WO2017038399A1 - 多層基板およびその製造方法 - Google Patents

多層基板およびその製造方法 Download PDF

Info

Publication number
WO2017038399A1
WO2017038399A1 PCT/JP2016/073348 JP2016073348W WO2017038399A1 WO 2017038399 A1 WO2017038399 A1 WO 2017038399A1 JP 2016073348 W JP2016073348 W JP 2016073348W WO 2017038399 A1 WO2017038399 A1 WO 2017038399A1
Authority
WO
WIPO (PCT)
Prior art keywords
multilayer substrate
land electrodes
land
continuous structure
shifted
Prior art date
Application number
PCT/JP2016/073348
Other languages
English (en)
French (fr)
Inventor
長谷川 賢一郎
横地 智宏
康徳 笠間
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Priority to CN201680050397.2A priority Critical patent/CN107926123A/zh
Priority to KR1020187003772A priority patent/KR20180037968A/ko
Priority to DE112016003985.9T priority patent/DE112016003985T5/de
Priority to US15/756,745 priority patent/US20180242464A1/en
Publication of WO2017038399A1 publication Critical patent/WO2017038399A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/46Manufacturing multilayer circuits
    • H05K3/4611Manufacturing multilayer circuits by laminating two or more circuit boards
    • H05K3/4614Manufacturing multilayer circuits by laminating two or more circuit boards the electrical connections between the circuit boards being made during lamination
    • H05K3/462Manufacturing multilayer circuits by laminating two or more circuit boards the electrical connections between the circuit boards being made during lamination characterized by laminating only or mainly similar double-sided circuit boards
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/46Manufacturing multilayer circuits
    • H05K3/4644Manufacturing multilayer circuits by building the multilayer layer by layer, i.e. build-up multilayer circuits
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/0271Arrangements for reducing stress or warp in rigid printed circuit boards, e.g. caused by loads, vibrations or differences in thermal expansion
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/11Printed elements for providing electric connections to or between printed circuits
    • H05K1/111Pads for surface mounting, e.g. lay-out
    • H05K1/112Pads for surface mounting, e.g. lay-out directly combined with via connections
    • H05K1/113Via provided in pad; Pad over filled via
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/11Printed elements for providing electric connections to or between printed circuits
    • H05K1/115Via connections; Lands around holes or via connections
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/11Printed elements for providing electric connections to or between printed circuits
    • H05K1/115Via connections; Lands around holes or via connections
    • H05K1/116Lands, clearance holes or other lay-out details concerning the surrounding of a via
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/46Manufacturing multilayer circuits
    • H05K3/4611Manufacturing multilayer circuits by laminating two or more circuit boards
    • H05K3/4614Manufacturing multilayer circuits by laminating two or more circuit boards the electrical connections between the circuit boards being made during lamination
    • H05K3/4617Manufacturing multilayer circuits by laminating two or more circuit boards the electrical connections between the circuit boards being made during lamination characterized by laminating only or mainly similar single-sided circuit boards
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/46Manufacturing multilayer circuits
    • H05K3/4611Manufacturing multilayer circuits by laminating two or more circuit boards
    • H05K3/4623Manufacturing multilayer circuits by laminating two or more circuit boards the circuit boards having internal via connections between two or more circuit layers before lamination, e.g. double-sided circuit boards
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/46Manufacturing multilayer circuits
    • H05K3/4611Manufacturing multilayer circuits by laminating two or more circuit boards
    • H05K3/4638Aligning and fixing the circuit boards before lamination; Detecting or measuring the misalignment after lamination; Aligning external circuit patterns or via connections relative to internal circuits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/48Manufacture or treatment of parts, e.g. containers, prior to assembly of the devices, using processes not provided for in a single one of the subgroups H01L21/06 - H01L21/326
    • H01L21/4814Conductive parts
    • H01L21/4846Leads on or in insulating or insulated substrates, e.g. metallisation
    • H01L21/4857Multilayer substrates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/48Manufacture or treatment of parts, e.g. containers, prior to assembly of the devices, using processes not provided for in a single one of the subgroups H01L21/06 - H01L21/326
    • H01L21/4814Conductive parts
    • H01L21/4846Leads on or in insulating or insulated substrates, e.g. metallisation
    • H01L21/486Via connections through the substrate with or without pins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/16227Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation the bump connector connecting to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/48227Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/498Leads, i.e. metallisations or lead-frames on insulating substrates, e.g. chip carriers
    • H01L23/49822Multilayer substrates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/498Leads, i.e. metallisations or lead-frames on insulating substrates, e.g. chip carriers
    • H01L23/49838Geometry or layout
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/10Bump connectors ; Manufacturing methods related thereto
    • H01L24/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L24/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/42Wire connectors; Manufacturing methods related thereto
    • H01L24/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L24/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/09Shape and layout
    • H05K2201/09209Shape and layout details of conductors
    • H05K2201/09372Pads and lands
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/09Shape and layout
    • H05K2201/09209Shape and layout details of conductors
    • H05K2201/09372Pads and lands
    • H05K2201/09454Inner lands, i.e. lands around via or plated through-hole in internal layer of multilayer PCB
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/09Shape and layout
    • H05K2201/09209Shape and layout details of conductors
    • H05K2201/095Conductive through-holes or vias
    • H05K2201/09509Blind vias, i.e. vias having one side closed
    • H05K2201/09527Inverse blind vias, i.e. bottoms outwards in multilayer PCB; Blind vias in centre of PCB having opposed bottoms
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/09Shape and layout
    • H05K2201/09209Shape and layout details of conductors
    • H05K2201/095Conductive through-holes or vias
    • H05K2201/09627Special connections between adjacent vias, not for grounding vias
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/09Shape and layout
    • H05K2201/09209Shape and layout details of conductors
    • H05K2201/09654Shape and layout details of conductors covering at least two types of conductors provided for in H05K2201/09218 - H05K2201/095
    • H05K2201/09709Staggered pads, lands or terminals; Parallel conductors in different planes
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/09Shape and layout
    • H05K2201/09818Shape or layout details not covered by a single group of H05K2201/09009 - H05K2201/09809
    • H05K2201/09827Tapered, e.g. tapered hole, via or groove
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/0011Working of insulating substrates or insulating layers
    • H05K3/0014Shaping of the substrate, e.g. by moulding
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/40Forming printed elements for providing electric connections to or between printed circuits
    • H05K3/4038Through-connections; Vertical interconnect access [VIA] connections
    • H05K3/4053Through-connections; Vertical interconnect access [VIA] connections by thick-film techniques
    • H05K3/4069Through-connections; Vertical interconnect access [VIA] connections by thick-film techniques for via connections in organic insulating substrates

Definitions

  • the present invention relates to a multilayer substrate and a manufacturing method thereof.
  • a laminate is formed by laminating a plurality of resin films each having a land electrode formed on a surface and a via forming material embedded in a through hole.
  • a method of hot pressing see, for example, Patent Document 1. This heating press is performed at a temperature at which the resin film softens. By the heat press, the resin film softens and flows, gaps between the adjacent resin films are filled, and the adjacent resin films are bonded to each other by heat fusion.
  • each land electrode formed on each resin film has the same planar pattern shape. And each land electrode was arrange
  • each via of each resin film is arranged with the center of the via aligned with the center of the land electrode. That is, in the laminated body, the vias are arranged in a straight line in the laminating direction of the plurality of resin films.
  • the laminate before hot pressing a gap existing between adjacent resin films occurs between the land electrodes on the surface of one resin film. That is, a gap is generated in a region where no land electrode is disposed. For this reason, in the multilayer substrate after hot pressing, the thickness of the multilayer substrate is smaller in the region where the land electrode is not disposed than in the region where the land electrode is disposed. For these reasons, the flatness of the substrate surface is deteriorated in the multilayer substrate after the hot pressing.
  • an object of the present invention is to provide a multilayer substrate capable of improving the flatness of the multilayer substrate after hot pressing and a method for manufacturing the same.
  • a method for manufacturing a multilayer substrate which is a film-like insulating base material composed of at least a resin material, and is formed on a surface of an insulating base material.
  • the laminating step at least two or more land electrodes constituting a continuous structure are arranged so as to be shifted from each other when viewed from the laminating direction, and at least two or more gaps existing in the laminating direction are laminated. It is characterized in that stacked bodies are formed so as to be shifted from each other when viewed from the direction.
  • the laminated body before the heating and pressing step at least two or more land electrodes are arranged to be shifted from each other, so that at least two or more gaps arranged in the stacking direction are arranged to be shifted from each other.
  • the multilayer substrate is composed of at least a resin material, and is disposed on the surface of each of the plurality of laminated film-like insulating base materials and the plurality of insulating base materials, A plurality of land electrodes having a predetermined planar shape, and a plurality of interlayer connection materials provided on each of the plurality of insulating bases and connected to the land electrodes, and the plurality of land electrodes and the plurality of interlayer connection materials
  • the insulating base material has a continuous continuous structure, and at least two land electrodes constituting the continuous structure are arranged so as to be shifted from each other when viewed from the stacking direction.
  • At least two or more land electrodes constituting a continuous structure are arranged so as to be shifted from each other when viewed from the stacking direction.
  • FIG. 6 is a cross-sectional view of a multilayer substrate in Comparative Example 2.
  • FIG. It is sectional drawing which shows a part of manufacturing process of the multilayer substrate in 4th Embodiment. It is sectional drawing which shows a part of manufacturing process of the multilayer substrate in 4th Embodiment.
  • FIG. 12 is a diagram illustrating a plurality of land electrodes in FIG. 11 on the same plane.
  • FIG. 12 is a diagram illustrating a plurality of vias in FIG. 11 on the same plane. It is sectional drawing which shows a part of manufacturing process of the multilayer substrate in 5th Embodiment. It is a top view of the multilayer substrate in a 6th embodiment. It is sectional drawing of the multilayer substrate in 6th Embodiment. It is sectional drawing which shows a part of manufacturing process of the multilayer substrate in 6th Embodiment.
  • the multilayer substrate 1 of the present embodiment is obtained by laminating a plurality of resin films 10.
  • the multilayer substrate 1 has a first surface 1a that is one surface in the stacking direction and a second surface 1b that is the opposite surface.
  • a plurality of land electrodes 11 are arranged on the multilayer substrate 1 in the laminating direction of the resin films 10. The land electrode 11 is disposed between the first surface 1 a and the second surface 1 b of the multilayer substrate 1 and between the resin films 10.
  • the plurality of land electrodes 11 are electrically connected to each other through vias 12 provided in the resin film 10. Land electrodes 11 and vias 12 are alternately connected in the thickness direction of the multilayer substrate 1, that is, in the stacking direction of the plurality of resin films 10.
  • the Z direction in FIG. 1 is the thickness direction of the multilayer substrate 1.
  • the land electrode 11 and the via 12 constitute a wiring in the thickness direction of the multilayer substrate 1.
  • Each resin film 10 is a film-like insulating substrate.
  • Each resin film 10 is made of a thermoplastic resin.
  • the resin films 10 are bonded to each other.
  • Each land electrode 11 is made of a metal foil such as a copper foil.
  • the planar shape of each land electrode 11 is the same circular shape.
  • Each via 12 is an interlayer connection material that connects land electrodes located on both sides of the resin film 10.
  • Each via 12 is composed of a sintered body of metal powder.
  • the planar shape of each via 12 is the same circular shape.
  • one land electrode 11 is arranged so as to be shifted with respect to the other one land electrode 11.
  • One via 12 is arranged so as to be shifted from the other one via 12.
  • the two land electrodes 11 being arranged in a shifted manner means that the positions of both end portions 11a in the direction along the surface of the multilayer substrate 1 of each of the two land electrodes 11 are different.
  • the two vias 12 being arranged in a shifted manner means that the positions of both end portions 12a in the direction along the surface of the multilayer substrate 1 of each of the two vias 12 are different.
  • each of the plurality of land electrodes 11 is shifted in the X direction, and each of the plurality of vias 12 is shifted.
  • the plurality of land electrodes 11 are arranged at the same position, and the plurality of vias 12 are arranged at the same position.
  • the X direction is one direction along the surface of the multilayer substrate 1.
  • the Y direction is a direction along the surface of the multilayer substrate 1 and is a direction perpendicular to the X direction.
  • a preparation step of preparing a plurality of resin films 10 on which land electrodes 11 and the like are formed is performed. Specifically, a metal foil is provided on one side of each resin film 10 and the metal foil is patterned. Thereby, the land electrode 11 is formed only on one side of each resin film 10. Thereafter, via holes 13 are formed in each resin film 10 by laser processing or drilling.
  • the via hole 13 is a through hole that penetrates both surfaces of the resin film 10 in the thickness direction of the resin film 10. The via hole 13 does not penetrate the land electrode 11. In other words, the via hole 13 is a bottomed hole with the land electrode 11 as a bottom.
  • the via hole 13 is formed at a position overlapping the land electrode 11 when viewed from the thickness direction of the resin film 10. Thereafter, the via hole 13 is filled with the paste-like metal material 14.
  • the paste-like metal material 14 is a paste obtained by mixing metal powder with an organic solvent or the like. Thereby, the metal material 14 is connected to the land electrode 11.
  • the metal material 14 is a via forming material for forming the via 12. Therefore, the metal material 14 constitutes an interlayer connection material.
  • a laminating process is performed in which a plurality of resin films 10 are laminated to form a laminate 20.
  • the surface 10a on which the land electrode 11 of one resin film 10 is formed and the surface 10b on which the land electrode 11 of the other resin film 10 is not formed face each other.
  • the surface 10b in which the land electrode 11 is not formed faces each other.
  • the continuous structure 21 of the present embodiment is formed by a plurality of land electrodes 11 from a land electrode 11 located on the first surface 1 a of the multilayer substrate 1 to a land electrode 11 located on the second surface 1 b of the multilayer substrate 1. .
  • a gap 22 generated in a region between the resin films 10 to be laminated and where the land electrode 11 is not disposed is in the laminating direction (that is, the Z direction in FIG. 2A). There are several.
  • the second land electrode 11 and the third land electrode 11 from the top are shifted from the first land electrode 11 from the top.
  • the sixth land electrode 11 and the seventh land electrode 11 from the top are shifted from both the first and second land electrodes 11 from the top.
  • at least two or more metal materials 14 constituting one continuous structure 21 are arranged so as to be shifted from each other when viewed from the stacking direction.
  • the fact that the two metal materials 14 are arranged in a shifted manner means that the positions of both end portions in the direction along the surface of each multilayer substrate 1 of the two metal materials 14 are different. Accordingly, at least two or more gaps among the plurality of gaps existing in the stacking direction are also shifted from each other when viewed from the stacking direction.
  • a heating and pressurizing process is performed in which the stacked body 20 is pressurized while being heated in the stacking direction.
  • the heating temperature at this time is a temperature at which the thermoplastic resin constituting the resin film 10 softens and flows.
  • the thermoplastic resin flows to fill the gap 22 inside the laminate 20.
  • each resin film 10 is mutually adhere
  • the metal material 14 is sintered by the heating at this time, and the via 12 is formed. Thereby, the plurality of land electrodes 11 arranged in the stacking direction are electrically connected through the plurality of vias 12.
  • the multilayer substrate 1 shown in FIG. 1 is manufactured.
  • the land electrodes 11 having the same circular shape are arranged at the same position when viewed from the stacking direction.
  • all of the plurality of gaps 22 arranged in the stacking direction are at the same position when viewed from the stacking direction.
  • the stacked body 20 includes, in a direction perpendicular to the stacking direction, a region R1 in which the land electrode 11 is disposed and a resin region R2 in which the land electrode 11 is not disposed and the gap 22 is present. Yes.
  • the thickness T2 of the resin region R2 in which each land electrode 11 is not arranged in the multilayer substrate J1 is equal to each land electrode 11 in the multilayer substrate J1. It is thinner than the thickness T1 of the region R1 in which it is disposed.
  • the flatness of the multilayer substrate 1 is deteriorated.
  • At least two or more land electrodes 11 are arranged so as to be shifted from each other when viewed from the stacking direction in the stacked body 20 before the heating and pressing step.
  • at least two or more gaps 22 arranged in the stacking direction are arranged so as to be shifted from each other when viewed from the stacking direction.
  • each land electrode 11 is arranged at any one of three different arrangement locations.
  • Each gap 22 is arranged in one of three different arrangement locations.
  • the thickness T3 of the multilayer substrate 1 after the heating and pressurizing step can be made closer to uniform. Therefore, according to this embodiment, the flatness of the multilayer substrate 1 can be improved.
  • the multilayer substrate J1 manufactured by the manufacturing method of Comparative Example 1 includes a resin region R2 in which only the resin exists in the Z direction, and a metal region R3 in which only the metal exists in the Z direction, It has a mixed region R4 in which metal and resin are mixed in the Z direction.
  • the region between any two land electrodes 11 adjacent in the X direction is a region where only the resin exists.
  • the inside of the multilayer substrate J1 is damaged by thermal stress.
  • the multilayer substrate J1 expands.
  • the thermal expansion coefficients of the materials constituting the resin region R2, the metal region R3, and the mixed region R4 are different, tensile stress in the Z direction is generated on the via 12.
  • FIG. 4C when the temperature is lower than room temperature, the multilayer substrate J1 contracts.
  • the thermal expansion coefficients of the materials constituting the resin region R2, the metal region R3, and the mixed region R4 are different, compressive stress in the Z direction is generated on the via 12. Because the tensile stress is applied to the via 12 due to the tensile stress or the compressive stress, the via 12 is cracked.
  • the multilayer substrate 1 of the present embodiment is in a state where there is no region where only the resin exists in the Z direction and no region where only the metal exists in the Z direction.
  • the region between any two land electrodes 11 adjacent in the X direction is a mixed region in which metal and resin are mixed.
  • a plurality of land electrodes 11 constituting one continuous structure 21 are shifted and arranged, and the resin region R2 where only the resin exists in the Z direction is formed. Although the state is completely absent, the resin region R2 may not be completely eliminated.
  • the resin region R2 is reduced as compared with the stacked body J20 of Comparative Example 1. Also by this, the flatness of the multilayer substrate 1 can be improved as compared with the comparative example 1. However, from the viewpoint of further improving the flatness of the multilayer substrate 1, it is preferable that the resin region R2 in which only the resin exists in the Z direction is completely absent.
  • the surfaces 10b on which the land electrodes 11 are not formed face each other with respect to the two resin films 101 and 102 located at the center in the laminating direction among the plurality of resin films 10.
  • the surfaces 10b on which the land electrodes 11 are not formed may be opposed to each other for the two resin films 10 at positions other than the center in the stacking direction among the plurality of resin films 10.
  • the first region R11 has the same structure as the multilayer substrate 1 of the first embodiment.
  • An IC chip 31 is mounted on the first surface 1a of the multilayer substrate 1 in the first region R11.
  • the IC chip 31 is connected to the land electrode 11 by a ball-shaped solder 32.
  • the second region R12 has the same structure as the multilayer substrate J1 of Comparative Example 1 described in the first embodiment.
  • An IC chip 33 is mounted on the first surface 1a of the multilayer substrate 1 in the second region R12.
  • the IC chip 33 is connected to the land electrode 11 by a wire 34.
  • the first region R11 is required to have higher flatness than the second region R12. Therefore, in the first region R11, the land electrodes 11 and the vias 12 are shifted from each other as in the first embodiment. That is, in the laminated body 20 before the heating and pressing step, at least two or more land electrodes 11 are arranged so as to be shifted from each other, and at least two or more metal materials 14 are arranged so as to be shifted from each other. Thereby, the flatness of the first region R11 can be improved.
  • the multilayer substrate 1 of the present embodiment includes a plurality of land electrode groups G1, G2, G3, and G4 configured by a plurality of land electrodes 11 that are electrically connected in parallel in the Z direction.
  • the plurality of land electrode groups G 1, G 2, G 3, G 4 are arranged side by side in a direction along the surface of the multilayer substrate 1 (for example, the X direction).
  • the plurality of land electrode groups G1, G2, G3, and G4 include a pitch P1 between the land electrodes 11 positioned on the first surface 1a of the multilayer substrate 1 and a land electrode 11 positioned on the second surface 1b of the multilayer substrate 1. They are arranged so that the pitch P4 between them is different.
  • the pitch between the land electrodes 11 is the distance between the centers of the land electrodes 11 adjacent in the direction along the surface of the multilayer substrate 1.
  • the pitches P1 to P4 of the land electrodes 11 in each layer are the pitch P between the first land electrodes 11 from the first surface 1a side, the pitch P2 between the second land electrodes 11 and the third layer.
  • the pitches P3 between the land electrodes 11 are increased in the order of the pitch P4 between the land electrodes 11 of the fourth layer.
  • the land electrodes 11 are shifted in the land electrode groups G1 to G4 so that the pitches P1 to P4 of the land electrodes 11 in each layer increase from the first surface 1a toward the second surface 1b. Yes. Accordingly, the pitch P4 between the land electrodes 11 on the second surface 1b is larger than the pitch P1 between the land electrodes 11 on the first surface 1a.
  • the distances P1 to P4 between the land electrodes 11 at the same position in the stacking direction are from one side in the stacking direction.
  • the plurality of land electrodes 11 are arranged so as to be shifted from each other so as to increase toward the other side.
  • the multilayer substrate 1 of the present embodiment is compared with the multilayer substrate J1 of Comparative Example 2 shown in FIG.
  • the land electrodes 11 on the first surface J1a of the multilayer substrate J1 are basically arranged in the same manner as in the present embodiment while adopting a structure in which the positions of the land electrodes 11 are the same when viewed from the stacking direction.
  • the pitch P4 between the land electrodes 11 on the second surface J1b of the multilayer substrate J1 are different.
  • one lead-out wiring 15, 16, and 17 is required for each of the land electrode groups G2, G3, and G4 that require movement of the land electrode 11.
  • three conductor layers are required inside the multilayer substrate J1.
  • the pitches P1 to P4 between the land electrodes 11 are increased stepwise so that the pitch between the land electrodes 11 is increased. Conversion is possible. As described above, since the conversion amount between the land electrodes 11 is dispersed in all the conductor layers, as in Comparative Example 2, one layer of the lead wirings 15, 16 and 16 for each of the land electrode groups G2, G3, and G4. 17 need not be arranged. In the present embodiment, it suffices if there are two conductor layers, that is, land electrodes 11 inside the multilayer substrate 1. Therefore, according to the present embodiment, the total number of conductor layers of the multilayer substrate 1 can be reduced.
  • the stacked body 20 in which only the land electrode 11 out of the land electrode 11 and the metal material 14 is shifted. Also in the laminated body 20, as in the first embodiment, a plurality of gaps 22 existing in the stacking direction are arranged so as to be shifted from each other when viewed from the stacking direction.
  • the difference between the thicknesses T4 and T5 of the multilayer substrate 1 after the heating and pressurizing step can be suppressed. That is, also in this embodiment, compared with Comparative Example 1, the thickness of the multilayer substrate 1 after the heating and pressurizing step can be made closer to uniform.
  • a plurality of electrically connected land electrodes 11 are arranged in a spiral shape.
  • a plurality of vias 12 that electrically connect the plurality of land electrodes 11 are also arranged in a spiral shape.
  • the plurality of land electrodes 11 are arranged in a spiral shape, as shown in FIGS. 11 and 13, a virtual line VL1 that connects the centers 11b of the land electrodes 11 in order in the stacking direction is a spiral line. It means that a plurality of land electrodes 11 are arranged so that As shown in FIG. 13, when the land electrodes 111 to 118 in FIG. 11 are illustrated on the same plane, the virtual line VL1 that connects the centers 111b to 118b of the land electrodes 111 to 118 in the Z direction is circumferential. (For example, a circumferential line).
  • the plurality of vias 12 are spirally arranged, as shown in FIGS. 11 and 14, a virtual line VL2 that connects the centers 12b of the vias 12 in order in the stacking direction becomes a spiral line.
  • a virtual line VL2 that connects the centers 12b of the vias 12 in order in the stacking direction becomes a spiral line.
  • the virtual line VL2 connecting the centers 121b to 127b of the vias 121 to 127 in the order in which they are arranged in the Z direction is circumferential (for example, , A circumferential line).
  • the position of the center 12 b of the via 12 is different from the position of the center 11 b of the land electrode 11 connected to the via 12.
  • the via 12 is arranged in a region where the two land electrodes 11 connected to the via 12 overlap each other when viewed from the Z direction.
  • the lamination process in the method for manufacturing the multilayer substrate 1 of the first embodiment is changed as follows. That is, as shown in FIG. 15, in the stacking step, all of the plurality of land electrodes 11 constituting the continuous structure 21 are spirally arranged, and all of the plurality of metal materials 14 constituting the continuous structure 21 are spiral. The laminated body 20 arranged in a shape is formed. Thereby, the multilayer substrate 1 having the above-described structure is manufactured.
  • the plurality of land electrodes 11 are arranged in a spiral shape, so that the plurality of land electrodes 11 are arranged to be shifted from each other in both the X direction and the Y direction. For this reason, since the plurality of gaps 22 existing inside the stacked body 20 are shifted in both the X direction and the Y direction, the same effect as in the first embodiment can be obtained.
  • the following effects can be obtained. That is, when the plurality of land electrodes 11 are spirally arranged as in the present embodiment, the position of the land electrode 11 is changed little by little compared to the conventional structure in which the plurality of land electrodes 11 are arranged linearly. That's fine. Therefore, according to the multilayer substrate 1 of the present embodiment, the multilayer substrate 1 can be designed on the basis of the conventional structure in which the plurality of land electrodes 11 are arranged linearly.
  • the shift amount of the land electrode 11 can be made larger than when the metal materials 14 are arranged in a straight line shape. For this reason, the fifth embodiment is preferable to the sixth embodiment.
  • the present invention is not limited to the above-described embodiment, and can be appropriately changed as described below.
  • the land electrode 11 is shifted in only the X direction of the X direction and the Y direction.
  • the land electrode 11 may be shifted in both the X direction and the Y direction.
  • the plurality of land electrodes 11 may be arranged in a state other than the spiral shape.
  • the plurality of land electrodes 11 constituting the continuous structure 21 are arranged at three kinds of positions. However, they may be arranged at two kinds of positions or at four kinds of positions. Also good. However, it is preferable to arrange the plurality of land electrodes 11 at three or more positions so that the plurality of gaps 22 existing in the stacked body 20 are dispersed in a direction perpendicular to the stacking direction.
  • the planar shape of the land electrode 11 is circular, but may be other planar shapes such as a polygon.
  • the center 11b of the land electrode 11 means the position of the center of gravity in a predetermined planar shape.
  • the resin film 10 is made of a thermoplastic resin, but may be made of a resin material other than the thermoplastic resin.
  • the resin material may be any material that softens and flows in the heating and pressing step.
  • the resin film 10 may be comprised only with the resin material, and not only a resin material but materials other than a resin material may be contained. In short, the resin film 10 should just be comprised with the resin material at least.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Production Of Multi-Layered Print Wiring Board (AREA)

Abstract

加熱プレス前の積層体20において、少なくとも2つ以上のランド電極11を、積層方向から見て、互いにずらして配置することで、積層方向に並ぶ少なくとも2つ以上の隙間22を、積層方向から見て、互いにずらして配置する。この積層体20を加熱プレスすることで、樹脂フィルム10を構成する樹脂材料が流動して積層体20の内部の隙間22が埋められる。これによれば、積層方向に並ぶ複数の隙間22が積層方向から見て同じ位置にある場合と比較して、多層基板1の平坦性を向上させることができる。

Description

多層基板およびその製造方法
 本発明は、多層基板およびその製造方法に関するものである。
 従来、多層基板の製造方法として、表面に形成されたランド電極と、貫通孔に埋め込まれたビア形成用材料と、を有する樹脂フィルムを複数枚積層して積層体を形成し、この積層体を加熱プレスする方法がある(例えば、特許文献1参照)。この加熱プレスは、樹脂フィルムが軟化する温度で行われる。加熱プレスにより、樹脂フィルムが軟化して流動し、隣り合う樹脂フィルムの間に存在する隙間が埋められ、隣り合う樹脂フィルム同士が熱融着により接着される。
特開2007-53393号公報
 ところで、従来では、各樹脂フィルムに形成される各ランド電極は、同じ平面パターン形状とされていた。そして、各ランド電極は、積層体を樹脂フィルムの積層方向から見て、同じ位置に配置されていた。また、各樹脂フィルムの各ビアは、ビアの中心をランド電極の中心に合わせて配置されていた。すなわち、積層体において、各ビアは、複数の樹脂フィルムの積層方向で直線状に並んで配置されていた。
 ここで、加熱プレス前の積層体において、隣り合う樹脂フィルムの間に存在する隙間は、1つの樹脂フィルムの表面におけるランド電極とランド電極との間に生じている。すなわち、ランド電極が配置されていない領域に隙間が生じている。このため、加熱プレス後の多層基板において、ランド電極が配置されていない領域は、ランド電極が配置されている領域と比較して、多層基板の厚さが薄くなってしまう。このような理由により、加熱プレス後の多層基板において、基板表面の平坦性が悪くなってしまう。
 本発明は上記点に鑑みて、加熱プレス後の多層基板の平坦性を向上させることができる多層基板およびその製造方法を提供することを目的とする。
 上記目的を達成するため、第一の態様では、多層基板の製造方法であって、少なくとも樹脂材料で構成されたフィルム状の絶縁基材であって、絶縁基材の表面に形成され、所定の平面形状を有するランド電極と、厚さ方向に貫通して形成された貫通孔に充填され、ランド電極と連なる層間接続材料とを備えるものを複数枚準備する準備工程と、複数枚の絶縁基材を積層し、絶縁基材の積層方向において、複数のランド電極と複数の層間接続材料とが連続した連続構造をなすとともに、積層される絶縁基材同士の間であってランド電極が配置されていない領域に生じた隙間が積層方向に複数存在する積層体を形成する積層工程と、積層方向にて積層体を加熱しつつ加圧することにより、複数枚の絶縁基材を流動させて隙間を埋める加熱加圧工程とを有し、積層工程は、連続構造を構成する少なくとも2つ以上のランド電極が、積層方向から見て互いにずらして配置されるとともに、積層方向に存在する少なくとも2つ以上の隙間が、積層方向から見て互いにずらして配置された積層体を形成することを特徴としている。
 本態様では、加熱加圧工程前の積層体において、少なくとも2つ以上のランド電極を互いにずらして配置することで、積層方向に並ぶ少なくとも2つ以上の隙間を互いにずらして配置している。これにより、積層方向に並ぶ複数の隙間の全てが積層方向から見て同じ位置にある場合と比較して、加熱加圧後の多層基板の厚みを均一に近づけることができる。よって、本発明によれば、多層基板の平坦性を向上させることができる。
 また、第二の態様では、多層基板であって、少なくとも樹脂材料で構成されており、積層された複数枚のフィルム状の絶縁基材と、複数の絶縁基材のそれぞれの表面に配置され、所定の平面形状を有する複数のランド電極と、複数の絶縁基材のそれぞれに設けられ、ランド電極と接続された複数の層間接続材料とを備え、複数のランド電極と複数の層間接続材料とは、絶縁基材の積層方向において、連続した連続構造をなしており、連続構造を構成する少なくとも2つ以上のランド電極が、積層方向から見て互いにずらして配置されていることを特徴としている。
 本態様では、連続構造を構成する少なくとも2つ以上のランド電極を、積層方向から見て互いにずらして配置している。これにより、表面にランド電極が形成された複数枚の絶縁基材を積層して積層体を形成し、この積層体を加熱加圧して多層基板を製造した場合において、多層基板の厚みを均一に近づけることができる。よって、本発明によれば、多層基板の平坦性を向上させることができる。
 なお、特許請求の範囲で記載した各手段の括弧内の符号は、後述する実施形態に記載の具体的手段との対応関係を示す一例である。
第1実施形態における多層基板の断面図である。 第1実施形態における多層基板の製造工程の一部を示す断面図である。 第1実施形態における多層基板の製造工程の一部を示す断面図である。 第1実施形態における多層基板の製造工程の一部を示す断面図である。 比較例1における多層基板の製造工程の一部を示す断面図である。 比較例1における多層基板の製造工程の一部を示す断面図である。 常温時における比較例1の多層基板の断面図である。 高温時における比較例1の多層基板の断面図である。 低温時における比較例1の多層基板の断面図である。 第2実施形態における多層基板の断面図である。 第3実施形態における多層基板の断面図である。 第3実施形態における多層基板の製造工程の一部を示す断面図である。 比較例2における多層基板の断面図である。 第4実施形態における多層基板の製造工程の一部を示す断面図である。 第4実施形態における多層基板の製造工程の一部を示す断面図である。 第5実施形態における多層基板の平面図である。 第5実施形態における多層基板の断面図である。 第5実施形態における多層基板の斜視図である。 図11中の複数のランド電極を同じ平面上に図示した図である。 図11中の複数のビアを同じ平面上に図示した図である。 第5実施形態における多層基板の製造工程の一部を示す断面図である。 第6実施形態における多層基板の平面図である。 第6実施形態における多層基板の断面図である。 第6実施形態における多層基板の製造工程の一部を示す断面図である。
 以下、本発明の実施形態について図に基づいて説明する。なお、以下の各実施形態相互において、互いに同一もしくは均等である部分には、同一符号を付して説明を行う。
 (第1実施形態)
 図1に示すように、本実施形態の多層基板1は、樹脂フィルム10が複数枚積層されたものである。多層基板1は、積層方向での一方側の表面である第一面1aとその反対側の表面である第二面1bとを有している。多層基板1には、樹脂フィルム10の積層方向において、複数のランド電極11が配置されている。ランド電極11は、多層基板1の第一面1a、第二面1bや樹脂フィルム10同士の間に配置されている。複数のランド電極11は、樹脂フィルム10に設けられたビア12を介して、互いに電気的に接続されている。多層基板1の厚さ方向、すなわち、複数の樹脂フィルム10の積層方向で、ランド電極11とビア12とが交互に接続されている。図1中のZ方向が多層基板1の厚さ方向である。ランド電極11とビア12は、多層基板1の厚さ方向における配線を構成するものである。
 各樹脂フィルム10は、フィルム状の絶縁基材である。各樹脂フィルム10は、熱可塑性樹脂で構成されている。各樹脂フィルム10は、相互に接着されている。各ランド電極11は、銅箔等の金属箔により構成されている。各ランド電極11の平面形状は、同じ円形状である。各ビア12は、樹脂フィルム10の両側に位置するランド電極同士を接続する層間接続材料である。各ビア12は、金属粉末の焼結体によって構成されている。各ビア12の平面形状は、同じ円形状である。
 多層基板の厚さ方向で電気的に接続されている複数のランド電極11および複数のビア12において、1つのランド電極11が、他の1つのランド電極11に対してずらして配置されているとともに、1つのビア12が、他の1つのビア12に対してずらして配置されている。ここで、2つのランド電極11がずらして配置されているとは、2つのランド電極11のそれぞれの多層基板1の表面に沿う方向での両端部11aの位置が異なることを意味する。同様に、2つのビア12がずらして配置されているとは、2つのビア12のそれぞれの多層基板1の表面に沿う方向での両端部12aの位置が異なっていることを意味する。
 なお、本実施形態では、X方向において、複数のランド電極11のそれぞれがずらして配置されているとともに、複数のビア12のそれぞれがずらして配置されている。Y方向においては、複数のランド電極11のそれぞれが同じ位置に配置されているとともに、複数のビア12のそれぞれが同じ位置に配置されている。X方向は、多層基板1の表面に沿う一方向である。Y方向は、多層基板1の表面に沿う方向であって、X方向に垂直な方向である。
 次に、本実施形態の多層基板1の製造方法について説明する。
 まず、図2Aに示すように、ランド電極11等が形成された複数枚の樹脂フィルム10を準備する準備工程を行う。具体的には、各樹脂フィルム10の片面に金属箔を設け、金属箔をパターニングする。これにより、各樹脂フィルム10の片面のみにランド電極11を形成する。その後、レーザ加工やドリル加工により、各樹脂フィルム10にビアホール13を形成する。ビアホール13は、樹脂フィルム10の厚さ方向にて樹脂フィルム10の両面を貫通する貫通孔である。ビアホール13は、ランド電極11を貫通していない。換言すると、ビアホール13は、ランド電極11を底部とする有底孔である。ビアホール13は、樹脂フィルム10の厚さ方向から見て、ランド電極11と重なる位置に形成される。その後、ペースト状の金属材料14をビアホール13に充填する。ペースト状の金属材料14は、有機溶剤等を混ぜることによって金属粉末をペースト状にしたものである。これにより、金属材料14がランド電極11と連なる。金属材料14は、ビア12を形成するためのビア形成用材料である。したがって、金属材料14が層間接続材料を構成している。
 続いて、図2Bに示すように、複数枚の樹脂フィルム10を積層して積層体20を形成する積層工程を行う。この積層工程では、基本的に、1枚の樹脂フィルム10のランド電極11が形成されている面10aと、他の1枚の樹脂フィルム10のランド電極11が形成されていない面10bとを向かい合わせる。そして、複数枚の樹脂フィルム10のうち積層方向の中央に位置する2枚の樹脂フィルム101、102については、ランド電極11が形成されていない面10b同士を向かい合わせる。これにより、複数の樹脂フィルム10の積層方向において、複数のランド電極11と複数の金属材料14とが連続した連続構造21をなす積層体20を形成する。本実施形態の連続構造21は、多層基板1の第一面1aに位置するランド電極11から多層基板1の第二面1bに位置するランド電極11までの複数のランド電極11によって形成されている。この積層体20の内部には、積層される樹脂フィルム10同士の間であって、ランド電極11が配置されていない領域に生じた隙間22が、積層方向(すなわち、図2A中のZ方向)に複数存在する。
 このとき、1つの連続構造21を構成する少なくとも2つ以上のランド電極11が、積層方向から見て互いにずらして配置されている。例えば図2Bでは、上から1番目のランド電極11に対して、上から2番目のランド電極11および3番目のランド電極11がずらして配置されている。さらに、上から1番目と2番目のランド電極11の両方に対して、上から6番目のランド電極11および7番目のランド電極11がずらして配置されている。同様に、1つの連続構造21を構成する少なくとも2つ以上の金属材料14が、積層方向から見て互いにずらして配置されている。2つの金属材料14がずらして配置されているとは、2つの金属材料14のそれぞれの多層基板1の表面に沿う方向での両端部の位置が異なることを意味する。これにより、積層体の内部において、積層方向に複数存在する隙間のうち少なくとも2つ以上の隙間も、積層方向から見て互いにずらして配置されている。
 続いて、図2Cに示すように、積層方向にて積層体20を加熱しつつ加圧する加熱加圧工程を行う。このときの加熱温度は、樹脂フィルム10を構成する熱可塑性樹脂が軟化して流動する温度である。この工程では、熱可塑性樹脂が流動して積層体20の内部の隙間22が埋められる。そして、各樹脂フィルム10が相互に接着されて一体化する。また、このときの加熱により、金属材料14が焼結してビア12が形成される。これにより、積層方向に並ぶ複数のランド電極11が複数のビア12を介して電気的に接続される。以上により、図1に示す多層基板1が製造される。
 ここで、本実施形態の多層基板1の製造方法と図3A、3Bに示す比較例1の多層基板J1の製造方法とを比較する。
 比較例1では、図3Aに示すように、加熱加圧工程前の積層体J20において、同じ円形状である各ランド電極11が、積層方向から見て同じ位置に配置されている。これにより、積層方向に並ぶ複数の隙間22の全てが、積層方向から見て同じ位置にある。積層体20は、積層方向に垂直な方向において、ランド電極11が配置された領域R1と、ランド電極11が配置されていない領域であって、隙間22が存在する樹脂領域R2とを有している。
 このため、図3Bに示すように、加熱加圧工程後では、多層基板J1のうち各ランド電極11が配置されていない樹脂領域R2の厚さT2が、多層基板J1のうち各ランド電極11が配置されている領域R1の厚さT1と比較して薄くなる。このように、比較例1の多層基板J1の製造方法では、多層基板1の平坦性が悪くなってしまう。
 これに対して、本実施形態では、加熱加圧工程前の積層体20において、少なくとも2つ以上のランド電極11を、積層方向から見て、互いにずらして配置している。これにより、積層方向に並ぶ少なくとも2つ以上の隙間22を、積層方向から見て、互いにずらして配置している。具体的には、各ランド電極11を3種類の異なる配置場所のいずれかに配置している。各隙間22を3種類の異なる配置場所のいずれかに配置している。
 このため、比較例1と比較して、加熱加圧工程後の多層基板1の厚みT3を均一に近づけることができる。よって、本実施形態によれば、多層基板1の平坦性を向上させることができる。
 また、比較例1の製造方法によって製造される多層基板J1は、図4Aに示すように、Z方向において樹脂のみが存在する樹脂領域R2と、Z方向において金属のみが存在する金属領域R3と、Z方向において金属と樹脂が混在する混在領域R4とを有する。換言すると、多層基板J1は、X方向で隣り合う任意の2つのランド電極11の間の領域は、樹脂のみが存在する領域となっている。
 このため、熱ストレスによって多層基板J1の内部が破損するという問題が生じる。具体的には、図4Bに示すように、常温よりも高温になると、多層基板J1が膨張する。このとき、樹脂領域R2、金属領域R3、混在領域R4のそれぞれを構成する材料の熱膨張係数が異なるため、ビア12に対してZ方向の引張応力が発生する。一方、図4Cに示すように、常温よりも低温になると、多層基板J1が収縮する。このとき、樹脂領域R2、金属領域R3、混在領域R4のそれぞれを構成する材料の熱膨張係数が異なるため、ビア12に対してZ方向の圧縮応力が発生する。この引張応力や圧縮応力によって、ビア12に対して引張応力がかかるため、ビア12にクラックが発生してしまう。
 これに対して、本実施形態の多層基板1は、図1に示すように、Z方向において樹脂のみが存在する領域やZ方向において金属のみが存在する領域が無い状態となっている。換言すると、多層基板1は、X方向で隣り合う任意の2つのランド電極11の間の領域は、金属と樹脂が混在する混在領域となっている。
 このため、金属と樹脂のそれぞれの熱膨張係数の違いによって発生する応力を分散させることができる。これにより、熱ストレスによる多層基板1の破損の発生を抑制できる。よって、多層基板1の信頼性を向上させることができる。
 なお、本実施形態では、加熱加圧工程前の積層体20において、1つの連続構造21を構成する複数のランド電極11をずらして配置して、Z方向において樹脂のみが存在する樹脂領域R2が完全に無い状態としたが、樹脂領域R2が完全に無くなっていなくてもよい。複数のランド電極11をずらして配置することにより、比較例1の積層体J20と比較して、樹脂領域R2を少なくする。これによっても、比較例1と比較して、多層基板1の平坦性を向上させることができる。ただし、多層基板1の平坦性をより高めるという観点では、Z方向において樹脂のみが存在する樹脂領域R2が完全にない状態とすることが好ましい。
 また、本実施形態では、積層工程において、複数枚の樹脂フィルム10のうち積層方向の中央に位置する2枚の樹脂フィルム101、102について、ランド電極11が形成されていない面10b同士を向かい合わせたが、複数枚の樹脂フィルム10のうち積層方向の中央以外の他の位置の2枚の樹脂フィルム10について、ランド電極11が形成されていない面10b同士を向かい合わせてもよい。
 (第2実施形態)
 図5に示すように、本実施形態の多層基板1は、ランド電極11およびビア12がずらして配置されている第1領域R11と、ランド電極11およびビア12が同じ位置に配置されている第2領域R12とを備えている。
 第1領域R11は、第1実施形態の多層基板1と同様の構造を有している。第1領域R11における多層基板1の第一面1aにICチップ31が実装されている。ICチップ31は、ボール状の半田32によって、ランド電極11と接続されている。
 第2領域R12は、第1実施形態で説明した比較例1の多層基板J1と同様の構造を有している。第2領域R12における多層基板1の第一面1aにICチップ33が実装されている。ICチップ33は、ワイヤ34によって、ランド電極11と接続されている。
 本実施形態では、第1領域R11の方が第2領域R12よりも高い平坦性が要求される。そこで、第1領域R11において、第1実施形態と同様に、ランド電極11とビア12をずらして配置する。すなわち、加熱加圧工程前の積層体20において、少なくとも2つ以上のランド電極11を互いにずらして配置するとともに、少なくとも2つ以上の金属材料14を互いにずらして配置する。これにより、第1領域R11の平坦性を向上させることができる。
 (第3実施形態)
 図6に示すように、本実施形態の多層基板1は、Z方向に並んで電気的に接続されている複数のランド電極11から構成される複数のランド電極群G1、G2、G3、G4を有している。これらの複数のランド電極群G1、G2、G3、G4は、多層基板1の表面に沿う方向(例えば、X方向)に複数並んで配置されている。そして、複数のランド電極群G1、G2、G3、G4は、多層基板1の第一面1aに位置するランド電極11同士のピッチP1と、多層基板1の第二面1bに位置するランド電極11同士のピッチP4とが異なるように配置されている。ランド電極11同士のピッチとは、多層基板1の表面に沿う方向で隣り合うランド電極11の中心間の距離である。
 具体的には、各層におけるランド電極11のピッチP1~P4は、第一面1a側から1層目のランド電極11同士のピッチP1、2層目のランド電極11同士のピッチP2、3層目のランド電極11同士のピッチP3、4層目のランド電極11同士のピッチP4の順に大きくなっている。このように、各層におけるランド電極11のピッチP1~P4が、第一面1aから第二面1bに向かうにつれて大きくなるように、各ランド電極群G1~G4においてランド電極11をずらして配置している。これにより、第二面1bでのランド電極11同士のピッチP4が、第一面1aでのランド電極11同士のピッチP1よりも大きくなっている。
 このような多層基板1は、図7に示すように、加熱加圧工程前の積層体20において、積層方向で同じ位置にあるランド電極11同士の距離P1~P4が、積層方向の一方側から他方側に向かうにつれて大きくなるように、複数のランド電極11を互いにずらして配置することで製造される。
 ここで、本実施形態の多層基板1と図8に示す比較例2の多層基板J1とを比較する。比較例2では、基本的に、積層方向から見てランド電極11同士の位置を同じとする構造を採用しつつ、本実施形態と同様に、多層基板J1の第一面J1aのランド電極11同士のピッチP1と多層基板J1の第二面J1bのランド電極11同士のピッチP4とを異ならせている。この場合、ランド電極11の移動が必要なランド電極群G2、G3、G4のそれぞれに対して1層の引き出し配線15、16、17が必要となる。このため、図8に示す比較例2では、多層基板J1の内部に3層の導体層が必要となる。
 これに対して、本実施形態では、積層方向から見てランド電極11をずらして配置する際に、ランド電極11同士のピッチP1~P4を段階的に大きくすることで、ランド電極11同士のピッチの変換が可能である。このように、ランド電極11同士の変換量を全ての導体層に分散させるので、比較例2のように、ランド電極群G2、G3、G4のそれぞれに対して1層の引き出し配線15、16、17を配置する必要がない。本実施形態では、多層基板1の内部に2層の導体層、すなわち、ランド電極11があればよい。したがって、本実施形態によれば、多層基板1の導体層の総数を低減することができる。
 (第4実施形態)
 本実施形態は、第1実施形態の多層基板1の製造方法の一部を変更したものである。
 すなわち、本実施形態では、図9Aに示すように、積層工程において、ランド電極11と金属材料14のうちランド電極11のみをずらして配置された積層体20を形成する。この積層体20の内部においても、第1実施形態と同様に、積層方向に複数存在する隙間22が、積層方向から見て互いにずらして配置されている。
 このため、図9Bに示すように、比較例1と比較して、加熱加圧工程後における多層基板1の厚みT4、T5の差を小さく抑えることができる。すなわち、本実施形態においても、比較例1と比較して、加熱加圧工程後の多層基板1の厚みを均一に近づけることができる。
 (第5実施形態)
 図10、11、12に示すように、本実施形態の多層基板1は、電気的に接続されている複数のランド電極11が螺旋状に配置されている。複数のランド電極11を電気的に接続する複数のビア12も螺旋状に配置されている。
 ここで、複数のランド電極11が螺旋状に配置されているとは、図11および図13に示すように、ランド電極11の中心11bを積層方向で順につなぐ仮想線VL1が、螺旋状の線となるように、複数のランド電極11を配置することを意味する。図13に示すように、図11中の各ランド電極111~118を同じ平面に図示したときに、各ランド電極111~118の中心111b~118bをZ方向に並ぶ順につなぐ仮想線VL1が周状(例えば、円周状)の線になる。
 同様に、複数のビア12が螺旋状に配置されているとは、図11および図14に示すように、ビア12の中心12bを積層方向で順につなぐ仮想線VL2が、螺旋状の線となるように、複数のビア12を配置することを意味する。図14に示すように、図11中の各ビア121~127を同じ平面に図示したときに、各ビア121~127の中心121b~127bをZ方向に並ぶ順につなぐ仮想線VL2は周状(例えば、円周状)の線になる。
 図14に示すように、ビア12は、その中心12bの位置が、ビア12と接続されているランド電極11の中心11bの位置と異なっている。また、ビア12は、それと接続される2つのランド電極11がZ方向から見て重なり合う領域に配置されている。
 次に、本実施形態の多層基板1の製造方法について説明する。第1実施形態の多層基板1の製造方法における積層工程を次のように変更する。すなわち、図15に示すように、積層工程において、連続構造21を構成する複数のランド電極11の全部が螺旋状に配置され、かつ、連続構造21を構成する複数の金属材料14の全部が螺旋状に配置された積層体20を形成する。これにより、上記した構造の多層基板1が製造される。
 このように、本実施形態では、複数のランド電極11が螺旋状に配置されることで、X方向、Y方向の両方において、複数のランド電極11が互いにずらして配置されている。このため、積層体20の内部に存在する複数の隙間22が、X方向、Y方向の両方において、ずらして配置されるので、第1実施形態と同様の効果が得られる。
 さらに、本実施形態によれば、下記の効果が得られる。すなわち、本実施形態のように、複数のランド電極11を螺旋状に配置する場合では、複数のランド電極11を直線状に配置する従来構造に対して、ランド電極11の位置を少しずつ変更すればよい。したがって、本実施形態の多層基板1によれば、複数のランド電極11を直線状に配置する従来構造を基準にして、多層基板1を設計することが可能である。
 (第6実施形態)
 図16、17に示すように、本実施形態の多層基板1は、電気的に接続されている複数のランド電極11とビア12のうちランド電極11のみが螺旋状に配置されている。複数のビア12は直線状に配置されている。
 本実施形態では、図18に示すように、積層工程において、連続構造21を構成する複数のランド電極11の全部が螺旋状に配置され、かつ、連続構造21を構成する複数の金属材料14の全部が直線状に配置された積層体20を形成する。これにより、上記した構造の多層基板1が製造される。
 本実施形態においても、ランド電極11が螺旋状に配置されているので、第5実施形態と同様の効果を奏する。
 なお、複数の金属材料14(すなわち、複数のビア12)が螺旋状に配置されている場合の方が、直線状に配置されている場合よりも、ランド電極11のずらし量を大きくできる。このため、第6実施形態よりも第5実施形態の方が好ましい。
 (他の実施形態)
 本発明は上記した実施形態に限定されるものではなく、下記のように、適宜変更が可能である。
(1)第1実施形態では、X方向とY方向のうちX方向のみにおいて、ランド電極11をずらして配置したが、X方向とY方向の両方において、ランド電極11をずらしてもよい。このとき、複数のランド電極11を、螺旋状以外の状態で配置してもよい。
 (2)第1実施形態では、連続構造21を構成する複数のランド電極11を、3種類の位置に配置したが、2種類の位置に配置したり、4種類の位置に配置したりしてもよい。ただし、積層体20の内部に存在する複数の隙間22が、積層方向に垂直な方向で分散されるように、複数のランド電極11を3種類以上の位置に配置することが好ましい。
 (3)上記各実施形態では、ランド電極11の平面形状が円形状であったが、多角形等の他の平面形状であってもよい。ランド電極11の平面形状が円形状や正多角形以外の他の形状の場合、ランド電極11の中心11bとは、所定の平面形状における重心の位置を意味する。
 (4)上記各実施形態では、樹脂フィルム10が熱可塑性樹脂で構成されていたが、熱可塑性樹脂以外の樹脂材料で構成されていてもよい。この樹脂材料は、加熱加圧工程で軟化して流動するものであればよい。また、樹脂フィルム10は、樹脂材料だけで構成されていてもよく、樹脂材料だけでなく、樹脂材料以外の材料が含まれていてもよい。要するに、樹脂フィルム10は、少なくとも樹脂材料で構成されていればよい。
 (5)上記各実施形態は、互いに無関係なものではなく、組み合わせが明らかに不可能な場合を除き、適宜組み合わせが可能である。また、上記各実施形態において、実施形態を構成する要素は、特に必須であると明示した場合および原理的に明らかに必須であると考えられる場合等を除き、必ずしも必須のものではないことは言うまでもない。
 10  樹脂フィルム
 11  ランド電極
 13  ビアホール(貫通孔)
 14  金属材料
 20  積層体
 21  連続構造
 22  隙間

Claims (8)

  1.  多層基板の製造方法であって、
     少なくとも樹脂材料で構成されたフィルム状の絶縁基材(10)であって、前記絶縁基材の表面に形成され、所定の平面形状を有するランド電極(11)と、厚さ方向に貫通して形成された貫通孔(13)に充填され、前記ランド電極と連なる層間接続材料(14)とを備えるものを複数枚準備する準備工程と、
     複数枚の前記絶縁基材を積層し、前記絶縁基材の積層方向において、複数の前記ランド電極と複数の前記層間接続材料とが連続した連続構造(21)をなすとともに、積層される前記絶縁基材同士の間であって前記ランド電極が配置されていない領域に生じた隙間(22)が前記積層方向に複数存在する積層体(20)を形成する積層工程と、
     前記積層方向にて前記積層体を加熱しつつ加圧することにより、複数枚の前記絶縁基材を流動させて前記隙間を埋める加熱加圧工程とを有し、
     前記積層工程は、前記連続構造を構成する少なくとも2つ以上の前記ランド電極が、前記積層方向から見て互いにずらして配置されるとともに、前記積層方向に存在する少なくとも2つ以上の前記隙間が、前記積層方向から見て互いにずらして配置された前記積層体を形成することを特徴とする多層基板の製造方法。
  2.  前記積層工程は、前記連続構造を構成する複数の前記ランド電極が螺旋状に配置された前記積層体を形成することを特徴とする請求項1に記載の多層基板の製造方法。
  3.  前記積層工程は、前記積層体として、さらに、前記連続構造を構成する少なくとも2つ以上の前記層間接続材料が前記積層方向から見て互いにずらして配置された前記積層体を形成することを特徴とする請求項1に記載の多層基板の製造方法。
  4.  前記積層工程は、前記連続構造を構成する複数の前記ランド電極が螺旋状に配置され、かつ、前記連続構造を構成する複数の前記層間接続材料が螺旋状に配置された前記積層体を形成することを特徴とする請求項1に記載の多層基板の製造方法。
  5.  多層基板であって、
     少なくとも樹脂材料で構成されており、積層された複数枚のフィルム状の絶縁基材(10)と、
     複数の前記絶縁基材のそれぞれの表面に配置され、所定の平面形状を有する複数のランド電極(11)と、
     複数の前記絶縁基材のそれぞれに設けられ、前記ランド電極と接続された複数の層間接続材料(12)とを備え、
     複数の前記ランド電極と複数の前記層間接続材料とは、前記絶縁基材の積層方向において、連続した連続構造(21)をなしており、
     前記連続構造を構成する少なくとも2つ以上の前記ランド電極が、前記積層方向から見て互いにずらして配置されていることを特徴とする多層基板。
  6.  前記連続構造を構成する複数の前記ランド電極が、螺旋状に配置されていることを特徴とする請求項5に記載の多層基板。
  7.  前記連続構造を構成する少なくとも2つ以上の前記層間接続材料が、前記積層方向から見て互いにずらして配置されていることを特徴とする請求項5に記載の多層基板。
  8.  前記連続構造を構成する複数の前記ランド電極が螺旋状に配置され、かつ、前記連続構造を構成する複数の前記層間接続材料が螺旋状に配置されていることを特徴とする請求項5に記載の多層基板。
PCT/JP2016/073348 2015-09-01 2016-08-08 多層基板およびその製造方法 WO2017038399A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201680050397.2A CN107926123A (zh) 2015-09-01 2016-08-08 多层基板以及其制造方法
KR1020187003772A KR20180037968A (ko) 2015-09-01 2016-08-08 다층 기판 및 그 제조 방법
DE112016003985.9T DE112016003985T5 (de) 2015-09-01 2016-08-08 Mehrschichtsubstrat und Verfahren zur Herstellung desselben
US15/756,745 US20180242464A1 (en) 2015-09-01 2016-08-08 Multilayer substrate and method for manufacturing the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015172166A JP2017050391A (ja) 2015-09-01 2015-09-01 多層基板およびその製造方法
JP2015-172166 2015-09-01

Publications (1)

Publication Number Publication Date
WO2017038399A1 true WO2017038399A1 (ja) 2017-03-09

Family

ID=58187286

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/073348 WO2017038399A1 (ja) 2015-09-01 2016-08-08 多層基板およびその製造方法

Country Status (7)

Country Link
US (1) US20180242464A1 (ja)
JP (1) JP2017050391A (ja)
KR (1) KR20180037968A (ja)
CN (1) CN107926123A (ja)
DE (1) DE112016003985T5 (ja)
TW (1) TWI612866B (ja)
WO (1) WO2017038399A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108696989A (zh) * 2017-03-30 2018-10-23 三星电机株式会社 印刷电路板
WO2019240179A1 (ja) * 2018-06-14 2019-12-19 株式会社フジクラ 部品内蔵基板

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101933408B1 (ko) * 2015-11-10 2018-12-28 삼성전기 주식회사 전자부품 패키지 및 이를 포함하는 전자기기
JP6856468B2 (ja) * 2017-07-19 2021-04-07 京セラ株式会社 配線基板、電子部品用パッケージおよび電子装置
CN108112168B (zh) * 2018-01-25 2020-04-03 郑州云海信息技术有限公司 一种厚铜板内层非功能性焊盘设计添加方法
CN113272950A (zh) * 2018-12-25 2021-08-17 京瓷株式会社 电子部件安装用基板以及电子装置
CN113875000A (zh) * 2019-05-29 2021-12-31 京瓷株式会社 电子元件安装用基板、电子装置以及电子模块
DE102020115794B3 (de) * 2020-06-16 2021-07-01 Semikron Elektronik Gmbh & Co. Kg Leiterplatte mit übereinander angeordneten Leiterschichten

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001144445A (ja) * 1999-11-18 2001-05-25 Multi:Kk 多層プリント配線板の製造方法
JP2004079848A (ja) * 2002-08-20 2004-03-11 Hitachi Chem Co Ltd 多層プリント配線板用材料とそれを用いた多層プリント配線板およびその製造方法
WO2007007857A1 (ja) * 2005-07-07 2007-01-18 Ibiden Co., Ltd. 多層プリント配線板
JP2009302506A (ja) * 2008-05-14 2009-12-24 Toppan Printing Co Ltd 半導体パッケージ用多層基板及びその製造方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200714163A (en) * 2005-09-16 2007-04-01 Murata Manufacturing Co Ceramic multilayer substrate and process for producing the same
JP2007053393A (ja) 2006-10-10 2007-03-01 Denso Corp 多層基板およびその製造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001144445A (ja) * 1999-11-18 2001-05-25 Multi:Kk 多層プリント配線板の製造方法
JP2004079848A (ja) * 2002-08-20 2004-03-11 Hitachi Chem Co Ltd 多層プリント配線板用材料とそれを用いた多層プリント配線板およびその製造方法
WO2007007857A1 (ja) * 2005-07-07 2007-01-18 Ibiden Co., Ltd. 多層プリント配線板
JP2009302506A (ja) * 2008-05-14 2009-12-24 Toppan Printing Co Ltd 半導体パッケージ用多層基板及びその製造方法

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108696989A (zh) * 2017-03-30 2018-10-23 三星电机株式会社 印刷电路板
CN108696989B (zh) * 2017-03-30 2022-12-16 三星电机株式会社 印刷电路板
WO2019240179A1 (ja) * 2018-06-14 2019-12-19 株式会社フジクラ 部品内蔵基板
JPWO2019240179A1 (ja) * 2018-06-14 2021-04-30 株式会社フジクラ 部品内蔵基板
US11638351B2 (en) 2018-06-14 2023-04-25 Fujikura Ltd. Component-embedded substrate
JP7315546B2 (ja) 2018-06-14 2023-07-26 株式会社フジクラ 部品内蔵基板
US11979986B2 (en) 2018-06-14 2024-05-07 Fujikura Ltd. Component-embedded substrate

Also Published As

Publication number Publication date
DE112016003985T5 (de) 2018-05-24
CN107926123A (zh) 2018-04-17
TWI612866B (zh) 2018-01-21
TW201717723A (zh) 2017-05-16
JP2017050391A (ja) 2017-03-09
KR20180037968A (ko) 2018-04-13
US20180242464A1 (en) 2018-08-23

Similar Documents

Publication Publication Date Title
WO2017038399A1 (ja) 多層基板およびその製造方法
CN102742372B (zh) 电路板及其制造方法
CN1812088B (zh) 多层构造半导体微型组件及制造方法
KR101161971B1 (ko) 다층 회로 기판 및 다층 회로 기판의 제조 방법
JP6424453B2 (ja) 多層基板の製造方法および多層基板
JP4791244B2 (ja) 電子部品内蔵基板及びその製造方法
JP2018133572A (ja) 多層配線基板およびこれを備えるプローブカード
WO2017043299A1 (ja) プリント基板の製造方法
KR20110076995A (ko) 다층 배선 기판 및 그 제조 방법
JP2011249745A (ja) 多層基板
EP1890524A1 (en) Multilayer printed wiring board and method for manufacturing same
JP6511851B2 (ja) 多層回路基板、半導体装置、多層回路基板の製造方法
JP4051989B2 (ja) 多層配線基板の製造方法
JP2013051389A5 (ja)
JP2008071963A (ja) 多層配線基板
US20190157001A1 (en) Multilayer coil and method for manufacturing the same
JP2004273575A (ja) 多層プリント配線基板及びその製造方法
WO2022107389A1 (ja) 配線基板
JP5874697B2 (ja) 多層プリント基板およびその製造方法
JP5185622B2 (ja) 多層配線基板
JP2005123332A (ja) 回路基板及びその製造方法
JP2007201034A (ja) 多層配線基板の層間接続構造
JP6483470B2 (ja) 電子部品実装用パッケージ、電子装置および電子モジュール
US20170094798A1 (en) Component incorporating substrate and method for manufacturing component incorporating substrate
JP2007059702A (ja) 回路配線基板及びその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16841431

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20187003772

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15756745

Country of ref document: US

Ref document number: 112016003985

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16841431

Country of ref document: EP

Kind code of ref document: A1