WO2017030096A1 - 硬化性樹脂組成物、及びその硬化物 - Google Patents

硬化性樹脂組成物、及びその硬化物 Download PDF

Info

Publication number
WO2017030096A1
WO2017030096A1 PCT/JP2016/073789 JP2016073789W WO2017030096A1 WO 2017030096 A1 WO2017030096 A1 WO 2017030096A1 JP 2016073789 W JP2016073789 W JP 2016073789W WO 2017030096 A1 WO2017030096 A1 WO 2017030096A1
Authority
WO
WIPO (PCT)
Prior art keywords
polymerizable monomer
radical polymerizable
monofunctional
group
monomer
Prior art date
Application number
PCT/JP2016/073789
Other languages
English (en)
French (fr)
Inventor
耕祐 横山
竹内 一雅
敏明 白坂
文吾 落合
一生 千葉
智成 桐生
Original Assignee
日立化成株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立化成株式会社 filed Critical 日立化成株式会社
Priority to US15/753,041 priority Critical patent/US20190062480A1/en
Priority to JP2017535523A priority patent/JPWO2017030096A1/ja
Priority to CN201680046949.2A priority patent/CN107922546A/zh
Priority to KR1020187003645A priority patent/KR20180042840A/ko
Publication of WO2017030096A1 publication Critical patent/WO2017030096A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/12Esters of monohydric alcohols or phenols
    • C08F220/16Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms
    • C08F220/18Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms with acrylic or methacrylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/12Esters of monohydric alcohols or phenols
    • C08F220/16Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms
    • C08F220/18Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms with acrylic or methacrylic acids
    • C08F220/1808C8-(meth)acrylate, e.g. isooctyl (meth)acrylate or 2-ethylhexyl (meth)acrylate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/44Polymerisation in the presence of compounding ingredients, e.g. plasticisers, dyestuffs, fillers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F20/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride, ester, amide, imide or nitrile thereof
    • C08F20/02Monocarboxylic acids having less than ten carbon atoms, Derivatives thereof
    • C08F20/42Nitriles
    • C08F20/44Acrylonitrile
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/12Esters of monohydric alcohols or phenols
    • C08F220/14Methyl esters, e.g. methyl (meth)acrylate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/42Nitriles
    • C08F220/44Acrylonitrile
    • C08F220/46Acrylonitrile with carboxylic acids, sulfonic acids or salts thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L33/04Homopolymers or copolymers of esters
    • C08L33/06Homopolymers or copolymers of esters of esters containing only carbon, hydrogen and oxygen, which oxygen atoms are present only as part of the carboxyl radical
    • C08L33/08Homopolymers or copolymers of acrylic acid esters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L33/04Homopolymers or copolymers of esters
    • C08L33/14Homopolymers or copolymers of esters of esters containing halogen, nitrogen, sulfur, or oxygen atoms in addition to the carboxy oxygen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/12Esters of monohydric alcohols or phenols
    • C08F220/16Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms
    • C08F220/18Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms with acrylic or methacrylic acids
    • C08F220/1806C6-(meth)acrylate, e.g. (cyclo)hexyl (meth)acrylate or phenyl (meth)acrylate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/42Nitriles
    • C08F220/44Acrylonitrile
    • C08F220/48Acrylonitrile with nitrogen-containing monomers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2800/00Copolymer characterised by the proportions of the comonomers expressed
    • C08F2800/20Copolymer characterised by the proportions of the comonomers expressed as weight or mass percentages

Definitions

  • the present invention relates to a curable resin composition and a cured product thereof.
  • Patent Document 1 discloses a cured product having a tensile modulus of 1 to 100 MPa and a tensile fracture elongation of 200% or more.
  • Patent Document 2 discloses a material exhibiting a high elastic modulus.
  • shape memory materials metals, resins, ceramics, etc. are known as shape memory materials.
  • shape memory property is developed based on a phase transformation caused by a change in crystal structure or a change in molecular motion form.
  • shape memory materials often have characteristics such as excellent vibration isolation characteristics.
  • metal and resin have been mainly studied as shape memory materials.
  • Shape memory resin is a resin that recovers its original shape when heated to a certain temperature or higher, even if it is deformed by applying force after molding. Compared to shape memory alloys, shape memory resins are generally superior in that they are inexpensive, have a high rate of change in shape, are light, are easy to process, and can be colored.
  • Shape memory resin is soft at high temperatures and easily deforms like rubber. On the other hand, it is hard at low temperatures and hardly deforms like glass.
  • the shape memory resin can be stretched to several times its original length by a small force at a high temperature, and can retain its deformed shape by cooling. If the material is heated under no load in this state, the material recovers to its original shape. At high temperatures, the material returns to its original shape simply by removing the force. Thus, energy absorption and storage characteristics at high temperatures can be utilized.
  • Main shape memory resins include polynorbornene, transisoprene, styrene-butadiene copolymer, and polyurethane.
  • Patent Document 3 describes norbornene resins
  • Patent Document 4 describes trans-isoprene resins
  • Patent Document 5 discloses polyurethane resins
  • Patent Document 6 describes shape memory resins related to acrylic resins.
  • An object of one aspect of the present invention is to provide a curable resin composition that has a high elongation at break and can form a cured product that is also excellent in shape recovery after being deformed under stress. is there.
  • An object of another aspect of the present invention is to provide a resin molded body having a shape memory property excellent in a shape recovery property by heating.
  • One aspect of the present invention relates to a curable resin composition containing a radical polymerizable monomer including a first monofunctional radical polymerizable monomer and a second monofunctional radical polymerizable monomer.
  • the first monofunctional radical polymerizable monomer is a monomer that forms a homopolymer having a glass transition temperature of 20 ° C. or lower when polymerized alone.
  • the second monofunctional radically polymerizable monomer is a monomer that forms a homopolymer having a glass transition temperature of 50 ° C. or higher when polymerized alone.
  • the total content of the first monofunctional radical polymerizable monomer and the second monofunctional radical polymerizable monomer may be 60% by mass or more based on the total amount of the radical polymerizable monomer.
  • This curable resin composition can form a cured product having high elongation at break and excellent shape recovery after being deformed by stress.
  • the curable resin composition contains a radical polymerizable monomer including a first monofunctional radical polymerizable monomer and a second monofunctional radical polymerizable monomer.
  • the first monofunctional radical polymerizable monomer is a monomer that forms a homopolymer having a glass transition temperature of 20 ° C. or lower when polymerized alone.
  • the second monofunctional radically polymerizable monomer is a monomer that forms a homopolymer having a glass transition temperature of 50 ° C. or higher when polymerized alone.
  • the total content of the first monofunctional radical polymerizable monomer and the second monofunctional radical polymerizable monomer may be 60% by mass or more based on the total amount of the radical polymerizable monomer.
  • This cured product can have excellent shape recoverability after being deformed under stress as well as high elongation at break.
  • Another aspect of the invention is a compound of formula (I):
  • X, R 1 and R 2 are each independently a divalent organic group, and R 3 and R 4 are each independently a hydrogen atom or a methyl group, and a radically polymerizable compound and monofunctional radically polymerizable
  • the present invention relates to a resin molded article containing a first polymer containing a monomer as a monomer unit and a linear or branched second polymer.
  • This resin molded body may have a storage elastic modulus of 0.5 MPa or more at 25 ° C. Or the resin molding may have shape memory property. Such a resin molded body is excellent in shape recovery by heating.
  • Another aspect of the present invention is a molding composition
  • a molding composition comprising a radical polymerizable compound of formula (I), a radical polymerizable monomer (reactive monomer) containing a monofunctional radical polymerizable monomer, and a second polymer.
  • This molding composition can form a resin molding having a storage modulus of 0.5 MPa or more at 25 ° C. when the radical polymerizable monomer is polymerized in the presence of the second polymer.
  • this molding composition can form a resin molded product having shape memory properties when a radical polymerizable monomer is polymerized in the presence of the second polymerizable monomer.
  • Still another aspect of the present invention relates to a method for producing a resin molded body containing a first polymer and a second polymer.
  • This method comprises polymerizing a radically polymerizable monomer in a molding composition comprising a radically polymerizable compound of formula (I) and a radically polymerizable monomer containing a monofunctional radically polymerizable monomer and a second polymer.
  • a step of producing a first polymer comprises polymerizing a radically polymerizable monomer in a molding composition comprising a radically polymerizable compound of formula (I) and a radically polymerizable monomer containing a monofunctional radically polymerizable monomer and a second polymer.
  • a curable resin composition capable of forming a resin molded body having high breaking elongation and excellent shape recovery after being deformed under stress.
  • the curable resin composition according to some embodiments, it is possible to achieve both a high elastic modulus and a high bending resistance at a high level.
  • the cured product is excellent in shape recovery after being deformed under stress, it means that it is easy to recover to the shape before receiving the stress just by being released from the stress. It does not necessarily mean that it has shape memory property for recovering.
  • a resin molded body having shape memory properties excellent in shape recovery by heating By controlling the elastic modulus of the resin molded body of the present invention, the shape recovery rate when heated can be easily increased.
  • Resin molded bodies according to some forms are also excellent in terms of various characteristics such as transparency, flexibility, stress relaxation, and water resistance.
  • the curable resin composition which concerns on one Embodiment contains the radically polymerizable monomer containing the 1st monofunctional radically polymerizable monomer and the 2nd monofunctional radically polymerizable monomer.
  • Each of the first monofunctional radical polymerizable monomer and the second monofunctional radical polymerizable monomer has one radical polymerizable group.
  • the first monofunctional radically polymerizable monomer is a monomer that forms a homopolymer having a glass transition temperature of 20 ° C. or lower when polymerized alone.
  • the second monofunctional radically polymerizable monomer is a monomer that forms a homopolymer having a glass transition temperature of 50 ° C. or higher when polymerized alone.
  • the combination of the first monofunctional radical polymerizable monomer and the second monofunctional radical polymerizable monomer allows the cured product to have excellent shape recovery after being deformed under stress along with high elongation at break. Can do. Moreover, there exists a tendency for the hardened
  • the first radical polymerizable monomer may be a monomer that forms a homopolymer of 10 ° C. or lower or 0 ° C. or lower when polymerized alone, and the second radical polymerizable monomer is a single monomer. It may be a monomer that forms a homopolymer having a glass transition temperature of 60 ° C. or higher, or 70 ° C. or higher when polymerized at.
  • the glass transition temperature of the homopolymer formed by the first monofunctional radically polymerizable monomer may be ⁇ 70 ° C. or higher.
  • the glass transition temperature of the homopolymer formed by the second monofunctional radically polymerizable monomer may be 150 ° C. or lower.
  • the glass transition temperature of a homopolymer formed by each radical polymerizable monomer means a temperature determined by differential scanning calorimetry.
  • a person skilled in the art can know the glass transition temperature of a homopolymer of a general radical polymerizable monomer as a literature value.
  • the content of the first monofunctional radical polymerizable monomer may be 5% by mass or more, 10% by mass or more, or 15% by mass or more based on the total amount of the radical polymerizable monomer, and 90% by mass or less. 85 mass% or less, or 80 mass% or less.
  • the first monofunctional radically polymerizable monomer can be an alkyl (meth) acrylate which may have a substituent.
  • the alkyl (meth) acrylate optionally having a substituent used as the first monofunctional radically polymerizable monomer is, for example, ethyl acrylate, ethyl methacrylate, n-butyl acrylate, n-butyl methacrylate, isobutyl acrylate, Isobutyl methacrylate, hexyl acrylate, hexyl methacrylate, 2-ethylhexyl acrylate, 2-ethylhexyl methacrylate, 2-hydroxyethyl methacrylate, 2-hydroxypropyl methacrylate, 2-hydroxy-1-methylethyl methacrylate, 2-methoxyethyl acrylate, and glycidyl methacrylate It can be at least one selected from the group consisting of:
  • the first monofunctional radical polymerizable monomer may be 2-ethylhexyl acrylate.
  • 2-ethylhexyl acrylate By using 2-ethylhexyl acrylate, the toughness and elongation at break of the cured product are increased, and a further advantageous effect is obtained in that the elastic modulus can be easily controlled.
  • the content of the second monofunctional radical polymerizable monomer may be 10% by mass or more, 15% by mass or more, or 20% by mass or more based on the total amount of the radical polymerizable monomer, and is 95% by mass or less. 90 mass% or less, or 85 mass% or less.
  • the content of the second monofunctional radical polymerizable monomer is within these ranges, a more remarkable effect can be obtained in that the cured product can achieve both high elongation at break and high elastic modulus.
  • the second monofunctional radically polymerizable monomer can be an alkyl (meth) acrylate which may have a substituent.
  • alkyl (meth) acrylate optionally having a substituent used as the second monofunctional radically polymerizable monomer include adamantyl acrylate, adamantyl methacrylate, 2-cyanomethyl acrylate, 2-cyanobutyl acrylate, and acrylamide.
  • the second monofunctional radical polymerization monomer may be at least one selected from the group consisting of acrylonitrile, dicyclopentanyl acrylate, and methyl methacrylate.
  • the ratio of the first monofunctional radical polymerizable monomer to the second monofunctional radical polymerizable monomer can be adjusted as appropriate.
  • the monomer unit derived from the first monofunctional radically polymerizable monomer is considered to function in the cured product as a soft segment that relaxes external forces such as elongation and bending.
  • the monomer unit derived from the second monofunctional radically polymerizable monomer is considered to function in the cured product as a hard segment that resists external forces such as elongation and bending. It is considered that both properties can be achieved by introducing these two types of monomer units having greatly different properties into the polymer chain forming the cured product.
  • the mechanism for expressing the physical properties of the cured product is not necessarily limited thereto.
  • the curable resin composition may further contain a monomer other than the first monofunctional radical polymerizable monomer and the second monofunctional radical polymerizable monomer as the radical polymerizable monomer.
  • the total content of the first monofunctional radical polymerizable monomer and the second monofunctional radical polymerizable monomer is 60% by mass or more, 70% by mass or more, or 80% based on the total amount of the radical polymerizable monomer. It may be greater than or equal to mass%.
  • the radical polymerizable monomer in the curable resin composition is a polyfunctional radical polymerizable monomer having two or more radical polymerizable groups, and / or a first monofunctional radical polymerizable monomer and a second radical polymerizable monomer.
  • Monofunctional radically polymerizable monomers other than monomers may be included.
  • the curable resin composition may contain a bifunctional radical polymerizable monomer and / or a trifunctional radical polymerizable monomer as the polyfunctional radical polymerizable monomer.
  • the content of the polyfunctional radical polymerizable monomer may be 0.01% by mass or more, 0.05% by mass or more, or 0.1% by mass or more based on the total amount of the radical polymerizable monomer. It may be less than mass%, less than 8.0 mass%, or less than 5.0 mass%. When the content of the polyfunctional radically polymerizable monomer is within these ranges, there is a tendency that both the breaking strength and the breaking elongation of the cured product can be achieved at a particularly high level.
  • the polyfunctional radical polymerizable monomer may be a polyfunctional (meth) acrylate from the viewpoint of compatibility with other components.
  • the polyfunctional (meth) acrylate may be a bifunctional (meth) acrylate and / or a trifunctional (meth) acrylate.
  • a bifunctional and / or trifunctional (meth) acrylate By using a bifunctional and / or trifunctional (meth) acrylate, a more advantageous effect can be obtained in terms of both the breaking strength and elongation at break of the cured product.
  • the bifunctional and / or trifunctional (meth) acrylate may contain a cyclic structure and may form a cyclic structure by a curing reaction.
  • bifunctional or trifunctional (meth) acrylates examples include 1,3-butylene diol di (meth) acrylate, 1,4-butanediol di (meth) acrylate, 1,6-hexanediol di (meth) acrylate 1,9-nonanediol di (meth) acrylate, 1,10-decanediol di (meth) acrylate, polyethylene glycol di (meth) acrylate, polypropylene glycol di (meth) acrylate, polytetraethylene glycol di (meth) acrylate , Neopentyl glycol di (meth) acrylate, ethoxy modified bisphenol A di (meth) acrylate, tris (2- (meth) acryloyloxyethyl) isocyanurate, trimethylolpropane tri (meth) acrylate, and pentaerythritol Rutori (meth) acrylate. These can be used alone or
  • the total content of the bifunctional (meth) acrylate and trifunctional (meth) acrylate is 0.1% by mass or more, 0.2% by mass or more, or 0.5% by mass based on the total amount of the radical polymerizable monomer. % May be 10% by mass or less, 8.0% by mass or less, or 5.0% by mass or less.
  • the curable resin composition may contain a radical polymerization initiator for polymerization of the radical polymerizable monomer.
  • the radical polymerization initiator can be a thermal radical polymerization initiator, a photo radical polymerization initiator, or a combination thereof.
  • the content of the radical polymerization initiator is appropriately adjusted within a normal range, and may be, for example, 0.001 to 5% by mass based on the mass of the curable resin composition.
  • Thermal radical polymerization initiators include ketone peroxides, peroxyketals, dialkyl peroxides, diacyl peroxides, peroxyesters, peroxydicarbonates, hydroperoxides and other organic peroxides, sodium persulfate, potassium persulfate Persulfates such as ammonium persulfate, 2,2′-azobis-isobutyronitrile (AIBN), 2,2′-azobis-2,4-dimethylvaleronitrile (ADVN), 2,2′-azobis-2 -Azo compounds such as methylbutyronitrile, 4,4'-azobis-4-cyanovaleric acid, alkyl metals such as sodium ethoxide, tert-butyllithium, 1-methoxy-1- (trimethylsiloxy) -2- Examples thereof include silicon compounds such as methyl-1-propene.
  • a thermal radical polymerization initiator and a catalyst may be combined.
  • the catalyst include metal salts and reducing compounds such as tertiary amine compounds such as N, N, N ′, N′-tetramethylethylenediamine.
  • photo radical polymerization initiators examples include benzophenone, 2-benzyl-2-dimethylamino-1- (4-morpholinophenyl) -butanone-1,2-methyl-1- [4- (methylthio) phenyl] -2-morpholino -Aromatic ketones such as propanone-1,2,2-dimethoxy-1,2-diphenylethane-1-one (Irgacure 651 (manufactured by Ciba Geigy Japan)); quinone compounds such as alkylanthraquinones; benzoin alkyl ethers and the like Benzoin ether compounds; benzoin compounds such as benzoin and alkylbenzoin; benzyl derivatives such as benzyldimethyl ketal; 2- (2-chlorophenyl) -4,5-diphenylimidazole dimer, 2- (2-fluorophenyl) -4, Such as 5-diphenylimidazole dimer , 4,5-triary
  • the curable resin composition is a binder polymer, a solvent, a photochromic agent, a thermochromic inhibitor, a plasticizer, a pigment, a filler, a flame retardant, a stabilizer, an adhesion-imparting agent, a leveling agent, and a peeling accelerator, if necessary Agents, antioxidants, fragrances, imaging agents, thermal crosslinking agents, and the like. These can be used alone or in combination of two or more. When the curable resin composition contains other components, the content thereof may be 0.01% by mass or more and 20% by mass or less based on the mass of the curable resin composition. Also good.
  • the cured product can be produced by a method including a step of radically polymerizing a radical polymerizable monomer in the curable resin composition to cure the curable resin composition.
  • the radical polymerization of the radical polymerizable monomer can be initiated by heating or irradiation with actinic rays such as ultraviolet rays.
  • radical polymerization generally, a polymer having a high molecular weight tends to be obtained by lowering the radical generation rate due to decomposition of the radical polymerization initiator.
  • the radical generation rate can be controlled by radical polymerization conditions. There are methods such as reducing the amount of radical polymerization initiator in a small amount, lowering the heating temperature in thermal radical polymerization, and lowering the illuminance of actinic rays in radical photopolymerization.
  • the conditions for radical polymerization for curing the curable resin composition are not particularly limited, but can be set in view of the above circumstances.
  • the temperature of the thermal radical polymerization may be, for example, within 10 ° C. above or below the decomposition temperature of the radical polymerization initiator. When the curable resin composition contains a solvent, this temperature may be equal to or lower than the boiling point of the solvent.
  • the illuminance of the photo radical polymerization may be 1 mW / cm 2 or less, for example. The higher the molecular weight of the polymer formed, the greater the tendency for the elongation at break of the cured product to increase, and it is easy to achieve both a high elastic modulus and a high elongation at break.
  • the radical polymerization reaction can be performed in an atmosphere of an inert gas such as nitrogen gas, helium gas, or argon gas. Thereby, polymerization inhibition by oxygen is suppressed, and a cured product of good quality can be obtained stably.
  • an inert gas such as nitrogen gas, helium gas, or argon gas.
  • cured material is not restrict
  • the glass transition temperature is room temperature or a use temperature or higher, it is advantageous in that a high elastic modulus is easily maintained during use and the handling property is excellent.
  • the glass transition temperature can be adjusted by, for example, the blending ratio of the first monofunctional radical polymerizable monomer and the second monofunctional radical polymerizable monomer in the curable resin composition.
  • the elastic modulus (tensile elastic modulus) of the cured product may be 10 MPa or more, 100 MPa or more, 200 MPa or more, or 10 GPa or less, 7 GPa or less, 5 GPa or less.
  • the elastic modulus can be adjusted by, for example, the blending ratio of the first monofunctional radical polymerizable monomer and the second monofunctional radical polymerizable monomer in the curable resin composition.
  • the elongation at break of the cured product may be 10% or more, 100% or more, or 200% or more.
  • a recoverable shape change is large, and a particularly remarkable effect is obtained in terms of characteristics such as bending resistance.
  • the breaking strength of the cured product may be 1 MPa or more, 3 MPa or more, or 5 MPa or more.
  • the weight average molecular weight of the polymer forming the cured product may be 100,000 or more, or 200,000 or more.
  • the weight average molecular weight means a standard polystyrene equivalent value determined by gel permeation chromatography unless otherwise defined.
  • a cured product excellent in shape recovery after being deformed under stress has a high elastic elongation. 60% or more, 70% or more, 80% or more may be sufficient as the elastic elongation rate of hardened
  • the elastic elongation is measured, for example, by the following procedure.
  • a test piece of a cured product having a size of 5 mm ⁇ 50 mm is prepared, and three portions aligned in the longitudinal direction are marked at portions corresponding to the chucks. The distance between the marks is L0 and L0 ′.
  • the elongation at break is calculated by the formula: (L2-L0) / L0.
  • the elongation at break is calculated by the formula: (L2 ⁇ L0 ′) / L0 ′.
  • the elongation at break may be calculated by the formula: (L3 ⁇ L1) / L1 using the distance L3 between chucks at the time of breakage. (4) The test piece after breaking was heated at 70 ° C.
  • the shape and size of the cured product are not particularly limited.
  • a cured product having an arbitrary shape can be obtained by curing a curable resin composition filled in a predetermined mold.
  • the cured product may be, for example, a fibrous shape, a rod shape, a cylindrical shape, a tubular shape, a flat plate shape, a disc shape, a spiral shape, a spherical shape, or a ring shape.
  • the cured product may be further processed by various methods such as machining and melt molding.
  • FIG. 1 is a perspective view showing an embodiment of a resin molded body.
  • a resin molded body 1 in FIG. 1 is an example of a flat molded body.
  • the molding composition has the formula (I): The radically polymerizable compound represented by these, the radically polymerizable monomer containing a monofunctional radically polymerizable monomer, and the 2nd polymer are contained.
  • X, R 1 and R 2 are each independently a divalent organic group
  • R 3 and R 4 are each independently a hydrogen atom or a methyl group.
  • the first polymer may contain a cyclic monomer unit represented by the following formula (II) derived from the compound of the formula (I). It is considered that the cyclic monomer unit of the formula (II) contributes to the expression of unique characteristics such as the shape memory property of the resin molded body. However, the first polymer does not necessarily contain the monomer unit of the formula (II).
  • X in the formulas (I) and (II) is, for example, the following formula (10): The group represented by these may be sufficient.
  • Y is a cyclic group which may have a substituent
  • Z 1 and Z 2 are each independently a functional group containing an atom selected from a carbon atom, an oxygen atom, a nitrogen atom and a sulfur atom.
  • i and j are each independently an integer of 0-2. * Represents a bond (this also applies to other formulas).
  • X is a group of the formula (10), it is considered that the cyclic monomer unit of the formula (II) is particularly easily formed.
  • Z 1 and Z 2 with respect to the cyclic group Y may be a cis position or a trans position.
  • Z 1 and Z 2 are —O—, —OC ( ⁇ O) —, —S—, —SC ( ⁇ O) —, —OC ( ⁇ S) —, —NR 10 — (R 10 is a hydrogen atom or An alkyl group), or a group represented by —ONH—.
  • Y may be a cyclic group having 2 to 10 carbon atoms, or may contain a heteroatom selected from an oxygen atom, a nitrogen atom and a sulfur atom.
  • the cyclic group Y is, for example, an alicyclic group, a cyclic ether group, a cyclic amine group, a cyclic thioether group, a cyclic ester group, a cyclic amide group, a cyclic thioester group, an aromatic hydrocarbon group, a heteroaromatic hydrocarbon group, or It can be a combination of these.
  • the cyclic ether group may be a cyclic group possessed by a monosaccharide or polysaccharide.
  • Y include, but are not particularly limited to, a cyclic group represented by the following formula (11), (12), (13), (14) or (15). From the viewpoint of stress relaxation properties of the resin molded body, Y may be a group of the formula (11) (particularly a 1,2-cyclohexanediyl group).
  • R 1 and R 2 in the formulas (I) and (II) may be the same as or different from each other, and may be a group represented by the following formula (20).
  • R 6 is a hydrocarbon group having 1 to 8 carbon atoms (an alkylene group or the like), and is bonded to the nitrogen atom in the formula (I) or (II).
  • Z 3 is a group represented by —O— or —NR 10 — (R 10 is a hydrogen atom or an alkyl group).
  • R 1 and R 2 are a group of the formula (20), it is considered that the cyclic monomer unit of the formula (II) is particularly easily formed.
  • the number of carbon atoms in R 6 may be 2 or more, 6 or less, or 4 or less.
  • radically polymerizable compound of the formula (I) is a compound represented by the following formula (Ia).
  • Y, Z 1 , Z 2 , i, and j are defined in the same manner as in Expression (10).
  • Examples of the compound of the formula (Ia) include the following formulas (I-1), (I-2), (I-3), (I-4), (I-5), (I-6), ( And compounds represented by I-7) or (I-8).
  • the proportion of the radically polymerizable compound of formula (I) in the molding composition is 0.01 mol% or more, 0.1 mol% or more, or 0.5 mol% or more, based on the total amount of the radical polymerizable monomer. It may be 10 mol% or less, 5 mol% or less, or 1 mol% or less. When the ratio of the radical polymerizable compound of the formula (I) is within these ranges, a further advantageous effect can be obtained in that a cured product having excellent mechanical properties such as elongation, strength, and bending resistance can be obtained.
  • the compound of formula (I) can be synthesized by a usual synthesis method using a commonly available raw material as a starting material.
  • the compound of formula (I) can be synthesized by reacting a cyclic diol compound or a cyclic diamine compound with a compound having a (meth) acryloyl group and an isocyanate group.
  • the radical polymerizable monomer in the molding composition may contain alkyl (meth) acrylate and / or acrylonitrile as a monofunctional radical polymerizable monomer.
  • the alkyl (meth) acrylate is an alkyl (meth) acrylate having an alkyl group having 1 to 16 carbon atoms which may have a substituent ((meth) acrylic acid and optionally having 1 substituent). To 16 alkyl alcohol esters). The substituent that the alkyl (meth) acrylate having an alkyl group having 1 to 16 carbon atoms may have an oxygen atom and / or a nitrogen atom.
  • the elastic modulus and glass transition temperature (Tg) of the cured product By including an alkyl (meth) acrylate having an alkyl group having 1 to 16 carbon atoms in the radical polymerizable monomer, the elastic modulus and glass transition temperature (Tg) of the cured product, and mechanical properties such as elongation and strength can be obtained. The effect that it can be controlled is obtained.
  • the proportion of the alkyl (meth) acrylate having 1 to 16 carbon atoms which may have a substituent in the molding composition is 10 mol% or more, 15 mol% or more based on the total amount of the radical polymerizable monomer. Or 20 mol% or more, 95 mol% or less, 90 mol% or less, or 85 mol% or less.
  • a cured product having excellent mechanical properties such as elongation and strength, and bending resistance can be obtained. In this respect, a further advantageous effect can be obtained.
  • the radical polymerizable monomer may contain an alkyl (meth) acrylate having an alkyl group having 10 or less carbon atoms, which may have a substituent, as a monofunctional radical polymerizable monomer.
  • the proportion of the alkyl (meth) acrylate having 10 or less carbon atoms that may have a substituent in the molding composition is 8 mol% or more, 10 mol% or more based on the total amount of the radical polymerizable monomer, Or 15 mol% or more may be sufficient, and 55 mol% or less, 45 mol% or less, or 25 mol% or less may be sufficient.
  • the ratio of the alkyl (meth) acrylate having an alkyl group having 10 or less carbon atoms, which may have a substituent is within these ranges, a resin molded product having a certain degree of elasticity and shape memory properties is obtained. A further advantageous effect is obtained in that it is easily formed.
  • the radical polymerizable monomer may contain a (meth) acrylate having an alkyl group having 8 or less carbon atoms, which may have a substituent, and the proportion thereof may be in the above numerical range. Good.
  • alkyl (meth) acrylate having 1 to 16 carbon atoms which may have a substituent include ethyl acrylate, ethyl methacrylate, n-butyl acrylate, n-butyl methacrylate, isobutyl acrylate, isobutyl methacrylate, hexyl acrylate, Hexyl methacrylate, 2-ethylhexyl acrylate (EHA), 2-ethylhexyl methacrylate, 2-hydroxyethyl methacrylate, 2-hydroxypropyl methacrylate, 2-hydroxy-1-methylethyl methacrylate, 2-methoxyethyl acrylate (MEA), N, N -Dimethylaminoethyl acrylate, and glycidyl methacrylate. These can be used alone or in combination of two or more.
  • the radical polymerizable monomer contains acrylonitrile, it tends to form a resin molded article having a high degree of elasticity and shape memory property while having excellent mechanical properties such as elongation and strength, and bending resistance.
  • a combination of acrylonitrile and a (meth) acrylate having an alkyl group having 1 to 16 (or 1 to 10) carbon atoms is particularly advantageous in order to obtain a resin molded article having a high elastic modulus.
  • the proportion of acrylonitrile in the molding composition may be 40 mol% or more, 50 mol% or more, or 70 mol% or more, based on the total amount of the radical polymerizable monomer, 90 mol% or less, 85 mol% % Or less, or 80 mol% or less.
  • the ratio of acrylonitrile is within these ranges, a further advantageous effect can be obtained in that the shape recovery is quick.
  • the radical polymerizable monomer may contain one or more compounds selected from vinyl ether, styrene and styrene derivatives as a monofunctional radical polymerizable monomer.
  • vinyl ethers include vinyl butyl ether, vinyl octyl ether, vinyl-2-chloroethyl ether, vinyl isobutyl ether, vinyl dodecyl ether, vinyl kutadecyl ether, vinyl phenyl ether, and vinyl cresyl ether.
  • styrene derivative examples include alkyl styrene, alkoxy styrene ( ⁇ -methoxystyrene, p-methoxystyrene, etc.), and m-chlorostyrene.
  • the radical polymerizable monomer may contain other monofunctional radical polymerizable monomer and / or polyfunctional radical polymerizable monomer.
  • examples of other monofunctional radically polymerizable monomers include vinylphenol, N-vinylcarbazole, 2-vinyl-5-ethylpyridine, isopropenyl acetate, vinyl isocyanate, vinyl isobutyl sulfide, 2-chloro-3-hydroxypropene, Vinyl stearate, p-vinylbenzylethyl carbinol, vinyl phenyl sulfide, allyl acrylate, ⁇ -chloroethyl acrylate, allyl acetate, 2,2,6,6-tetramethyl-piperidinyl methacrylate, N, N-diethyl vinyl Carbamate, vinyl isopropenyl ketone, N-vinyl caprolactone, vinyl formate, p-vinyl benzylmethyl carbinol, vinyl e
  • the molding composition contains the radical polymerizable monomer described above and a linear or branched second polymer.
  • the second polymer may be a polymer including two or more linear chains and a linking group that connects the ends thereof.
  • This polymer includes a molecular chain represented by the following formula (B), for example.
  • R 20 is a monomer unit constituting a linear chain
  • n 1 , n 2 and n 3 are each independently an integer of 1 or more
  • L is a linking group.
  • a plurality of R 20 and L in the same molecule may be the same or different.
  • Linear chain composed of monomer units R 20 are polyether, polyester, polyolefin, polyorganosiloxane, or a molecular chain derived from these combinations. Each linear chain may be a polymer or an oligomer.
  • linear chains derived from polyether examples include polyoxyalkylene chains such as polyoxyethylene chains, polyoxypropylene chains, polyoxybutylene chains, and combinations thereof.
  • Polyoxyethylene chains are derived from polyethers such as polyalkylene glycols.
  • linear chains derived from polyolefins examples include polyethylene chains, polypropylene chains, polyisobutylene chains, and combinations thereof.
  • linear chains derived from polyester include poly ⁇ -caprolactone chains.
  • Examples of the linear chain derived from polyorganosiloxane examples include a polydimethylsiloxane chain.
  • a 2nd polymer can contain these alone or the combination of 2 or more types chosen from these.
  • the number average molecular weight of each of the linear molecular chains constituting the second polymer is not particularly limited, but may be, for example, 1000 or more, 3000 or more, or 5000 or more, and may be 80000 or less, 50000 or less, or 20000. It may be the following.
  • the number average molecular weight means a standard polystyrene equivalent value obtained by gel permeation chromatography unless otherwise defined.
  • the linking group L is an organic group containing a cyclic group or a branched organic group.
  • the linking group L may be, for example, a divalent group represented by the following formula (30).
  • R 30 is a cyclic group, a group containing two or more cyclic groups, which are bonded directly or via an alkylene group, or a carbon atom, and is selected from an oxygen atom, a nitrogen atom, a sulfur atom and a silicon atom
  • the branched organic group which may contain the hetero atom is shown.
  • Z 5 and Z 6 are divalent groups that bind R 30 and a linear chain, and include, for example, —NHC ( ⁇ O) —, —NHC ( ⁇ O) O—, —O—, —OC ( ⁇ O) —, —S—, —SC ( ⁇ O) —, —OC ( ⁇ S) —, or —NR 10 — (R 10 is a hydrogen atom or an alkyl group).
  • R 10 is a hydrogen atom or an alkyl group.
  • the atom at the end of the linear chain is not normally interpreted as an atom constituting Z 5 or Z 6 . If it is not clear whether the atom at the end of the linear chain is an atom derived from a monomer, the atom may be interpreted as being included in either the linear chain or the linking group.
  • the cyclic group contained in the linking group L may contain a hetero atom selected from a nitrogen atom and a sulfur atom.
  • the cyclic group included in the linking group L is, for example, an alicyclic group, a cyclic ether group, a cyclic amine group, a cyclic thioether group, a cyclic ester group, a cyclic amide group, a cyclic thioester group, an aromatic hydrocarbon group, or a heteroaromatic hydrocarbon. It can be a group or a combination thereof.
  • cyclic group contained in the linking group L include 1,4-cyclohexanediyl group, 1,2-cyclohexanediyl group, 1,3-cyclohexanediyl group, 1,4-benzenediyl group, 1,3-benzene.
  • examples include a diyl group, a 1,2-benzenediyl group, and a 3,4-furandiyl group.
  • Examples of the branched organic group (for example, R 30 in the formula (30)) included in the linking group L include a lysine triyl group, a methylsilanetriyl group, and a 1,3,5-cyclohexanetriyl group.
  • the linking group L represented by the formula (30) may be a group represented by the following formula (31).
  • R 31 in the formula (31) represents a single bond or an alkylene group.
  • R 31 may be an alkylene group having 1 to 3 carbon atoms. Defining Z 5 and Z 6 are the same as equation (30).
  • the weight average molecular weight of the second polymer is not particularly limited, but may be, for example, 5000 or more, 7000 or more, or 9000 or more, or 100000 or less, 80000 or less, or 60000 or less. When the weight average molecular weight of the second polymer is within these numerical ranges, good compatibility with other components of the second polymer and good characteristics of the resin molded product tend to be easily obtained. is there.
  • the second polymer can be obtained by an ordinary synthesis method using a commonly available raw material as a starting material.
  • a polyalkylene glycol having a reactive end group such as a hydroxyl group
  • a polyester such as a polyolefin, a polyorganosiloxane, or a mixture containing a combination thereof, a reactive functional group (such as an isocyanate group), and a cyclic or branched group
  • the second polymer can be synthesized by reaction with a compound having the above group.
  • the second polymer to be synthesized may contain a branched structure based on side reactions such as trimerization of isocyanate groups.
  • the molding composition may contain a polymerization initiator for the polymerization of the radical polymerizable monomer.
  • the polymerization initiator can be a thermal radical polymerization initiator, a photo radical polymerization initiator, or a combination thereof.
  • the content of the polymerization initiator is appropriately adjusted within a normal range, and may be, for example, 0.01 to 5% by mass based on the mass of the molding composition.
  • Thermal radical polymerization initiators include ketone peroxides, peroxyketals, dialkyl peroxides, diacyl peroxides, peroxyesters, peroxydicarbonates, hydroperoxides and other organic peroxides, sodium persulfate, potassium persulfate Persulfates such as ammonium persulfate, 2,2′-azobis-isobutyronitrile (AIBN), 2,2′-azobis-2,4-dimethylvaleronitrile (ADVN), 2,2′-azobis-2 -Azo compounds such as methylbutyronitrile, 4,4'-azobis-4-cyanovaleric acid, alkyl metals such as sodium ethoxide, tert-butyllithium, 1-methoxy-1- (trimethylsiloxy) -2- Examples thereof include silicon compounds such as methyl-1-propene.
  • a thermal radical polymerization initiator and a catalyst may be combined.
  • the catalyst include metal salts and reducing compounds such as tertiary amine compounds such as N, N, N ′, N′-tetramethylethylenediamine.
  • photoradical polymerization initiator examples include 2,2-dimethoxy-1,2-diphenylethane-1-one.
  • Irgacure 651 manufactured by Ciba Geigy Japan.
  • the molding composition may contain a solvent or may be substantially solvent-free.
  • the molding composition may be liquid, semi-solid, or solid.
  • the molding composition before curing may be in the form of a film.
  • the resin molded body can be produced by a method including a step of forming a first polymer by radical polymerization of a radical polymerizable monomer in a molding composition.
  • the radical polymerization of the radical polymerizable monomer can be initiated by heating or irradiation with actinic rays such as ultraviolet rays.
  • the shape and size of the resin molded body (cured body) are not particularly limited.
  • a resin molded body having an arbitrary shape can be obtained by curing a molding composition filled in a predetermined mold.
  • the resin molded body may be, for example, a fiber shape, a rod shape, a columnar shape, a cylindrical shape, a flat plate shape, a disc shape, a spiral shape, a spherical shape, or a ring shape.
  • the molded body after curing may be further processed by various methods such as machining.
  • the temperature of the polymerization reaction is not particularly limited, but when the molding composition contains a solvent, it is preferably below the boiling point thereof.
  • the polymerization reaction is preferably performed in an atmosphere of an inert gas such as nitrogen gas, helium gas, or argon gas. Thereby, the inhibition of polymerization due to oxygen is suppressed, and a molded article of good quality can be stably obtained.
  • a radical polymerizable monomer containing a radical polymerizable compound of formula (I) is polymerized, a cyclic monomer unit of formula (II) is formed.
  • the radically polymerizable monomer is polymerized in the presence of the first polymer, at least a part of the cyclic monomer unit of the formula (II) can form a structure in which the second polymer penetrates the cyclic part.
  • the following formula (III) schematically shows a structure in which the second polymer (B) penetrates the cyclic portion of the monomer unit of the formula (II) of the first polymer (A).
  • R 5 in formula (III) is a monomer unit derived from a radical polymerizable monomer other than the radical polymerizable compound of formula (I).
  • a crosslinked network structure like a three-dimensional copolymer is formed by the first polymer and the second polymer.
  • this network structure it is considered that the degree of freedom of movement of the second polymer penetrating the annular portion is kept relatively high.
  • Such a structure is sometimes referred to as a ring structure by those skilled in the art, and the present inventors speculate that this contributes to the expression of unique properties such as shape memory properties of the resin molded body. Yes.
  • a stress-strain curve obtained by a tensile test of a resin molding is a so-called J-shaped curve. This suggests the formation of a ring structure.
  • the resin molded body does not necessarily include such a ring structure.
  • the second polymer (B) has a plurality of polyoxyethylene chains and a linking group L that connects the ends thereof. Since the linking group L is bulky compared to the polyoxyethylene chain, it is easy to maintain a state in which the second polymer penetrates the cyclic portion of the monomer unit of the formula (II) as in the polyrotaxane.
  • the second polymer can be appropriately selected based on the balance of the size of the cyclic monomer unit, the inclusion ability, and the properties of the polyrotaxane.
  • the resin molded body produced and cured by the first polymer may or may not have shape memory, but the shape can be determined by appropriately selecting the type of radical polymerizable monomer.
  • a resin molded body having memory properties can be obtained.
  • shape memory property means that when a resin molded body is deformed by an external force at room temperature (for example, 25 ° C.), the resin molded body retains the deformed shape at room temperature, It means the property of returning to its original shape when heated to a high temperature. However, the resin molded body does not have to completely recover the same shape as the original shape by heating.
  • the heating temperature for shape recovery is 70 ° C., for example.
  • the first polymer is usually formed, and the shape of the resin molded body at the time of curing becomes the basic shape.
  • the resin molded body deformed by an external force is deformed so as to approach this basic shape by heating.
  • a resin molding having a desired shape as a basic shape can be obtained.
  • the storage elastic modulus of the resin molded body at 25 ° C. is not particularly limited, but may be 0.5 MPa or more.
  • a resin molded body having a storage elastic modulus of 0.5 MPa or more usually has shape memory.
  • the elastic modulus of the resin molded body may be 1.0 MPa or more, or 10 MPa or more, or 10 GPa or less, 5 GPa or less, or 500 MPa or less. Since the storage elastic modulus is high, the resin molded body tends to easily retain the shape after deformation. By having an appropriate storage elastic modulus, the resin molded body tends to recover its original shape when heated.
  • the elastic modulus of the resin molded body can be controlled based on, for example, the type of radical polymerizable monomer and the blending ratio thereof, the molecular weight of the second polymer, and the amount of radical polymerization initiator.
  • Curable resin composition Each raw material was mixed by the mass ratio shown in Table 1, and the curable resin composition was prepared. The numerical value in a table
  • surface is a mass part.
  • the elongation at break is calculated by the formula: (L2-L0) / L0.
  • the elongation at break may be calculated by the formula: (L3 ⁇ L1) / L1 using the distance L3 between chucks at the time of breakage.
  • the test piece after fracture was heated at 70 ° C. for 3 minutes, and then the distance L4 between the marks was measured, and the elastic elongation indicating the ratio of elastic elongation to the elongation at break was expressed by the formula: (L2-L4) / (L2-L0 ).
  • the stress at the time of breaking was defined as the breaking strength, and the slope of the stress-strain curve at the initial stage of tension was defined as the tensile modulus.
  • the curable resin composition of the example containing the first radical polymerizable monomer and the second radical polymerizable monomer had a higher elongation at break and stress than the curable resin composition of Comparative Example 3. As a result, it was confirmed that a resin molded body having excellent shape recovery after being deformed can be formed.
  • Synthesis Example 2 Synthesis of PEG-PPG oligomer 1 Polyethylene glycol (PEG 1500, 750 mg, 0.500 mmol, number average molecular weight 1500) and polypropylene glycol (PPG 4000, 2000 mg, 0.500 mmol, number average molecular weight 4000) were added to a 20 mL eggplant flask. After the addition, the inside of the flask was purged with nitrogen, and the contents were melted at 115 ° C. 4,4′-dicyclohexylmethane diisocyanate (262 mg, 1.00 mmol) was added to the melt, and the melt was stirred at 115 ° C. for 24 hours under a nitrogen atmosphere to obtain PEG-PPG oligomer 1 (polyoxyethylene chain, and A second polymer containing a polyoxypropylene chain) was obtained.
  • PPG 4000 2000 mg, 0.500 mmol, number average mo
  • the weight average molecular weight (Mw) of the obtained oligomer 1 was 9300, and the weight average molecular weight / number average molecular weight (Mw / Mn) of the oligomer 1 was 1.65.
  • Synthesis Example 3 Synthesis of PEG-PPG oligomer 2 Polyethylene glycol (PEG 1500, 750 mg, 0.500 mmol, number average molecular weight 1500) and polypropylene glycol (PPG 4000, 2000 mg, 0.500 mmol, number average molecular weight 4000) were added to a 20 mL eggplant flask. After the addition, the inside of the flask was purged with nitrogen, and the contents were melted at 115 ° C.
  • the weight average molecular weight (Mw) of the obtained oligomer 2 was 50000, and the weight average molecular weight / number average molecular weight (Mw / Mn) of the oligomer 2 was 1.95.
  • the obtained compounded liquid was poured into a stainless steel mold having a length ⁇ width ⁇ depth of 46 mm ⁇ 10 mm ⁇ 1 mm, and a transparent sheet made of polyethylene terephthalate was placed thereon.
  • the compounded solution was photocured by irradiating UV (ultraviolet rays) for 30 minutes at room temperature (25 ° C., the same applies hereinafter) from above the transparent sheet to obtain a film-like molded body.
  • a polytetrafluoroethylene tube (trade name Naflon (registered trademark) BT tube 1 / 8B) having an inner diameter of 1.59 mm ⁇ , an outer diameter of 3.17 mm ⁇ , and a wall thickness of 0.79 mm was wound around a stainless steel tube having an outer diameter of 10 mm ⁇ .
  • the wound tube was filled with the compounded solution, and the compounded solution was photocured in the tube by ultraviolet irradiation at room temperature for 30 minutes. Then, the helical molded body was taken out from the tube.
  • the compounded liquid filled in a polyethylene cup-shaped mold was photocured by ultraviolet irradiation for 30 minutes at room temperature.
  • a cup-shaped molded body was taken out from the mold as a three-dimensional molded body.
  • Example 2-2 (Examples 2-2, 2-3, and Comparative Example 2-1) A blending solution was prepared at the blending ratio shown in Table 2. Using the resulting blended liquid, resin molded bodies having various shapes were produced in the same manner as in Example 2-1.
  • Shape memory property The film-like molded body was folded twice, and in this state, the crease was pressed with a glass tube. It was confirmed that the folded shape did not substantially return to the original shape.
  • the spiral shaped body was stretched and deformed into a rod shape.
  • the cup-shaped molded body was sandwiched between two glass plates and deformed by crushing in the height direction. The case where the molded body of each shape retained the deformed shape was determined as “good”, and the case where it was not retained was determined as “bad”.
  • the deformed molded body was immersed in water at 70 ° C., and it was visually confirmed that it returned to the initial shape within 10 seconds immediately after the immersion. The case where the molded body recovered the initial shape was determined as “good”, and the case where it did not recover was determined as “bad”.
  • a polyethylene terephthalate (PET) film was laid on a stainless steel mold having a length x width x depth of 46 mm x 10 mm x 1 mm.
  • the resin composition was poured therein, and a transparent sheet made of PET was placed thereon.
  • a 2000 mJ / cm 2 ultraviolet ray was irradiated from above the transparent sheet at room temperature (25 ° C., the same applies hereinafter) to obtain a resin film.
  • a strip-shaped test piece (width: 8 mm, thickness: 1 mm) was cut out from the obtained resin film.
  • the test piece was measured for strength at break and elongation at break using a strograph T (manufactured by Toyo Seiki Seisakusho Co., Ltd.) at room temperature, a distance between chucks: 30 mm, and a tensile speed: 10.0 mm / min.
  • the resin molded body of each example had excellent bending resistance and high elongation. Moreover, the resin molding of each Example had favorable shape memory property. From this result, according to one aspect of the present invention, it was confirmed that a resin molded body having shape memory property excellent in shape recovery property by heating was obtained.

Abstract

第一の単官能ラジカル重合性モノマー及び第二の単官能ラジカル重合性モノマーを含むラジカル重合性モノマーを含有する硬化性樹脂組成物が開示される。第一の単官能ラジカル重合性モノマーは、単独で重合したときに20℃以下のガラス転移温度を有するホモポリマーを形成するモノマーである。第二の単官能ラジカル重合性モノマーは、単独で重合したときに50℃以上のガラス転移温度を有するホモポリマーを形成するモノマーである。

Description

硬化性樹脂組成物、及びその硬化物
 本発明は、硬化性樹脂組成物、及びその硬化物に関する。
 従来、伸び及び折り曲げに対する耐性と、強度及び弾性率などのトレードオフの関係にある特性とを両立した材料を得るために、様々な検討が行われている。例えば、特許文献1は、引張弾性率が1~100MPaであり、引張破壊伸びが200%以上である硬化体を開示している。また、特許文献2は、高い弾性率を示す材料を開示している。
 一方、形状記憶材料としては金属、樹脂、セラミックスなどが知られている。一般に、形状記憶性は、結晶構造の変化、又は分子運動形態が変わることによる相変態に基づいて発現する。形状記憶材料は形状回復特性の他にも、防振特性等に優れるという特性を有していることが多い。これまで、形状記憶材料として金属及び樹脂の検討が主に進められてきた。
 形状記憶樹脂は、成形加工後に力を加えられて変形しても、ある温度以上に加熱されると元の形状に回復する樹脂である。形状記憶合金と比較して、形状記憶樹脂は、価格が安い、形状変化率が高い、軽い、加工しやすい、着色できる等の点で一般に優れている。
 形状記憶樹脂は高温で軟らかく、ゴムのように容易に変形する。一方、低温では硬く、ガラスのように変形しにくい。形状記憶樹脂は、高温で小さな力によって元の長さの数倍にまで伸ばすことができ、冷却することによりその変形した形状を保持することができる。この状態で材料を無加重下で加熱すれば、材料が元の形状に回復する。高温では力を除くだけで材料が元の形状に戻る。従って、高温におけるエネルギーの吸収及び貯蔵の特性を利用することができる。
 主な形状記憶樹脂として、ポリノルボルネン、トランスイソプレン、スチレン-ブタジエン共重合体、及びポリウレタンがある。例えば、特許文献3にはノルボルネン系樹脂、特許文献4にはトランス-イソプレン系樹脂、特許文献5にはポリウレタン系樹脂、特許文献6にはアクリル系樹脂に関する形状記憶樹脂が記載されている。
特開2008-088354号公報 特開2012-102193号公報 特公平5-72405号公報 特開2004-250182号公報 特開2004-300368号公報 特開平7-292040号公報
 本発明の一側面の目的は、高い破断伸びを有するとともに、応力を受けて変形した後の形状回復性にも優れた硬化物を形成することができる、硬化性樹脂組成物を提供することである。
 本発明の別の側面の目的は、加熱による形状回復性に優れた形状記憶性を有する樹脂成形体を提供することである。
 本発明の一側面は、第一の単官能ラジカル重合性モノマー及び第二の単官能ラジカル重合性モノマーを含むラジカル重合性モノマーを含有する、硬化性樹脂組成物に関する。前記第一の単官能ラジカル重合性モノマーが、単独で重合したときに20℃以下のガラス転移温度を有するホモポリマーを形成するモノマーである。前記第二の単官能ラジカル重合性モノマーが、単独で重合したときに50℃以上のガラス転移温度を有するホモポリマーを形成するモノマーである。前記第一の単官能ラジカル重合性モノマー及び前記第二の単官能ラジカル重合性モノマーの合計の含有量が、前記ラジカル重合性モノマーの全体量を基準として60質量%以上であってもよい。
 この硬化性樹脂組成物は、高い破断伸びを有するとともに、応力を受けて変形した後の形状回復性にも優れた硬化物を形成することができる。
 本発明の別の側面は、硬化性樹脂組成物の硬化物に関する。前記硬化性樹脂組成物が、第一の単官能ラジカル重合性モノマー及び第二の単官能ラジカル重合性モノマーを含むラジカル重合性モノマーを含有する。前記第一の単官能ラジカル重合性モノマーが、単独で重合したときに20℃以下のガラス転移温度を有するホモポリマーを形成するモノマーである。前記第二の単官能ラジカル重合性モノマーが、単独で重合したときに50℃以上のガラス転移温度を有するホモポリマーを形成するモノマーである。前記第一の単官能ラジカル重合性モノマー及び前記第二の単官能ラジカル重合性モノマーの合計の含有量が、前記ラジカル重合性モノマーの全体量を基準として60質量%以上であってもよい。
 この硬化物は、高い破断伸びとともに、応力を受けて変形した後の優れた形状回復性を有することができる。
 本発明の別の側面は、式(I):
Figure JPOXMLDOC01-appb-C000001
で表され、X、R及びRがそれぞれ独立に2価の有機基で、R及びRがそれぞれ独立に水素原子又はメチル基である、ラジカル重合性化合物、及び単官能ラジカル重合性モノマーを、モノマー単位として含む第一の重合体と、直鎖状又は分岐状の第二の重合体と、を含有する樹脂成形体に関する。
 この樹脂成形体が、25℃で0.5MPa以上の貯蔵弾性率を有していてもよい。あるいは、樹脂成形体が形状記憶性を有していてもよい。係る樹脂成形体は、加熱による形状回復性に優れている。
 本発明の別の側面は、式(I)のラジカル重合性化合物、及び単官能ラジカル重合性モノマーを含むラジカル重合性モノマー(反応性モノマー)と、第二の重合体とを含有する成形用組成物に関する。この成形用組成物は、第二の重合体の存在下でラジカル重合性モノマーが重合したときに、25℃で0.5MPa以上の貯蔵弾性率を有する樹脂成形体を形成することができる。あるいは、この成形用組成物は、第二の重合性モノマーの存在下でラジカル重合性モノマーが重合したときに、形状記憶性を有する樹脂成形体を形成することができる。
 本発明の更に別の側面は、第一の重合体及び第二の重合体を含む樹脂成形体を製造する方法に関する。この方法は、式(I)のラジカル重合性化合物、及び単官能ラジカル重合性モノマーを含むラジカル重合性モノマーと、第二の重合体とを含む成形用組成物中で、ラジカル重合性モノマーの重合により第一の重合体を生成させる工程を備える。
 本発明の一側面によれば、高い破断伸びとともに、応力を受けて変形した後の形状回復性にも優れた樹脂成形体を形成することができる硬化性樹脂組成物が提供される。いくつかの形態に係る硬化性樹脂組成物によれば、高い弾性率及び耐折り曲げ性を高いレベルで両立することが可能である。ここで、硬化物が応力を受けて変形した後の形状回復性に優れることは、応力から解放されただけで応力を受ける前の形状に回復し易いことを意味し、硬化物が加熱により形状を回復する形状記憶性を有することを必ずしも意味しない。
 本発明の別の側面によれば、加熱による形状回復性に優れた形状記憶性を有する樹脂成形体が提供される。本発明の樹脂成形体の弾性率を制御して、加熱した際の形状回復速度を容易に高くすることができる。いくつかの形態に係る樹脂成形体は、透明性、柔軟性、応力緩和性、及び耐水性のような各種特性の点でも優れる。
樹脂成形体(硬化物)の一実施形態を示す斜視図である。
 以下、本発明のいくつかの実施形態について詳細に説明する。ただし、本発明は以下の実施形態に限定されるものではない。
(硬化性樹脂組成物)
 一実施形態に係る硬化性樹脂組成物は、第一の単官能ラジカル重合性モノマー及び第二の単官能ラジカル重合性モノマーを含むラジカル重合性モノマーを含有する。第一の単官能ラジカル重合性モノマー及び第二の単官能ラジカル重合性モノマーは、それぞれ、1個のラジカル重合性基を有する。
 第一の単官能ラジカル重合性モノマーは、単独で重合したときに20℃以下のガラス転移温度を有するホモポリマーを形成するモノマーである。第二の単官能ラジカル重合性モノマーは、単独で重合したときに50℃以上のガラス転移温度を有するホモポリマーを形成するモノマーである。これら第一の単官能ラジカル重合性モノマーと第二の単官能ラジカル重合性モノマーとの組み合わせにより、硬化物が、高い破断伸びとともに、応力を受けて変形した後の優れた形状回復性も有することができる。また、高い破断強度を有する硬化物が得られる傾向がある。同様の観点から、第一のラジカル重合性モノマーは、単独で重合したとき10℃以下、又は0℃以下のホモポリマーを形成するモノマーであってもよく、第二のラジカル重合性モノマーは、単独で重合したとき60℃以上、又は70℃以上のガラス転移温度を有するホモポリマーを形成するモノマーであってもよい。第一の単官能ラジカル重合性モノマーによって形成されるホモポリマーのガラス転移温度は、-70℃以上であってもよい。第二の単官能ラジカル重合性モノマーによって形成されるホモポリマーのガラス転移温度は、150℃以下であってもよい。
 本明細書において、各ラジカル重合性モノマーによって形成されるホモポリマーのガラス転移温度は、示差走査熱量測定で決定される温度を意味する。当業者であれば、一般的なラジカル重合性モノマーのホモポリマーのガラス転移温度を文献値として知ることもできる。
 第一の単官能ラジカル重合性モノマーの含有量は、ラジカル重合性モノマーの全体量を基準として、5質量%以上、10質量%以上、又は15質量%以上であってもよく、90質量%以下、85質量%以下、又は80質量%以下であってもよい。第一のラジカル重合性モノマーの含有量がこれら範囲内にあることで、硬化物が高い破断伸び及び高弾性率を両立できる点で、より一層顕著な効果が得られる。
 第一の単官能ラジカル重合性モノマーは、置換基を有していてもよいアルキル(メタ)アクリレートであることができる。第一の単官能ラジカル重合性モノマーとして用いられる、置換基を有していてもよいアルキル(メタ)アクリレートは、例えば、エチルアクリレート、エチルメタクリレート、n-ブチルアクリレート、n-ブチルメタクリレート、イソブチルアクリレート、イソブチルメタクリレート、ヘキシルアクリレート、ヘキシルメタクリレート、2-エチルヘキシルアクリレート、2-エチルヘキシルメタクリレート、2-ヒドロキシエチルメタクリレート、2-ヒドロキシプロピルメタクリレート、2-ヒドロキシ-1-メチルエチルメタクリレート、2-メトキシエチルアクリレート、及びグリシジルメタクリレートからなる群より選ばれる少なくとも一種であることができる。
 第一の単官能ラジカル重合性モノマーは、2-エチルヘキシルアクリレートであってもよい。2-エチルヘキシルアクリレートを用いることで、硬化物の靱性及び破断伸びが増加し、弾性率の制御が容易になる点でさらに有利な効果が得られる。
 第二の単官能ラジカル重合性モノマーの含有量は、ラジカル重合性モノマーの全体量を基準として、10質量%以上、15質量%以上、又は20質量%以上であってもよく、95質量%以下、90質量%以下、又は85質量%以下であってもよい。第二の単官能ラジカル重合性モノマーの含有量がこれら範囲内にあることで、硬化物が高い破断伸び及び高弾性率を両立できる点でより一層顕著な効果が得られる。
 第二の単官能ラジカル重合性モノマーは、置換基を有していてもよいアルキル(メタ)アクリレートであることができる。第二の単官能ラジカル重合性モノマーとして用いられる、置換基を有していてもよいアルキル(メタ)アクリレートは、例えば、アダマンチルアクリレート、アダマンチルメタクリレート、2-シアノメチルアクリレート、2-シアノブチルアクリレート、アクリルアミド、アクリル酸、メタクリル酸、アクリロニトリル、ジシクロペンタニルアクリレート、及びメチルメタクリレートからなる群より選ばれる少なくとも一種であることができる。
 第二の単官能ラジカル重合モノマーは、アクリロニトリル、ジシクロペンタニルアクリレート、及びメチルメタクリレートからなる群より選ばれる少なくとも一種であってもよい。これらのモノマーを用いることで、硬化物の破断強度及び弾性伸び率が増加し、弾性率制御が容易になる点で、さらに有利な効果が得られる。
 第一の単官能ラジカル重合性モノマーと第二の単官能ラジカル重合性モノマーとの比率は、適宜調節することができる。第一の単官能ラジカル重合性モノマーの比率が高いほど、硬化物の弾性率及びガラス転移温度が低下し、破断伸びが増加する傾向にある。第二の単官能ラジカル重合性モノマーの比率が高いほど、硬化物の弾性率及びガラス転移温度が高くなる傾向にある。
 第一の単官能ラジカル重合性モノマーに由来するモノマー単位は、伸び及び折り曲げなどの外力を緩和するソフトセグメントとして硬化物中で機能すると考えられる。また、第二の単官能ラジカル重合性モノマーに由来するモノマー単位は、伸び及び折り曲げなどの外力に抵抗するハードセグメントとして硬化物中で機能していると考えられる。性質の大きく異なるこれら2種のモノマー単位を硬化物を形成するポリマー鎖中に導入することにより、双方の性質を両立できると考えられる。ただし、硬化物の物性が発現する機構は必ずしもこれに限定されない。
 硬化性樹脂組成物は、ラジカル重合性モノマーとして、第一の単官能ラジカル重合性モノマー及び第二の単官能ラジカル重合性モノマー以外のモノマーを更に含み得る。ただし、第一の単官能ラジカル重合性モノマー及び第二の単官能ラジカル重合性モノマーの合計の含有量は、ラジカル重合性モノマーの全体量を基準として60質量%以上、70質量%以上、又は80質量%以上であってもよい。第一の単官能ラジカル重合性モノマー及び第二の単官能ラジカル重合性モノマーの合計の含有量がこれら範囲内にあることにより、硬化物が高い破断伸び及び高い弾性伸び率を有する点で、より一層顕著な効果が得られる。
 硬化性樹脂組成物中のラジカル重合性モノマーは、2個以上のラジカル重合性基を有する多官能ラジカル重合性モノマー、及び/又は、第一の単官能ラジカル重合性モノマー及び第二のラジカル重合性モノマー以外の単官能ラジカル重合性モノマー(単独で重合したときに20℃を超えて50℃未満のホモポリマーを形成するモノマー)を含んでいてもよい。
 ラジカル重合性モノマーが多官能ラジカル重合性モノマーを含むことで、硬化物が高い破断強度、及び優れた耐溶剤性を有する傾向がある。硬化性樹脂組成物は、多官能ラジカル重合性モノマーとして、二官能ラジカル重合性モノマー及び/又は三官能ラジカル重合性モノマーを含んでいてもよい。多官能ラジカル重合性モノマーの含有量は、ラジカル重合性モノマーの全体量を基準として、0.01質量%以上、0.05質量%以上、又は0.1質量%以上であってもよく、10質量%以下、8.0質量%以下、又は5.0質量%以下であってもよい。多官能ラジカル重合性モノマーの含有量がこれら範囲内にあることにより、硬化物の破断強度と破断伸びを特に高いレベルで両立できる傾向がある。
 多官能ラジカル重合性モノマーは、他の成分との相溶性の観点から、多官能の(メタ)アクリレートであってもよい。多官能の(メタ)アクリレートは、二官能(メタ)アクリレート及び/又は三官能(メタ)アクリレートであってもよい。二官能及び/又は三官能の(メタ)アクリレートを用いることで、硬化物の破断強度と破断伸びの両立の点でさらに有利な効果が得られる。二官能及び/又は三官能の(メタ)アクリレートは、環状構造を含んでいてもよく、硬化反応によって環状構造を形成してもよい。
 二官能又は三官能の(メタ)アクリレートの例としては、1,3-ブチレンジオールジ(メタ)アクリレート、1,4-ブタンジオールジ(メタ)アクリレート、1,6-ヘキサンジオールジ(メタ)アクリレート、1,9-ノナンジオールジ(メタ)アクリレート、1,10-デカンジオールジ(メタ)アクリレート、ポリエチレングリコールジ(メタ)アクリレート、ポリプロピレングリコールジ(メタ)アクリレート、ポリテトラエチレングリコールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、エトキシ変性ビスフェノールAジ(メタ)アクリレート、トリス(2-(メタ)アクリロイルオキシエチル)イソシアヌレート、トリメチロールプロパントリ(メタ)アクリレート、及びペンタエリスリトールトリ(メタ)アクリレートが挙げられる。これらは単独又は2種以上を組み合わせて用いることができる。
二官能(メタ)アクリレート及び三官能(メタ)アクリレートの合計の含有量は、ラジカル重合性モノマーの全体量を基準として、0.1質量%以上、0.2質量%以上、又は0.5質量%以上であってもよく、10質量%以下、8.0質量%以下、又は5.0質量%以下であってもよい。
 硬化性樹脂組成物は、ラジカル重合性モノマーの重合のためのラジカル重合開始剤を含有していてもよい。ラジカル重合開始剤は、熱ラジカル重合開始剤、光ラジカル重合開始剤、又はこれらの組み合わせであり得る。ラジカル重合開始剤の含有量は、通常の範囲で適宜調整されるが、例えば、硬化性樹脂組成物の質量を基準として0.001~5質量%であってもよい。
 熱ラジカル重合開始剤としては、ケトンパーオキサイド、パーオキシケタール、ジアルキルパーオキサイド、ジアシルパーオキサイド、パーオキシエステル、パーオキシジカーボネート、ハイドロパーオキサイド等の有機過酸化物、過硫酸ナトリウム、過硫酸カリウム、過硫酸アンモニウム等の過硫酸塩、2,2’-アゾビス-イソブチロニトリル(AIBN)、2,2’-アゾビス-2,4-ジメチルバレロニトリル(ADVN)、2,2’-アゾビス-2-メチルブチロニトリル、4,4’-アゾビス-4-シアノバレリック酸等のアゾ化合物、ナトリウムエトキシド、tert-ブチルリチウム等のアルキル金属、1-メトキシ-1-(トリメチルシロキシ)-2-メチル-1-プロペン等のケイ素化合物等を挙げることができる。
 熱ラジカル重合開始剤と、触媒とを組み合わせてもよい。この触媒としては、金属塩、及び、N,N,N’,N’-テトラメチルエチレンジアミン等の第3級アミン化合物のような還元性を有する化合物が挙げられる。
 光ラジカル重合開始剤としては、ベンゾフェノン、2-ベンジル-2-ジメチルアミノ-1-(4-モルホリノフェニル)-ブタノン-1,2-メチル-1-[4-(メチルチオ)フェニル]-2-モルホリノ-プロパノン-1、2,2-ジメトキシ-1,2-ジフェニルエタン-1-オン(Irgacure 651(日本チバガイギー株式会社製))等の芳香族ケトン;アルキルアントラキノン等のキノン化合物;ベンゾインアルキルエーテル等のベンゾインエーテル化合物;ベンゾイン、アルキルベンゾイン等のベンゾイン化合物;ベンジルジメチルケタール等のベンジル誘導体;2-(2-クロロフェニル)-4,5-ジフェニルイミダゾール二量体、2-(2-フルオロフェニル)-4,5-ジフェニルイミダゾール二量体等の2,4,5-トリアリールイミダゾール二量体;9-フェニルアクリジン、1,7-(9,9’-アクリジニル)ヘプタン等のアクリジン誘導体が挙げられる。光重合開始剤は、1種単独で又は2種以上を組み合わせて用いることができる。
 硬化性樹脂組成物は、必要に応じて、バインダポリマー、溶剤、光発色剤、熱発色防止剤、可塑剤、顔料、充填剤、難燃剤、安定剤、密着性付与剤、レベリング剤、剥離促進剤、酸化防止剤、香料、イメージング剤、熱架橋剤などを含有してもよい。これらは、1種類単独で又は2種類以上を組み合わせて用いることができる。硬化性樹脂組成物がその他の成分を含有する場合、それらの含有量は、硬化性樹脂組成物の質量を基準として、0.01質量%以上であってもよく、20質量%以下であってもよい。
 硬化物は、硬化性樹脂組成物中でラジカル重合性モノマーをラジカル重合させて硬化性樹脂組成物を硬化する工程を備える方法により、製造することができる。ラジカル重合性モノマーのラジカル重合は、加熱、又は紫外線等の活性光線の照射により開始させることができる。
 ラジカル重合において、一般に、ラジカル重合開始剤の分解によるラジカル発生速度を低くすることで、高い分子量のポリマーが得られる傾向がある。ラジカル重合条件によって、ラジカル発生速度を制御することができる。ラジカル重合開始剤の量を少量にする、熱ラジカル重合における加熱温度を低くする、光ラジカル重合における活性光線の照度を低くするなどの方法がある。
 硬化性樹脂組成物を硬化するためのラジカル重合の条件は、特に制限されないが、上記事情を鑑みて設定することができる。熱ラジカル重合の温度は、例えばラジカル重合開始剤の分解温度の上下10℃以内であってもよい。硬化性樹脂組成物が溶剤を含む場合、この温度はその溶剤の沸点以下であってもよい。光ラジカル重合の照度は、例えば1mW/cm以下であってもよい。形成されるポリマーの分子量が高いほど、硬化物の破断伸びが増加する傾向があり、高弾性率と高い破断伸びが両立されやすい。
 ラジカル重合反応は、窒素ガス、ヘリウムガス、アルゴンガス等の不活性ガスの雰囲気下で行なうことができる。これにより、酸素による重合阻害が抑制され、良好な品質の硬化物を安定して得ることができる。
 硬化物のガラス転移温度は、特に制限されないが、例えば30℃以上であってもよく、40℃以上であってもよい。ガラス転移温度が室温又は使用温度以上であると、使用時に高い弾性率が維持され易く、ハンドリング性に優れるという点で有利である。ガラス転移温度は、例えば、硬化性樹脂組成物中の第一の単官能ラジカル重合性モノマーと第二の単官能ラジカル重合性モノマーの配合比により調節することができる。
 硬化物の弾性率(引張弾性率)は、10MPa以上、100MPa以上、200MPa以上であってもよく、10GPa以下、7GPa以下、5GPa以下であってもよい。硬化物の弾性率が上記範囲内にあることで、破断伸びと弾性伸び率が両立され易い傾向がある。弾性率は、例えば、硬化性樹脂組成物中の第一の単官能ラジカル重合性モノマーと第二の単官能ラジカル重合性モノマーの配合比により調節することができる。
 硬化物の破断伸びは、10%以上、100%以上、又は200%以上であってもよい。硬化物の破断伸びが上記範囲にあることで、回復可能な形状変化が大きく、耐折り曲げ性などの特性の点で特に顕著な効果が得られる。
 硬化物の破断強度は、1MPa以上、3MPa以上、又は5MPa以上であってもよい。
 硬化物を形成している高分子(ラジカル重合性モノマーの重合体)の重量平均分子量は、100000以上、又は200000以上であってもよい。重量平均分子量が高いほど、破断伸びが増加する傾向がある。本明細書において、重量平均分子量は、特に別に定義されない限り、ゲル浸透クロマトグラフィーによって求められる、標準ポリスチレン換算値を意味する。
 応力を受けて変形した後の形状回復性に優れる硬化物は、高い弾性伸び率を有する。硬化物の弾性伸び率は、60%以上、70%以上、又は80%以上であってもよく、1000%以下であってもよい。
 弾性伸び率は、例えば以下の手順で測定される。
(1)5mm×50mmのサイズを有する硬化物の試験片を準備し、そのチャック間に相当する部分において、長手方向に並ぶ3箇所に印を付ける。各印間の距離をL0及びL0’とする。
(2)引張試験機を用いて、測定温度が25℃、引張速度が10mm/min、チャック間距離L1が30mmの条件で引張試験を行う。
(3)破断直後の試験片において、3点の印のうち印の間に破断箇所が存在しない2点の印を選択し、それらの印の間の距離L2を測定する。この部分に対応する初期の長さがL0である場合、破断伸びは式:(L2-L0)/L0により計算される。初期の長さがL0’である場合、破断伸びは式:(L2-L0’)/L0’により計算される。あるいは、破断時のチャック間距離L3を用いて、式:(L3-L1)/L1により破断伸びを計算してもよい。
(4)破断後の試験片を70℃で3分間加熱し、その後の印間の距離L4を測定し、破断伸びに対する弾性伸びの割合を示す弾性伸び率を式:(L2-L4)/(L2-L0)により算出する。破断直後の距離L2は、チャック間距離L3を利用して式:L2=L3×(L0/L1)により算出してもよい。
 硬化物(樹脂成形体)の形状、及び大きさは特に制限されない。例えば所定の型に充填された硬化性樹脂組成物を硬化することで、任意の形状の硬化物を得ることができる。硬化物は、例えば、繊維状、棒状、円柱状、筒状、平板状、円板状、螺旋状、球状、又はリング状であってもよい。硬化物をさらに機械加工、溶融成型等の種々の方法により加工してもよい。図1は、樹脂成形体の一実施形態を示す斜視図である。図1の樹脂成形体1は、平板状の成形体の例である。
(成形用組成物)
 一実施形態に係る成形用組成物は、式(I):
Figure JPOXMLDOC01-appb-C000002
で表されるラジカル重合性化合物、及び単官能ラジカル重合性モノマーを含むラジカル重合性モノマーと、第二の重合体とを含有する。式(I)中、X、R及びRがそれぞれ独立に2価の有機基で、R及びRがそれぞれ独立に水素原子又はメチル基である。成形用組成物中でラジカル重合性モノマーが重合することで、それらラジカル重合性モノマーに由来するモノマー単位から構成される第一の重合体が生成する。これにより、反応生成物が硬化して、樹脂成形体(硬化体)を形成する。第一の重合体は、通常、第二の重合体と共有結合によって結合することなく、第二の重合体とは別の重合体として成形体中に形成される。
 第一の重合体は、式(I)の化合物に由来する、下記式(II)で表される環状のモノマー単位を含み得る。式(II)の環状のモノマー単位が、樹脂成形体の形状記憶性等の特異な特性の発現に寄与すると考えられる。ただし、第一の重合体は、必ずしも式(II)のモノマー単位を含んでいなくてもよい。
Figure JPOXMLDOC01-appb-C000003
 式(I)及び(II)中のXは、例えば、下記式(10):
Figure JPOXMLDOC01-appb-C000004
で表される基であってもよい。式(10)中、Yは置換基を有していてもよい環状基で、Z及びZはそれぞれ独立に炭素原子、酸素原子、窒素原子、及び硫黄原子から選ばれる原子を含む官能基で、i及びjはそれぞれ独立に0~2の整数である。*は結合手を表す(これは他の式でも同様である)。Xが式(10)の基であると、式(II)の環状のモノマー単位が特に形成され易いと考えられる。環状基Yに対するZ及びZの配置が、シス位であってもよいし、トランス位であってもよい。Z及びZは、-O-、-OC(=O)-、-S-、-SC(=O)-、-OC(=S)-、-NR10-(R10は水素原子又はアルキル基)、又は-ONH-で表される基であってもよい。
 Yは、炭素数2~10の環状基であってもよいし、酸素原子、窒素原子及び硫黄原子から選ばれるヘテロ原子を含んでいてもよい。この環状基Yは、例えば、脂環基、環状エーテル基、環状アミン基、環状チオエーテル基、環状エステル基、環状アミド基、環状チオエステル基、芳香族炭化水素基、複素芳香族炭化水素基、又はこれらの組み合わせであり得る。環状エーテル基は、単糖又は多糖が有する環状基であってもよい。Yの具体例としては、特に限定されないが、下記式(11)、(12)、(13)、(14)又は(15)で表される環状基が挙げられる。樹脂成形体の応力緩和性の観点から、Yは、式(11)の基(特に、1,2-シクロヘキサンジイル基)であってもよい。
Figure JPOXMLDOC01-appb-C000005
 式(I)及び(II)中のR及びRは、互いに同一でも異なっていてもよく、下記式(20)で表される基であってもよい。
Figure JPOXMLDOC01-appb-C000006
 式(20)中、Rは炭素数1~8の炭化水素基(アルキレン基等)であり、式(I)又は(II)中の窒素原子に結合する。Zは-O-、又は-NR10-(R10は水素原子又はアルキル基)で表される基である。R及びRが式(20)の基であると、式(II)の環状のモノマー単位が特に形成され易いと考えられる。Rの炭素数は、2以上であってもよいし、6以下、又は4以下であってもよい。
 式(I)のラジカル重合性化合物の一つの具体例は、下記式(Ia)で表される化合物である。ここでのY、Z、Z、i及びjは式(10)と同様に定義される。
Figure JPOXMLDOC01-appb-C000007
 式(Ia)の化合物としては、例えば、下記式(I-1)、(I-2)、(I-3)、(I-4)、(I-5)、(I-6)、(I-7)、又は(I-8)で表される化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000010
 以上例示した化合物を、単独で、又は2種以上を組み合わせて用いることができる。
 成形用組成物における式(I)のラジカル重合性化合物の割合は、ラジカル重合性モノマーの全体量を基準として、0.01モル%以上、0.1モル%以上、又は0.5モル%以上であってもよく、10モル%以下、5モル%以下、又は1モル%以下であってもよい。式(I)のラジカル重合性化合物の割合がこれら範囲内にあると、伸び、強度、耐折り曲げ性などの機械特性に優れた硬化体を得られるという点で更に有利な効果が得られる。
 式(I)の化合物は、当業者には理解されるように、通常入手可能な原料を出発物質として用いて、通常の合成方法によって合成することができる。例えば、環状ジオール化合物又は環状ジアミン化合物と、(メタ)アクリロイル基及びイソシアネート基を有する化合物との反応により、式(I)の化合物を合成することができる。
 成形用組成物中のラジカル重合性モノマーは、単官能ラジカル重合性モノマーとして、アルキル(メタ)アクリレート、及び/又はアクリロニトリルを含んでいてもよい。
 アルキル(メタ)アクリレートは、置換基を有していてもよい炭素数1~16のアルキル基を有するアルキル(メタ)アクリレート((メタ)アクリル酸と置換基を有していてもよい炭素数1~16のアルキルアルコールとのエステル)であってもよい。炭素数1~16のアルキル基を有するアルキル(メタ)アクリレートが有し得る置換基は、酸素原子及び/又は窒素原子を含んでいてもよい。
 ラジカル重合性モノマーが炭素数1~16のアルキル基を有するアルキル(メタ)アクリレートを含んでいることにより、硬化体の弾性率及びガラス転移温度(Tg)、並びに、伸び及び強度などの機械特性を制御できるという効果が得られる。
 成形用組成物における、置換基を有していてもよい炭素数1~16のアルキル(メタ)アクリレートの割合は、ラジカル重合性モノマーの全体量を基準として、10モル%以上、15モル%以上、又は20モル%以上であってもよく、95モル%以下、90モル%以下、又は85モル%以下であってもよい。置換基を有していてもよい炭素数1~16のアルキル(メタ)アクリレートの割合がこれら範囲内にあると、伸び及び強度などの機械特性、並びに耐折り曲げ性に優れた硬化体を得られるという点で更に有利な効果が得られる。
 少ない炭素数のアルキル基を有するアルキル(メタ)アクリレートを用いることで、硬化後の樹脂成形体の弾性率が高くなり、形状記憶性が発現し易い傾向がある。係る観点から、ラジカル重合性モノマーが、単官能ラジカル重合性モノマーとして、置換基を有していてもよい炭素数10以下のアルキル基を有するアルキル(メタ)アクリレートを含んでいてもよい。成形用組成物における、置換基を有していてもよい炭素数10以下のアルキル(メタ)アクリレートの割合は、ラジカル重合性モノマーの全体量を基準として、8モル%以上、10モル%以上、又は15モル%以上であってもよく、55モル%以下、45モル%以下、又は25モル%以下であってもよい。置換基を有していてもよい炭素数10以下のアルキル基を有するアルキル(メタ)アクリレートの割合がこれら範囲内にあると、ある程度高い弾性率を有し、形状記憶性を有する樹脂成形体が形成され易いという点で更に有利な効果が得られる。同様の観点から、ラジカル重合性モノマーは、置換基を有していてもよい炭素数8以下のアルキル基を有する(メタ)アクリレートを含んでいてもよく、その割合は上記数値範囲であってもよい。
 置換基を有していてもよい炭素数1~16のアルキル(メタ)アクリレートの例としては、エチルアクリレート、エチルメタクリレート、n-ブチルアクリレート、n-ブチルメタクリレート、イソブチルアクリレート、イソブチルメタクリレート、ヘキシルアクリレート、ヘキシルメタクリレート、2-エチルヘキシルアクリレート(EHA)、2-エチルヘキシルメタクリレート、2-ヒドロキシエチルメタクリレート、2-ヒドロキシプロピルメタクリレート、2-ヒドロキシ-1-メチルエチルメタクリレート、2-メトキシエチルアクリレート(MEA)、N,N-ジメチルアミノエチルアクリレート、及びグリシジルメタクリレートが挙げられる。これらは単独で又は2種以上を組み合わせて用いることができる。
 ラジカル重合性モノマーがアクリロニトリルを含んでいることにより、伸び及び強度などの機械特性、並びに耐折り曲げ性に優れながら、ある程度高い弾性率を有し、形状記憶性を有する樹脂成形体が形成され易い傾向がある。アクリロニトリルと、炭素数1~16(又は1~10)のアルキル基を有する(メタ)アクリレートとの組み合わせは、高い弾性率の樹脂成形体を得るために特に有利である。成形用組成物における、アクリロニトリルの割合は、ラジカル重合性モノマーの全体量を基準として、40モル%以上、50モル%以上、又は70モル%以上であってもよく、90モル%以下、85モル%以下、又は80モル%以下であってもよい。アクリロニトリルの割合がこれら範囲内にあると、形状回復が速いという点で更に有利な効果が得られる。
 ラジカル重合性モノマーは、単官能ラジカル重合性モノマーとして、ビニルエーテル、スチレン及びスチレン誘導体から選ばれる1種又は2種以上の化合物を含んでいてもよい。ビニルエーテルの例としては、ビニルブチルエーテル、ビニルオクチルエーテル、ビニル-2-クロロエチルエーテル、ビニルイソブチルエーテル、ビニルドデシルエーテル、ビニルクタデシルエーテル、ビニルフェニルエーテル、及びビニルクレシルエーテルが挙げられる。スチレン誘導体の例としては、アルキルスチレン、アルコキシスチレン(α-メトキシスチレン、p-メトキシスチレン等)、及びm-クロロスチレンが挙げられる。
 ラジカル重合性モノマーは、その他の単官能ラジカル重合性モノマー及び/又は多官能ラジカル重合性モノマーを含んでいてもよい。その他の単官能ラジカル重合性モノマーの例としては、ビニルフェノール、N-ビニルカルバゾール、2-ビニル-5-エチルピリジン、酢酸イソプロペニル、ビニルイソシアネート、ビニルイソブチルスルフィド、2-クロロ-3-ヒドロキシプロペン、ビニルステアレート、p-ビニルベンジルエチルカルビノール、ビニルフェニルスルフィド、アリルアクリレート、α-クロロエチルアクリレート、酢酸アリル、2,2,6,6-テトラメチル-ピペリジニルメタクリレート、N,N-ジエチルビニルカルバメート、ビニルイソプロペニルケトン、N-ビニルカプロラクトン、ビニルホルメート、p-ビニルベンジルメチルカルビノール、ビニルエチルスルフィド、ビニルフェロセン、ビニルジクロロアセテート、N-ビニルスクシンイミド、アリルアルコール、ノルボルナジエン、ジアリルメラミン、ビニルクロロアセテート、N-ビニルピロリドン、ビニルメチルスフィド、N-ビニルオキサゾリドン、ビニルメチルスルホキシド、N-ビニル-N’-エチル尿素、及びアセナフタレンが挙げられる。
 以上例示した各種のラジカル重合性モノマーは、単独で又は2種以上を組み合わせて用いることができる。
 成形用組成物は、以上説明したラジカル重合性モノマーと、直鎖状又は分岐状の第二の重合体とを含有する。第二の重合体は、2以上の線状鎖と、それらの末端同士を連結する連結基と、を含む重合体であってもよい。この重合体は、例えば下記式(B)で表される分子鎖を含む。式(B)中、R20は線状鎖を構成するモノマー単位であり、n、n及びnはそれぞれ独立に1以上の整数であり、Lは連結基である。同一分子中の複数のR20及びLは、それぞれ同一でも異なっていてもよい。
Figure JPOXMLDOC01-appb-C000011
 モノマー単位R20から構成される線状鎖は、ポリエーテル、ポリエステル、ポリオレフィン、ポリオルガノシロキサン、又はこれらの組み合わせから誘導される分子鎖であってもよい。それぞれの線状鎖は、ポリマーであってもよいし、オリゴマーであってもよい。
 ポリエーテルから誘導される線状鎖の例としては、ポリオキシエチレン鎖、ポリオキシプロピレン鎖、ポリオキシブチレン鎖及びこれらの組み合わせのようなポリオキシアルキレン鎖が挙げられる。ポリアルキレングリコールのようなポリエーテルからポリオキシエチレン鎖が誘導される。ポリオレフィンから誘導される線状鎖の例としては、ポリエチレン鎖、ポリプロピレン鎖、ポリイソブチレン鎖及びこれらの組み合わせが挙げられる。ポリエステルから誘導される線状鎖としては、ポリεカプロラクトン鎖が挙げられる。ポリオルガノシロキサンから誘導される線状鎖としては、ポリジメチルシロキサン鎖が挙げられる。第二の重合体は、これらを単独で、又はこれらから選ばれる2種以上の組み合わせを含むことができる。
 第二の重合体を構成する線状の分子鎖のそれぞれの数平均分子量は、特に制限されないが、例えば1000以上、3000以上、又は5000以上であってもよく、80000以下、50000以下、又は20000以下であってもよい。本明細書において、数平均分子量は、特に別に定義されない限り、ゲル浸透クロマトグラフィーによって求められる、標準ポリスチレン換算値を意味する。
 連結基Lは、環状基を含む有機基、又は分岐状の有機基である。連結基Lは、例えば、下記式(30)で表される2価の基であってもよい。
Figure JPOXMLDOC01-appb-C000012
 R30は、環状基、2以上の環状基を含みそれらが直接若しくはアルキレン基を介して結合している基、又は、炭素原子を含み、酸素原子、窒素原子、硫黄原子及びケイ素原子から選ばれるヘテロ原子を含んでいてもよい分岐状の有機基を示す。Z及びZは、R30と線状鎖とを結合する2価の基であり、例えば、-NHC(=O)-、-NHC(=O)O-、-O-、-OC(=O)-、-S-、-SC(=O)-、-OC(=S)-、又は-NR10-(R10は水素原子又はアルキル基)で表される基である。本明細書において、線状鎖の末端の原子(線状鎖を構成するモノマーに由来する原子)は、通常、Z又はZを構成する原子とは解釈しない。線状鎖の末端の原子が、モノマーに由来する原子であるか否かが明確でない場合、その原子は、線状鎖、又は連結基のうちいずれに含まれると解釈してもよい。
 連結基Lが含む環状基は、窒素原子及び硫黄原子から選ばれるヘテロ原子を含んでいてもよい。連結基Lが含む環状基は、例えば、脂環基、環状エーテル基、環状アミン基、環状チオエーテル基、環状エステル基、環状アミド基、環状チオエステル基、芳香族炭化水素基、複素芳香族炭化水素基、又はこれらの組み合わせであり得る。連結基Lが含む環状基の具体例としては、1,4-シクロヘキサンジイル基、1,2-シクロヘキサンジイル基、1,3-シクロヘキサンジイル基、1,4-ベンゼンジイル基、1,3-ベンゼンジイル基、1,2-ベンゼンジイル基、及び3,4-フランジイル基が挙げられる。
 連結基Lが含む分岐状の有機基(例えば式(30)中のR30)の例としては、リジントリイル基、メチルシラントリイル基、及び1,3,5-シクロヘキサントリイル基が挙げられる。
 式(30)で表される連結基Lは、下記式(31)で表される基であってもよい。式(31)中のR31は、単結合、又はアルキレン基を示す。R31は炭素数1~3のアルキレン基であってもよい。Z及びZの定義は式(30)と同様である。
Figure JPOXMLDOC01-appb-C000013
 第二の重合体の重量平均分子量は、特に制限されないが、例えば5000以上、7000以上、又は9000以上であってもよく、100000以下、80000以下、又は60000以下であってもよい。第二の重合体の重量平均分子量がこれら数値範囲内にあることで、第二の重合体の他の成分との良好な相溶性、及び樹脂成形体の良好な諸特性が得られ易い傾向がある。
 第二の重合体は、当業者には理解されるように、通常入手可能な原料を出発物質として用いて、通常の合成方法によって得ることができる。例えば、反応性の末端基(水酸基等)を有するポリアルキレングリコール、ポリエステル、ポリオレフィン、ポリオルガノシロキサン、又はこれらの組み合わせを含む混合物と、反応性の官能基(イソシアネート基等)及び環状基若しくは分岐状の基を有する化合物との反応により、第二の重合体を合成することができる。合成される第二の重合体は、イソシアネート基の三量化等の副反応に基づく分岐構造を含んでいてもよい。
 成形用組成物は、ラジカル重合性モノマーの重合のための重合開始剤を含有していてもよい。重合開始剤は、熱ラジカル重合開始剤、光ラジカル重合開始剤、又はこれらの組み合わせであり得る。重合開始剤の含有量は、通常の範囲で適宜調整されるが、例えば、成形用組成物の質量を基準として0.01~5質量%であってもよい。
 熱ラジカル重合開始剤としては、ケトンパーオキサイド、パーオキシケタール、ジアルキルパーオキサイド、ジアシルパーオキサイド、パーオキシエステル、パーオキシジカーボネート、ハイドロパーオキサイド等の有機過酸化物、過硫酸ナトリウム、過硫酸カリウム、過硫酸アンモニウム等の過硫酸塩、2,2’-アゾビス-イソブチロニトリル(AIBN)、2,2’-アゾビス-2,4-ジメチルバレロニトリル(ADVN)、2,2’-アゾビス-2-メチルブチロニトリル、4,4’-アゾビス-4-シアノバレリック酸等のアゾ化合物、ナトリウムエトキシド、tert-ブチルリチウム等のアルキル金属、1-メトキシ-1-(トリメチルシロキシ)-2-メチル-1-プロペン等のケイ素化合物等を挙げることができる。
 熱ラジカル重合開始剤と、触媒とを組み合わせてもよい。この触媒としては、金属塩、及び、N,N,N’,N’-テトラメチルエチレンジアミン等の第3級アミン化合物のような還元性を有する化合物が挙げられる。
 光ラジカル重合開始剤としては、2,2-ジメトキシ-1,2-ジフェニルエタン-1-オンが挙げられる。その市販品として、Irgacure 651(日本チバガイギー株式会社製)がある。
 成形用組成物は、溶剤を含んでいてもよいし、実質的に無溶剤であってもよい。成形用組成物は、液状、半固形状又は固形状のいずれであってもよい。硬化前の成形用組成物がフィルム状であってもよい。
 樹脂成形体は、成形用組成物中で、ラジカル重合性モノマーのラジカル重合により第一の重合体を生成させる工程を備える方法により、製造することができる。ラジカル重合性モノマーのラジカル重合は、加熱、又は紫外線等の活性光線の照射により開始させることができる。
 樹脂成形体(硬化体)の形状、及び大きさは特に制限されず、例えば所定の型に充填された成形用組成物を硬化させることで、任意の形状の樹脂成形体を得ることができる。樹脂成形体は、例えば、繊維状、棒状、円柱状、筒状、平板状、円板状、螺旋状、球状、又はリング状であってもよい。硬化後の成形体をさらに機械加工等の種々の方法により加工してもよい。
 重合反応の温度は、特に制限されないが、成形用組成物が溶剤を含む場合、その沸点以下であることが好ましい。重合反応は、窒素ガス、ヘリウムガス、アルゴンガス等の不活性ガスの雰囲気下で行なうことが好ましい。これにより、酸素による重合阻害が抑制され、良好な品質の成形体を安定して得ることができる。
 式(I)のラジカル重合性化合物を含むラジカル重合性モノマーが重合すると、式(II)の環状のモノマー単位が形成されると考えられる。第一の重合体の存在下でラジカル重合性モノマーが重合すると、式(II)の環状のモノマー単位の少なくとも一部において、環状部分を第二の重合体が貫通している構造が形成され得る。下記式(III)は、第一の重合体(A)が有する式(II)のモノマー単位の環状部分を、第二の重合体(B)が貫通している構造を模式的に示す。式(III)中のRは、式(I)のラジカル重合性化合物以外のラジカル重合性モノマーに由来するモノマー単位である。式(III)のような構造が形成されることで、第一の重合体と第二の重合体とで、三次元共重合体のような架橋ネットワーク構造が形成される。このネットワーク構造においては、環状部分を貫通する第二の重合体の運動の自由度が比較的高く保たれると考えられる。このような構造は、当業者に環動構造と称されることがあり、これが、樹脂成形体の形状記憶性等の特異な特性の発現に寄与していると本発明者らは推察している。環動構造が形成されていることを直接的に確認することは技術的に容易でないが、例えば、樹脂成形体の引張試験によって得られる応力-歪み曲線が、いわゆるJ字型の曲線であることから、環動構造の形成が示唆される。ただし、樹脂成形体は、このような環動構造を必ずしも含んでいなくてもよい。
Figure JPOXMLDOC01-appb-C000014
 式(III)の例では、第二の重合体(B)は、複数のポリオキシエチレン鎖と、それらの末端同士を連結する連結基Lとを有している。連結基Lがポリオキシエチレン鎖と比較して嵩高いことから、ポリロタキサンのように、第二の重合体が式(II)のモノマー単位の環状部分を貫通している状態が維持され易い。第二の重合体を、環状のモノマー単位の大きさ、包接能力などのバランス、ポリロタキサンの特性に基づいて適宜選択することができる。
 第一の重合体が生成し、硬化した樹脂成形体は、形状記憶性を有していても有していなくてもよいが、ラジカル重合性モノマーの種類等を適切に選択することで、形状記憶性を有する樹脂成形体を得ることができる。本明細書において、「形状記憶性」は、室温(例えば25℃)において外力によって樹脂成形体を変形させたときに、樹脂成形体が、変形後の形状を室温においては保持し、無荷重下で高温に加熱されたときに元の形状に戻る性質を意味する。ただし、加熱により樹脂成形体が完全に元の形状と同一の形状を回復しなくてもよい。形状回復のための加熱の温度は、例えば70℃である。
 硬化した樹脂成形体が形状記憶性を有する場合、通常、第一の重合体が生成し、硬化した時点の樹脂成形体の形状が、基本の形状となる。外力によって変形した樹脂成形体は、加熱によりこの基本の形状に近づくように変形する。所定の形状を有する型内で樹脂成形体を硬化することにより、所望の形状を基本の形状として有する樹脂成形体を得ることができる。
 樹脂成形体の25℃における貯蔵弾性率は、特に限定されないが、0.5MPa以上であってもよい。0.5MPa以上の貯蔵弾性率を有する樹脂成形体は、通常、形状記憶性を有する。樹脂成形体の弾性率は、1.0MPa以上、又は10MPa以上であってもよいし、10GPa以下、5GPa以下、又は500MPa以下であってもよい。貯蔵弾性率が高いことで、樹脂成形体が変形後の形状を保持し易い傾向がある。適度な大きさの貯蔵弾性率を有していることで、樹脂成形体が加熱時に元の形状を回復し易い傾向がある。樹脂成形体の弾性率は、例えば、ラジカル重合性モノマーの種類及びその配合比、第二の重合体の分子量、ラジカル重合開始剤の量に基づいて制御することができる。
 以下、実施例を挙げて本発明についてさらに具体的に説明する。ただし、本発明はこれら実施例に限定されるものではない。
(硬化性樹脂組成物)
1.硬化性樹脂組成物
 表1に示す質量比で各原料を混合して、硬化性樹脂組成物を調製した。表中の数値は質量部である。
2.硬化物フィルムの作製
 得られた硬化性樹脂組成物を、離型処理が施されたポリエチレンテレフタレート(PET)フィルム上に滴下して、硬化性樹脂組成物の塗膜を形成した。塗膜との間に0.2mmのギャップを開けながら、離型処理が施されたPETフィルムで塗膜を被覆した。PETフィルムの上から365nmの紫外線を1000mJ/cmの積算光量で照射することで塗膜を硬化させて、硬化物フィルムを形成させた。
 比較例1では、評価に供するための自立した硬化物フィルムが得られず、各測定が行えなかった。比較例2では、硬化物が相分離してフィルム状にならず、各測定が行えなかった。
3.破断伸び、弾性伸び率、破断強度、引張弾性率の測定
 硬化物フィルムから5mm×50mmのサイズを有する試験片を打ち抜いた。試験片のチャック間に相当する部分に長手方向に並ぶ3箇所に油性マジックで印を付け、各印間の距離をL0及びL0’とした。引張試験機(島津製作所製、EZ-TEST)を用いて、測定温度が25℃、引張速度が10mm/min、チャック間距離L1が30mmの条件で引張試験を行った。破断直後の試験片において、3点の印のうち印の間に破断箇所が存在しない2点の印を選択し、それらの印の間の距離L2を測定した。この部分に対応する初期の長さがL0である場合、破断伸びは式:(L2-L0)/L0により計算される。あるいは、破断時のチャック間距離L3を用いて、式:(L3-L1)/L1により破断伸びを計算してもよい。
 破断後の試験片を70℃で3分間加熱し、その後の印間の距離L4を測定し、破断伸びに対する弾性伸びの割合を示す弾性伸び率を式:(L2-L4)/(L2-L0)により算出した。破断直後の距離L2は、チャック間距離L3を利用して式:L2=L3×(L0/L1)により算出してもよい。破断時の応力を破断強度とし、引張初期の応力-歪み曲線の傾きを引張弾性率とした。
4.耐折り曲げ性の観察
 硬化物フィルム(50mm×50mm×0.2mm)を2回折りたたみ、その状態で折り目に垂直に1N/cmの圧力を5分間加えた。折り目部分を元に戻してから、その部分を目視で観察した。折り曲げ前と比較して外観上の変化、白化及びボイドなどの異常が認められない場合を「良」、白化又はボイドが認められた場合を「不良」と判定した。
5.ガラス転移温度の測定
 硬化物フィルムから幅5mm、長さ50mmの短冊状の試験片を打ち抜いた。試験片からPETフィルムを剥離してから、TAインスツルメント株式会社製の動的粘弾性測定装置(RSA-G2)を用いて、チャック間距離20mm、測定周波数10Hzの条件でtanδの温度変化を測定した。tanδがピークとなる温度をガラス転移温度とした。
Figure JPOXMLDOC01-appb-T000015
 第一のラジカル重合性モノマー及び第二のラジカル重合性モノマーを含有する実施例の硬化性樹脂組成物は、比較例3の硬化性樹脂組成物と比較して、高い破断伸びを有するとともに、応力を受けて変形した後の形状回復性にも優れた樹脂成形体を形成できることが確認された。
(成形用組成物)
1.合成合成例1:trans-1,2-ビス(2-アクリロイルオキシエチルカルバモイルオキシ)シクロヘキサン(BACH)の合成
 100mL二口ナスフラスコにtrans-1,2-シクロヘキサンジオール(2.32g、20.0mmol)を加え、フラスコ内を窒素置換した。そこにジクロロメタン(40mL)、及びジラウリン酸ジブチル錫(11.8μL、0.10mol%:0.020mmol)を入れた。フラスコ中の反応液に2-アクリロイルオキシエチルイソシアネート(5.93g、42.0mmol)のジクロロメタン(4mL)溶液を滴下ロートから滴下し、反応液を30℃で24時間撹拌して、反応を進行させた。反応終了後、反応液にジエチルエーテルを加えて飽和食塩水で洗浄した。有機層を無水硫酸マグネシウムで乾燥した後、溶媒を減圧留去し、残渣からシリカゲルクロマトグラフィー(展開溶媒:クロロホルム)によって目的物を含む溶液を単離し、これを濃縮した。得られた粗生成物を、ジエチルエーテルとヘキサンからの再結晶により精製して、BACHの白色結晶を得た。収量は、3.78gであり、収率は、47.4質量%であった。
Figure JPOXMLDOC01-appb-C000016
合成例2:PEG-PPGオリゴマー1の合成
 20mLナスフラスコにポリエチレングリコール(PEG1500、750mg、0.500mmol、数平均分子量1500)、及びポリプロピレングリコール(PPG4000、2000mg、0.500mmol、数平均分子量4000)を加えてからフラスコ内を窒素置換し、内容物を115℃で融解させた。融解液に4,4’-ジシクロヘキシルメタンジイソシアネート(262mg、1.00mmol)を加えて、窒素雰囲気下、115℃で融解液を24時間撹拌して、PEG-PPGオリゴマー1(ポリオキシエチレン鎖、及びポリオキシプロプレン鎖を含む第二の重合体)を得た。
 得られたオリゴマー1の重量平均分子量(Mw)は9300で、オリゴマー1の重量平均分子量/数平均分子量(Mw/Mn)は1.65であった。
合成例3:PEG-PPGオリゴマー2の合成
 20mLナスフラスコにポリエチレングリコール(PEG1500、750mg、0.500mmol、数平均分子量1500)、及びポリプロピレングリコール(PPG4000、2000mg、0.500mmol、数平均分子量4000)を加えてからフラスコ内を窒素置換し、内容物を115℃で融解させた。融解液に4,4’-ジシクロヘキシルメタンジイソシアネート(262mg、1.00mmol)、及びラウリル酸ジブチル錫(11.8μL、0.10mol%:0.020mmol)を加えて、窒素雰囲気下、115℃で融解液を24時間撹拌して、PEG-PPGオリゴマー2(ポリオキシエチレン鎖、及びポリオキシプロピレン鎖を有する第二の重合体)を得た。
 得られたオリゴマー2の重量平均分子量(Mw)は50000で、オリゴマー2の重量平均分子量/数平均分子量(Mw/Mn)は1.95であった。
2.分子量の測定
 10mMの臭化リチウムを含むDMF(N,N-ジメチルホルムアミド)を溶離液として用いて、流速1mL/分の条件でオリゴマーのGPCクロマトグラムを得た。得られたクロマトグラムから、オリゴマーの数平均分子量及び重量平均分子量をポリスチレン換算値として求めた。
3.成形用組成物及び樹脂成形体
(実施例2-1)
 合成例1のBACH(27.7mg、69.5μmol)、合成例2のPEG-PPGオリゴマー1(34.5mg、2.88μmol)、2-エチルヘキシルアクリレート(2-EHA、553mg、3.00mmol)、アクリロニトリル(AN、390mg、3.00mmol)及びIrgacure 651(15.5mg、60.5μmol)をサンプル瓶中で加熱溶解し、配合液(成形用組成物)を調製した。
 得られた配合液を長さ×幅×深さが46mm×10mm×1mmのステンレス金型に流し込み、そこにポリエチレンテレフタレート製の透明シートを被せた。透明シートの上から、室温(25℃、以下同様)でUV(紫外線)を30分照射することで配合液を光硬化して、フィルム状の成形体を得た。
 内径1.59mmφ、外経3.17mmφ、肉厚0.79mmのポリテトラフルオロエチレン製チューブ(商品名ナフロン(登録商標)BTチューブ1/8B)を、外形10mmφのステンレス管に巻付けた。巻付けられたにチューブに配合液を充填し、室温で30分の紫外線照射により、チューブ中で配合液を光硬化させた。その後、チューブから螺旋形状の成形体を取り出した。
 ポリエチレン製のカップ状の型に充填した配合液を、室温で30分の紫外線照射によって光硬化させた。型から立体形状の成形体としてカップ形状の成形体を取り出した。
(参考例)
 PEG-PPGオリゴマー1を用いないこと以外は、実施例1と同様にして配合液を調製した。得られた配合液を用いて、実施例2-1と同様に、各種形状の樹脂成形体を作製した。
(実施例2-2、2-3、及び比較例2-1)
 表2に示した配合比で配合液を調製した。得られた配合液を用いて、実施例2-1と同様に、各種形状の樹脂成形体を作製した。
4.評価貯蔵弾性率
 フィルム状の成形体から、5mm幅、長さ30mmの短冊状の試験片を切り出した。この試験片を用いて、TAインスツルメント株式会社社製動的粘弾性測定装置(RSA-G2)を用いて、25℃における貯蔵弾性率を測定した。測定条件は以下のとおりである。・チャック間距離:20mm
・測定周波数:10Hz
・昇温速度5℃/分
形状記憶性
 フィルム状の成形体を2回折りたたみ、その状態で折り目をガラス管で押さえた。折りたたまれた形状が実質的に元に戻らないことを確認した。螺旋状の成形体を、引き伸ばして棒状に変形させた。カップ状の成形体を、2枚のガラス板の間に挟み、高さ方向に押しつぶすことにより変形させた。各形状の成形体が変形後の形状を保持した場合を「良」、保持しなかった場合を「不良」と判定した。
 その後、変形させた成形体を70℃の水に浸漬し、浸漬直後から10秒以内に初期の形状に戻ることを目視により確認した。成形体が初期の形状を回復した場合を「良」、回復しなかった場合を「不良」と判定した。
耐折り曲げ性
 実施例のフィルム状の成形体に関して、折り目部分を元に戻してから、その部分を目視と光学顕微鏡(100倍)で観察した。折り曲げ前と比較して外観上の変化がなかった場合を「良」、白化及びボイドなどの異常が発生した場合を「不良」と判定した。
破断強度、及び破断伸びの測定
 長さ×幅×深さが46mm×10mm×1mmのステンレス金型にポリエチレンテレフタラート(PET)製フィルムを敷いた。そこに樹脂組成物を流し込み、その上にPET製の透明シートを被せた。透明シートの上から、室温(25℃、以下同様)で2000mJ/cmの紫外線を照射し、樹脂フィルムを得た。
 得られた樹脂フィルムから短冊状の試験片(幅:8mm、厚さ:1mm)を切り出した。この試験片を、ストログラフT(株式会社東洋精機製作所製)を用いて、室温、チャック間距離:30mm、引張速度:10.0mm/minの条件で、破断強度及び破断伸び測定した。
Figure JPOXMLDOC01-appb-T000017
 各実施例の樹脂成形体は、優れた耐折り曲げ性を有し、高い伸び率を示した。また、各実施例の樹脂成形体は、良好な形状記憶性を有していた。この結果から、本発明の一側面によれば、加熱による形状回復性に優れた形状記憶性を有する樹脂成形体が得られることが確認された。
 1…樹脂成形体(硬化物)。

Claims (7)

  1.  第一の単官能ラジカル重合性モノマー及び第二の単官能ラジカル重合性モノマーを含むラジカル重合性モノマーを含有し、
     前記第一の単官能ラジカル重合性モノマーが、単独で重合したときに20℃以下のガラス転移温度を有するホモポリマーを形成するモノマーであり、
     前記第二の単官能ラジカル重合性モノマーが、単独で重合したときに50℃以上のガラス転移温度を有するホモポリマーを形成するモノマーである、
    硬化性樹脂組成物。
  2.  前記第一の単官能ラジカル重合性モノマー及び前記第二の単官能ラジカル重合性モノマーの合計の含有量が、前記ラジカル重合性モノマーの全体量を基準として60質量%以上である、請求項1に記載の硬化性樹脂組成物。
  3.  前記第一の単官能ラジカル重合性モノマーが2-エチルヘキシルアクリレートを含む、請求項1又は2に記載の硬化性樹脂組成物。
  4.  前記第二の単官能ラジカル重合性モノマーが、アクリロニトリル、ジシクロペンタニルアクリレート、及びメチルメタクリレートからなる群より選ばれる少なくとも一種を含む、請求項1~3のいずれか一項に記載の硬化性樹脂組成物。
  5.  前記ラジカル重合性モノマーが、二官能ラジカル重合性モノマー及び/又は三官能ラジカル重合性モノマーを更に含む、請求項1~4のいずれか一項に記載の硬化性樹脂組成物。
  6.  前記第一の単官能ラジカル重合性モノマーの含有量が、前記ラジカル重合性モノマーの全体量を基準として5質量%以上、90質量%以下であり、
     前記第二の単官能ラジカル重合性モノマーの含有量が、前記ラジカル重合性モノマーの全体量を基準として10質量%以上、95質量%以下である、
    請求項1~5のいずれか一項に記載の硬化性樹脂組成物。
  7.  硬化性樹脂組成物の硬化物であって、
     前記硬化性樹脂組成物が、第一の単官能ラジカル重合性モノマー及び第二の単官能ラジカル重合性モノマーを含むラジカル重合性モノマーを含有し、
     前記第一の単官能ラジカル重合性モノマーが、単独で重合したときに20℃以下のガラス転移温度を有するホモポリマーを形成するモノマーであり、
     前記第二の単官能ラジカル重合性モノマーが、単独で重合したときに50℃以上のガラス転移温度を有するホモポリマーを形成するモノマーである、
    硬化物。
PCT/JP2016/073789 2015-08-17 2016-08-12 硬化性樹脂組成物、及びその硬化物 WO2017030096A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US15/753,041 US20190062480A1 (en) 2015-08-17 2016-08-12 Curable-resin composition and cured object thereof
JP2017535523A JPWO2017030096A1 (ja) 2015-08-17 2016-08-12 硬化性樹脂組成物、及びその硬化物
CN201680046949.2A CN107922546A (zh) 2015-08-17 2016-08-12 固化性树脂组合物及其固化物
KR1020187003645A KR20180042840A (ko) 2015-08-17 2016-08-12 경화성 수지 조성물 및 그의 경화물

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2015160619 2015-08-17
JP2015-160619 2015-08-17
JP2015241233 2015-12-10
JP2015-241233 2015-12-10
JP2016084665 2016-04-20
JP2016-084665 2016-04-20

Publications (1)

Publication Number Publication Date
WO2017030096A1 true WO2017030096A1 (ja) 2017-02-23

Family

ID=58050847

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/073789 WO2017030096A1 (ja) 2015-08-17 2016-08-12 硬化性樹脂組成物、及びその硬化物

Country Status (6)

Country Link
US (1) US20190062480A1 (ja)
JP (1) JPWO2017030096A1 (ja)
KR (1) KR20180042840A (ja)
CN (1) CN107922546A (ja)
TW (1) TW201716492A (ja)
WO (1) WO2017030096A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018012029A1 (ja) * 2016-07-12 2018-01-18 日立化成株式会社 複合体形成用樹脂組成物、複合体、及び複合体を製造する方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05263011A (ja) * 1992-03-19 1993-10-12 Hayakawa Rubber Co Ltd 活性エネルギー線硬化型透明樹脂層を持つ装飾表示成形品
JP2002526617A (ja) * 1998-10-05 2002-08-20 スリーエム イノベイティブ プロパティズ カンパニー 多官能性ポリマー

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3661824A (en) * 1970-10-26 1972-05-09 Goodyear Tire & Rubber Antiblocking agents for acrylate film
JP5433163B2 (ja) * 2008-04-18 2014-03-05 三菱レイヨン株式会社 硬化性樹脂組成物及び床版防水材料
WO2013141314A1 (ja) * 2012-03-22 2013-09-26 日立化成株式会社 光硬化性樹脂組成物、画像表示装置及びその製造方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05263011A (ja) * 1992-03-19 1993-10-12 Hayakawa Rubber Co Ltd 活性エネルギー線硬化型透明樹脂層を持つ装飾表示成形品
JP2002526617A (ja) * 1998-10-05 2002-08-20 スリーエム イノベイティブ プロパティズ カンパニー 多官能性ポリマー

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018012029A1 (ja) * 2016-07-12 2018-01-18 日立化成株式会社 複合体形成用樹脂組成物、複合体、及び複合体を製造する方法

Also Published As

Publication number Publication date
KR20180042840A (ko) 2018-04-26
CN107922546A (zh) 2018-04-17
TW201716492A (zh) 2017-05-16
JPWO2017030096A1 (ja) 2018-06-07
US20190062480A1 (en) 2019-02-28

Similar Documents

Publication Publication Date Title
JP6258228B2 (ja) 軟質材料用組成物及び軟質材料
JP5126455B1 (ja) ラジカル硬化性ホットメルトウレタン樹脂組成物、及び光学用成形体
WO2017030099A1 (ja) 複合材料、ソルダーレジスト用感光性樹脂組成物、及び感光性エレメント
WO2006095750A1 (ja) (メタ)アクリレート化合物およびその製造方法、(メタ)アクリレート系共重合体、(メタ)アクリレート系共重合体の製造方法ならびに軟性眼内レンズ
JP6610077B2 (ja) 光学的立体造形用樹脂組成物、及び立体造形物を製造する方法
WO2017030096A1 (ja) 硬化性樹脂組成物、及びその硬化物
JP2018203830A (ja) 硬化性樹脂組成物、及びその硬化物
JP6525619B2 (ja) 光硬化する組成物ならびにその組成物から得られる光硬化物および粘接着剤
JP6665442B2 (ja) 接合部材形成用組成物、接合部材、接合体、及び接合部材を製造する方法
JP6507928B2 (ja) 繊維状成形体、及び繊維形成用組成物
WO2017030098A1 (ja) 硬化性樹脂組成物、成形用組成物、樹脂成形体、及び樹脂成形体を製造する方法
JP6520552B2 (ja) 多孔質樹脂成形体、及び多孔質樹脂成形体形成用組成物
JP6578924B2 (ja) 制振材用樹脂組成物、及び制振材
JP2019044099A (ja) 立体構造物
JP6717006B2 (ja) 成形用組成物、樹脂成形体、及び樹脂成形体を製造する方法
JP2009138090A (ja) ナフタレン化合物を重合して得られる重合体
JP4561572B2 (ja) ポリサルファイド硬化性組成物
JP6676946B2 (ja) 樹脂組成物
JP6623612B2 (ja) 複合体形成用組成物、複合体、及び複合体を製造する方法
JP6672759B2 (ja) 樹脂組成物、及び接着剤
JP7234677B2 (ja) 多官能プロパルギル化合物及びそれを含む光学用組成物
CA3204539A1 (en) Silicone urethane (meth)acrylates and their use in 3d printing resins and coating compositions
JP2018168219A (ja) 樹脂組成物及び樹脂硬化物
JP2017105940A (ja) 粘着剤、及び粘着シート
JP2014210885A (ja) 含ケイ素ポリマーを含む硬化性組成物

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16837086

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20187003645

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2017535523

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16837086

Country of ref document: EP

Kind code of ref document: A1