WO2017022427A1 - 鞍乗型車両用スタータモータ、エンジン始動装置、及び鞍乗型車両 - Google Patents

鞍乗型車両用スタータモータ、エンジン始動装置、及び鞍乗型車両 Download PDF

Info

Publication number
WO2017022427A1
WO2017022427A1 PCT/JP2016/070543 JP2016070543W WO2017022427A1 WO 2017022427 A1 WO2017022427 A1 WO 2017022427A1 JP 2016070543 W JP2016070543 W JP 2016070543W WO 2017022427 A1 WO2017022427 A1 WO 2017022427A1
Authority
WO
WIPO (PCT)
Prior art keywords
rotor
permanent magnet
movable permanent
starter motor
type vehicle
Prior art date
Application number
PCT/JP2016/070543
Other languages
English (en)
French (fr)
Inventor
日野 陽至
Original Assignee
ヤマハ発動機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ヤマハ発動機株式会社 filed Critical ヤマハ発動機株式会社
Priority to BR112018002217-9A priority Critical patent/BR112018002217B1/pt
Priority to EP16832706.2A priority patent/EP3327909B1/en
Publication of WO2017022427A1 publication Critical patent/WO2017022427A1/ja
Priority to US15/887,979 priority patent/US10693357B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K23/00DC commutator motors or generators having mechanical commutator; Universal AC/DC commutator motors
    • H02K23/02DC commutator motors or generators having mechanical commutator; Universal AC/DC commutator motors characterised by arrangement for exciting
    • H02K23/16DC commutator motors or generators having mechanical commutator; Universal AC/DC commutator motors characterised by arrangement for exciting having angularly adjustable excitation field, e.g. by pole reversing or pole switching
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02NSTARTING OF COMBUSTION ENGINES; STARTING AIDS FOR SUCH ENGINES, NOT OTHERWISE PROVIDED FOR
    • F02N11/00Starting of engines by means of electric motors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02NSTARTING OF COMBUSTION ENGINES; STARTING AIDS FOR SUCH ENGINES, NOT OTHERWISE PROVIDED FOR
    • F02N11/00Starting of engines by means of electric motors
    • F02N11/08Circuits or control means specially adapted for starting of engines
    • F02N11/0862Circuits or control means specially adapted for starting of engines characterised by the electrical power supply means, e.g. battery
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/12Stationary parts of the magnetic circuit
    • H02K1/17Stator cores with permanent magnets
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/12Stationary parts of the magnetic circuit
    • H02K1/18Means for mounting or fastening magnetic stationary parts on to, or to, the stator structures
    • H02K1/187Means for mounting or fastening magnetic stationary parts on to, or to, the stator structures to inner stators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K13/00Structural associations of current collectors with motors or generators, e.g. brush mounting plates or connections to windings; Disposition of current collectors in motors or generators; Arrangements for improving commutation
    • H02K13/006Structural associations of commutators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K23/00DC commutator motors or generators having mechanical commutator; Universal AC/DC commutator motors
    • H02K23/02DC commutator motors or generators having mechanical commutator; Universal AC/DC commutator motors characterised by arrangement for exciting
    • H02K23/04DC commutator motors or generators having mechanical commutator; Universal AC/DC commutator motors characterised by arrangement for exciting having permanent magnet excitation
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/10Structural association with clutches, brakes, gears, pulleys or mechanical starters
    • H02K7/116Structural association with clutches, brakes, gears, pulleys or mechanical starters with gears
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/10Structural association with clutches, brakes, gears, pulleys or mechanical starters

Definitions

  • the present invention relates to a starter motor for a straddle-type vehicle, an engine starter, and a straddle-type vehicle.
  • a straddle-type vehicle such as a motorcycle includes a starter motor for starting an engine.
  • the starter motor for a saddle-ride type vehicle is supplied with electric power from a battery mounted on the saddle-ride type vehicle when the engine is started, and rotates the crankshaft to start the engine.
  • a brush motor that supplies current to a rotor using a brush is often used. Since the brush motor switches the current flowing through the windings by the action of the brush and the commutator, the brush motor can be operated by a direct current from a battery mounted on the saddle riding type vehicle.
  • Patent Document 1 discloses a brush motor.
  • the brush motor of Patent Document 1 is a starter motor used as a drive source for an engine starting device such as a motorcycle.
  • a starter motor as shown in Patent Document 1 is required to output a large torque in order to rotate a crankshaft of an engine in a stopped state when the engine is started. Further, after the combustion operation of the engine is started, it is required to rotate the crankshaft at a high rotational speed in order to stabilize the operation of the engine.
  • a starter motor that drives an engine of a saddle-ride type vehicle is required to have a large output torque at a low rotation speed, for example, at the start of rotation, and a high rotation speed at a small output torque.
  • the number of windings of the saddle type vehicle starter motor is It can be reduced. If the number of turns of the winding is reduced, the induced electromotive voltage that hinders the supply of current can be suppressed, so that the current can be supplied even at a high rotational speed. Therefore, the straddle-type vehicle starter motor can be rotated at a high rotational speed. However, when the number of turns of the winding decreases, the torque that can be output at a low rotational speed, such as at the start of rotation, decreases.
  • increasing the diameter of the winding and increasing the magnetic force of the permanent magnet can be considered. For example, by increasing the diameter of the winding, a large current flows through the winding at a low rotational speed. However, in order to supply a large current to the windings, a large battery must be mounted on the saddle riding type vehicle. Further, increasing the winding thickness and increasing the magnetic force of the permanent magnet means an increase in the size of the starter motor for the saddle riding type vehicle. That is, the mounting property to the saddle riding type vehicle is lowered.
  • An object of the present invention is to provide a starter motor for a straddle-type vehicle, an engine starter, which can improve the characteristics of output torque and rotational speed for starting the engine with a simple configuration while improving the vehicle mountability. And a straddle-type vehicle.
  • the present invention adopts the following configuration in order to solve the above-described problems.
  • a straddle-type vehicle starter motor for starting an engine mounted on a straddle-type vehicle
  • the straddle-type vehicle starter motor is A rotor having a winding, a core around which the winding is wound, and a commutator electrically connected to the winding;
  • the position of the rotor in the rotational direction is fixed, and a brush that passes a current through the rotor by contacting the commutator; From the torque at the retarded position, which is opposed to the core with the air gap interposed therebetween, and the retarded position in which the relative angular position with respect to the brush is displaced in the retarded direction, and the retarded position displaced in the advanced direction from the retarded position.
  • a movable permanent magnet provided to be movable in the circumferential direction of the rotor independently of the rotor in an angular range including an advance position that causes the rotor to generate a large torque.
  • the movable permanent magnet is positioned at the advance position when rotation of the rotor is started by supplying current to the rotor, and the rotor is moved by supplying current to the rotor. It is configured to be movable to the retard position in the retard direction within the rotating period.
  • the straddle-type vehicle starter motor (1) includes a rotor, a brush, and a movable permanent magnet.
  • the straddle-type vehicle starter motor of (1) the rotor has a winding, a core around which the winding is wound, and a commutator electrically connected to the winding.
  • the movable permanent magnet is provided so as to be movable in the circumferential direction of the rotor independently of the rotor.
  • the movable permanent magnet is movable in an angle range including a retard position and an advance position.
  • the retard position is a position where the relative angle position with respect to the brush is displaced in the retard direction
  • the advance position is a position displaced in the advance direction from the retard position.
  • the advance direction is a direction opposite to the rotation direction of the rotor when the rotor supplied with current from the brush is rotating.
  • the retard direction is the same direction as the rotation direction of the rotor.
  • the movable permanent magnet is positioned at the advance position when the rotation of the rotor starts when current is supplied to the rotor.
  • the position of the movable permanent magnet at the advance position is equivalent to the position of the brush at the retard position when the brush is rotatable, for example, from the viewpoint of the commutation timing of the winding. For this reason, when the movable permanent magnet is positioned at the advance position, a torque larger than the torque at the retard position of the movable permanent magnet is generated in the rotor. Therefore, the output torque at the time when the rotation of the rotor starts increases. That is, the output torque at the time of starting the engine increases.
  • the movable permanent magnet moves in the retarding direction within a period in which the rotor is rotating by supplying current to the rotor.
  • the fact that the movable permanent magnet is located at the retard position is equivalent to the fact that the brush is located at the advance position when the brush is rotatable, for example, from the viewpoint of the commutation timing of the winding. For this reason, the influence of the induced electromotive force is reduced when the movable permanent magnet is positioned at the retard position. Accordingly, the rotational speed of the rotor increases.
  • the straddle-type vehicle starter motor has an operating state in which output torque is improved at a low rotational speed at which engine start is started without moving a brush by moving a movable permanent magnet; Both the operation state in which the combustion operation starts and the rotational speed is increased when the torque is small can be realized. Therefore, according to the straddle-type vehicle starter motor (1), it is possible to improve the characteristics of the output torque and the rotational speed for starting the engine with a simple configuration while improving the vehicle mountability.
  • the movable permanent magnet facing the core across the gap moves in the advance direction, so that a larger torque than in the case where the movable permanent magnet is in the retard position is generated by the rotor. To occur. Therefore, the output torque at a low rotational speed increases.
  • the movable permanent magnet is moved by the reaction force of the rotor to increase the output torque at a low rotational speed.
  • the reaction force is caused by the magnetic action between the movable permanent magnet and the rotor within a period in which current is supplied to the rotor. Therefore, according to the straddle-type vehicle starter motor (2), it is possible to increase the output torque at a low rotational speed with a simpler structure while improving the vehicle mountability.
  • the straddle-type vehicle starter motor according to (1) or (2) It further includes an advance angle movement restricting unit that restricts the movable permanent magnet from moving beyond the angle range in the advance angle direction.
  • the movable permanent magnet is restricted from moving in the advance direction beyond the angular range. Therefore, a situation in which the output torque at a low rotational speed is reduced due to excessive movement of the movable permanent magnet in the advance direction can be suppressed. According to the saddle type vehicle starter motor (3), the characteristics of the output torque can be further improved.
  • the advance angle limiting portion include a movable permanent magnet or a protrusion that is in contact with a member that moves integrally with the movable permanent magnet, a step, and the like.
  • examples of the advance angle limiting unit include a movable permanent magnet or a member that connects a member that moves integrally with the movable permanent magnet and a housing or the like.
  • the straddle-type vehicle starter motor according to any one of (1) to (3), It further includes a retard movement restricting unit that restricts the movable permanent magnet from moving in the retard direction beyond the angle range.
  • the movable permanent magnet is restricted from moving in the retard direction beyond the angular range. Therefore, a situation in which the increase in the rotation speed is prevented in the operation state in which the rotation speed is increased is suppressed.
  • the brush motor of (4) the characteristics of output torque can be further improved.
  • the retard limiter include a movable permanent magnet or a protrusion or a step that contacts a member that moves integrally with the movable permanent magnet.
  • examples of the retard limiter include a movable permanent magnet or a member that couples a member that moves integrally with the movable permanent magnet and a housing or the like.
  • the magnet moving unit positions the movable permanent magnet at the advance position when the rotation of the rotor starts. For this reason, it is possible to easily realize both an operation state in which the output torque is improved at a low rotation speed at which the engine starts and an operation state in which the rotation speed is increased.
  • the magnet moving unit include an elastic member that moves the movable permanent magnet by elastic force, an actuator that moves the movable permanent magnet by electric power, or a motor.
  • the starter motor for the saddle riding type vehicle according to (5), The magnet moving unit moves the movable permanent magnet to the retard position based on an increase in the rotation speed of the rotor within a period in which the rotor is rotated by supplying current to the rotor. To the retard direction.
  • the movable permanent magnet is operated based on the increase in the rotational speed of the rotor within a period in which the rotor is rotating by supplying current to the rotor. Is moved to the retard position in the retard direction, the range of the rotational speed of the rotor can be smoothly expanded.
  • the magnet moving unit includes an elastic member that urges the movable permanent magnet in the retard direction by an elastic force.
  • the elastic force of the elastic member is used as the force for urging the movable permanent magnet in the retarded direction, the output torque and The rotational speed characteristics can be improved.
  • Examples of the elastic member include a spring and an elastomer.
  • Examples of the elastic member include a torsion spring, a coil spring, a leaf spring, and an air spring.
  • the elastic force of the elastic member is smaller than the reaction force of the rotor acting on the movable permanent magnet at the start of rotation of the rotor, and as the rotational speed of the rotor increases. It is configured to be larger than the reaction force of the rotor acting on the movable permanent magnet when the torque decreases.
  • the elastic force of the elastic member is smaller than the reaction force of the rotor acting on the movable permanent magnet at the start of rotation of the rotor, the rotation of the rotor is started.
  • the movable permanent magnet moves in the advance direction by the reaction force of the rotor.
  • the output torque can be improved at the start of rotation of the rotor.
  • the elastic force of the elastic member becomes larger than the reaction force of the rotor that acts on the movable permanent magnet when the torque decreases as the rotation speed of the rotor increases, with the increase in the rotation speed of the rotor, The movable permanent magnet moves in the retard direction by the elastic force.
  • the movement of the movable permanent magnet in the advance direction and the movement in the retard direction cause the elastic force of the elastic member and the reaction force of the rotor. Since it is implemented as the self-adjusting function used, it is possible to improve the characteristics of the output torque and the rotational speed with a simpler structure while improving the vehicle mounting property.
  • the straddle-type vehicle starter motor according to (7) or (8),
  • the movable permanent magnet is positioned at the retarded position by the biasing force of the elastic member in the retarded direction before the supply of current to the rotor is started,
  • the elastic member has the advance angle of the movable permanent magnet due to the reaction force of the rotor acting on the movable permanent magnet between the start of current supply to the rotor and the rotation of the rotor.
  • the movable permanent magnet is allowed to move to the advance position so that movement in the direction starts, and when the torque decreases as the rotational speed of the rotor increases, the biasing force of the elastic member
  • the movable permanent magnet located at the advance angle position is configured to move in the retard angle direction.
  • the straddle-type vehicle starter motor further includes a housing that houses at least the rotor, the brush, and the movable permanent magnet.
  • the rotor is rotatably supported by the casing,
  • the brush is provided so that the position of the brush in the rotation direction of the rotor is fixed with respect to the housing.
  • the movable permanent magnet is supported by the casing so as to be movable in the circumferential direction of the rotor independently of the rotor.
  • the housing accommodates at least the rotor, the brush, the movable permanent magnet, and the magnet moving unit. Furthermore, the housing supports the rotor in a rotatable manner, fixes the position of the brush in the rotation direction of the rotor, and is movable so that the movable permanent magnet can move in the circumferential direction of the rotor independently of the rotor. Supports permanent magnets. Thereby, a compact straddle-type vehicle starter motor can be realized, and an increase in the size of the straddle-type vehicle starter motor can be suppressed.
  • the straddle-type vehicle starter motor is A plurality of the movable permanent magnets arranged side by side in the circumferential direction of the rotor; A movable yoke portion disposed between the movable permanent magnet and the housing, to which the plurality of movable permanent magnets are fixed; The plurality of movable permanent magnets are supported by the housing via the movable yoke portion.
  • An engine starting device for starting an engine mounted on a saddle riding type vehicle The engine starter is (1) to (11) any one of straddle type vehicle starter motors; A speed reducer connected to the rotor and decelerating the rotation of the rotor and transmitting it to the engine.
  • the characteristics of the output torque and the rotational speed for starting the engine can be improved with a simple configuration while improving the mounting property to the saddle riding type vehicle. Further, in order to increase the output torque of the engine starting device, the rotation of the rotor of the straddle-type vehicle starter motor is decelerated by the reduction device. According to the engine starting device of (12), since the output torque at a low rotational speed at the time of engine starting is improved, the reduction ratio in the speed reducing device can be reduced. Therefore, the driving sound of the engine starter mounted on the saddle riding type vehicle can be suppressed.
  • a straddle-type vehicle is (12) an engine starting device; An engine started by the engine starter.
  • the startability of the engine can be improved while improving the vehicle mountability of the engine starter.
  • the starter motor for saddle riding type vehicles is a direct current motor.
  • a straddle-type vehicle starter motor is a motor that switches a current flowing in a winding with a brush and a commutator.
  • Examples of the straddle-type vehicle starter motor include a radial gap type motor and an axial gap type motor.
  • the number of brushes is not particularly limited.
  • the number of brushes may be two or three or more.
  • Examples of the brush include a brush that is fixed to a housing of a straddle-type vehicle starter motor, or a brush that is supported so as to be movable with respect to the housing of the straddle-type vehicle starter motor.
  • the number of movable permanent magnets is not particularly limited.
  • a movable permanent magnet for example, a magnet that is supported so as to be directly movable in a housing of a saddle type vehicle starter motor, or a movable part that is supported so as to be movable in a housing of a saddle type vehicle starter motor And a magnet fixed to.
  • the range in which the advance position and the retard position in the present invention are set is preferably set to the range of the position of the movable permanent magnet that generates torque in the rotor when current is supplied to the rotor.
  • the retard angle position and the advance angle position are set within a range including the maximum torque position, which is the position of the movable permanent magnet that generates the maximum torque in the rotor when current is supplied to the rotor, for example. Is preferred.
  • the retard position and the advance position are, for example, an electrical angle in the retard direction from the maximum torque position, which is the position of the movable permanent magnet that generates the maximum torque in the rotor when current is supplied to the rotor. It is preferably set within a range up to a position of 90 °. In this case, when current is supplied to the rotor, torque in the same direction can be generated in the rotor.
  • the present invention it is possible to improve the characteristics of the output torque and the rotational speed for starting the engine with a simple configuration while improving the vehicle mountability.
  • FIG. 3 is a cross-sectional view showing a cross section along line AA of the starter motor shown in FIG. 2.
  • FIG. 3 is a cross-sectional view showing a cross section taken along line BB of the starter motor shown in FIG. 2.
  • FIG. 9 is an external view showing a straddle-type vehicle on which the starter motor according to the first embodiment and the second embodiment is mounted.
  • the present inventor has moved the position of the brush during operation of the straddle-type vehicle starter motor as means for obtaining both a large output torque when the rotation speed is low and a high rotation speed when the output torque is low.
  • the brush is a member that supplies a current to the rotor while being in contact with the rotating rotor.
  • a conductor such as an electric wire is connected to the brush.
  • a part of the conductor connected to the brush is normally held in the casing of the brush motor. Because the brush is connected to such a conductor, it is not suitable for rotation while maintaining proper contact with the rotor during operation.
  • the movement of the brush causes complication of the structure of the brush motor.
  • the advance angle of the brush to obtain a high rotational speed is determined by its position relative to the permanent magnet. Therefore, by fixing the brush and rotating the permanent magnet in the direction opposite to the advance direction, it is possible to obtain characteristics equivalent to rotating the brush in the advance direction. However, the reaction of the output torque occurs in the permanent magnet. For this reason, it has not been conventionally considered to rotate the permanent magnet in the direction opposite to the advance direction.
  • the present invention has been completed based on the knowledge that the characteristics of the output torque and the rotational speed can be improved by dynamically changing the position of the movable permanent magnet with respect to the design concept of changing the setting position of the brush. It is.
  • reaction force opposite to the torque generated in the rotor acts on the permanent magnet. That is, the reaction force acts in the direction opposite to the rotation direction of the rotor.
  • the magnitude of the reaction force tends to increase as the rotation speed of the rotor is lower and decrease as the rotation speed of the rotor is higher, like the output torque.
  • the present inventors have made it possible to rotate the movable permanent magnet and to bias the movable permanent magnet in the retarding direction by the elastic force, thereby using the output torque feedback and We obtained the knowledge that self-adjustment of the characteristics of the rotation speed becomes possible.
  • a reaction force in the direction opposite to the rotation of the rotor acts on the movable permanent magnet.
  • the movable permanent magnet rotates in the advance direction that is opposite to the rotation direction of the rotor.
  • the rotation of the movable permanent magnet in the advance direction corresponds to, for example, the displacement of the brush in the retard direction in a motor in which the position of the movable permanent magnet is fixed.
  • the present invention has been completed based on the knowledge that the characteristics of the output torque and the rotational speed can be improved by dynamically changing the position of the movable permanent magnet with respect to the design concept of changing the setting position of the brush. It is.
  • FIG. 1 is a cross-sectional view showing a schematic configuration of an engine starter S including a straddle-type vehicle starter motor according to a first embodiment of the present invention.
  • the engine starting device S shown in FIG. 1 is a device for starting an engine EU (see FIG. 9) mounted on the saddle riding type vehicle A (see FIG. 9).
  • the engine starter S starts the engine EU by rotating a crankshaft (not shown) of the engine EU from a state where the engine EU is stopped. Further, the engine starter S stabilizes the operation of the engine EU by rotationally driving the crankshaft even after the engine EU starts the combustion operation.
  • the engine starting device S includes a straddle-type vehicle starter motor 10 (also simply referred to as a starter motor 10), a reduction gear 30, an output shaft 40, and a housing 41.
  • the starter motor 10 functions as a straddle-type vehicle starter motor that starts the engine EU.
  • the starter motor 10 is a brush motor.
  • the casing 41 of the engine starting device S is fixed to the engine EU or the saddle riding type vehicle A, for example.
  • the output shaft 40 of the engine starter S outputs a rotational force to the engine EU.
  • the output shaft 40 of the engine starter S is rotationally driven by the starter motor 10.
  • the reduction gear device 30 is provided between the starter motor 10 and the output shaft 40 and transmits the rotation of the starter motor 10 to the output shaft 40 by reducing the rotation of the starter motor 10 with a predetermined gear ratio. As the rotation of the starter motor 10 is decelerated, the output torque of the output shaft 40 increases.
  • the engine starting device S also includes a magnet switch 42 and a movable gear 43. When the movable gear 43 moves in the axial direction of the output shaft by the action of the magnet switch 42 and meshes with the gear 50 of the engine EU, the rotation of the starter motor 10 is transmitted to the crankshaft via the gear 50.
  • the engine starter S can also cause the starter motor 10 to generate power by transmitting the rotational force of the crankshaft to the starter motor 10 after the start of the engine EU is completed. Since the starter motor 10 is a brush motor, it generates a direct current.
  • FIG. 2 is an enlarged cross-sectional view of the starter motor 10 shown in FIG.
  • FIG. 3 is a cross-sectional view showing a cross section of line AA of starter motor 10 shown in FIG.
  • FIG. 4 is a cross-sectional view showing a cross section taken along line BB of the starter motor 10 shown in FIG.
  • the starter motor 10 includes a housing 2, a rotor 5, fixed brushes 22 and 23, a movable permanent magnet 3, and a magnet moving unit 25.
  • the housing 2 of the starter motor 10 has a cylindrical portion 20a, a front cover 20b, and a rear cover 20c.
  • the front cover 20b and the rear cover 20c are provided so as to close the openings at both ends of the cylindrical portion 20a.
  • the cylindrical portion 20a, the front cover 20b, and the rear cover 20c are fixed to each other by welding, for example.
  • the cylinder part 20a, the front cover 20b, and the rear cover 20c may be fixed to each other by, for example, a fastening member.
  • the housing 2 accommodates components of the starter motor 10 including the rotor 5, the fixed brushes 22 and 23, the movable permanent magnet 3, and the magnet moving unit 25.
  • the housing 2 accommodates at least the rotor 5, the fixed brushes 22 and 23, the movable permanent magnet 3, and the magnet moving unit 25.
  • the housing 2 of the starter motor 10 constitutes a part of the housing 41 of the engine starting device S shown in FIG. Therefore, the position of the housing 2 of the starter motor 10 is fixed with respect to the engine EU and the saddle riding type vehicle A.
  • the rotor 5 is supported by the housing 2 so as to be rotatable with respect to the housing 2.
  • the rotor 5 includes a rotating shaft 6, a core 7, a commutator 8, and a winding 9.
  • the core 7 is fixed to the rotating shaft 6.
  • the rotating shaft 6 is fitted into the core 7 so as to penetrate the core 7.
  • the rotating shaft 6 is supported by the housing 2 via a bearing 14. When current flows through the winding 9, rotational torque is generated in the rotor 5.
  • the rotor 5 rotates when a current flows through the winding 9.
  • the rotating shaft 6, the core 7, the commutator 8, and the winding 9 rotate together.
  • a direction in which the rotation shaft 6 of the rotor 5 extends is referred to as an axial direction X, and a direction perpendicular to the axial direction X is referred to as a radial direction R.
  • a direction along the rotation of the rotor 5 is referred to as a circumferential direction C.
  • the core 7 is made of a magnetic material.
  • the core 7 faces the movable permanent magnet 3 with the gap G interposed therebetween.
  • the starter motor 10 is a radial gap type motor, and the core 7 and the movable permanent magnet 3 are opposed to each other in the radial direction R.
  • a winding 9 is wound around the core 7.
  • the core 7 has a plurality of teeth 7a extending radially outward from the central portion in the radial direction R.
  • the plurality of teeth 7a are arranged in the circumferential direction C with a slot opened.
  • the winding 9 is provided so as to pass through the slot, and is wound around the teeth 7a to form a coil.
  • the starter motor 10 of the present embodiment is configured by distributed winding, and one coil formed by the winding 9 surrounds the plurality of teeth 7a.
  • the starter motor 10 may be configured by concentrated winding.
  • the commutator 8 is disposed so as to surround the rotary shaft 6 and is electrically connected to the winding 9.
  • the commutator 8 has the number of contact pieces 8a corresponding to the teeth 7a.
  • a coil formed by the winding 9 is connected to the contact piece 8a.
  • the fixed brushes 22 and 23 cause a current to flow through the rotor 5 by contacting the commutator 8.
  • the fixed brushes 22 and 23 are sequentially brought into contact with the contact pieces 8a of the rotating commutator 8, whereby the current flowing through the winding 9 is switched. That is, commutation of the winding 9 occurs.
  • the fixed brushes 22 and 23 are provided so that the position in the rotation direction of the rotor 5 is fixed to the housing 2. More specifically, as shown in FIG. 4, a plate-like brush holder 21 is fixed to the rear cover 20 c of the housing 2, and fixed brushes 22 and 23 are attached to the brush holder 21.
  • the starter motor 10 of this embodiment has four fixed brushes 22 and 23.
  • the four fixed brushes 22 and 23 are arranged in the circumferential direction C.
  • the fixed brush 22 serving as the positive electrode and the fixed brush 23 serving as the negative electrode are disposed adjacent to each other in the circumferential direction C.
  • the fixed brushes 22 and 23 are biased toward the commutator 8 and come into contact with the commutator 8.
  • the fixed brush 22 serving as the positive electrode is electrically connected to the positive electrode terminal 15, and the fixed brush 23 serving as the negative electrode is electrically connected to the negative electrode (ground) terminal 24, and is further grounded via the cable 16.
  • the starter motor 10 of this embodiment is a motor for outputting rotation in one direction.
  • the rotor 5 of the starter motor 10 is electrically connected to the positive electrode terminal 15 of the battery, which is a DC power source, and the negative electrode terminal 24 of the battery. And it rotates in the direction shown by the arrow D in FIG.
  • the fixed brushes 22 and 23 correspond to an example of the brush of the present invention.
  • the movable permanent magnet 3 is disposed so as to face the core 7 with the gap G interposed therebetween.
  • the movable permanent magnet 3 is disposed so as to directly face the core 7.
  • the starter motor 10 of the present embodiment includes four movable permanent magnets 3.
  • the movable permanent magnet 3 is disposed outside the radial direction R from the core 7 of the rotor 5.
  • the movable permanent magnet 3 is disposed at a position surrounding the core 7.
  • the movable permanent magnets 3 are arranged so that the polarity viewed from the core 7 repeats the N pole and the S pole alternately in the circumferential direction C.
  • the movable permanent magnet 3 is supported by the housing 2.
  • the movable permanent magnet 3 is supported by the housing 2 so as to be movable in the circumferential direction C independently of the rotor 5.
  • the movable permanent magnet 3 moves within the angle range of the adjustment angle range H.
  • the adjustment angle range H is a predetermined angle range in which the movable permanent magnet 3 can move.
  • the movable permanent magnet 3 moves in the advance direction relative to the fixed brushes 22 and 23 by the magnetic action of the movable permanent magnet 3 and the rotor 5 during a period in which current is supplied to the rotor. Is configured to do.
  • the starter motor 10 of this embodiment includes a movable yoke portion 31 disposed between the movable permanent magnet 3 and the housing 2.
  • the plurality of movable permanent magnets 3 are fixed to the movable yoke portion 31.
  • the movable yoke portion 31 is made of a magnetic material.
  • the movable yoke portion 31 is cylindrical.
  • the movable yoke portion 31 is supported by the housing 2 so as to be rotatable in the circumferential direction C.
  • the plurality of movable permanent magnets 3 are supported by the housing 2 via the movable yoke portion 31.
  • the movable permanent magnet 3 is supported by the housing 2 so as to be movable in the circumferential direction C independently of the rotor 5.
  • the movable permanent magnet 3 moves in the circumferential direction C together with the movable yoke portion 31.
  • the magnetic force bias due to the location is suppressed.
  • the movable permanent magnet 3 moves, unevenness of resistance due to the bias of the magnetic force of the movable permanent magnet 3 with respect to the housing 2 is suppressed, and the movable permanent magnet 3 moves smoothly.
  • the housing 2 has a restricting portion 26 that restricts the movement of the movable permanent magnet 3 outside the adjustment angle range H.
  • the limiting portion 26 in the starter motor 10 of the present embodiment is a protrusion that protrudes from the cylindrical portion 20 a of the housing 2 toward the center in the radial direction R.
  • the restriction unit 26 includes an advance movement restriction part 26a and a retard movement restriction part 26b. That is, the starter motor 10 of the present embodiment includes the advance angle movement restricting unit 26a.
  • the starter motor 10 includes a retard movement restriction unit 26b.
  • the advance angle movement restricting portion 26a is one edge of the restricting portion 26 in the circumferential direction.
  • the retard movement restricting portion 26b is the other edge of the restricting portion 26 in the circumferential direction.
  • a cutout 37 is formed in the movable yoke portion 31.
  • the restricting portion 26 is disposed in the notch 37.
  • the restricting portion 26 is disposed between end walls 37 a and 37 b provided on both sides in the circumferential direction of the notch 37.
  • the limiting unit 26 limits the movement of the movable permanent magnet 3 by limiting the rotation angle of the movable yoke unit 31.
  • the restricting unit 26 suppresses a situation in which the movable permanent magnet 3 rotates excessively and obstructs the rotation of the rotor 5.
  • the advance angle movement restricting portion 26 a restricts the movable permanent magnet 3 from moving in the advance angle direction A beyond the adjustment angle range H by hitting the end wall 37 a of the notch 37 of the movable yoke portion 31.
  • the retard movement restricting portion 26b restricts the movable permanent magnet 3 from moving in the retard direction B beyond the adjustment angle range H by hitting the end wall 37b of the notch 37 of the movable yoke portion 31.
  • the advance direction A is a direction opposite to the rotation direction D of the rotor 5 when the rotor 5 supplied with current from the fixed brushes 22 and 23 is rotating.
  • the retarding direction B is the same direction as the rotating direction D of the rotor.
  • the adjustment angle range H in which the movable permanent magnet 3 moves includes a retard position (L1 in FIG. 6) and an advance position (L2 in FIG. 5).
  • the retard angle position is a position where the relative angular position of the movable permanent magnet 3 with respect to the fixed brushes 22 and 23 is displaced in the retard angle direction B.
  • the specified direction means the direction of displacement along the smaller center angle of the two center angles formed by the above two positions.
  • the starter motor 10 is configured such that the output torque of the starter motor 10 changes depending on the position of the movable permanent magnet 3 in the circumferential direction C.
  • the position of the movable permanent magnet 3 is an angular position relative to the fixed brushes 22 and 23.
  • the circumferential position of the movable permanent magnet 3 when the output torque of the starter motor 10 is the largest is referred to as the maximum torque position.
  • the maximum torque position When the movable permanent magnet 3 is at the maximum torque position, the output torque of the starter motor 10 is maximum. As the movable permanent magnet 3 deviates from the maximum torque position, the output torque decreases.
  • the movable permanent magnet 3 is displaced by 90 ° in electrical angle from the maximum torque position in the advance angle direction A, the output torque becomes substantially zero. Further, when the movable permanent magnet 3 is displaced by 90 degrees in electrical angle from the maximum torque position in the retarding direction B, the output torque becomes almost zero.
  • the electrical angle is an angle when the angle per pair of poles of the movable permanent magnet 3 is 360 °.
  • the retarded angle position and the advanced angle position range from a position displaced by 90 ° in electrical angle in the retarded direction B relative to the maximum torque position to a position displaced by 90 ° in electrical angle in the advanced angle direction A relative to the maximum torque position.
  • the retard position is set within a range in which torque is output in the rotation direction of the rotor 5 when the rotor 5 supplied with current is rotating.
  • the advance angle position is set within a range in which the starter motor 10 outputs torque in the rotation direction.
  • the advance angle position and the retard angle position are positions of the movable permanent magnet 3 that generates torque in the rotor 5 when current is supplied to the rotor 5.
  • the advance angle position and the retard angle position can be set within a range of positions that generate torque in the same direction in the rotor 5 when a current is supplied to the rotor 5.
  • the advance angle position and the retard angle position are based on the position at which the maximum torque is generated in the rotor 5. Can be set within a range of 90 °.
  • the retard position is set within a range from the position of 90 ° in electrical angle in the retard direction B to the maximum torque position and the position of 90 ° in electrical direction in the advance direction A with respect to the maximum torque position. It is a position to be done.
  • the advance angle position is a position that is set within a range from a position of 90 ° in electrical angle in the retard direction B with respect to the maximum torque position to a position of 90 ° in electrical angle in the advance direction A with respect to the maximum torque position. It is a position displaced in the advance direction from the retard position.
  • the retard angle position is a position set within a range from the maximum torque position to the position of 90 ° in electrical angle in the retard direction B with respect to the maximum torque position.
  • the advance angle position is a position set within the range from the maximum torque position to the position of 90 ° in electrical angle in the retard direction B with respect to the maximum torque position, and is displaced in the advance direction from the retard position. Position.
  • the “retard angle position” in the starter motor 10 is a position where the relative angular position of the movable permanent magnet 3 with respect to the fixed brushes 22 and 23 is displaced in the retard angle direction B from the maximum torque position.
  • the advance position of the movable permanent magnet 3 is a position displaced in the advance direction A from the retard position.
  • the retard position of the movable permanent magnet 3 is a position displaced in the retard direction B from the advance position.
  • the advance position is closer to the maximum torque position than the retard position. With the maximum torque position as a reference, the retard position is further away from the advance position.
  • the advance position may be substantially the same position as the maximum torque position.
  • the magnet moving unit 25 is configured to move the movable permanent magnet 3.
  • the magnet moving unit 25 is configured to move the movable permanent magnet 3 in at least one of the retard angle direction B and the advance angle direction A within the adjustment angle range H.
  • the magnet moving unit 25 moves the movable permanent magnet 3 in the retard angle direction B or the advance angle direction A within the adjustment angle range within a period in which current is supplied to the rotor 5.
  • the magnet moving unit 25 in the starter motor 10 of the present embodiment includes an elastic member 25a.
  • the elastic member 25a biases the movable permanent magnet 3 in the retarding direction B by an elastic force.
  • the elastic member 25 a is, for example, a spring coupled to the housing 2 and the movable yoke portion 31.
  • the elastic member 25a is, for example, a torsion spring.
  • the elastic member 25a is configured such that the elastic force of the elastic member 25a is smaller than the reaction force of the rotor 5 acting on the movable permanent magnet 3 when the rotation of the rotor 5 starts. Yes.
  • the elastic member 25a is configured such that the elastic force of the elastic member 25a is greater than the reaction force of the rotor 5 that acts on the movable permanent magnet 3 when the torque decreases as the rotational speed of the rotor 5 increases. ing.
  • the elastic member 25a reacts when the elastic force of the elastic member 25a rotates the rated load in the starter motor 10 at the rated speed when the movable permanent magnet 3 is fixed at the advance position shown in FIG. It is configured to be greater than the force.
  • FIG. 5 and 6 are schematic views showing the positions of the fixed brushes 22 and 23 and the movable permanent magnet 3 in the starter motor 10 shown in FIG. 5 and 6 also show the commutator 8 and the movable yoke portion 31. 5 and 6 schematically show the elastic member 25a.
  • the movable permanent magnet 3 at the advance position L2 is shown by a solid line.
  • the position of the movable permanent magnet 3 is represented by the center position in the circumferential direction C of each of the movable permanent magnets 3.
  • the movable permanent magnet 3 at the retard position L1 is indicated by a broken line as a reference.
  • the movable permanent magnet 3 at the retard position L1 is indicated by a solid line.
  • the retard position L1 is a position when the movable permanent magnet 3 is displaced in the retard direction B from the advance position L2 with respect to the fixed brushes 22 and 23.
  • the advance direction A is a direction opposite to the rotation direction D of the rotor 5 when the rotor 5 supplied with current from the fixed brushes 22 and 23 is rotating.
  • the retarding direction B is the same direction as the rotational direction D of the rotor 5.
  • the advance angle position L2 shown in FIG. 5 is a position when the movable permanent magnet 3 is displaced in the advance angle direction A from the retard angle position L1 shown in FIG.
  • the advance angle position L2 shown in FIG. 5 is a position that causes the rotor 5 to generate a torque larger than the torque at the retard angle position L1.
  • the advance position L2 is closer to the maximum torque position than the retard position L1 shown in FIG.
  • the advance position L2 is preferably substantially the same position as the maximum torque position. However, as long as the advance position L2 is closer to the maximum torque position than the retard position L1 in the circumferential direction C, the advance position L2 may not be substantially the same position as the maximum torque position.
  • the advance position L2 is between the retard position L1 and the maximum torque position.
  • the maximum torque position may be between the advance position L2 and the retard position L1.
  • the maximum torque position of the movable permanent magnet 3 is a position where the phase of the current flowing through the winding 9 and the phase of the magnetic flux interlinking with the winding substantially coincide.
  • the maximum torque position of the movable permanent magnet 3 is, for example, that the induced electromotive voltage generated between the fixed brushes 22 and 23 is maximized when the starter motor 10 functions as a generator and is rotated by a rotational force from the outside. Position.
  • the relationship between the current phase and the magnetic flux phase is determined by the relative positions of the movable permanent magnet 3 and the fixed brushes 22 and 23.
  • the retarded angle position L1 shown in FIG. 6 is a position when the movable permanent magnet 3 is displaced in the retarded direction B from the advanced angle position L2 shown in FIG.
  • the fact that the movable permanent magnet 3 is located at the retard position L1 is equivalent to the fact that the brush is located at the advance position and the timing of commutation of the winding 9 when the brush is rotatable, for example.
  • the state shown in FIG. 6 can be said to be a state in which the relative positions of the fixed brushes 22 and 23 with respect to the movable permanent magnet 3 are moved in the advance angle direction A from the position where the maximum torque is generated. Therefore, when the movable permanent magnet 3 is at the retard position L1 shown in FIG.
  • the induced electromotive voltage generated when the starter motor 10 functions as a generator is lower than that at the advance position L2. Further, the torque at the start when the movable permanent magnet 3 is at the retard position L1 is smaller than the torque at the start when the movable permanent magnet 3 is at the advance position L2.
  • T ⁇ ⁇ PZI a magnetic flux interlinking with the winding through which the current I flows.
  • the current I is proportional to the difference between the power supply voltage of the starter motor and the induced electromotive voltage generated in the winding.
  • the induced electromotive voltage generated in the winding is proportional to the time derivative of the magnetic flux ⁇ .
  • the magnetic flux ⁇ interlinked at the timing when the current I supplied from the fixed brushes 22 and 23 flows is changed to the advance position L2. Less than in the case of.
  • the movable permanent magnet 3 moves to the retard position L1
  • the induced electromotive voltage decreases. Therefore, current can be supplied to the winding at a high rotational speed. That is, the rotation speed that can be output increases.
  • the adjustment angle range when the movable permanent magnet 3 is moved from the maximum torque position to the retard position L1 is smaller than the right angle in electrical angle.
  • the adjustment angle range is preferably within 30 ° in electrical angle.
  • the electrical angle is an angle when the angle per pair of poles of the movable permanent magnet 3 is 360 °. Since the starter motor 10 of this embodiment has two pairs of poles composed of four movable permanent magnets 3 and four fixed brushes 22 and 23, the adjustment angle range H is within 15 ° in mechanical angle. preferable.
  • the magnet moving unit 25 moves the movable permanent magnet 3 within the adjustment angle range H within the period in which the current is supplied to the rotor 5, the retard direction B or the advance direction A. Move to. More specifically, the magnet moving unit 25 positions the movable permanent magnet 3 at the advance position L2 shown in FIG. 5 when the rotation of the rotor 5 starts when electric current is supplied to the rotor 5. The magnet moving unit 25 moves the movable permanent magnet 3 to the retard position L1 in the retard direction B during the period in which the rotor 5 is rotating by supplying current to the rotor 5.
  • the elastic member 25a (see FIG. 2) of the magnet moving unit 25 urges the movable permanent magnet 3 in the retarding direction B by the elastic force.
  • the elastic force of the elastic member 25a is smaller than the reaction force of the rotor 5 acting on the movable permanent magnet 3 at the start of the rotation of the rotor 5, and when the torque decreases as the rotation speed of the rotor 5 increases. It is larger than the reaction force of the rotor 5 acting on the movable permanent magnet 3.
  • the movable permanent magnet 3 is positioned at the retard position L1 as shown in FIG. 6 by the urging force of the elastic member 25a in the retard direction B.
  • the movable permanent magnet 3 is advanced relative to the fixed brushes 22 and 23 by the reaction force of the rotor 5 acting on the movable permanent magnet 3 during a period in which current is supplied to the rotor 5. It is comprised so that it may move to A. By supplying current to the rotor 5, a rotational force in the retarding direction B is generated in the rotor 5. The rotational force is the output torque.
  • the movable permanent magnet 3 has a reaction force in the retarding direction B that is opposite to the retarding direction B. The movable permanent magnet 3 moves in the advance angle direction A by a reaction force.
  • the reaction force exceeding the elastic force of the elastic member 25 a acts on the movable permanent magnet 3, so that the movable permanent magnet 3 moves in the advance direction A.
  • the elastic member 25a of the magnet moving unit 25 allows the movable permanent magnet 3 to move to the advance position between the time when the supply of current to the rotor 5 is started and the time when the rotor 5 rotates.
  • the movable permanent magnet 3 is allowed to move to the advance position, the movable permanent magnet 3 starts to move in the advance direction A due to the reaction force of the rotor 5 acting on the movable permanent magnet 3.
  • the starter motor 10 When the starter motor 10 operates with a voltage from, for example, a battery that outputs a rated voltage, the maximum output torque is usually generated between the start of current supply and the rotation of the rotor 5. For this reason, the reaction of the output torque acting on the movable permanent magnet 3 is also maximized between the start of current supply and the rotation of the rotor 5. At this time, the movement of the movable permanent magnet 3 in the advance angle direction A starts as indicated by an arrow M1 in FIG.
  • the starter motor 10 can start rotating with a larger torque than when the movable permanent magnet 3 is located at the retard position L1 shown in FIG.
  • the advance angle movement restricting portion 26a contacts the end wall 37a of the notch 37 of the movable yoke portion 31 so that the movable permanent magnet 3 moves in the advance angle direction A beyond the adjustment angle range H. Restrict.
  • the advance angle movement restricting unit 26a (see FIG. 3) restricts the movable permanent magnet 3 from moving in the advance angle direction A from the advance angle position L2. For this reason, the situation where output torque falls by the excessive movement of the movable permanent magnet 3 is suppressed.
  • the elastic member 25a causes the movable permanent magnet 3 located at the advance position L2 shown in FIG. 5 to be retarded by the urging force of the elastic member 25a. It is comprised so that it may move to B.
  • the reaction force of the rotor 5 acting on the movable permanent magnet 3 also decreases.
  • the elastic force of the elastic member 25 a is larger than the reaction force of the rotor 5 that acts on the movable permanent magnet 3 when the torque decreases as the rotational speed of the rotor 5 increases.
  • the magnet moving unit 25 moves the movable permanent magnet 3 to the retard position L1 shown in FIG. 6 within the retarding direction B within the period in which the rotor 5 is rotating by supplying current to the rotor 5.
  • the movable permanent magnet 3 moves in the retarding direction B as indicated by an arrow M2 in FIG. More specifically, the magnet moving unit 25 moves the movable permanent magnet 3 in the retard direction B to the retard position L1 shown in FIG. 6 based on the increase in the rotational speed of the rotor 5.
  • the output torque decreases based on an increase in the rotational speed of the rotor 5, so that the reaction force of the rotor 5 acting on the movable permanent magnet 3 decreases as the rotational speed of the rotor 5 increases.
  • the elastic force of the elastic member 25a is set so as to gradually decrease as the distance that the elastic member 25a moves the movable permanent magnet 3 becomes longer.
  • the relationship between the elastic force (load) of the elastic member 25a and the distance by which the elastic member 25a moves the movable permanent magnet 3 may be linear (directly proportional) or substantially linear, and is non-linear. Also good.
  • the magnet moving unit 25 is based on the increase in the rotation speed of the rotor 5.
  • the movable permanent magnet 3 is gradually moved.
  • the characteristics of the rotation speed and output torque of the starter motor 10 can be gradually changed from the solid line P shown in FIG. According to this embodiment, the characteristics of the rotational speed and the output torque can be changed steplessly.
  • the movement of the movable permanent magnet 3 to the retard angle position L1 shown in FIG. 6 is equivalent in terms of the timing of the commutation of the winding and the movement of the brush to the advance position when the brush is rotatable, for example. It is. Therefore, the influence of the induced electromotive voltage is reduced by moving the movable permanent magnet 3 to the retard position L1. Further, the influence of the change in the current flowing through the winding 9 being delayed due to the increase in the rotation speed due to the inductance of the winding 9 is also reduced by the movement of the movable permanent magnet 3 to the retard position L1. Accordingly, the rotational speed of the rotor increases.
  • the retarding movement restricting portion 26b see FIG.
  • the retard movement restriction unit 26b (see FIG. 3) restricts the movable permanent magnet 3 from moving in the retard direction B from the retard position L1. For this reason, the situation where output torque falls by the excessive movement of the movable permanent magnet 3 is suppressed.
  • FIG. 7 is a graph schematically showing characteristics of the rotational speed and output torque of the starter motor 10 shown in FIG.
  • the solid line P shows the characteristics when the movable permanent magnet 3 is located at the advance position L2 shown in FIG. 5, and the solid line Q is the position where the movable permanent magnet 3 is located at the retard position L1 shown in FIG. The characteristics of the case are shown.
  • the output torque T of the starter motor 10 generally decreases as the rotational speed N increases.
  • the solid line P a relatively large output torque is output at a low rotational speed.
  • a relatively large output torque Tp can be output at the start of rotation.
  • the movable permanent magnet 3 is positioned at the advance position L2 shown in FIG. 5 when the rotation of the rotor 5 is started by supplying current to the rotor 5.
  • the output torque can be increased as shown by the solid line P in FIG.
  • the movable permanent magnet 3 is moved in the retarding direction B to the retarding position L1 within a period in which the rotor 5 is rotating by supplying current to the rotor 5.
  • the output rotational speed can be improved. That is, the characteristics of the starter motor 10 rotational speed and output torque of the present embodiment change from the characteristic of the solid line P in FIG. 7 to the characteristic of the solid line Q within the period during which the rotor is rotating.
  • a starter motor having the characteristics shown by the broken line M is provided. Conceivable.
  • the starter motor in order for the starter motor to have the characteristics indicated by the broken line M, for example, the following is necessary.
  • the starter motor In order to suppress the influence of the induced electromotive voltage, the number of turns of the winding is reduced, and the thickness of the winding is increased so that torque can be secured even if the number of turns is reduced, or the magnetic force of the magnet is increased. is there. As a result, the starter motor is increased in size, and the mountability on the saddle riding type vehicle is deteriorated.
  • the brush is a member that supplies a current to the rotor while being in contact with the rotating rotor.
  • a conductor such as an electric wire is connected to the brush. Moving the brush to which the conductor (lead wire) is connected while maintaining an appropriate contact with the commutator for supplying current causes a complicated structure.
  • the movable permanent magnet 3 is moved to move the stationary brushes 22 and 23 without moving the stationary brushes 22 and 23, and to rotate when the torque is small. It is possible to realize both the driving state in which the speed is increased. Therefore, according to the starter motor 10, the output torque and the rotational speed for starting the engine EU (see FIG. 9) with a simple configuration while improving the mountability to the saddle riding type vehicle A (see FIG. 9). The characteristics can be improved.
  • the starter motor 10 rotates the crankshaft of the engine EU that is in a stopped state when starting the engine EU (see FIG. 9). At this time, the starter motor 10 can improve the output torque at a low rotational speed. In addition, after the combustion operation of the engine EU is started, the output torque decreases as the rotational speed increases. At this time, the starter motor 10 can stabilize the operation of the engine EU by rotating the crankshaft of the engine EU at a high rotational speed.
  • the rotation of the starter motor 10 is decelerated by the reduction device 30 in order to increase the rotational torque transmitted to the engine EU (see FIG. 9).
  • the starter motor 10 of the present embodiment the output torque is improved, so that the reduction ratio in the reduction gear 30 can be reduced and the driving sound can be suppressed.
  • the movable permanent magnet 3 is positioned at the advance position when the rotation of the rotor 5 is started by supplying current to the rotor 5. As shown by the solid line P in FIG. 7, the output torque at the time when the rotation starts can be improved. Then, the movable permanent magnet 3 moves to the retard position L1 in the retard direction B during the period in which the rotor 5 is rotating by supplying electric current to the rotor 5, whereby the solid line Q in FIG. As shown, the rotational speed can be improved.
  • a permanent brush motor having a permanent magnet whose position is fixed and three or more brushes arranged at different positions can be considered.
  • the positions of three or more brushes provided in the fixed brush motor are fixed.
  • the characteristics are changed by switching the brush for supplying current from one brush to another.
  • the characteristic is limited to the number of brushes. The characteristics change discontinuously by switching.
  • the magnet moving unit 25 in the starter motor 10 moves the movable permanent magnet 3 on the basis of an increase in the rotational speed of the rotor 5 during a period in which the rotor 5 is rotating by supplying current to the rotor 5. It is moved in the retard direction B to the retard position L1 (see FIG. 6). Therefore, the starter motor 10 can smoothly expand the range of the rotational speed of the rotor.
  • the magnet moving unit 25 in the starter motor 10 uses the elastic force of the elastic member 25a as a force for urging the movable permanent magnet 3 in the retarding direction. For this reason, the starter motor 10 can improve the characteristics of the output torque and the rotational speed with a simpler configuration than using an actuator or a control device, for example.
  • the elastic force of the elastic member 25 a in the starter motor 10 is smaller than the reaction force of the rotor that acts on the movable permanent magnet 3 when the rotation of the rotor 5 is started. For this reason, when the rotation of the rotor 5 starts, the movable permanent magnet 3 moves in the advance direction A by the reaction force of the rotor. Thereby, the output torque can be increased at the time of starting the rotation of the rotor 5. Further, the elastic force of the elastic member 25 a in the starter motor 10 is larger than the reaction force of the rotor 5 that acts on the movable permanent magnet 3 when the torque is reduced as the rotational speed of the rotor 5 increases.
  • the movable permanent magnet 3 moves in the retard direction B by the elastic force.
  • a rotational speed can be improved.
  • the starter motor 10 the movement of the movable permanent magnet 3 in the advance angle direction A and the movement in the retard angle direction B are performed by using the elastic force of the elastic member 25 a and the reaction force of the rotor 5.
  • FIG. 8 is a cross-sectional view corresponding to FIG. 3 of the starter motor according to the second embodiment of the present invention.
  • the starter motor 210 shown in FIG. 8 is provided in the engine starter S (see FIG. 2), as in the first embodiment.
  • the number of turns of the winding 209 wound around the teeth 7a is larger than the number of turns in the case of the starter motor 10 (see FIG. 3) according to the first embodiment. That is, the number of windings 209 passing through the slots between the teeth 7a is larger than that in the case of the starter motor 10 (see FIG. 3) according to the first embodiment.
  • the starter motor 210 shown in FIG. 8 can maintain the output torque at the start of the rotation of the rotor 5 with a small amount of current due to the large number of windings 209 wound around the teeth 7a. That is, the power consumption of the battery can be suppressed. Since the starter motor 210 shown in FIG. 8 has a large number of windings 209 wound around the teeth 7a, the rate of increase of the induced electromotive voltage accompanying an increase in the rotational speed is large. However, in the starter motor 210 according to the second embodiment of the present invention, the output torque can be increased when the rotation of the rotor 5 starts. In the starter motor 210, the movable permanent magnet 3 is moved in the retarding direction B to the retarding position L1 (see FIG. 5) within a period in which the rotor 5 is rotating by supplying current to the rotor 5. . Thereby, a rotational speed can be improved. Therefore, a decrease in the rotation speed that can be output can be suppressed.
  • FIG. 9 is an external view showing a straddle-type vehicle on which the starter motors 10 and 210 according to the first embodiment and the second embodiment are mounted.
  • a straddle-type vehicle A shown in FIG. 9 is a motorcycle.
  • the vehicle of the present invention is not limited to a motorcycle. Examples of the vehicle of the present invention include scooter type, moped type, off-road type, and on-road type motorcycles.
  • the straddle-type vehicle is not limited to a motorcycle, and may be, for example, an ATV (All-Train Vehicle).
  • the straddle-type vehicle A includes the engine starter S of the first and second embodiments described above, and the engine EU that is started by the engine starter S.
  • the saddle riding type vehicle A includes a vehicle body 101, wheels 102 and 103, and a battery BT.
  • the engine EU mounted on the saddle riding type vehicle A drives the wheels 103 as driving wheels and rotates the wheels 103 to cause the saddle riding type vehicle A to travel.
  • the engine starter S starts the engine EU with the electric power of the battery BT.
  • the starter motors 10 and 210 included in the engine starter S can increase the output torque at the time when the rotation starts, and the rotor 5 is supplied with current supplied to the rotor 5.
  • the rotational speed can be increased by moving the movable permanent magnet 3 to the retard position in the retard direction B during the period in which the motor 5 is rotating.
  • the saddle riding type vehicle A is provided with the starter motors 10 and 210 described above in the engine starting device S. Therefore, according to the saddle riding type vehicle A, the startability of the engine EU can be improved while improving the vehicle mountability of the engine starter S.
  • the magnet moving unit of the present invention may be configured to move a permanent magnet by an actuator or a motor, for example.
  • the magnet moving unit may include, for example, a sensor that detects the rotation speed of the rotor, and may move the permanent magnet according to the detected rotation speed.
  • the magnet moving unit may include a sensor that detects the output torque of the rotor, and may move the permanent magnet according to the detected torque.
  • the magnet moving unit only needs to move the movable permanent magnet to the advance position when the rotation of the rotor starts, and does not need to move the movable permanent magnet to the advance position.
  • the magnet moving unit of the present invention may include, for example, a sensor that detects the presence or absence of rotation of the rotor, and may move the permanent magnet as the predetermined period elapses after the rotation is detected.
  • the straddle-type vehicle starter motor of the present invention may be configured such that the movable permanent magnet moves by human power.
  • the movable permanent magnet is configured to move at least regardless of human power.
  • the magnet moving part in the straddle-type vehicle starter motor of the present invention is configured to move the movable permanent magnet by an elastic member, an actuator, a motor, or the like, not by human power. That is, the magnet moving part of the present invention is not configured to move the movable permanent magnet by human power.
  • the straddle-type vehicle starter motor according to the present invention has a movable permanent magnet that sandwiches a gap between the core (rotor) and the movable permanent magnet when the movable permanent magnet moves within an angular range including a retard angle position and an advance angle position. The circumferential length or area facing each other may be kept constant.
  • the magnet moving unit of the present invention may be configured to move the movable permanent magnet while keeping the circumferential length or area where the movable permanent magnet and the core face each other constant.
  • the straddle-type vehicle starter motor of the present invention may be configured such that the movable permanent magnet does not move in the axial direction or the radial direction.
  • the magnet moving part of the present invention may always urge the permanent magnet as in the case of having the elastic member 25a, or urge the permanent magnet only during the period in which the permanent magnet is moved in the retarding direction. May be.
  • the brush motor of the present invention is not limited to this.
  • the movable permanent magnet moves in the retarding direction, the elastic force of the elastic member decreases, so that the movable permanent magnet stops in a predetermined range. In this way, the movement of the movable permanent magnet may be substantially limited.
  • this embodiment demonstrated the structure provided with the advance angle movement restriction
  • the movable permanent magnet 3 supported by the housing 2 via the movable yoke portion 31 is described as an example of the movable permanent magnet.
  • the present invention is not limited to this.
  • the movable permanent magnet in the present invention may be directly supported by the housing, for example.
  • the movable permanent magnet may be supported by the housing via a member that is not a magnetic material, for example.
  • the starter motor 10 including the four fixed brushes 22 and 23 and the four movable permanent magnets 3 has been described as an example of the saddle type vehicle starter motor. It is not limited to this.
  • a straddle-type vehicle starter motor may include less than four fixed brushes and less than four movable permanent magnets, and may include more than four fixed brushes and more than four movable permanent magnets. .
  • the starter motor of the present invention may include, for example, both a brush provided so as to be movable in the circumferential direction of the rotor and a movable permanent magnet provided so as to be movable in the circumferential direction of the rotor.
  • the radial gap type starter motor 10 has been described as an example of the starter motor.
  • the straddle-type vehicle starter motor of the present invention is not limited to this.
  • the straddle-type vehicle starter motor may be, for example, an axial gap type.
  • the starter motor 10 for outputting rotation in one direction has been described as an example of the straddle-type vehicle starter motor.
  • the straddle-type vehicle starter motor of the present invention is not limited to this. I can't.
  • the straddle-type vehicle starter motor may be a motor that rotates in the reverse direction according to the connection of the electrodes.
  • the engine starter that causes the starter motor 10 to generate power has been described as an example of the engine starter.
  • the engine starter and the straddle-type vehicle starter motor according to the present invention are not limited thereto. Absent.
  • the engine starter may release the connection between the engine and the straddle-type vehicle starter motor after the start of the engine is completed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Dc Machiner (AREA)
  • Permanent Field Magnets Of Synchronous Machinery (AREA)

Abstract

車両搭載性を向上しつつ、簡単な構成で、エンジンを始動するための出力トルク及び回転速度の特性を向上させることができる鞍乗型車両用スタータモータ等を提供する。鞍乗型車両用スタータモータは、回転子と、ブラシと、ブラシに対する相対的な角度位置が遅角方向へ変位した遅角位置と、遅角位置よりも進角方向へ変位した、遅角位置におけるトルクよりも大きなトルクを回転子に生じさせる進角位置とを含む角度範囲で、回転子とは独立して回転子の周方向に移動可能に筐体に支持された可動永久磁石とを備え、可動磁石は、回転子に電流が供給されることにより回転子の回転が開始する時点で進角位置に位置し、回転子に電流が供給されることにより回転子が回転している期間内に遅角位置へ遅角方向に移動するように構成されている。

Description

鞍乗型車両用スタータモータ、エンジン始動装置、及び鞍乗型車両
 本発明は、鞍乗型車両用スタータモータ、エンジン始動装置、及び鞍乗型車両に関する。
 自動二輪車等の鞍乗型車両は、エンジンを始動するためのスタータモータを備えている。鞍乗型車両用スタータモータは、エンジン始動時に、鞍乗型車両に搭載されるバッテリから電力の供給を受け、クランクシャフトを回転させてエンジンを始動させる。鞍乗型車両用スタータモータとして、ブラシを使って回転子に電流を供給するブラシモータが多く用いられている。ブラシモータは、巻線に流れる電流をブラシと整流子の働きによって切換えるため、鞍乗型車両に搭載されたバッテリからの直流電流によって運転することができる。
 特許文献1には、ブラシモータが示されている。特許文献1のブラシモータは、自動二輪車等のエンジン始動装置の駆動源として使用されるスタータモータである。特許文献1に示すようなスタータモータには、エンジンを始動させる際に、停止状態にあるエンジンのクランクシャフトを回転させるため、大きなトルクを出力することが求められる。また、エンジンの燃焼動作が開始した後は、エンジンの動作を安定させるため、クランクシャフトを高い回転速度で回転させることが求められる。
 鞍乗型車両のエンジンを駆動するスタータモータには、一般的に、例えば回転開始時のような低い回転速度の状態における大きな出力トルクと、小さい出力トルクの状態における高い回転速度が求められる。
 鞍乗型車両におけるバッテリの電圧のような限られた電圧の条件下において、鞍乗型車両用スタータモータを高い回転速度で回転させる手法として、鞍乗型車両用スタータモータの巻線の巻数を減らすことが考えられる。巻線の巻数を減らすと、電流の供給を妨げる誘導起電圧を抑えることができるので、高い回転速度でも電流を供給することができる。従って、鞍乗型車両用スタータモータを高い回転速度で回転させることができる。しかし、巻線の巻数が減ると、例えば回転開始時のような低い回転速度の状態において出力できるトルクが減少する。
特開2010-154704号公報
 そこで、巻線の巻数を減らした場合に回転開始時の出力トルクを維持する手法として、例えば、巻線の径を太くすると共に永久磁石の磁力を高めることが考えられる。例えば、巻線の径を太くすることによって、低い回転速度の状態で巻線に大きな電流が流れる。しかし、巻線に大きな電流を供給するためには、鞍乗型車両に大型のバッテリを搭載しなければならない。また、巻線を太くすること及び永久磁石の磁力を高めることは、鞍乗型車両用スタータモータ自体の大型化を意味する。つまり、鞍乗型車両への搭載性が低下する。鞍乗型車両用スタータモータの大きさを維持する場合、低い回転速度の状態における大きな出力トルクと、出力トルクが小さい状態における高い回転速度とは、トレードオフの関係にある。そのため、鞍乗型車両用スタータモータの車両搭載性を向上しつつ、簡単な構成で、出力トルク及び回転速度の両特性を向上させることは困難であった。
 本発明の目的は、車両搭載性を向上しつつ、簡単な構成で、エンジンを始動するための出力トルク及び回転速度の特性を向上させることができる鞍乗型車両用スタータモータ、エンジン始動装置、及び鞍乗型車両を提供することである。
 本発明は、上述した課題を解決するために、以下の構成を採用する。
 (1) 鞍乗型車両に搭載されるエンジンを始動する鞍乗型車両用スタータモータであって、
 前記鞍乗型車両用スタータモータは、
巻線、前記巻線が巻かれたコア、及び前記巻線と電気的に接続された整流子を有し、回転可能に設けられた回転子と、
前記回転子の回転方向における位置が固定され、前記整流子に接触することで前記回転子に電流を流すブラシと、
空隙を挟んで前記コアと対面し、前記ブラシに対する相対的な角度位置が遅角方向へ変位した遅角位置と、前記遅角位置よりも進角方向へ変位した、前記遅角位置におけるトルクよりも大きなトルクを前記回転子に生じさせる進角位置とを含む角度範囲で、前記回転子とは独立して前記回転子の周方向に移動可能に設けられた可動永久磁石と
を備え、
 前記可動永久磁石は、前記回転子に電流が供給されることにより前記回転子の回転が開始する時点で前記進角位置に位置し、前記回転子に電流が供給されることにより前記回転子が回転している期間内に前記遅角位置へ前記遅角方向に移動可能に構成されている。
 (1)の鞍乗型車両用スタータモータは、回転子と、ブラシと、可動永久磁石とを備えている。鞍乗型車両用スタータモータがエンジンを始動するとき、回転子の回転がエンジンに伝達される。(1)の鞍乗型車両用スタータモータにおいて、回転子は、巻線、この巻線が巻かれたコア、及び巻線と電気的に接続された整流子を有している。可動永久磁石は、回転子とは独立して回転子の周方向に移動可能に設けられている。可動永久磁石は、遅角位置、及び進角位置を含む角度範囲で移動可能である。遅角位置は、ブラシに対する相対的な角度位置が遅角方向へ変位した位置であり、進角位置は、遅角位置よりも進角方向へ変位した位置である。
 ここで、進角方向とは、ブラシから電流が供給された回転子が回転しているときの回転子の回転方向とは反対の方向である。遅角方向とは、回転子の回転方向と同じ方向である。
 可動永久磁石は、回転子に電流が供給されることにより回転子の回転が開始する時点で進角位置に位置する。可動永久磁石が進角位置に位置することは、例えばブラシが回転可能な場合に、ブラシが遅角位置に位置することと、巻線の転流のタイミングの観点において等価である。このため、可動永久磁石が進角位置に位置することによって、回転子には、可動永久磁石の遅角位置におけるトルクよりも大きなトルクが生じる。従って、回転子の回転が開始する時点での出力トルクが増大する。つまり、エンジンの始動を開始する時点での出力トルクが増大する。
 可動永久磁石は、回転子に電流が供給されることにより回転子が回転している期間内に遅角方向に移動する。可動永久磁石が遅角位置に位置することは、例えばブラシが回転可能な場合に、ブラシが進角位置に位置することと、巻線の転流のタイミングの観点において等価である。このため、可動永久磁石が遅角位置に位置することによって誘導起電圧の影響が減少する。従って、回転子の回転速度が上昇する。
 (1)の鞍乗型車両用スタータモータは、可動永久磁石が移動することにより、ブラシを移動させることなく、エンジンの始動が開始する低い回転速度で出力トルクを向上させる運転状態と、エンジンの燃焼動作が開始し、トルクが小さい時に回転速度を上昇させる運転状態との両方を実現できる。従って、(1)の鞍乗型車両用スタータモータによれば、車両搭載性を向上しつつ、簡単な構成で、エンジンを始動するための出力トルク及び回転速度の特性を向上させることができる。
 (2) (1)の鞍乗型車両用スタータモータであって、
 前記空隙を挟んでコアと対面する前記可動永久磁石は、少なくとも前記回転子に電流が供給されている期間内に、前記可動永久磁石に作用する前記回転子の反作用力により、前記ブラシに対して相対的に、前記進角方向に移動するように構成されている。
 (2)の鞍乗型車両用スタータモータでは、空隙を挟んでコアと対面する可動永久磁石が進角方向に移動することによって、可動永久磁石が遅角位置の場合よりも大きなトルクが回転子に生じる。従って、低い回転速度での出力トルクが増大する。(2)の鞍乗型車両用スタータモータでは、低い回転速度での出力トルクを増大するための可動永久磁石の移動が、回転子の反作用力により実施される。反作用力は、回転子に電流が供給されている期間内での可動永久磁石と回転子との磁気的作用に起因している。従って、(2)の鞍乗型車両用スタータモータによれば、車両搭載性を向上しつつ、より簡単な構成で、低い回転速度での出力トルクを増大させることができる。
 (3) (1)又は(2)の鞍乗型車両用スタータモータであって、
 前記可動永久磁石が前記角度範囲を超えて前記進角方向へ移動することを制限する進角移動制限部をさらに備えている。
 (3)の鞍乗型車両用スタータモータでは、可動永久磁石が角度範囲を超えて進角方向へ移動することが制限される。従って、可動永久磁石の進角方向への過剰な移動によって、低い回転速度での出力トルクが低下する事態が抑えられる。(3)の鞍乗型車両用スタータモータによれば、出力トルクの特性をより向上させることができる。
 進角制限部として、例えば、可動永久磁石又は可動永久磁石と一体的に移動する部材に当接する突起、段差等が挙げられる。また、進角制限部として、例えば、可動永久磁石、又は可動永久磁石と一体で移動する部材と、筐体等とを連結する部材が挙げられる。
 (4) (1)から(3)いずれか1の鞍乗型車両用スタータモータであって、
 前記可動永久磁石が前記角度範囲を超えて前記遅角方向へ移動することを制限する遅角移動制限部をさらに備えている。
 (4)の鞍乗型車両用スタータモータでは、可動永久磁石が角度範囲を超えて遅角方向へ移動することが制限される。従って、上記の回転速度を上昇させる運転状態で、回転速度の上昇が妨げられる事態が抑えられる。(4)のブラシモータによれば、出力トルクの特性をより向上させることができる。
 遅角制限部として、例えば、可動永久磁石又は可動永久磁石と一体的に移動する部材に当接する突起、段差等が挙げられる。また、遅角制限部として、例えば、可動永久磁石、又は可動永久磁石と一体で移動する部材と、筐体等とを連結する部材が挙げられる。
 (5) (1)から(4)いずれか1の鞍乗型車両用スタータモータであって、
前記回転子に電流が供給されることにより前記回転子の回転が開始する時点で、前記空隙を挟んで前記コアと対面する前記可動永久磁石を前記進角位置に位置させ、前記回転子に電流が供給されることにより前記回転子が回転している期間内に、前記可動永久磁石を前記遅角位置へ前記遅角方向に移動させる磁石移動部を更に備えている。
 (5)の鞍乗型車両用スタータモータでは、磁石移動部が、回転子の回転が開始する時点で、可動永久磁石を進角位置に位置させる。このため、エンジンの始動が開始する低い回転速度で出力トルクを向上させる運転状態と、回転速度を上昇させる運転状態との両方を容易に実現することができる。
 磁石移動部として、例えば、弾性力によって可動永久磁石を移動させる弾性部材、電力によって可動永久磁石を移動させるアクチュエータ、又はモータが挙げられる。
 (6) (5)の鞍乗型車両用スタータモータであって、
 前記磁石移動部は、前記回転子に電流が供給されることにより前記回転子が回転している期間内に、前記回転子の回転速度の上昇に基づいて、前記可動永久磁石を前記遅角位置へ前記遅角方向に移動させる。
 (6)の鞍乗型車両用スタータモータによれば、回転子に電流が供給されることにより回転子が回転している期間内に、回転子の回転速度の上昇に基づいて、可動永久磁石を遅角位置へ遅角方向に移動させることにより、回転子の回転速度の範囲をスムースに拡げることができる。
 (7) (5)又は(6)の鞍乗型車両用スタータモータであって、
 前記磁石移動部は、弾性力によって前記可動永久磁石を前記遅角方向に付勢する弾性部材を含む。
 (7)の鞍乗型車両用スタータモータによれば、可動永久磁石を遅角方向に付勢するための力として、弾性部材の弾性力を利用するので、より簡単な構成で、出力トルク及び回転速度の特性を向上させることができる。
 弾性部材として、例えば、ばね、及びエラストマーが挙げられる。また、弾性部材として、例えば、トーションばね、コイルばね、板ばね、及び空気ばねが挙げられる。
 (8) (7)の鞍乗型車両用スタータモータであって、
 前記弾性部材は、前記弾性部材の弾性力が、前記回転子の回転開始時において前記可動永久磁石に作用する前記回転子の反作用力より小さく、且つ、前記回転子の回転速度の上昇に伴ってトルクが低下した時に前記可動永久磁石に作用する前記回転子の反作用力より大きくなるように構成されている。
 (8)の鞍乗型車両用スタータモータによれば、弾性部材の弾性力が、回転子の回転開始時において可動永久磁石に作用する回転子の反作用力より小さいので、回転子の回転開始時、可動永久磁石が、回転子の反作用力によって進角方向に移動する。これにより、回転子の回転開始時において出力トルクを向上させることができる。更に、弾性部材の弾性力が、回転子の回転速度の上昇に伴ってトルクが低下した時に可動永久磁石に作用する回転子の反作用力より大きくなるので、回転子の回転速度の上昇に伴い、可動永久磁石が弾性力によって遅角方向に移動する。これにより、回転速度を向上させることができる。このように、(8)の鞍乗型車両用スタータモータによれば、可動永久磁石の進角方向への移動及び遅角方向への移動が、弾性部材の弾性力と回転子の反作用力を用いた自己調整機能として実施されるので、車両搭載性を向上しつつ、より簡単な構成で、出力トルク及び回転速度の特性を向上させることができる。
 (9) (7)又は(8)の鞍乗型車両用スタータモータであって、
 前記可動永久磁石は、前記回転子への電流の供給が開始される前に、前記弾性部材の前記遅角方向への付勢力により、前記遅角位置に位置し、
 前記弾性部材は、前記回転子への電流の供給が開始されてから前記回転子が回転するまでの間に前記可動永久磁石に作用する前記回転子の反作用力による前記可動永久磁石の前記進角方向への移動が始まるように前記可動永久磁石の前記進角位置への移動を許容し、前記回転子の回転速度の上昇に伴ってトルクが低下した時に、前記弾性部材の付勢力により、前記進角位置に位置する前記可動永久磁石を、前記遅角方向へ移動させるように構成されている。
 (9)の鞍乗型車両用スタータモータによれば、回転子の回転開始時、可動永久磁石が、回転子の反作用力によって進角位置へ移動する。さらに、回転子の回転速度の上昇に伴い、可動永久磁石が弾性力によって遅角位置へ移動する。従って、車両搭載性を向上しつつ、より簡単な構成で、出力トルク及び回転速度の特性を向上させることができる。
 (10) (1)~(9)のいずれか1の鞍乗型車両用スタータモータであって、
 前記鞍乗型車両用スタータモータは、更に、少なくとも前記回転子と前記ブラシと前記可動永久磁石とを収容する筐体を備え、
 前記回転子は、回転可能に前記筐体に支持されており、
 前記ブラシは、前記筐体に対し、前記回転子の回転方向における前記ブラシの位置が固定されるように設けられ、
 前記可動永久磁石は、前記回転子とは独立して前記回転子の周方向に移動できるように前記筐体に支持されている。
 (10)の構成によれば、筐体が、少なくとも回転子、ブラシ、可動永久磁石及び磁石移動部を収容する。さらに、筐体が、回転子を回転可能に支持し、回転子の回転方向におけるブラシの位置を固定し、可動永久磁石が回転子とは独立して回転子の周方向に移動できるように可動永久磁石を支持する。これにより、コンパクトな鞍乗型車両用スタータモータを実現でき、鞍乗型車両用スタータモータの大型化を抑制できる。
 (11) (10)の鞍乗型車両用スタータモータであって、
 前記鞍乗型車両用スタータモータは、
前記回転子の周方向に並べて配置される複数の前記可動永久磁石と、
前記可動永久磁石と前記筐体との間に配置され、前記複数の可動永久磁石が固定された可動ヨーク部とを備え、
 前記複数の可動永久磁石は、前記可動ヨーク部を介して前記筐体に支持されている。
 (11)の構成によれば、可動永久磁石が固定された可動ヨーク部が、筐体と可動永久磁石の間に配置されているので、可動ヨーク部を挟んで可動永久磁石と反対の領域では、場所による磁束の偏りが抑えられる。このため、可動永久磁石が移動するとき、永久磁石の筐体に対する磁力に起因した抵抗力のむらが抑えられ、可動永久磁石の移動が滑らかになる。従って、出力トルク及び回転速度の特性の変化が滑らかになる。
 (12) 鞍乗型車両に搭載されるエンジンを始動するエンジン始動装置であって、
 前記エンジン始動装置は、
(1)から(11)いずれか1の鞍乗型車両用スタータモータと、
前記回転子に接続され、前記回転子の回転を減速して前記エンジンに伝達する減速装置とを備えている。
 (12)のエンジン始動装置によれば、鞍乗型車両への搭載性を向上しつつ、簡単な構成で、エンジン始動のための出力トルク及び回転速度の特性を向上させることができる。
 また、エンジン始動装置の出力トルクを増大するため、鞍乗型車両用スタータモータの回転子の回転は減速装置によって減速される。(12)のエンジン始動装置によれば、エンジン始動時における低い回転速度における出力トルクが向上するので、減速装置における減速比を小さくすることがきる。従って、鞍乗型車両に搭載されたエンジン始動装置の運転音を抑えることができる。
 (13) 鞍乗型車両であって、
 前記鞍乗型車両は、
(12)のエンジン始動装置と、
前記エンジン始動装置によって始動されるエンジンとを備える。
 (13)の鞍乗型車両によれば、エンジン始動装置の車両搭載性を向上しつつ、エンジンの始動性を向上させることができる。
 鞍乗型車両用スタータモータは、直流モータである。鞍乗型車両用スタータモータは、ブラシと整流子によって、巻線に流れる電流を切換えるモータである。鞍乗型車両用スタータモータとして、例えば、ラジアルギャップ型モータ、又はアキシャルギャップ型モータが挙げられる。ブラシの数は、特に限定されない。ブラシの数は、例えば2つであっても、3つ以上でもよい。ブラシとして、例えば、鞍乗型車両用スタータモータの筐体等に固定されるブラシ、又は、鞍乗型車両用スタータモータの筐体等に対し移動可能に支持されるブラシが挙げられる。可動永久磁石の数は、特に限定されない。可動永久磁石として、例えば、鞍乗型車両用スタータモータの筐体等に直接移動可能に支持された磁石、又は、鞍乗型車両用スタータモータの筐体等に移動可能に支持された可動部に固定された磁石が挙げられる。本発明における進角位置及び遅角位置が設定される範囲は、回転子に電流が供給された場合に、回転子にトルクを生じさせる可動永久磁石の位置の範囲に設定されることが好ましい。遅角位置及び進角位置は、例えば、回転子に電流が供給された場合に、回転子に最大のトルクを生じさせる可動永久磁石の位置である最大トルク位置を含む範囲内で設定されることが好ましい。遅角位置及び進角位置は、例えば、回転子に電流が供給された場合に、回転子に最大のトルクを生じさせる可動永久磁石の位置である最大トルク位置から、遅角方向へ電気角で90°の位置までの範囲内で設定されることが好ましい。この場合、回転子に電流が供給された場合に、回転子に同じ向きのトルクを生じさせることができる。
 本発明によれば、車両搭載性を向上しつつ、簡単な構成で、エンジンを始動させるための出力トルク及び回転速度の特性を向上させることができる。
本発明の第一実施形態に係る鞍乗型車両用スタータモータを備えたエンジン始動装置の概略構成を示す断面図である。 本発明の第一実施形態に係るスタータモータの概略構造を示す断面図である。 図2に示すスタータモータのA-A線断面を示す断面図である。 図2に示すスタータモータのB-B線断面を示す断面図である。 可動永久磁石が進角位置にある状態を示す模式図である。 可動永久磁石が遅角位置にある状態を示す模式図である。 図3に示すスタータモータの回転速度と出力トルクの特性を模式的に示すグラフである。 本発明の第二実施形態に係るスタータモータの、図3に相応する断面図である。 図9は、第一実施形態及び第二実施形態に係るスタータモータが搭載される鞍乗型車両を示す外観図である。
 ブラシモータで構成される鞍乗型車両用スタータモータにおける出力トルク及び回転速度の特性について、本発明者が行った検討について説明する。
 本発明者は、ブラシモータで構成される鞍乗型車両用スタータモータにおいて、高い回転速度を得るために、ブラシを、進角方向、即ち回転子の回転方向とは反対方向へ回転変位した位置に配置することを試みた。しかし、ブラシの位置を、進角方向へ変位させると、回転速度が低い状態における出力トルクが低下してしまった。このように、ブラシの進角方向への変位により、出力トルク及び回転速度の両特性を向上させることは困難であった。
 そこで、本発明者は、回転速度が低い状態における大きな出力トルクと、出力トルクが小さい状態における高い回転速度の双方を得る手段として、鞍乗型車両用スタータモータの運転中にブラシの位置を動的に変位させる構成の採用を試みた。しかし、ブラシは、回転する回転子に接触しつつ回転子に電流を供給する部材である。このため、ブラシには電線等の導体が接続されている。ブラシに接続される導体の一部は、通常、ブラシモータの筐体に保持されている。ブラシは、このような導体に接続されているため、運転中に、回転子への接触を適切に維持しながら回転させるのには適していない。ブラシの可動化は、ブラシモータの構造の複雑化を招来する。
 本発明者らは、このような設計思想に対し、鞍乗型車両用スタータモータの車両搭載性を向上しつつ、簡単な構成で、出力トルク及び回転速度の特性を向上させるために鋭意研究を行い、以下の知見を得た。
 高い回転速度を得るためのブラシの進角は、永久磁石に対する相対的な位置によって決定される。従って、ブラシを固定して、永久磁石を進角方向とは反対の方向に回転させることによっても、ブラシを進角方向へ回転させることと等価な特性を得ることができる。ただし、永久磁石には出力トルクの反作用が生じる。このため、永久磁石を進角方向とは反対の方向に回転させることは従来考えられていなかった。
 しかし、例えばブラシを進角方向へ回転させることが必要な、回転子の回転速度が高い状況では、出力トルクが小さいことに起因して永久磁石に生じる反作用は小さい。また、永久磁石には、ブラシと異なり導体が接続されていない。このため、永久磁石は、ブラシと回転子との接触の位置と独立して、回転させることが可能である。この結果、本発明者らは、永久磁石を回転可能とし、進角方向とは反対の遅角方向に回転させることによって、ブラシを進角方向へ回転させるのと等価な調整を行うことができるという知見を得た。
 本発明は、ブラシの設定位置を変える設計思想に対し、可動永久磁石の位置を動的に変化させることによって、出力トルク及び回転速度の特性を向上させることができるという知見に基づいて完成した発明である。
 また、回転子へ電流が供給され回転子が回転するとき、永久磁石には、回転子に生じるトルクとは逆向きの反作用力が働く。即ち、反作用力は、回転子の回転方向とは逆向きに働く。そして、反作用力の大きさは、出力トルクと同様に、回転子の回転速度が低いほど大きく、回転子の回転速度が高いほど小さい傾向を有する。
 更に、本発明者らは、可動永久磁石を回転可能にするとともに、可動永久磁石が弾性力によって遅角方向へ付勢される構成とすることによって、出力トルクのフィードバックを利用して出力トルク及び回転速度の特性の自己調整が可能になるという知見を得た。
 電流の供給を受けて回転子が回転を開始する時、可動永久磁石に、回転子の回転とは反対方向の反作用力が働く。このため、可動永久磁石は、回転子の回転方向とは反対方向である進角方向へ回転する。可動永久磁石が進角方向へ回転することは、例えば可動永久磁石の位置が固定されたモータにおいて、ブラシが遅角方向へ変位することに相当する。従って、回転の開始時における低い回転速度で大きなトルクの出力が可能となる。
 回転子の回転速度が上昇すると、回転子の出力トルクが減少するので、可動永久磁石に働く反作用力も減少する。このため、可動永久磁石は、弾性力によって、遅角方向へ回転する。可動永久磁石が遅角方向へ回転することは、例えば可動永久磁石の位置が固定されたモータにおいて、ブラシが進角方向へ変位することに相当する。従って、高い回転速度における誘導起電圧の影響が減少するため、回転速度が上昇する。
 本発明は、ブラシの設定位置を変える設計思想に対し、可動永久磁石の位置を動的に変化させることによって、出力トルク及び回転速度の特性を向上させることができるという知見に基づいて完成した発明である。
 以下、本発明を、好ましい実施形態に基づいて図面を参照しつつ説明する。
 図1は、本発明の第一実施形態に係る鞍乗型車両用スタータモータを備えたエンジン始動装置Sの概略構成を示す断面図である。
 図1に示すエンジン始動装置Sは、鞍乗型車両A(図9参照)に搭載されるエンジンEU(図9参照)を始動するための装置である。エンジン始動装置Sは、エンジンEUが停止した状態から、エンジンEUの図示しないクランクシャフトを回転させることによって、エンジンEUを始動する。また、エンジン始動装置Sは、エンジンEUが燃焼動作を開始した後も、クランクシャフトを回転駆動することによって、エンジンEUの動作を安定させる。
 エンジン始動装置Sは、鞍乗型車両用スタータモータ10(単に、スタータモータ10とも称する。)、減速装置30、出力軸40、及び筐体41を備えている。スタータモータ10は、エンジンEUを始動する鞍乗型車両用スタータモータとして機能する。スタータモータ10は、ブラシモータである。
 エンジン始動装置Sの筐体41は、例えばエンジンEUまたは鞍乗型車両Aに固定される。エンジン始動装置Sの出力軸40は、エンジンEUに回転力を出力する。エンジン始動装置Sの出力軸40は、スタータモータ10によって回転駆動される。
 減速装置30は、スタータモータ10と出力軸40との間に設けられており、スタータモータ10の回転を、所定のギヤ比で減速して出力軸40に伝達する。スタータモータ10の回転が減速されるのに応じて、出力軸40の出力トルクが増大する。エンジン始動装置Sは、マグネットスイッチ42及び移動式ギヤ43も備えている。移動式ギヤ43が、マグネットスイッチ42の作用によって出力軸の軸方向に移動し、エンジンEUのギヤ50と噛み合うと、スタータモータ10の回転がギヤ50を介してクランクシャフトに伝達される。
 なお、エンジン始動装置Sは、エンジンEUの始動が完了した後、クランクシャフトの回転力をスタータモータ10に伝達することによって、スタータモータ10に発電を行わせることもできる。スタータモータ10はブラシモータなので、直流電流を発電する。
 図2は、図1に示すスタータモータ10を拡大して示す断面図である。図3は、図2に示すスタータモータ10のA-A線断面を示す断面図である。図4は、図2に示すスタータモータ10のB-B線断面を示す断面図である。
 スタータモータ10は、筐体2、回転子5、固定ブラシ22,23、可動永久磁石3、及び磁石移動部25を備えている。
 スタータモータ10の筐体2は、筒部20a、前カバー20b、及び後カバー20cを有している。前カバー20b及び後カバー20cは、筒部20aの両端の開口を塞ぐように設けられている。筒部20a、前カバー20b、及び後カバー20cは、例えば溶接によって互いに固定されている。但し、筒部20a、前カバー20b、及び後カバー20cは、例えば、締結部材によって互いに固定されていてもよい。筐体2には、回転子5、固定ブラシ22、23、可動永久磁石3、及び磁石移動部25を含むスタータモータ10の部品が収容されている。このように、筐体2は、少なくとも回転子5、固定ブラシ22、23、可動永久磁石3、及び磁石移動部25を収容する。スタータモータ10の筐体2は、図1に示すエンジン始動装置Sの筐体41の一部を構成している。従って、スタータモータ10の筐体2の位置は、エンジンEU及び鞍乗型車両Aに対し固定される。
 回転子5は、筐体2に対して回転可能なように筐体2に支持されている。回転子5は、回転軸6、コア7、整流子8、及び巻線9を備えている。コア7は、回転軸6に固定されている。回転軸6は、コア7を貫通するようにコア7に嵌め込まれている。回転軸6は、軸受14を介して筐体2に支持されている。巻線9に電流が流れることによって、回転子5に回転トルクが生じる。回転子5は、巻線9に電流が流れることによって回転する。回転軸6、コア7、整流子8、及び巻線9は、一体となって回転する。
 スタータモータ10において、回転子5の回転軸6が延びる方向を軸線方向Xと称し、軸線方向Xと垂直な方向を径方向Rと称する。また、回転子5の回転に沿った方向を周方向Cと称する。
 コア7は、磁性材料で形成されている。コア7は、空隙Gを挟んで可動永久磁石3に対面している。スタータモータ10は、ラジアルギャップ型のモータであり、コア7と可動永久磁石3とは、径方向Rに対向している。コア7には巻線9が巻かれている。より詳細には、コア7は、中央部分から径方向Rの外側に放射状に延びた複数のティース7aを有している。複数のティース7aは、スロットをあけて周方向Cに並んでいる。巻線9は、スロットを通るように設けられており、ティース7aに巻かれてコイルを形成している。本実施形態のスタータモータ10は、分布巻きで構成されており、巻線9が形成する1つのコイルが複数のティース7aを取り巻いている。ただし、スタータモータ10は、集中巻きで構成されていてもよい。
 整流子8は、回転軸6を取り囲むように配置されており、巻線9と電気的に接続されている。整流子8は、ティース7aに応じた数の接触片8aを有している。接触片8aには、巻線9が形成するコイルがそれぞれ接続されている。
 固定ブラシ22、23は、整流子8に接触することで回転子5に電流を流す。固定ブラシ22、23が、回転する整流子8の接触片8aと順次接触することによって、巻線9に流れる電流が切換えられる。即ち、巻線9の転流が生じる。
 固定ブラシ22、23は、筐体2に対し、回転子5の回転方向における位置が固定されるように設けられている。より詳細には、図4に示すように、筐体2の後カバー20cに板状のブラシホルダ21が固定されており、ブラシホルダ21に、固定ブラシ22、23が装着されている。本実施形態のスタータモータ10は、4つの固定ブラシ22、23を有している。4つの固定ブラシ22、23は、周方向Cに並ぶように配置されている。正極となる固定ブラシ22と、負極となる固定ブラシ23とは、周方向Cで隣り合うように配置されている。固定ブラシ22、23は、整流子8に向かって付勢され、整流子8に接触する。正極となる固定ブラシ22は、正極ターミナル15と電気的に接続されており、負極となる固定ブラシ23は、負極(接地)ターミナル24と電気的に接続されており、更にケーブル16を介して接地される。
 本実施形態のスタータモータ10は、一方向へ回転を出力するためのモータである。例えば、直流電源であるバッテリの正極と正極ターミナル15とが電気的に接続され、バッテリの負極と負極ターミナル24とが電気的に接続されることによって、スタータモータ10の回転子5は、図3及び図4の矢印Dで示す方向に回転する。
 固定ブラシ22、23は、本発明のブラシの一例に相当する。
 可動永久磁石3は、図3に示すように、空隙Gを挟んでコア7と対面するように配置されている。可動永久磁石3は、コア7と直接対面するように配置されている。本実施形態のスタータモータ10は、4つの可動永久磁石3を備えている。可動永久磁石3は、回転子5のコア7よりも、径方向Rの外に配置されている。可動永久磁石3は、コア7を取り囲む位置に配置されている。可動永久磁石3は、コア7から見た極性が周方向Cで交互にN極、S極を繰り返すように並んでいる。
 可動永久磁石3は、筐体2に支持されている。可動永久磁石3は、回転子5とは独立して周方向Cに移動可能なように筐体2に支持されている。可動永久磁石3は、調整角度範囲Hの角度範囲内において移動する。調整角度範囲Hは、可動永久磁石3が移動可能な所定の角度範囲である。可動永久磁石3は、回転子に電流が供給されている期間内に、可動永久磁石3と回転子5との磁気的作用により、固定ブラシ22、23に対して相対的に進角方向に移動するように構成されている。
 本実施形態のスタータモータ10は、可動永久磁石3と筐体2との間に配置された可動ヨーク部31を備えている。複数の可動永久磁石3は、可動ヨーク部31に固定されている。可動ヨーク部31は磁性体で形成されている。可動ヨーク部31は筒状である。可動ヨーク部31は、周方向Cに回転可能に筐体2に支持されている。複数の可動永久磁石3は、可動ヨーク部31を介して筐体2に支持されている。可動永久磁石3は、回転子5とは独立して周方向Cに移動可能に筐体2に支持されている。可動ヨーク部31が周方向Cに移動することによって、可動永久磁石3は、可動ヨーク部31とともに周方向Cに移動する。可動ヨーク部31を挟んで可動永久磁石3と反対の領域、即ち可動ヨーク部31の径方向Rの外側では、場所による磁力の偏りが抑えられる。このため、可動永久磁石3が移動するとき、可動永久磁石3の筐体2に対する磁力の偏りに起因した抵抗力のむらが抑えられ、可動永久磁石3が滑らかに移動する。
 筐体2は、可動永久磁石3の調整角度範囲H外への移動を制限する制限部26を有している。本実施形態のスタータモータ10における制限部26は、筐体2の筒部20aから径方向Rの中央に向かって突出した突起である。制限部26は、進角移動制限部26a及び遅角移動制限部26bを備えている。つまり、本実施形態のスタータモータ10は、進角移動制限部26aを備えている。また、スタータモータ10は、遅角移動制限部26bを備えている。詳細には、進角移動制限部26aは、制限部26の、周方向での一方の縁である。遅角移動制限部26bは、制限部26の、周方向での他方の縁である。可動ヨーク部31には、切欠き37が形成されている。制限部26は、切欠き37の中に配置されている。制限部26は、切欠き37の周方向両側に設けられた端壁37a,37bの間に配置されている。制限部26は、可動ヨーク部31の回転角度を制限することによって、可動永久磁石3の移動を制限する。制限部26は、可動永久磁石3が過度に回転して回転子5の回転に支障が生じる事態を抑える。進角移動制限部26aは、可動ヨーク部31の切欠き37の端壁37aに当たることによって、可動永久磁石3が調整角度範囲Hを超えて進角方向Aへ移動することを制限する。遅角移動制限部26bは、可動ヨーク部31の切欠き37の端壁37bに当たることによって、可動永久磁石3が調整角度範囲Hを超えて遅角方向Bへ移動することを制限する。
 進角方向Aは、固定ブラシ22,23から電流が供給された回転子5が回転しているときの回転子5の回転方向Dとは反対の方向である。遅角方向Bは、回転子の回転方向Dと同じ方向である。
 可動永久磁石3が移動する調整角度範囲Hは、遅角位置(図6のL1)及び進角位置(図5のL2)を含んでいる。遅角位置は、固定ブラシ22、23に対する可動永久磁石3の相対的な角度位置が遅角方向Bへ変位した位置である。なお、周方向におけるある位置を別の位置に対する変位の方向で特定する場合、特定される方向は、上記の2つの位置が成す2つの中心角のうち小さい中心角に沿った変位の方向を意味する。
 スタータモータ10は、周方向Cにおける可動永久磁石3の位置によって、スタータモータ10の出力トルクが変化するように構成されている。可動永久磁石3の位置は、固定ブラシ22、23に対する相対的な角度位置である。スタータモータ10の出力トルクが最も大きい時の可動永久磁石3の周方向位置を、最大トルク位置という。可動永久磁石3が最大トルク位置にある場合、スタータモータ10の出力トルクは最大である。可動永久磁石3が最大トルク位置からずれるに従い、出力トルクは減少する。可動永久磁石3が最大トルク位置から進角方向Aに電気角で90°変位すると、出力トルクが、ほぼゼロになる。また、可動永久磁石3が最大トルク位置から遅角方向Bに電気角で90°変位すると、出力トルクが、ほぼゼロになる。ここで、電気角は、可動永久磁石3の極の対あたりの角度を360°とした場合の角度である。遅角位置及び進角位置は、最大トルク位置に対し遅角方向Bに電気角で90°変位した位置から、最大トルク位置に対し進角方向Aに電気角で90°変位した位置までの範囲内で設定される。
 遅角位置は、電流が供給された回転子5が回転しているときの回転子5の回転方向にトルクが出力される範囲内で設定される。また、進角位置は、スタータモータ10が前記の回転方向にトルクを出力する範囲内で設定される。つまり、進角位置及び遅角位置は、回転子5に電流が供給された場合に、回転子5にトルクを生じさせる可動永久磁石3の位置である。進角位置及び遅角位置は、回転子5に電流が供給された場合に、回転子5に同じ向きのトルクを生じさせる位置の範囲内で設定されることができる。進角位置及び遅角位置は、例えば、回転子5に電流が供給された場合に、回転子5に最大のトルクを生じさせる位置を基準として、遅角方向及び遅角方向のそれぞれに電気角で90°の範囲内で設定されることができる。
 この場合、遅角位置は、最大トルク位置に対し遅角方向Bへ電気角で90°の位置から、最大トルク位置に対し進角方向Aへ電気角で90°の位置までの範囲内で設定される位置である。進角位置は、最大トルク位置に対し遅角方向Bへ電気角で90°の位置から、最大トルク位置に対し進角方向Aへ電気角で90°の位置までの範囲内で設定される位置であり、遅角位置よりも進角方向へ変位した位置である。
 遅角位置及び進角位置は、最大トルク位置から、遅角方向Bへ電気角で90°の位置までの範囲内で設定されると、固定ブラシ22、23に流れる電流の安定性がより高い。
 この場合、遅角位置は、最大トルク位置から、最大トルク位置に対し遅角方向Bへ電気角で90°の位置までの範囲内で設定される位置である。進角位置は、最大トルク位置から、最大トルク位置に対し遅角方向Bへ電気角で90°の位置までの範囲内で設定される位置であり、遅角位置よりも進角方向へ変位した位置である。
 スタータモータ10における「遅角位置」は、固定ブラシ22、23に対する可動永久磁石3の相対的な角度位置が、最大トルク位置よりも遅角方向Bに変位した位置である。可動永久磁石3の進角位置は、遅角位置よりも進角方向Aへ変位した位置である。可動永久磁石3の遅角位置は、進角位置よりも遅角方向Bへ変位した位置である。周方向Cにおいて、進角位置は、遅角位置よりも最大トルク位置に近い。最大トルク位置を基準として、遅角位置は、進角位置よりも離れている。進角位置は、最大トルク位置と実質的に同じ位置であってもよい。可動永久磁石3が進角位置にある時、遅角位置におけるトルクよりも大きなトルクを回転子5に生じさせる。
 磁石移動部25は、可動永久磁石3を移動させるように構成されている。磁石移動部25は、可動永久磁石3を、調整角度範囲H内で、少なくとも遅角方向B及び進角方向Aのいずれかに移動させるように構成されている。磁石移動部25は、回転子5に電流が供給されている期間内に、可動永久磁石3を、調整角度範囲で、遅角方向B又は進角方向Aに移動させる。
 本実施形態のスタータモータ10における磁石移動部25は、弾性部材25aを含んでいる。弾性部材25aは、弾性力によって可動永久磁石3を遅角方向Bに付勢する。弾性部材25aは、例えば、筐体2及び可動ヨーク部31に結合されたばねである。弾性部材25aは、例えばトーションばねである。本実施形態のスタータモータ10において、弾性部材25aは、弾性部材25aの弾性力が回転子5の回転開始時において可動永久磁石3に作用する回転子5の反作用力より小さくなるように構成されている。また、弾性部材25aは、弾性部材25aの弾性力が回転子5の回転速度の上昇に伴ってトルクが低下した時に可動永久磁石3に作用する回転子5の反作用力より大きくなるように構成されている。例えば、弾性部材25aは、可動永久磁石3が図5に示す進角位置に固定されるとした場合に、弾性部材25aの弾性力がスタータモータ10における定格負荷を定格速度で回転させるときの反作用力より大きくなるように構成されている。
 図5及び図6は、図4に示すスタータモータ10における、固定ブラシ22、23及び可動永久磁石3の位置を示す模式図である。図5及び図6には、整流子8及び可動ヨーク部31も示されている。また、図5及び図6には、弾性部材25aが模式的に示されている。
 図5では、進角位置L2にある可動永久磁石3が実線で示されている。図5及び図6では、可動永久磁石3のそれぞれの周方向Cでの中央位置によって、可動永久磁石3の位置を表している。また、図5では、参考として、遅角位置L1における可動永久磁石3が破線で示されている。
 図6では、遅角位置L1にある可動永久磁石3が実線で示されている。
 遅角位置L1は、固定ブラシ22、23に対し、可動永久磁石3が、進角位置L2よりも遅角方向Bへ変位した場合の位置である。
 進角方向Aは、固定ブラシ22、23から電流が供給された回転子5が回転しているときの回転子5の回転方向Dとは反対の方向である。遅角方向Bは、回転子5の回転方向Dと同じ方向である。
 図5に示す進角位置L2は、固定ブラシ22、23に対し、可動永久磁石3が、図6に示す遅角位置L1よりも進角方向Aへ変位した場合の位置である。図5に示す進角位置L2は、遅角位置L1におけるトルクよりも大きなトルクを回転子5に生じさせる位置である。周方向Cにおいて、進角位置L2は、図6に示す遅角位置L1よりも最大トルク位置に近い。進角位置L2は、最大トルク位置と実質的に同じ位置であることが好ましい。ただし、進角位置L2は、周方向Cにおいて、遅角位置L1よりも最大トルク位置に近ければ、最大トルク位置と実質的に同じ位置でなくともよい。この場合、進角位置L2は、遅角位置L1と最大トルク位置の間にあることが好ましい。ただし、最大トルク位置は、進角位置L2と遅角位置L1の間にあってもよい。
 可動永久磁石3の最大トルク位置は、巻線9に流れる電流の位相と、その巻線と鎖交する磁束の位相が実質的に一致するような位置である。
 可動永久磁石3の最大トルク位置は、例えば、スタータモータ10を発電機として機能させ、外部からの回転力によって回転させた場合に、固定ブラシ22、23の間に生じる誘導起電圧が最大となる位置である。
 電流の位相と磁束の位相との関係は、可動永久磁石3と固定ブラシ22、23との相対位置によって決定される。
 図6に示す遅角位置L1は、固定ブラシ22、23に対し、可動永久磁石3が、図5に示す進角位置L2よりも遅角方向Bへ変位した場合の位置である。
 可動永久磁石3が遅角位置L1に位置することは、例えばブラシが回転可能な場合に、ブラシが進角位置に位置することと、巻線9の転流のタイミングの観点において等価である。より具体的には、図6に示す状態は、可動永久磁石3に対する固定ブラシ22、23の相対位置が、最大トルクを生じる位置よりも進角方向Aに移動した状態と言うこともできる。
 従って、可動永久磁石3が図6に示す遅角位置L1にある場合、スタータモータ10を発電機として機能させた場合に生じる誘導起電圧は、進角位置L2の場合と比べて低い。また、可動永久磁石3が、遅角位置L1にあるときの起動時のトルクは、可動永久磁石3が、進角位置L2にある時の起動時のトルクよりも小さい。
 一般的に、ブラシモータで構成されるスタータモータの出力トルクT、磁束Φ、永久磁石の極数P、巻線の巻数Z、及び電流Iの間には、次の関係がある。
 T ∝ ΦPZI
 ここで、Φは、より詳細には、電流Iが流れる巻線と鎖交する磁束である。また、電流Iは、スタータモータの電源電圧と、巻線に生じる誘導起電圧の差に比例する。巻線に生じる誘導起電圧は、磁束Φの時間微分に比例する。本実施形態のスタータモータ10では、可動永久磁石3が遅角位置L1に移動することにより、固定ブラシ22、23から供給される電流Iが流れるタイミングで鎖交する磁束Φが、進角位置L2の場合よりも減少する。しかし、可動永久磁石3が遅角位置L1に移動することにより、誘導起電圧が減少する。従って、高い回転速度において、巻線に電流を供給することができる。即ち、出力可能な回転速度が高くなる。
 本実施形態のスタータモータ10において、可動永久磁石3を最大トルク位置から遅角位置L1まで移動させる場合の調整角度範囲は、電気角で直角より小さい。回転の安定性から、調整角度範囲は、電気角で30°以内が好ましい。電気角は、可動永久磁石3の極の対あたりの角度を360°とした場合の角度である。本実施形態のスタータモータ10は、4つの可動永久磁石3からなる2対の極と、4つの固定ブラシ22、23を有しているので、調整角度範囲Hとして、機械角で15°以内が好ましい。
 本実施形態のスタータモータ10において、磁石移動部25は、回転子5に電流が供給されている期間内に、可動永久磁石3を、調整角度範囲Hで、遅角方向B又は進角方向Aに移動させる。
 より詳細には、磁石移動部25は、回転子5に電流が供給されることにより回転子5の回転が開始する時点で、可動永久磁石3を図5に示す進角位置L2に位置させる。磁石移動部25は、回転子5に電流が供給されることにより回転子5が回転している期間内に、可動永久磁石3を遅角位置L1へ遅角方向Bに移動させる。
 磁石移動部25の動作を、電流が供給されていない状態から順を追って説明する。
 本実施形態のスタータモータ10では、磁石移動部25の弾性部材25a(図2参照)が、弾性力によって可動永久磁石3を遅角方向Bに付勢している。弾性部材25aの弾性力は、回転子5の回転開始時において可動永久磁石3に作用する回転子5の反作用力より小さく、且つ、回転子5の回転速度の上昇に伴ってトルクが低下した時に可動永久磁石3に作用する回転子5の反作用力より大きい。
 回転子へ電流が供給されていない状態において、可動永久磁石3は、弾性部材25aの遅角方向Bへの付勢力によって、図6に示すように、遅角位置L1に位置している。
 可動永久磁石3は、回転子5に電流が供給されている期間内に、可動永久磁石3に作用する回転子5の反作用力により、固定ブラシ22、23に対して相対的に、進角方向Aに移動するように構成されている。回転子5に電流が供給されることによって、回転子5には遅角方向Bへの回転力が生じる。回転力は出力トルクである。可動永久磁石3には、遅角方向Bとは反対向きである遅角方向Bへの反作用力が生じる。可動永久磁石3は、反作用力により、進角方向Aに移動する。詳細には、本実施形態では、弾性部材25aの弾性力を超える反作用力が可動永久磁石3に作用することによって、可動永久磁石3が進角方向Aに移動する。磁石移動部25の弾性部材25aは、回転子5への電流の供給が開始されてから回転子5が回転するまでの間に、可動永久磁石3の進角位置への移動を許容する。可動永久磁石3の進角位置への移動が許容されると、可動永久磁石3に作用する回転子5の反作用力による可動永久磁石3の進角方向Aへの移動が始まる。スタータモータ10が、例えば定格電圧を出力するバッテリからの電圧で動作する場合、最大の出力トルクは、通常、電流の供給が開始されてから回転子5が回転するまでの間に生じる。このため、可動永久磁石3に作用する出力トルクの反作用も、電流の供給が開始されてから回転子5が回転するまでの間に最大となる。このとき、図5の矢印M1で示すように、可動永久磁石3の進角方向Aへの移動が開始する。
 可動永久磁石3が進角方向Aへ移動し、図5に示す進角位置L2に位置すると、図6に示す遅角位置に位置した場合のトルクよりも大きなトルクが回転子5に生じる。スタータモータ10は、可動永久磁石3が図6に示す遅角位置L1に位置する場合よりも大きなトルクで回転を開始することができる。
 進角移動制限部26a(図3参照)は、可動ヨーク部31の切欠き37の端壁37aに当たることによって、可動永久磁石3が調整角度範囲Hを超えて進角方向Aへ移動することを制限する。進角移動制限部26a(図3参照)は、可動永久磁石3が進角位置L2よりも進角方向Aへ移動することを制限する。このため、可動永久磁石3の過剰な移動により出力トルクが低下する事態が抑えられる。
 弾性部材25aは、回転子5の回転速度の上昇に伴ってトルクが低下した時に、弾性部材25aの付勢力により、図5に示す進角位置L2に位置する可動永久磁石3を、遅角方向Bへ移動させるように構成されている。回転子5が回転を開始した後、回転子5の回転速度の上昇に伴って回転子5の出力トルクが低下すると、可動永久磁石3に作用する回転子5の反作用力も低下する。ここで、弾性部材25aの弾性力は、回転子5の回転速度の上昇に伴ってトルクが低下した時に可動永久磁石3に作用する回転子5の反作用力より大きい。このため、磁石移動部25は、回転子5に電流が供給されることにより回転子5が回転している期間内に、可動永久磁石3を図6に示す遅角位置L1へ遅角方向Bに移動させる。可動永久磁石3は、図6の矢印M2で示すように、遅角方向Bに移動する。より詳細には、磁石移動部25は、回転子5の回転速度の上昇に基づいて、可動永久磁石3を図6に示す遅角位置L1へ遅角方向Bに移動させる。例えば、一般に、出力トルクは、回転子5の回転速度の上昇に基づいて低下するので、回転子5の回転速度の上昇に応じて、可動永久磁石3に作用する回転子5の反作用力も低下する。また、弾性部材25aの弾性力は、弾性部材25aが可動永久磁石3を移動させる距離が長くなるにつれて徐々に弱くなるように設定される。ここで、弾性部材25aの弾性力(荷重)と、弾性部材25aが可動永久磁石3を移動させる距離との関係は、線形(正比例)又は実質的な線形であってもよく、非線形であってもよい。弾性部材25aにおける弾性力の変動範囲が、可動永久磁石3に作用する反作用力の変動範囲と重なるように設定されることによって、磁石移動部25が、回転子5の回転速度の上昇に基づいて可動永久磁石3を徐々に移動させる。その結果、本実施形態によれば、例えば、スタータモータ10の回転速度と出力トルクの特性を、図7に示す実線Pから実線Qへ徐々に変化させることができる。本実施形態によれば、回転速度と出力トルクの特性を無段階で変化させることができる。
 可動永久磁石3が図6に示す遅角位置L1へ移動することは、例えばブラシが回転可能な場合に、ブラシが進角位置に移動することと、巻線の転流のタイミングの観点において等価である。従って、可動永久磁石3が遅角位置L1に移動することによって誘導起電圧の影響が減少する。また、巻線9に流れる電流の変化が、巻線9のインダクタンスによって回転速度の上昇と共に遅れることの影響も、可動永久磁石3が遅角位置L1に移動することによって減少する。従って、回転子の回転速度が上昇する。遅角移動制限部26b(図3参照)は、可動ヨーク部31の切欠き37の端壁37bに当たることによって、可動永久磁石3が調整角度範囲Hを超えて遅角方向Bへ移動することを制限する。遅角移動制限部26b(図3参照)は、可動永久磁石3が遅角位置L1よりも遅角方向Bへ移動することを制限する。このため、可動永久磁石3の過剰な移動により出力トルクが低下する事態が抑えられる。
 図7は、図3に示すスタータモータ10の回転速度と出力トルクの特性を模式的に示すグラフである。図7において、実線Pは、可動永久磁石3が図5に示す進角位置L2に位置した場合の特性を示し、実線Qは、可動永久磁石3が図6に示す遅角位置L1に位置した場合の特性を示す。
 スタータモータ10の出力トルクTは、一般に、回転速度Nが増加するほど減少する。
 可動永久磁石3が図5に示す進角位置L2に位置した場合、実線Pに示すように、低い回転速度において比較的大きい出力トルクが出力される。例えば、回転開始時に、比較的大きい出力トルクTpを出力できる。しかし、可動永久磁石3が図5に示す進角位置L2に位置した場合、回転速度の上昇に伴ってトルクが比較的急激に低下する。従って、出力可能な回転速度が比較的に低い。
 これに対し、可動永久磁石3が図6に示す遅角位置L1に位置した場合、低い回転速度で得られる出力トルクは比較的小さい。この一方で、回転速度の上昇に伴うトルクの低下は緩やかであり、出力可能な回転速度が比較的に高い。例えば、無負荷状態において高い回転速度Nqが得られる。
 本実施形態のスタータモータ10によれば、回転子5に電流が供給されることにより回転子5の回転が開始する時点で、可動永久磁石3を図5に示す進角位置L2に位置させる。これにより、図7の実線Pに示すように、出力トルクを増大させることができる。そして、回転子5に電流が供給されることにより回転子5が回転している期間内に、可動永久磁石3を遅角位置L1へ遅角方向Bに移動させる。これにより、図7の実線Qに示すように、出力可能な回転速度を向上させることができる。すなわち、本実施形態のスタータモータ10回転速度と出力トルクの特性は、回転子が回転している期間内に、図7の実線Pの特性から、実線Qの特性へと変化する。
 例えば、可動永久磁石の位置を移動させることなく、図7のグラフにおける出力トルクTpと、出力可能な回転速度Nqとの双方を出力可能なスタータモータとして、破線Mに示す特性を有するスタータモータが考えられる。しかし、スタータモータが破線Mに示す特性を有するには、例えば、次のことが必要である。それは、誘導起電圧の影響を抑えるために巻線の巻数を減らすと共に、巻数を減らしてもトルクが確保できるように巻線の太さを大きくすること、又は、磁石の磁力を増大することである。この結果、スタータモータが大型化し、鞍乗型車両への搭載性が悪化する。また、バッテリの消費電力が増大する。
 また、可動永久磁石3を移動させる代わりに、電流の転流タイミングを調整する別の手段として、ブラシの位置を移動させることが考えられる。しかし、ブラシは、例えば図4に示すように、回転する回転子に接触しつつ回転子に電流を供給する部材である。ブラシには、電線等の導体が接続されている。電流供給のため整流子と適切な接触を保ちつつ、導体(リード線)が接続されたブラシを可動化することは、構造の複雑化を招来する。
 本実施形態のスタータモータ10によれば、可動永久磁石3を移動させることによって、固定ブラシ22、23を移動させることなく、低い回転速度で出力トルクを向上させる運転状態と、トルクが小さい時に回転速度を上昇させる運転状態との両方を実現できる。従って、スタータモータ10によれば、鞍乗型車両A(図9参照)への搭載性を向上しつつ、簡単な構成で、エンジンEU(図9参照)を始動するための出力トルク及び回転速度の特性を向上させることができる。
 スタータモータ10は、エンジンEU(図9参照)を始動させる際に、停止状態にあるエンジンEUのクランクシャフトを回転させる。このとき、スタータモータ10は、低い回転速度で出力トルクを向上させることができる。また、エンジンEUの燃焼動作が開始した後は、回転速度の上昇に伴い出力トルクが減少する。このとき、スタータモータ10は、エンジンEUのクランクシャフトを高い回転速度で回転させることによって、エンジンEUの動作を安定させることができる。
 また、図1を参照して説明したエンジン始動装置Sでは、エンジンEU(図9参照)に伝達される回転のトルクを増大するため、スタータモータ10の回転が減速装置30によって減速される。本実施形態のスタータモータ10によれば、出力トルクが向上するので、減速装置30における減速比を小さくして、運転音を抑えることができる。
 また、本実施形態のスタータモータ10によれば、回転子5に電流が供給されることにより回転子5の回転が開始する時点で、可動永久磁石3が進角位置に位置することにより、図7の実線Pに示すように、回転が開始する時点での出力トルクを向上させることができる。そして、回転子5に電流が供給されることにより回転子5が回転している期間内に、可動永久磁石3が遅角位置L1へ遅角方向Bに移動することにより、図7の実線Qに示すように、回転速度を向上させることができる。
 例えば、可動永久磁石を有さないブラシモータとして、位置が固定された永久磁石と、互いに異なる位置に配置された3つ以上のブラシを備えた固定型ブラシモータが考えられる。固定型ブラシモータが備える3つ以上のブラシの位置は固定されている。固定型ブラシモータでは、電流を供給するブラシが、あるブラシから別のブラシに切換えられることによって特性が変更される。しかし、このような固定型ブラシモータでは、特性がブラシの数に制限される。また、特性は、切換えによって不連続に変化する。
 スタータモータ10における磁石移動部25は、回転子5に電流が供給されることにより回転子5が回転している期間内に、回転子5の回転速度の上昇に基づいて、可動永久磁石3を遅角位置L1(図6参照)へ遅角方向Bに移動させる。従って、スタータモータ10は、回転子の回転速度の範囲をスムースに拡げることができる。
 また、スタータモータ10における磁石移動部25は、可動永久磁石3を遅角方向に付勢するための力として、弾性部材25aの弾性力を利用する。このため、スタータモータ10は、例えば、アクチュエータや制御装置を用いるよりも簡単な構成で、出力トルク及び回転速度の特性を向上させることができる。
 また、スタータモータ10における弾性部材25aの弾性力は、回転子5の回転開始時において可動永久磁石3に作用する回転子の反作用力より小さい。このため、回転子5の回転開始時に、可動永久磁石3が、回転子の反作用力によって進角方向Aに移動する。これにより、回転子5の回転開始時において出力トルクを増大させることができる。更に、スタータモータ10における弾性部材25aの弾性力は、回転子5の回転速度の上昇に伴ってトルクが低下した時に可動永久磁石3に作用する回転子5の反作用力より大きい。このため、回転子5の回転速度の上昇に伴い、可動永久磁石3が弾性力によって遅角方向Bに移動する。これにより、回転速度を向上させることができる。このように、スタータモータ10によれば、可動永久磁石3の進角方向Aへの移動及び遅角方向Bへの移動が、弾性部材25aの弾性力と回転子5の反作用力を用いた自己調整機能として実施される。
 [第2実施形態]
 続いて、本発明の第2実施形態について説明する。
 図8は、本発明の第二実施形態に係るスタータモータの、図3に相応する断面図である。
 図8に示すスタータモータ210は、第一実施形態と同様に、エンジン始動装置S(図2参照)に備えられる。
 図8に示すスタータモータ210において、ティース7aに巻かれる巻線209の巻数は、第一実施形態に係るスタータモータ10(図3参照)の場合の巻数よりも多い。即ち、ティース7aの間のスロットを通る巻線209の数が、第一実施形態に係るスタータモータ10(図3参照)の場合の数よりも多い。
 図8に示すスタータモータ210は、ティース7aに巻かれる巻線209の巻数が多い分、少ない電流で、回転子5の回転開始時に出力トルクを維持することができる。即ち、バッテリの消費電力を抑えることができる。図8に示すスタータモータ210は、ティース7aに巻かれる巻線209の巻数が多いので、回転速度の上昇に伴う誘導起電圧の上昇率が大きい。しかし、本発明の第二実施形態に係るスタータモータ210では、回転子5の回転が開始する時点で、出力トルクを増大させることができる。スタータモータ210では、回転子5に電流が供給されることにより回転子5が回転している期間内に、可動永久磁石3を遅角位置L1(図5参照)へ遅角方向Bに移動させる。これにより、回転速度を向上させることができる。従って、出力可能な回転速度の低下が抑えられる。
 [鞍乗型車両]
 図9は、第一実施形態及び第二実施形態に係るスタータモータ10,210が搭載される鞍乗型車両を示す外観図である。
 図9に示す鞍乗型車両Aは、自動二輪車である。ただし、本発明の車両は、自動二輪車に限られない。本発明の車両は、例えば、スクータ型、モペット型、オフロード型、オンロード型の自動二輪車が挙げられる。また、鞍乗型車両としては、自動二輪車に限定されず、例えば、ATV(All-Terrain Vehicle)等であってもよい。鞍乗型車両Aは、上述した第一実施形態及び第二実施形態のエンジン始動装置Sと、エンジン始動装置Sによって始動されるエンジンEUとを備えている。鞍乗型車両Aは、車体101と、車輪102,103と、バッテリBTとを備えている。鞍乗型車両Aに搭載されたエンジンEUは、駆動輪である車輪103を駆動し、車輪103を回転させることによって、鞍乗型車両Aを走行させる。
 エンジンEUの始動時、エンジン始動装置Sは、バッテリBTの電力によって、エンジンEUを始動させる。エンジン始動装置Sが備えるスタータモータ10,210(図3、図8参照)は、回転が開始する時点で、出力トルクを増大させることができ、回転子5に電流が供給されることにより回転子5が回転している期間内に、可動永久磁石3を遅角位置へ遅角方向Bに移動させることにより、回転速度を高めることができる。
 鞍乗型車両Aは、エンジン始動装置Sに、上述したスタータモータ10,210が備えられている。従って、鞍乗型車両Aによれば、エンジン始動装置Sの車両搭載性を向上しつつ、エンジンEUの始動性を向上することができる。
 なお、上述したスタータモータ10の実施形態では、本発明の磁石移動部の一例として、弾性部材25aを有する磁石移動部25を説明したが、本発明はこれに限られない。本発明の磁石移動部は、例えば、アクチュエータ又はモータによって、永久磁石を移動させる構成であってもよい。この場合、磁石移動部は、例えば、回転子の回転速度を検出するセンサを備え、検出した回転速度に応じて、永久磁石を移動させてもよい。また、磁石移動部は、回転子の出力トルクを検出するセンサを備え、検出したトルクに応じて、永久磁石を移動させてもよい。
 また、磁石移動部は、回転子の回転が開始する時点で、可動永久磁石を進角位置に位置させていればよく、可動永久磁石を進角位置に移動させなくともよい。
 また、上述した実施形態では、本発明の磁石移動部の一例として、回転子5の回転速度の上昇に基づいて、可動永久磁石3を遅角位置へ遅角方向に移動させる構成について説明した。しかし、本発明の磁石移動部は、例えば、回転子の回転の有無検出するセンサを備え、回転が検出された後、所定期間の経過によって、永久磁石を移動させてもよい。
 本発明の鞍乗型車両用スタータモータは、人力によって可動永久磁石が移動するように構成されていてもよい。しかし、可動永久磁石が少なくとも人力によらず移動するように構成されている。本発明の鞍乗型車両用スタータモータにおける磁石移動部は、人力ではなく、弾性部材、アクチュエータ、モータ等によって可動永久磁石を移動させるように構成されている。即ち、本発明の磁石移動部は、人力により可動永久磁石を移動させるように構成されていない。また、本発明の鞍乗型車両用スタータモータは、可動永久磁石が、遅角位置と進角位置とを含む角度範囲内で移動する時、可動永久磁石がコア(回転子)と空隙を挟んで対向する周方向長さ又は面積が一定に保たれるように構成されていてもよい。即ち、本発明の磁石移動部は、可動永久磁石とコアとが対向する周方向長さ又は面積を一定に保ちつつ、可動永久磁石を移動させるように構成されていてもよい。さらに、本発明の鞍乗型車両用スタータモータでは、可動永久磁石が軸方向又は径方向に移動しないように構成されていてもよい。
 また、本発明の磁石移動部は、弾性部材25aを有する場合のように、常時、永久磁石を付勢してもよく、又は、永久磁石を遅角方向に移動させる期間のみ永久磁石を付勢してもよい。
 本実施形態では、ブラシモータの例として、遅角移動制限部26bを備えた構成を説明したが、本発明のブラシモータは、これに限られない。例えば、可動永久磁石が遅角方向に移動するのに従い、弾性部材の弾性力が減少することによって、可動永久磁石が所定の範囲で停止する。このようにして、可動永久磁石の移動が実質的に制限されてもよい。
 また、本実施形態では、ブラシモータの例として、進角移動制限部26aを備えた構成を説明したが、本発明のブラシモータは、これに限られない。例えば、固定ブラシから電流が供給され回転子が回転する前に、可動永久磁石が反作用によって最大トルク位置よりも進角方向に移動すると、反作用が減少していく。可動永久磁石の移動の摩擦力と反作用が釣り合う位置で、可動永久磁石の移動が停止する。このようにして、可動永久磁石の移動が実質的に制限されてもよい。
 また、本実施形態では、可動永久磁石の一例として、可動ヨーク部31を介して筐体2に支持されている可動永久磁石3を説明したが、本発明はこれに限られない。本発明における可動永久磁石は、例えば、筐体に直接支持されていてもよい。また、可動永久磁石は、例えば、磁性材料ではない部材を介して筐体に支持されてもよい。
 また、本実施形態では、鞍乗型車両用スタータモータの例として、4つの固定ブラシ22、23及び4つの可動永久磁石3を備えたスタータモータ10を説明したが、本発明のスタータモータは、これに限られない。例えば、鞍乗型車両用スタータモータは、4つ未満の固定ブラシ及び4つ未満の可動永久磁石を備えてもよく、4つより多い固定ブラシ及び4つより多い可動永久磁石を備えてもよい。
 また、本実施形態では、ブラシの例として、固定ブラシ22、23を説明したが、本発明は、これに限られない。本発明のスタータモータは、例えば、回転子の周方向に移動可能に設けられたブラシと、回転子の周方向に移動可能に設けられた可動永久磁石との双方を備えていてもよい。
 また、本実施形態では、スタータモータの例として、ラジアルギャップ型のスタータモータ10を説明したが、本発明の鞍乗型車両用スタータモータは、これに限られない。例えば、鞍乗型車両用スタータモータは、例えばアキシャルギャップ型であってもよい。
 また、本実施形態では、鞍乗型車両用スタータモータの例として、一方向へ回転を出力するためのスタータモータ10を説明したが、本発明の鞍乗型車両用スタータモータは、これに限られない。例えば、鞍乗型車両用スタータモータは、電極の接続に応じて、逆方向に回転するモータであってもよい。
 また、本実施形態では、エンジン始動装置の例として、スタータモータ10に発電を行わせるエンジン始動装置を説明したが、本発明のエンジン始動装置及び鞍乗型車両用スタータモータは、これに限られない。例えば、エンジン始動装置は、エンジンの始動が完了した後、エンジンと鞍乗型車両用スタータモータとの接続を解除してもよい。
10,210 鞍乗型車両用スタータモータ(スタータモータ)
26  制限部
2   筐体
3   可動永久磁石
5   回転子
8   整流子
9,209 巻線
22,23 固定ブラシ
25  磁石移動部
25a 弾性部材
26a 進角移動制限部
26b 遅角移動制限部
31  可動ヨーク部
EU  エンジン
S   エンジン始動装置
A   鞍乗型車両

Claims (14)

  1.  鞍乗型車両に搭載されるエンジンを始動する鞍乗型車両用スタータモータであって、
     前記鞍乗型車両用スタータモータは、
    巻線、前記巻線が巻かれたコア、及び前記巻線と電気的に接続された整流子を有し、回転可能に設けられた回転子と、
    前記回転子の回転方向における位置が固定され、前記整流子に接触することで前記回転子に電流を流すブラシと、
    空隙を挟んで前記コアと対面し、前記ブラシに対する相対的な角度位置が遅角方向へ変位した遅角位置と、前記遅角位置よりも進角方向へ変位した、前記遅角位置におけるトルクよりも大きなトルクを前記回転子に生じさせる進角位置とを含む角度範囲で、前記回転子とは独立して前記回転子の周方向に移動可能に設けられた可動永久磁石と、
    を備え、
     前記可動永久磁石は、
    前記回転子に電流が供給されることにより前記回転子の回転が開始する時点で前記進角位置に位置し、前記回転子に電流が供給されることにより前記回転子が回転している期間内に前記遅角位置へ前記遅角方向に移動可能に構成されている。
  2.  請求項1に記載の鞍乗型車両用スタータモータであって、
     前記空隙を挟んでコアと対面する前記可動永久磁石は、少なくとも前記回転子に電流が供給されている期間内に、前記可動永久磁石に作用する前記回転子の反作用力により、前記ブラシに対して相対的に、前記進角方向に移動するように構成されている。
  3.  請求項1又は2に記載の鞍乗型車両用スタータモータであって、
     前記可動永久磁石が前記角度範囲を超えて前記進角方向へ移動することを制限する進角移動制限部をさらに備えている。
  4.  請求項1から3いずれか1に記載のブラシモータであって、
     前記可動永久磁石が前記角度範囲を超えて前記遅角方向へ移動することを制限する遅角移動制限部をさらに備えている。
  5.  請求項1から4いずれか1に記載の鞍乗型車両用スタータモータであって、
    前記回転子に電流が供給されることにより前記回転子の回転が開始する時点で、前記空隙を挟んで前記コアと対面する前記可動永久磁石を前記進角位置に位置させ、前記回転子に電流が供給されることにより前記回転子が回転している期間内に、前記可動永久磁石を前記遅角位置へ前記遅角方向に移動させる磁石移動部を更に備えている。
  6.  請求項5に記載の鞍乗型車両用スタータモータであって、
     前記磁石移動部は、前記回転子に電流が供給されることにより前記回転子が回転している期間内に、前記回転子の回転速度の上昇に基づいて、前記可動永久磁石を前記遅角位置へ前記遅角方向に移動させる。
  7.  請求項5又は6に記載の鞍乗型車両用スタータモータであって、
    前記磁石移動部は、弾性力によって前記可動永久磁石を前記遅角方向に付勢する弾性部材を含む。
  8.  請求項7に記載の鞍乗型車両用スタータモータであって、
     前記弾性部材は、前記弾性部材の弾性力が、前記回転子の回転開始時において前記可動永久磁石に作用する前記回転子の反作用力より小さく、且つ、前記回転子の回転速度の上昇に伴ってトルクが低下した時に前記可動永久磁石に作用する前記回転子の反作用力より大きくなるように構成されている。
  9.  請求項7又は8に記載の鞍乗型車両用スタータモータであって、
     前記可動永久磁石は、前記回転子への電流の供給が開始される前に、前記弾性部材の前記遅角方向への付勢力により、前記遅角位置に位置し、
     前記弾性部材は、前記回転子への電流の供給が開始されてから前記回転子が回転するまでの間に前記可動永久磁石に作用する前記回転子の反作用力による前記可動永久磁石の前記進角方向への移動が始まるように前記可動永久磁石の前記進角位置への移動を許容し、前記回転子の回転速度の上昇に伴ってトルクが低下した時に、前記弾性部材の付勢力により、前記進角位置に位置する前記可動永久磁石を、前記遅角方向へ移動させるように構成されている。
  10.  請求項5~9のいずれか1に記載の鞍乗型車両用スタータモータであって、
     前記鞍乗型車両用スタータモータは、更に、少なくとも前記回転子と前記ブラシと前記可動永久磁石と前記磁石移動部とを収容する筐体を備え、
     前記回転子は、回転可能に前記筐体に支持されており、
     前記ブラシは、前記筐体に対し、前記回転子の回転方向における前記ブラシの位置が固定されるように設けられ、
     前記可動永久磁石は、前記回転子とは独立して前記回転子の周方向に移動できるように前記筐体に支持されている。
  11.  請求項10に記載の鞍乗型車両用スタータモータであって、
     前記鞍乗型車両用スタータモータは、
    前記回転子の周方向に並べて配置される複数の前記可動永久磁石と、
    前記可動永久磁石と前記筐体との間に配置され、前記複数の可動永久磁石が固定された可動ヨーク部とを備え、
     前記複数の可動永久磁石は、前記可動ヨーク部を介して前記筐体に支持されている。
  12.  請求項10又は11に記載の鞍乗型車両用スタータモータであって、
     前記筐体は、前記可動永久磁石の前記角度範囲外への移動を制限する制限部を有する。
  13.  鞍乗型車両に搭載されるエンジンを始動するエンジン始動装置であって、
     前記エンジン始動装置は、
    請求項1~12のいずれか1に記載の鞍乗型車両用スタータモータと、
    前記回転子に接続され、前記回転子の回転を減速して前記エンジンに伝達する減速装置とを備えている。
  14.  鞍乗型車両であって、
     前記鞍乗型車両は、
    請求項13に記載のエンジン始動装置と、
    前記エンジン始動装置によって始動されるエンジンとを備える。
PCT/JP2016/070543 2015-08-03 2016-07-12 鞍乗型車両用スタータモータ、エンジン始動装置、及び鞍乗型車両 WO2017022427A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
BR112018002217-9A BR112018002217B1 (pt) 2015-08-03 2016-07-12 Motor de arranco de veículo do tipo motocicleta, dispositivo de partida de motor, e veículo do tipo motocicleta
EP16832706.2A EP3327909B1 (en) 2015-08-03 2016-07-12 Starter motor for straddle-type vehicle, engine starting device, and straddle-type vehicle
US15/887,979 US10693357B2 (en) 2015-08-03 2018-02-02 Straddled vehicle starter motor, engine start-up device, and straddled vehicle

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-153134 2015-08-03
JP2015153134A JP2018152924A (ja) 2015-08-03 2015-08-03 鞍乗型車両用スタータモータ、エンジン始動装置、及び鞍乗型車両

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/887,979 Continuation-In-Part US10693357B2 (en) 2015-08-03 2018-02-02 Straddled vehicle starter motor, engine start-up device, and straddled vehicle

Publications (1)

Publication Number Publication Date
WO2017022427A1 true WO2017022427A1 (ja) 2017-02-09

Family

ID=57943170

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/070543 WO2017022427A1 (ja) 2015-08-03 2016-07-12 鞍乗型車両用スタータモータ、エンジン始動装置、及び鞍乗型車両

Country Status (6)

Country Link
US (1) US10693357B2 (ja)
EP (1) EP3327909B1 (ja)
JP (1) JP2018152924A (ja)
BR (1) BR112018002217B1 (ja)
TW (1) TWI596865B (ja)
WO (1) WO2017022427A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109591820A (zh) * 2017-09-28 2019-04-09 通用汽车环球科技运作有限责任公司 用于快速发动机启动的系统和方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10075031B2 (en) * 2013-03-26 2018-09-11 Mitsuba Corporation Electric motor

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5526097A (en) * 1978-08-03 1980-02-25 Siemens Ag Small dc motor
JPS61173654A (ja) * 1985-01-25 1986-08-05 Nippon Denso Co Ltd 磁石式電動機
JP2000270529A (ja) * 1999-03-19 2000-09-29 Ntt Data Corp 電動機
WO2012105308A1 (ja) * 2011-02-04 2012-08-09 ヤマハ発動機株式会社 エンジン、及び当該エンジンを搭載した鞍乗型車両

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE800422C (de) * 1949-03-06 1950-11-06 Lytax Werke G M B H Anordnung zur AEnderung der Drehrichtung eines Elektromotors
US4338536A (en) * 1979-09-20 1982-07-06 Hallidy William M Reversible direct current machine with movable stator
US4481437A (en) * 1981-07-20 1984-11-06 Hitachi Metals International Ltd. Variable flux permanent magnets electromagnetic machine
JPH09310666A (ja) 1996-05-20 1997-12-02 Denso Corp スタータ
JP2010154704A (ja) * 2008-12-26 2010-07-08 Mitsuba Corp 電動モータ及びエンジン始動装置
CN201635900U (zh) * 2010-04-21 2010-11-17 龚建荣 一种汽车启动马达
CN201639379U (zh) * 2010-04-21 2010-11-17 龚建荣 一种汽车启动马达的定子
CN102710039B (zh) * 2012-06-15 2014-06-11 扬州保来得科技实业有限公司 一种汽车电机启动马达转子及其制备方法
JP2015035942A (ja) 2013-07-08 2015-02-19 ヤマハ発動機株式会社 発電装置、移動体および発電制御方法
CN203761211U (zh) * 2014-03-28 2014-08-06 慈溪奥博汽车电器有限公司 一种汽车启动马达电机
CN203756411U (zh) * 2014-03-28 2014-08-06 慈溪奥博汽车电器有限公司 一种汽车启动马达
CN203761155U (zh) * 2014-03-28 2014-08-06 慈溪奥博汽车电器有限公司 一种汽车用启动马达

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5526097A (en) * 1978-08-03 1980-02-25 Siemens Ag Small dc motor
JPS61173654A (ja) * 1985-01-25 1986-08-05 Nippon Denso Co Ltd 磁石式電動機
JP2000270529A (ja) * 1999-03-19 2000-09-29 Ntt Data Corp 電動機
WO2012105308A1 (ja) * 2011-02-04 2012-08-09 ヤマハ発動機株式会社 エンジン、及び当該エンジンを搭載した鞍乗型車両

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3327909A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109591820A (zh) * 2017-09-28 2019-04-09 通用汽车环球科技运作有限责任公司 用于快速发动机启动的系统和方法
CN109591820B (zh) * 2017-09-28 2022-04-19 通用汽车环球科技运作有限责任公司 用于快速发动机启动的系统和方法

Also Published As

Publication number Publication date
EP3327909A4 (en) 2018-07-11
US20180159410A1 (en) 2018-06-07
US10693357B2 (en) 2020-06-23
BR112018002217A2 (ja) 2018-09-04
EP3327909A1 (en) 2018-05-30
EP3327909B1 (en) 2021-03-17
TWI596865B (zh) 2017-08-21
JP2018152924A (ja) 2018-09-27
BR112018002217B1 (pt) 2022-11-29
TW201711345A (zh) 2017-03-16

Similar Documents

Publication Publication Date Title
JP5595277B2 (ja) 電動モータ、および減速機付モータ
WO2011111357A1 (ja) モータ
US9515525B2 (en) Electric motor
JP6214990B2 (ja) 回転電機
US9444317B2 (en) Electric rotating machine
WO2017022427A1 (ja) 鞍乗型車両用スタータモータ、エンジン始動装置、及び鞍乗型車両
JP4320552B2 (ja) 磁束量可変磁石型ロータ
JP2010022088A (ja) 磁石回転型回転電機
WO2017022426A1 (ja) ブラシモータ
US11901779B2 (en) Motor and brushless wiper motor
JP6914443B2 (ja) モータ及びバルブタイミング調整装置
JP2002153095A (ja) 永久磁石式回転電機およびその駆動装置
JP4676804B2 (ja) 磁石式発電機及び磁石式発電機の出力調整方法
JP6490138B2 (ja) 直流電動機
JP2007097327A (ja) モータ
JP5268553B2 (ja) 車両用回転電機
JP3850845B2 (ja) 整流子電動機
JP5515298B2 (ja) 可変特性回転電機
JP2008215313A (ja) バルブタイミング調整装置
JP2008161038A (ja) アキシャルギャップ型モータ
JP2010130823A (ja) 永久磁石付き界磁巻線型モータ及びモータ駆動制御装置
JP2004350409A (ja) モータ
JP2010154690A (ja) アクチュエータ装置
JP2002078307A (ja) 永久磁石式回転電動機
JP2008245445A (ja) 二輪車用スタータモータ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16832706

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2016832706

Country of ref document: EP

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112018002217

Country of ref document: BR

NENP Non-entry into the national phase

Ref country code: JP

ENP Entry into the national phase

Ref document number: 112018002217

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20180201