41)を通過した冷媒と合流する。
[0091] その後、上記第 1連絡液管(11)を流れる液冷媒の一部が冷蔵熱交換器 (45)に流 れて蒸発する。また、上記第 1連絡液管(11)を流れる他の液冷媒は、冷凍熱交換器 (51)に流れて蒸発する。上記冷蔵熱交換器 (45)で蒸発したガス冷媒と、冷凍熱交 (51)で蒸発した後ブースタ圧縮機 (53)カゝら吐出されたガス冷媒とは、低圧ガス 管(15)で合流し、吸入側三方切換弁(102)の第 3ポートを通ってインバータ圧縮機 ( 2)に戻る。この循環を繰り返し、室内である店内を暖房すると同時に、冷蔵用のショ 一ケースと冷凍用のショーケースである庫内を冷却する。つまり、冷蔵ユニット(1C)と 冷凍ユニット(1D)との冷却能力 (蒸発熱量)と、室内ユニット(1B)の暖房能力 (凝縮 熱量)とがバランスせず、余る凝縮熱のみを室外熱交換器 (4)で室外に放出する。
[0092] 〈第 3暖房冷凍運転〉
この第 3暖房冷凍運転は、上記第 1暖房冷凍運転時に室内ユニット(1B)の暖房能 力が不足する暖房の能力不足運転である。つまり、蒸発熱量が不足している場合で ある。
[0093] 図 9の実線で示すように、四路切換弁 (3A)は、 ON状態に切り換わる。吐出側三方 切換弁(101)の第 2ポートは閉じている。吸入側三方切換弁(102)は第 2ポート及び 第 3ポートが開いている。更に、室内膨張弁 (42)、冷蔵ユニット(1C)の電磁弁 (7a)及 び冷凍ユニット(1D)の電磁弁(7b)が開口して 、る。
[0094] したがって、インバータ圧縮機 (2)から吐出した冷媒は、上記第 1暖房冷凍運転と 同様に全て室内熱交換器 (41)に流れて凝縮する。凝縮した液冷媒は、第 2連絡液 管(12)を通って第 1連絡液管(11)とレシーバ(14)とに流れる。
[0095] その後、上記第 1連絡液管(11)を流れる液冷媒の一部が冷蔵熱交換器 (45)に流 れて蒸発する。また、上記第 1連絡液管(11)を流れる他の液冷媒は、冷凍熱交換器 (51)に流れて蒸発する。上記冷蔵熱交換器 (45)で蒸発したガス冷媒と冷凍熱交換 器 (51)で蒸発した後ブースタ圧縮機 (53)カゝら吐出したガス冷媒とは、低圧ガス管(15 )で合流し、吸入側三方切換弁(102)の第 3ポートを通るときに減圧されてインバータ 圧縮機 (2)に戻る。
[0096] 一方、上記レシーバ(14)側に流れ込んだ他の液冷媒は、第 2液管(10b)を経て暖 房用電子膨張弁 (104)を通って室外熱交換器 (4)に流れ、蒸発する。蒸発したガス 冷媒は、室外ガス管 (9)を流れ、四路切換弁 (3A)及び吸入側三方切換弁(102)を経 てインバータ圧縮機 (2)に戻る。
[0097] この循環を繰り返し、室内である店内を暖房すると同時に、冷蔵用のショーケースと 冷凍用のショーケースである庫内を冷却する。つまり、冷蔵ユニット(1C)と冷凍ュ-ッ ト(1D)との冷却能力 (蒸発熱量)と、室内ユニット (1B)の暖房能力 (凝縮熱量)とがバ ランスせず、不足する蒸発熱を室外熱交換器 (4)から得る。
[0098] そこで、上記第 3暖房冷凍運転時における冷媒挙動を図 10を用いて説明する。な お、この場合、簡略化のために、ェコノマイザ一用熱交換器(103)や過冷却用熱交 ^ (210)での過冷却の作用につ ヽては省略する。
[0099] まず、上記インバータ圧縮機 (2)によって冷媒カ A点まで圧縮される。 A点の冷媒 は、凝縮して B点の冷媒となる。この B点の冷媒は、暖房用電子膨張弁(104)で C点 まで減圧し、例えば、— 15°Cで蒸発し、 D点でインバータ圧縮機 (2)に吸引される。
[0100] また、上記 B点の冷媒の一部は、冷蔵膨張弁 (46)で E点まで減圧し、例えば、 - 1 0°Cで蒸発し、 F点で吸入側三方切換弁(102)の第 3ポートを通るときに D点まで減圧 されてインバータ圧縮機 (2)に吸引される。
[0101] また、上記 B点の冷媒の一部は、ブースタ圧縮機 (53)で吸引されるので、冷凍膨張 弁 (52)で G点まで減圧し、例えば、— 40°Cで蒸発し、 H点でブースタ圧縮機 (53)に 吸引される。このブースタ圧縮機 (53)で I点まで圧縮された冷媒は、 F点で吸入側三 方切換弁(102)の第 3ポートを通るときに D点まで減圧されてインバータ圧縮機 (2)に 吸引される。
[0102] このように、冷媒回路(1E)の冷媒は、吸入側三方切換弁(102)によって異温度蒸 発し、更に、ブースタ圧縮機 (53)による 2段圧縮によって 3種類の蒸発温度となる。
[0103] 〈能力調整方法〉 次に、上記各運転における空調能力(冷房能力又は暖房能力)及び冷蔵冷凍能力 の調整方法にっ 、て説明する。
[0104] コントローラ (80)は、インバータ圧縮機 (2)又は吸入側三方切換弁(102)を制御す ることによって各熱交 ^ (41,45,51)の冷媒流量を調整し、空調能力や冷却能力を 調整する。具体的に、コントローラ (80)は、冷媒の低圧圧力 (蒸発圧力)とその目標 圧力との圧力差 (以下、単に冷媒の圧力差という。)に基づいてインバータ圧縮機 (2) 又は吸入側三方切換弁(102)を制御する。なお、空調側の冷媒の圧力差は低圧圧 力センサ (65)の検出圧力とその目標圧力との差であり、冷却側の冷媒の圧力差は低 圧圧力センサ (66)の検出圧力とその目標圧力との差である。
[0105] 例えば、上記冷房冷凍運転にお!、て、負荷が増大して空調側及び冷却側の両方 の冷媒の圧力差が大きくなると、コントローラ (80)は、インバータ圧縮機 (2)の運転容 量を増大させる。つまり、吸入側三方切換弁(102)において、第 2ポート及び第 3ポー トの流量分配比は変化しないが、各ポートを流れる冷媒流量が多くなる。これにより、 室内熱交換器 (41)、冷蔵熱交換器 (45)及び冷凍熱交換器 (51)の冷媒流量が増大 し、冷房能力及び冷蔵冷凍能力が増大する。なお、負荷が増大すると、冷媒の低圧 圧力は目標圧力より高くなる。また、空調側及び冷却側の一方の負荷が増大した場 合、コントローラ (80)はインバータ圧縮機 (2)の運転容量を増大させ、吸入側三方切 換弁(102)の流量分配比を変える。つまり、吸入側三方切換弁(102)の全体流量を 増大させ、且つ、その増大分が負荷増大側のポートを流れるように吸入側三方切換 弁(102)の流量分配比が変えられる。
[0106] ところが、インバータ圧縮機 (2)を最大容量で運転していた場合、コントローラ (80) は、吸入側三方切換弁(102)を制御して冷媒の圧力差が大きい方を優先して冷媒流 量を増大させる。例えば、空調側が冷却側より冷媒の圧力差が大きい場合、吸入側 三方切換弁(102)において第 2ポートの冷媒流量が増大し、その分第 3ポートの冷媒 流量が減少するように各ポート間の流量分配比を変える。つまり、吸入側三方切換弁 (102)を流れる冷媒の総流量は変化しない。これにより、室内熱交換器 (41)の冷媒 流量が増大して冷房能力が増大する一方、冷蔵熱交換器 (45)及び冷凍熱交換器 ( 51)の冷媒流量が減少して冷蔵冷凍能力が低下するので、双方の能力をほぼ均衡さ せることができ、大幅な能力不足を抑制することができる。
[0107] なお、コントローラ (80)は、第 3暖房冷凍運転においても同様の制御を行う。また、 冷房運転、冷凍運転、暖房運転、第 1暖房冷凍運転及び第 2暖房冷凍運転におい て、負荷が増大すると、コントローラ (80)がインバータ圧縮機 (2)の運転容量を増大さ せる。
[0108] 一実施形態の効果
以上説明したように、上記実施形態の冷凍装置(1)によれば、吸入側三方切換弁( 102)によって、第 1熱交換器 (41)の蒸発温度を冷蔵熱交換器 (45)及び冷凍熱交換 器 (51)の蒸発温度よりも高く保ちながら流路を切り換えるようにしている。このため、 複数の圧縮機によって蒸発圧力の差を与えたり、別途圧力調整弁を設けなくても、 冷凍装置は効率よく各運転切換を行うことができる。
[0109] 実施形態の各変形例
この各変形例は、コントローラ (80)が冷媒の低圧圧力以外のパラメータに基づいて インバータ圧縮機 (2)及び吸入側三方切換弁(102)を制御するようにしたものである
[0110] 先ず、変形例 1は、コントローラ (80)が各熱交換器 (41,45,51)における吸い込み空 気温度とその目標温度との温度差 (以下、単に空気の温度差という。)に基づいてィ ンバータ圧縮機 (2)等を制御する。つまり、空調側の空気の温度差は、室内ファン (4 3)によって取り込まれた空気温度とその目標温度との差である。冷却側の空気の温 度差は、冷蔵ファン (47)によって取り込まれた空気温度とその目標温度との差および 冷凍ファン (58)によって取り込まれた空気温度とその目標温度との差の大きい方で ある。
[Oil 1] この場合、例えば、冷房冷凍運転にお!、て、負荷が増大して空調側および冷却側 の空気の温度差が増大すると、すなわち空気温度が目標温度より高くなると、インバ ータ圧縮機 (2)の運転容量を増大させる。ここで、インバータ圧縮機 (2)を最大容量 で運転して ヽた場合、吸入側三方切換弁(102)を制御して空気の温度差が大き!/ヽ方 を優先して冷媒流量を増大させる。
[0112] 変形例 2は、コントローラ (80)が冷媒の蒸発温度とその目標温度との温度差 (以下 、単に冷媒の温度差という。)に基づいてインバータ圧縮機 (2)等を制御する。つまり 、空調側の冷媒の温度差は、冷房時では室内熱交換器 (41)における冷媒温度又は 暖房時では室外熱交 (4)における冷媒温度とその目標温度との差である。冷却 側の冷媒の温度差は、冷蔵熱交 (45)における冷媒温度とその目標温度との差 および冷凍熱交 (51)における冷媒温度とその目標温度との差の大きい方であ る。
[0113] この場合、例えば、冷房冷凍運転にお!、て、負荷が増大して空調側および冷却側 の冷媒の温度差が増大すると、すなわち冷媒の蒸発温度が目標温度より高くなると、 インバータ圧縮機 (2)の運転容量を増大させる。ここで、インバータ圧縮機 (2)を最大 容量で運転して ヽた場合、吸入側三方切換弁(102)を制御して冷媒の温度差が大き Vヽ方を優先して冷媒流量を増大させる。
[0114] 変形例 3は、室内熱交換器 (41)、冷蔵熱交換器 (45)および冷凍熱交換器 (51)が それぞれ複数並列に設けられている場合である。そして、コントローラ (80)は、各熱 交換器 (41,45,51)の運転台数又は運転台数の割合に基づいてインバータ圧縮機 (2 )等を制御する。基本的に、コントローラ (80)は、各熱交 ^^ (41,45,51)が同数台ず つ設けられている場合、運転台数に基づき、各熱交 ^ (41,45,51)の台数が異なる 場合、運転台数の割合に基づく。
[0115] この場合、例えば、冷房冷凍運転において、負荷が増大して各熱交換器 (41,45,51 )の運転台数又は運転台数の割合が増大すると、インバータ圧縮機 (2)の運転容量 を増大させる。ここで、インバータ圧縮機 (2)を最大容量で運転していた場合、吸入 側三方切換弁(102)を制御して運転台数の多い方、又は運転台数の割合の多い方 を優先して冷媒流量を増大させる。
[0116] 変形例 4は、冷媒の高圧圧力、冷媒の凝縮温度又は外気温度が上昇した場合、コ ントローラ (80)が上述した冷媒の低圧圧力に基づ!/、て吸入側三方切換弁(102)を制 御する。ここで、冷媒の高圧圧力は高圧圧力センサ (61)の検出圧力である。冷媒の 凝縮温度は、冷房時では室外熱交換器 (4)における冷媒温度又は暖房時では室内 熱交換器 (41)における冷媒温度である。外気温度は外気温センサ(70)の検出温度 である。 [0117] 具体的に、冷媒の高圧圧力、冷媒の凝縮温度又は外気温度が上昇して負荷が増 大したと判断した場合、コントローラ (80)はインバータ圧縮機 (2)の運転容量を増大さ せる。このとき、インバータ圧縮機 (2)を最大容量で運転していた場合、吸入側三方 切換弁(102)を制御して空調側および冷却側のうち冷媒の低圧圧力が低い方を優 先して冷媒流量を増大させる。なお、コントローラ (80)は、上記冷媒の低圧圧力に代 えて、その目標圧力か、冷媒の蒸発温度か、取り込まれる空気温度の目標温度が低 V、方の冷媒流量を増大するように吸入側三方切換弁(102)を制御するようにしてもよ い。
[0118] (その他の実施形態)
上記実施形態では、流量調整手段として吐出側三方切換弁(101)を設けているが 、流量調整可能な四方切換弁であってももよぐいずれの場合にも、上記実施形態と 同様の作用効果が得られる。
産業上の利用可能性
[0119] 以上説明したように、本発明は、コンビニエンスストアやスーパーマーケットなどに用 いられる空調熱交^^と冷却熱交^^とを備えた冷凍装置について有用である。

Claims

請求の範囲
[1] 圧縮機 (2)と、熱源側熱交換器 (4)と、膨張機構と、室内を空調するための第 1熱交
(41)と、庫内を冷却するための第 2熱交 (45,51)とが接続された冷媒回路(
1E)を備える冷凍装置であって、
上記冷媒回路 (1E)は、上記第 1熱交 (41)と第 2熱交 (45,51)とで冷媒が 異温度蒸発するように、第 1熱交換器 (41)及び第 2熱交換器 (45,51)と、圧縮機 (2)と の流路を冷媒量可変に切り換える流量調整手段(102)を備えて!/、る
ことを特徴とする冷凍装置。
[2] 圧縮機 (2)と、熱源側熱交換器 (4)と、膨張機構と、第 1の温度で蒸発する第 1熱交
(41)と、第 2の温度で蒸発する第 2熱交 (45,51)とが接続された冷媒回路 (1
E)を備える冷凍装置であって、
上記冷媒回路(1E)は、上記第 1熱交 (41)と第 2熱交 (45,51)とが並列に 接続され、圧縮機 (2)の吸入側には、第 1熱交換器 (41)及び第 2熱交換器 (45,51)か ら圧縮機 (2)への冷媒量を可変に切り換える流量調整手段(102)を備えて!/、る ことを特徴とする冷凍装置。
[3] 請求項 1又は 2に記載の冷凍装置において、
上記流量調整手段は、圧縮機 (2)の吸入管 (6)と、第 1熱交換器 (41)及び第 2熱交 (45,51)とに接続された流量調整可能な切換弁(102)である
ことを特徴とする冷凍装置。
PCT/JP2005/014329 2004-08-06 2005-08-04 冷凍装置 WO2006013938A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
AU2005268121A AU2005268121B2 (en) 2004-08-06 2005-08-04 Refrigerating apparatus
EP05768934A EP1783443A4 (en) 2004-08-06 2005-08-04 FREEZING DEVICE
US10/585,575 US20080282728A1 (en) 2004-08-06 2005-08-04 Refrigerating Apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004230604 2004-08-06
JP2004-230604 2004-08-06

Publications (1)

Publication Number Publication Date
WO2006013938A1 true WO2006013938A1 (ja) 2006-02-09

Family

ID=35787217

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/014329 WO2006013938A1 (ja) 2004-08-06 2005-08-04 冷凍装置

Country Status (6)

Country Link
US (1) US20080282728A1 (ja)
EP (1) EP1783443A4 (ja)
KR (1) KR20070007771A (ja)
CN (1) CN1842683A (ja)
AU (1) AU2005268121B2 (ja)
WO (1) WO2006013938A1 (ja)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100800002B1 (ko) * 2007-03-15 2008-01-31 엘지전자 주식회사 공기조화시스템
IT1396960B1 (it) * 2009-12-18 2012-12-20 Climaveneta S P A Unita' termofrigorifera e relativo metodo di controllo
US9335084B2 (en) 2010-04-26 2016-05-10 Whirlpool S.A. Cooling system of a refrigerator and suction system for a compressor fluid
WO2012056533A1 (ja) * 2010-10-27 2012-05-03 株式会社 テクノミライ 空調制御システム及びプログラム
CN102022854B (zh) * 2010-12-01 2012-07-04 山东大学 一种复合制冷及热泵系统
ES2752729T3 (es) * 2010-12-09 2020-04-06 Mitsubishi Electric Corp Acondicionador de aire
KR101591188B1 (ko) * 2014-07-07 2016-02-18 엘지전자 주식회사 축열식 공조장치 및 그 제어방법
EP3081881A1 (en) * 2015-04-17 2016-10-19 Daikin Europe N.V. Compressor unit for an air conditioner and heat source unit for an air conditioner comprising the compressor unit and a heat source unit
WO2016174874A1 (ja) * 2015-04-28 2016-11-03 ダイキン工業株式会社 冷凍装置
CN105066539B (zh) * 2015-07-16 2018-07-10 广东美的暖通设备有限公司 多联机系统及其电子膨胀阀控制方法
JP6490232B2 (ja) * 2015-10-26 2019-03-27 三菱電機株式会社 空気調和装置
CN106257157A (zh) * 2016-07-22 2016-12-28 东南大学 一种可实现温湿度独立调节的家用空调
JP6935720B2 (ja) * 2017-10-12 2021-09-15 ダイキン工業株式会社 冷凍装置
US10823471B2 (en) * 2018-05-23 2020-11-03 Carrier Corporation Refrigerant transfer control in multi mode air conditioner with hot water generator
US11874031B2 (en) 2018-12-19 2024-01-16 Copeland Lp Oil control for climate-control system
CN113137780B (zh) * 2021-05-14 2022-11-18 上海理工大学 一种高效利用太阳能的低温制冷蓄冷系统

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57202070U (ja) * 1981-06-19 1982-12-22
JPH04251164A (ja) * 1991-01-08 1992-09-07 Toshiba Corp 冷凍サイクル装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001280749A (ja) * 2000-03-31 2001-10-10 Daikin Ind Ltd 冷凍装置
JP3466157B2 (ja) * 2000-05-29 2003-11-10 三星電子株式会社 3方向流量調節バルブ
CN100504245C (zh) * 2004-08-02 2009-06-24 大金工业株式会社 冷冻装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57202070U (ja) * 1981-06-19 1982-12-22
JPH04251164A (ja) * 1991-01-08 1992-09-07 Toshiba Corp 冷凍サイクル装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1783443A4 *

Also Published As

Publication number Publication date
AU2005268121B2 (en) 2008-05-08
AU2005268121A1 (en) 2006-02-09
EP1783443A4 (en) 2012-12-05
CN1842683A (zh) 2006-10-04
KR20070007771A (ko) 2007-01-16
EP1783443A1 (en) 2007-05-09
US20080282728A1 (en) 2008-11-20

Similar Documents

Publication Publication Date Title
JP3925545B2 (ja) 冷凍装置
WO2006013938A1 (ja) 冷凍装置
US7360372B2 (en) Refrigeration system
JP3775358B2 (ja) 冷凍装置
JP4360203B2 (ja) 冷凍装置
JP3861912B2 (ja) 冷凍装置
US6883346B2 (en) Freezer
US20100089082A1 (en) Air conditioner
WO2007063883A1 (ja) 冷凍装置
WO2013179334A1 (ja) 空気調和装置
JP3956784B2 (ja) 冷凍装置
JP5673738B2 (ja) 空気調和装置
WO2007102345A1 (ja) 冷凍装置
WO2020262624A1 (ja) 冷凍装置
JP4720641B2 (ja) 冷凍装置
JP2007155143A (ja) 冷凍装置
JP6926460B2 (ja) 冷凍装置
JP3598997B2 (ja) 冷凍装置
JP3945523B2 (ja) 冷凍装置
JP4023386B2 (ja) 冷凍装置
JP3661014B2 (ja) 冷凍装置
JP2009115336A (ja) 冷凍装置
JP2007163011A (ja) 冷凍装置
JP2006057869A (ja) 冷凍装置
JP4244900B2 (ja) 冷凍装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200580000992.7

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

WWE Wipo information: entry into national phase

Ref document number: 1020067012198

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2005268121

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 10585575

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2005268121

Country of ref document: AU

Date of ref document: 20050804

Kind code of ref document: A

WWP Wipo information: published in national office

Ref document number: 2005268121

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 2005768934

Country of ref document: EP

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWP Wipo information: published in national office

Ref document number: 1020067012198

Country of ref document: KR

NENP Non-entry into the national phase

Ref country code: DE

WWP Wipo information: published in national office

Ref document number: 2005768934

Country of ref document: EP