WO2017017985A1 - 撮影用コンソール及び放射線画像撮影システム - Google Patents

撮影用コンソール及び放射線画像撮影システム Download PDF

Info

Publication number
WO2017017985A1
WO2017017985A1 PCT/JP2016/057709 JP2016057709W WO2017017985A1 WO 2017017985 A1 WO2017017985 A1 WO 2017017985A1 JP 2016057709 W JP2016057709 W JP 2016057709W WO 2017017985 A1 WO2017017985 A1 WO 2017017985A1
Authority
WO
WIPO (PCT)
Prior art keywords
imaging
information
shooting
console
radiation
Prior art date
Application number
PCT/JP2016/057709
Other languages
English (en)
French (fr)
Inventor
手塚 英剛
剛 原口
哲 細木
Original Assignee
コニカミノルタ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタ株式会社 filed Critical コニカミノルタ株式会社
Priority to JP2017531031A priority Critical patent/JP6540807B2/ja
Publication of WO2017017985A1 publication Critical patent/WO2017017985A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/46Arrangements for interfacing with the operator or the patient
    • A61B6/461Displaying means of special interest
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/42Arrangements for detecting radiation specially adapted for radiation diagnosis
    • A61B6/4208Arrangements for detecting radiation specially adapted for radiation diagnosis characterised by using a particular type of detector
    • A61B6/4233Arrangements for detecting radiation specially adapted for radiation diagnosis characterised by using a particular type of detector using matrix detectors
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/46Arrangements for interfacing with the operator or the patient
    • A61B6/461Displaying means of special interest
    • A61B6/463Displaying means of special interest characterised by displaying multiple images or images and diagnostic data on one display
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/46Arrangements for interfacing with the operator or the patient
    • A61B6/467Arrangements for interfacing with the operator or the patient characterised by special input means
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/48Diagnostic techniques
    • A61B6/486Diagnostic techniques involving generating temporal series of image data
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/50Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment specially adapted for specific body parts; specially adapted for specific clinical applications
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/52Devices using data or image processing specially adapted for radiation diagnosis
    • A61B6/5211Devices using data or image processing specially adapted for radiation diagnosis involving processing of medical diagnostic data
    • A61B6/5217Devices using data or image processing specially adapted for radiation diagnosis involving processing of medical diagnostic data extracting a diagnostic or physiological parameter from medical diagnostic data
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/54Control of apparatus or devices for radiation diagnosis
    • A61B6/542Control of apparatus or devices for radiation diagnosis involving control of exposure
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/56Details of data transmission or power supply, e.g. use of slip rings
    • A61B6/563Details of data transmission or power supply, e.g. use of slip rings involving image data transmission via a network
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H50/00ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics
    • G16H50/30ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics for calculating health indices; for individual health risk assessment
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/46Arrangements for interfacing with the operator or the patient
    • A61B6/467Arrangements for interfacing with the operator or the patient characterised by special input means
    • A61B6/468Arrangements for interfacing with the operator or the patient characterised by special input means allowing annotation or message recording
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/50Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment specially adapted for specific body parts; specially adapted for specific clinical applications
    • A61B6/503Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment specially adapted for specific body parts; specially adapted for specific clinical applications for diagnosis of the heart
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/54Control of apparatus or devices for radiation diagnosis
    • A61B6/541Control of apparatus or devices for radiation diagnosis involving acquisition triggered by a physiological signal
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/54Control of apparatus or devices for radiation diagnosis
    • A61B6/545Control of apparatus or devices for radiation diagnosis involving automatic set-up of acquisition parameters

Definitions

  • the present invention relates to an imaging console and a radiographic imaging system.
  • FPDs flat panel detectors
  • the pulsed radiation is continuously emitted from the radiation source in conjunction with the read / erase timing of the semiconductor image sensor by utilizing the speed of the responsiveness of the image data readout and residual charge reset of the semiconductor image sensor.
  • imaging is performed a plurality of times per second to image the dynamics of the imaging region.
  • Patent Document 1 pre-photographing is performed before main photographing, a plurality of dynamic images at the time of pre-photographing are subjected to image analysis, photographing conditions at the time of main photographing are calculated, and main photographing is performed based on the calculated photographing conditions.
  • the system to be performed is described.
  • Patent Document 2 guidance is made so that photographing can be properly performed by notifying the user of an appropriate timing for photographing in continuous breathing motion in the current photographing based on past photographing. The system to be described is described.
  • JP 2011-152154 A International Publication No. 2013/058055 JP 2013-048746 A
  • simple imaging also referred to as general imaging etc.
  • the semiconductor image sensor described above has a long history, such as imaging in which a single image is shot by irradiating radiation from a radiation source, and images for diagnosis.
  • the photographing conditions in the photographing performed properly among the past photographing are extracted and the current photographing is performed. It is possible to configure so that photographing is appropriately performed by applying to the above.
  • the dynamic analysis technology as described above that is, a technology that attempts to apply a diagnostic image by capturing a dynamic image of an imaging region of a subject using a semiconductor image sensor is a new inspection method with a short history. Then, it cannot be said that a reference image indicating what kind of image should be used as a diagnostic image has been established (or exists).
  • the present invention has been made in view of the above points, and an object of the present invention is to provide an imaging console and a radiographic imaging system capable of appropriately performing imaging using a past moving image or the like as a reference.
  • the imaging console and the radiographic imaging system of the present invention are: Display means capable of displaying a video, Control means for performing control based on imaging order information in which at least patient information and imaging site information are specified for imaging to be performed; With When the shooting order information is acquired or the shooting order information is input, when the shooting order information is shooting order information for designating shooting of a moving image, the control means includes the shooting order information. Based on at least one of the designated patient information or imaging part information, a past video of the patient or a past video of the imaging part was acquired and obtained on the display means. It is characterized by displaying past moving images.
  • console and the radiographic image capturing system of the system as in the present invention it is possible to appropriately perform image capturing with reference to past moving images and the like.
  • the present invention is not limited to this, and for example, a plurality of images (frame images) such as tomosynthesis shooting may be continuously captured in time. This can also be applied to the case of video shooting.
  • the action of capturing a movie is a so-called restricted movie shooting. This restriction is a time limit or normal movie shooting without restriction in that it does not guarantee real-time display. Is different.
  • a radiographic imaging system 100 includes a HIS (Hospital Information System) 4 and a RIS (Radiology Information System) 5 via a network N as shown in FIG. , Connected to a medical information management system 1 composed of an external system such as a PACS (Picture Archiving and Communication System) 6 or an external computer 7 such as a server, or configured as a part of the medical information management system 1.
  • HIS Hospital Information System
  • RIS Radiology Information System
  • FIG. 2 shows a configuration example of the radiographic image capturing system 100 in this case.
  • the radiographic imaging system 100 includes an imaging console 2 used for imaging by an imaging engineer and a diagnostic console 3 used by a doctor for diagnosis.
  • the imaging device 10 and the imaging console 2 are connected by a communication cable or the like, and the imaging console 2 and the diagnostic console 3 are connected via a communication network NT such as a LAN (Local Area Network).
  • a communication network NT such as a LAN (Local Area Network).
  • the imaging apparatus 10 is an apparatus that images the dynamics of the chest with periodicity (cycle), such as morphological changes in lung expansion and contraction associated with respiratory motion, heart pulsation, and the like.
  • Dynamic imaging is performed by continuously irradiating a human chest with radiation such as X-rays to acquire a plurality of images (that is, continuous imaging).
  • a series of images obtained by this continuous shooting is called a dynamic image.
  • Each of the plurality of images constituting the dynamic image is called a frame image.
  • the flexion / extension function analysis of the joint part is performed by dynamically imaging the flexion / extension movement of the joint part of the human body. It is also possible to configure to perform processing or the like.
  • the imaging apparatus 10 includes a radiation source 11, a radiation irradiation control device 12, a radiation detection unit 13, a reading control device 14, a cycle detection sensor 15, a cycle detection device 16, and the like.
  • the radiation detection unit 13 and the reading control device 14 can be configured integrally (that is, the radiation detection unit 13 can be configured to include the reading control device 14).
  • the radiation source 11 irradiates the subject M with radiation (X-rays) under the control of the radiation irradiation control device 12.
  • the radiation irradiation control device 12 is connected to the imaging console 2 and controls the radiation source 11 based on the radiation irradiation conditions input from the imaging console 2 to perform radiation imaging.
  • the radiation irradiation conditions input from the imaging console 2 are, for example, pulse rate, pulse width, pulse interval, imaging start / end timing, X-ray tube current value, X-ray tube voltage value, filter type during continuous irradiation. Etc.
  • the pulse rate is the number of times of radiation irradiation per second, and matches the frame rate described later.
  • the pulse width is a radiation irradiation time per one irradiation.
  • the pulse interval is the time from the start of one radiation irradiation to the start of the next radiation irradiation in continuous imaging, and coincides with a frame interval described later.
  • the radiation detector 13 is composed of a semiconductor image sensor such as an FPD.
  • the FPD has, for example, a glass substrate or the like, detects radiation that has been irradiated from the radiation source 11 and transmitted through at least the subject M at a predetermined position on the substrate according to its intensity, and detects the detected radiation as an electrical signal.
  • a plurality of pixels to be converted and stored are arranged in a matrix. Each pixel is configured by a switching unit such as a TFT (Thin Film Transistor).
  • TFT Thin Film Transistor
  • the reading control device 14 is connected to the imaging console 2.
  • the reading control device 14 controls the switching unit of each pixel of the radiation detection unit 13 based on the image reading condition input from the imaging console 2 to switch the reading of the electrical signal accumulated in each pixel.
  • the image data is acquired by reading the electrical signal accumulated in the radiation detection unit 13. This image data is a frame image.
  • the reading control device 14 outputs the acquired frame image to the photographing console 2.
  • the image reading conditions are, for example, a frame rate (or frame interval), a pixel size, an image size (matrix size), and the like.
  • the frame rate is the number of frame images acquired per second and matches the pulse rate.
  • the frame interval is the time from the start of one frame image acquisition operation to the start of the next frame image acquisition operation in continuous shooting, and coincides with the pulse interval.
  • the radiation irradiation control device 12 and the reading control device 14 are connected to each other, and synchronize the radiation irradiation operation and the image reading operation by exchanging synchronization signals with each other.
  • the cycle detection sensor 15 detects the state of respiratory motion of the subject M and outputs detection information to the cycle detection device 16.
  • the cycle detection sensor 15 for example, a respiration monitor belt, a CCD (Charge-Coupled Device) camera, an optical camera, a spirometer, or the like can be applied.
  • CCD Charge-Coupled Device
  • the cycle detection device 16 determines the number of respiratory cycles and the state during one cycle of the current respiratory movement (for example, inspiration, inspiration to expiration conversion point, The state of the conversion point of exhalation and exhalation to inspiration is detected, and the detection result (cycle information) is output to the control unit 21 of the imaging console 2.
  • the cycle detection device 16 is, for example, a timing at which detection information indicating that the state of the lung is a conversion point from inspiration to expiration is input by the cycle detection sensor 15 (respiration monitor belt, CCD camera, optical camera, spirometer, etc.). Is the base point of one cycle, and the period up to the timing when this state is detected next is recognized as one cycle.
  • the imaging console 2 outputs radiation irradiation conditions and image reading conditions to the imaging apparatus 10 to control radiation imaging and radiographic image reading operations by the imaging apparatus 10, and also captures dynamic images acquired by the imaging apparatus 10. Displayed for confirmation of whether the image is suitable for confirmation of positioning or diagnosis.
  • the photographing console 2 includes a control unit 21, a storage unit 22, an operation unit 23, a display unit 24, and a communication unit 25, and each unit is connected by a bus 26.
  • the control unit 21 includes a CPU (Central Processing Unit), a RAM (Random Access Memory), and the like.
  • the CPU of the control unit 21 reads the system program and various processing programs stored in the storage unit 22 in accordance with the operation of the operation unit 23, expands them in the RAM, and performs shooting control processing described later according to the expanded programs.
  • Various processes including the beginning are executed to centrally control the operation of each part of the imaging console 2 and the radiation irradiation operation and reading operation of the imaging apparatus 10.
  • the storage unit 22 is configured by a nonvolatile semiconductor memory, a hard disk, or the like.
  • the storage unit 22 stores various programs executed by the control unit 21 and data such as parameters necessary for execution of processing by the programs or processing results.
  • the storage unit 22 stores a shooting control processing program for executing the shooting control process shown in FIG.
  • the storage unit 22 stores radiation irradiation conditions and image reading conditions in association with the examination target region.
  • Various programs are stored in the form of readable program code, and the control unit 21 sequentially executes operations according to the program code.
  • the operation unit 23 includes a keyboard having a cursor key, numeric input keys, various function keys, and the like, and a pointing device such as a mouse.
  • the control unit 23 controls an instruction signal input by key operation or mouse operation on the keyboard.
  • the operation unit 23 may include a touch panel on the display screen of the display unit 24. In this case, the operation unit 23 outputs an instruction signal input via the touch panel to the control unit 21.
  • the display unit 24 includes a monitor such as an LCD (Liquid Crystal Display) or a CRT (Cathode Ray Tube), and reproduces and displays a dynamic image in accordance with an instruction of a display signal input from the control unit 21. Data, instruction contents input from the operation unit 23, and the like are displayed.
  • a monitor such as an LCD (Liquid Crystal Display) or a CRT (Cathode Ray Tube)
  • LCD Liquid Crystal Display
  • CRT Cathode Ray Tube
  • the communication unit 25 includes a LAN adapter, a modem, a TA (Terminal Adapter), and the like, and controls data transmission / reception with each device connected to the communication network NT.
  • the diagnosis console 3 is a moving image processing apparatus that acquires a dynamic image from the imaging console 2, displays the acquired dynamic image, and makes a diagnostic interpretation by a doctor.
  • the diagnostic console 3 acquires the dynamic image from the external system.
  • the imaging console 2 and the diagnostic console 3 are integrated, that is, one apparatus is configured to serve as both the imaging console 2 and the diagnostic console 3.
  • the diagnostic console 3 includes a control unit 31, a storage unit 32, an operation unit 33, a display unit 34, and a communication unit 35, and each unit is connected by a bus 36.
  • the control unit 31 includes a CPU, a RAM, and the like.
  • the CPU of the control unit 31 reads out the system program and various processing programs stored in the storage unit 32 in accordance with the operation of the operation unit 33 and expands them in the RAM, and performs image analysis described later according to the expanded programs.
  • Various processes including the process are executed to centrally control the operation of each part of the diagnostic console 3.
  • the control unit 31 implements an image analysis unit by executing an image analysis process described later.
  • the storage unit 32 is configured by a nonvolatile semiconductor memory, a hard disk, or the like.
  • the storage unit 32 stores various programs such as an image analysis processing program for executing an image analysis process by the control unit 31 and data such as parameters necessary for the execution of the processing or processing results. These various programs are stored in the form of readable program codes, and the control unit 31 sequentially executes operations according to the program codes.
  • the operation unit 33 includes a keyboard having cursor keys, numeric input keys, various function keys, and the like, and a pointing device such as a mouse.
  • the control unit 33 controls an instruction signal input by key operation or mouse operation on the keyboard.
  • the operation unit 33 may include a touch panel on the display screen of the display unit 34, and in this case, an instruction signal input via the touch panel is output to the control unit 31.
  • the display unit 34 is configured by a monitor such as an LCD or a CRT, and reproduces and displays a dynamic image according to an instruction of a display signal input from the control unit 31, various data, or input from the operation unit 33.
  • the instruction contents are displayed.
  • the communication unit 35 includes a LAN adapter, a modem, a TA, and the like, and controls data transmission / reception with each device connected to the communication network NT.
  • FIG. 3 shows photographing control processing executed in the control unit 21 of the photographing console 2.
  • the photographing control process is executed in cooperation with the photographing control processing program stored in the control unit 21 and the storage unit 22.
  • the operation unit 23 of the imaging console 2 acquires imaging order information (see FIG. 8 to be described later) from the RIS 4 (see FIG. 1) described above, and the patient information (patient name) of the imaging target (subject M). , Age, sex, etc.) are input to the imaging console 2 (step S1).
  • the radiation irradiation conditions are read from the storage unit 22 and set in the radiation irradiation control device 12, and the image reading conditions are read from the storage unit 22 and set in the reading control device 14 (step S2).
  • dynamic shooting is performed, for example, as follows. That is, when an imaging switch is operated to operate an exposure switch (not shown) of the radiation irradiation control device 12 (see FIG. 2) and a radiation irradiation instruction is input (step S3; YES), the cycle detection device 16 is instructed to start cycle detection. Is output, and the cycle detection of the breathing motion of the subject M by the cycle detection sensor 15 and the cycle detection device 16 is started (step S4). Then, dynamic imaging is performed (step S5). For example, when a predetermined number of dynamic cycles is detected by the cycle detection device 16, the imaging operation is stopped.
  • Frame images obtained by shooting are sequentially input to the shooting console 2, stored in the storage unit 22 in association with numbers indicating the shooting order (step S6), and displayed on the display unit 24 (step S7).
  • the imaging engineer confirms the positioning and the like from the displayed dynamic image, and determines whether an image suitable for diagnosis is acquired by imaging (successful imaging) or re-imaging is necessary (imaging failure). Then, the operation unit 23 is operated to input a determination result.
  • step S8 When a determination result indicating that the shooting is OK is input by a predetermined operation of the operation unit 23 (step S8; YES), an identification ID for identifying the dynamic image or each of a series of frame images acquired by the dynamic shooting is displayed. Information such as patient information, examination target region, radiation irradiation condition, image reading condition, imaging order number, cycle information, etc. are attached (for example, written in the header area of the image data), and for diagnosis via the communication unit 25 It is transmitted to the console 3 (step S9). Then, this process ends. On the other hand, when a determination result indicating photographing NG is input by a predetermined operation of the operation unit 23 (step S8; NO), a series of frame images stored in the storage unit 22 is deleted (step S10).
  • step S11 it is determined whether or not re-shooting is necessary (step S11), and when the imaging engineer determines that re-shooting is necessary (step S11; YES), each process after step S2 is performed, and re-shooting is performed. If it is determined that it is unnecessary (step S11; NO), this process ends.
  • the diagnostic console 3 receives a series of frame images of the dynamic image from the imaging console 2 via the communication unit 35, it cooperates with the control unit 31 and the image analysis processing program stored in the storage unit 32. As a result, the image analysis processing shown in FIG. 4 is executed.
  • the diagnostic console 3 is not necessarily configured to perform both the ventilation analysis process and the pulmonary blood flow analysis process, and either one of the processes or other, for example, the joint portion of the human body described above. It is also possible to perform a bending / extension function analysis process or the like.
  • the ventilation analysis process and the pulmonary blood flow analysis process in the image analysis process are described in detail in Japanese Patent Application Laid-Open No. 2010-268779 and the like.
  • the vertical height of the diaphragm is calculated as an index value from the chest dynamic image obtained by imaging the lung field.
  • the diaphragm promotes the respiratory motion of the lungs by its vertical movement.
  • the vertical movement of the diaphragm is an index indicating the respiratory motion of the lung
  • the vertical height of the diaphragm is an index value indicating the respiratory motion of the lung (hereinafter referred to as an index value). It becomes.
  • the vertical height of the diaphragm as the index value can be expressed as a distance D in the vertical direction between the lung apex and the diaphragm. Then, for example, as shown in FIG. 6, by plotting this distance D with the horizontal axis as time t, it is possible to acquire the time change of the height D in the vertical direction of the diaphragm.
  • step S13 based on the vertical height D of the diaphragm as an index value indicating the respiratory motion, for example, whether or not there is an abnormality in the ventilation function in the lung field region R (see FIG. 5) can be diagnosed. it can. Further, in the pulmonary blood flow analysis process (step S13), which is not described, whether or not there is an abnormality in the pulmonary blood flow based on the temporal change in the position of the heart wall as an index value indicating the pulsation of the heart.
  • step S13 which is not described, whether or not there is an abnormality in the pulmonary blood flow based on the temporal change in the position of the heart wall as an index value indicating the pulsation of the heart.
  • the imaging console 2 has control means, input means, and display means as shown in FIG.
  • the imaging console 2 can be configured as a so-called notebook type or tablet type computer, for example.
  • the control unit 21 including a CPU or the like corresponds to the control unit
  • the operation unit 23 such as a mouse or a keyboard corresponds to the input unit
  • the display unit 34 corresponds to the display unit.
  • description will be given as a control unit 21, an input unit 23, and a display unit 24.
  • the imaging engineer inputs patient information and the like of the imaging target (subject M) when performing imaging (see step S1 in FIG. 3), and the imaging console 2 is connected to the radiation irradiation control device 12.
  • the radiation irradiation conditions are set with respect to the image, but these are usually performed based on the imaging order information.
  • the imaging order information includes “patient ID” P2, “patient name” P3, “gender” P4, “age” P5, “clinical department” P6 as patient information, and imaging part information.
  • imaging region P7, “imaging direction” P8, and the like.
  • shooting order ID P1 is automatically assigned to each shooting order information in the order in which shooting orders are received.
  • the shooting order information of the shooting order ID “001” is the shooting of the moving image (this is shown in the shooting order information of the shooting order ID “001” as indicated by “dynamic”). In this case, the case of a shooting order specifying dynamic shooting) is shown. For example, when shooting is tomosynthesis shooting, this is specified in the shooting order information.
  • the imaging order IDs “002” and “003” shown in FIG. 8 are imaging order information for designating simple imaging of the chest side and the abdomen front.
  • the control means 21 of the imaging console 2 sets the radiation irradiation conditions for the radiation irradiation control device 12 based on the imaging region specified in the imaging order information selected by the imaging engineer (patient information).
  • the radiation irradiation conditions such as the pulse rate and the X-ray tube voltage are set and the radiation irradiation control device 12 is controlled to control the radiation irradiation from the radiation source 11.
  • shooting order information relating to shooting to be performed is acquired from RIS4 (see FIG. 1) or the like.
  • the imaging engineer may directly input the imaging order information to the imaging console 2.
  • the imaging console 2 also functions as an RIS client, the input imaging order information is transmitted to the RIS 4 and registered.
  • the operation is not limited to the case of shooting a moving image but is a general operation performed even in the case of simple shooting.
  • the control means 21 of the shooting console 2 performs the RIS4 and the like as described above.
  • the shooting order information specifies shooting order information (that is, “dynamic” as shown in FIG. 8). It is determined whether or not the specified shooting order information).
  • the control means 21 of the imaging console 2 at that time has patient information and imaging site information specified in the imaging order information.
  • a past moving image of the imaging region of the patient is obtained from, for example, PACS 6 (see FIG. 1). Then, the past moving image is displayed on the display means 24 in accordance with the operation of the photographing engineer.
  • the radiographer changes and sets the X-ray tube voltage value set by the radiographing console 2 to the radiation irradiation control device 12 as described above, for example, as seen in past videos. It is also possible to perform such operations.
  • the control unit 21 obtains or inputs imaging order information prior to imaging, and the patient specified in the imaging order information at the time of input. Since the past video obtained by imaging the imaged part of the image is acquired and reproduced and displayed on the display means 24, the imaging engineer can use the displayed past video as a reference, and the past video is used as a reference. With reference to this, it is possible to perform the current shooting more appropriately by accurately feeding back points that did not go well in the past shooting.
  • the control means 21 of the imaging console 2 obtains the imaging order information from the RIS 4 (see FIG. 1) or the like, but also when the imaging order information is input to the imaging console 2. Based on the patient information specified in the imaging order information and the information on the imaging region, the past moving image is obtained and the acquired past moving image is displayed on the display means 24.
  • the imaging console 2 can be configured to obtain a moving image of another patient that has imaged the imaging region specified in the imaging order information.
  • the imaging console 2 may be configured to obtain a moving image of another imaging region of the patient.
  • the imaging technician it becomes possible for the imaging technician to accurately recognize what kind of problems may occur when shooting a movie for the patient, and in the past, This makes it possible to perform the current shooting more appropriately by accurately feeding back the point that has become a problem when shooting.
  • the data amount of the moving image becomes a gigabyte level, and for example, it may take a very long time to transmit the moving image data from the PACS 6 to the photographing console 2.
  • data transmission between the PACS 6 and the imaging console 2 may be performed in accordance with the above-mentioned DICOM (Digital Image and Communications in Medicine).
  • DICOM Digital Image and Communications in Medicine
  • data transmission by DICOM generally has a slow transfer rate and time. It is easy to start.
  • the photographing console 2 may be configured to obtain the past video data from the external computer 7 instead of the PACS 6 when the photographing order information is obtained or inputted as described above. Is possible. If comprised in this way, it will become possible to acquire data in a shorter time than the case where it acquires directly from PACS6 according to DICOM.
  • past video data is stored in a plurality of external computers 7 or the like connected to the network N, respectively, and the past video from the location where the shooting console 2 can transfer the data most quickly is stored. It is also possible to obtain the data. If constituted in this way, it becomes possible to obtain the data of the past animation promptly.
  • a method of thinning out the quasi-image there are a method of thinning out in time, a method of thinning out spatially, and a method of thinning out temporally and spatially.
  • the method of decimating in time is to extract images at a rate of one for every predetermined number (for example, 5) of each image of a moving image, and for the remaining images (for example, the remaining of every 5 images) 4 data).
  • spatial thinning is a method in which, for each of a plurality of images constituting a moving image, data such as one pixel is extracted for every two pixels or four pixels, and data that is not extracted (that is, for example, two pixels or four pixels). This is a method of thinning out the remaining 1 pixel data or 3 pixel data).
  • the method of thinning out temporally and spatially means a method of thinning out data by performing both.
  • the ratio of thinning out the data did not go well in past shooting by referring to the past video displayed on the display means 24 of the shooting console 2 by the shooting engineer. The ratio is determined so that points can be confirmed.
  • the photographic engineer acquires the thinned past video that the control means 21 of the photographing console 2 obtains based on the photographing order information and reproduces and displays it on the display means 24. It is possible to properly feed back the points that did not go well in the past shooting with reference to this, and to make the current shooting more appropriate, and to reduce the amount of data obtained by the console 2 for shooting, It is possible to quickly obtain a past moving image (in this case, a thinned past moving image) in a shorter time.
  • the vertical height D of the diaphragm As an analysis result attached to the past moving image, for example, in the case of the dynamic analysis (the chest dynamic analysis) of the lung field region R described above, the vertical height D of the diaphragm as shown in FIG.
  • the temporal change such as the lateral width of the lung field region R (see FIG. 5), or the prescribed respiration rate obtained by further analyzing them (ie, for example, The time required for 3 breaths), the period and amplitude of the heartbeat, the height D of the diaphragm in the vertical direction, and the difference between the maximum value and the minimum value of the lateral width of the lung region R, and the various attached to past videos Analysis results can be used.
  • the data volume of the analysis results sent is much smaller than the data volume of past videos, so analysis as reference information regarding the current shooting compared to the case of obtaining past videos.
  • the result can be obtained quickly in a shorter time.
  • the imaging engineer looks at the analysis result of the past moving image and gives an instruction so that the patient can appropriately perform imaging at the time of imaging, or an imaging console It is possible to perform operations such as appropriately changing and setting the radiation irradiation conditions set by 2 to the radiation irradiation control device 12.
  • past videos include information that the doctor noticed when obtaining the above analysis results with the diagnostic console 3 (see FIG. 1) (ie, shallow breathing, weak heartbeat, etc.) and analysis results.
  • information such as causes and findings that were not obtained (that is, for example, breathing is very shallow and the cycle is fast, and posture cannot be maintained during a specified respiration rate) is attached.
  • the control means 21 of the imaging console 2 obtains information attached to the past video instead of obtaining the data of the past video, and displays the information on the display means 24. It can also be configured to display information.
  • the amount of information transmitted is much smaller than the amount of past video data, so information can be quickly and quickly compared to the case of obtaining past video. It can be obtained.
  • the imaging engineer sees the information attached to the past moving image and gives an instruction to the patient so that the patient can properly perform the imaging at the time of imaging. For patients who cannot be photographed in the right position, photographing is performed in a supine position, or the irradiation condition set by the imaging console 2 for the radiation irradiation control device 12 is appropriately changed and set. The operation can be performed.
  • the imaging console 2 sets the period of irradiation of radiation from the radiation source 11 (see FIG. 2) to, for example, 15 seconds. An irradiation period is set in the radiation irradiation control device 12.
  • the control means 21 of the imaging console 2 sets a short irradiation period (for example, 12 seconds) in the radiation irradiation control device 12 of the radiation source 11.
  • the control means 21 of the imaging console 2 causes the radiation irradiation control device 12 to emit radiation in order to accurately capture temporal changes in the lung field region R even when the radiation irradiation period is shortened.
  • 11 is set to a pulse rate faster than the pulse rate when the prescribed respiratory rate is set to 15 seconds.
  • the frame rate, etc., among the image reading conditions input by the imaging console 2 to the reading control device 14 (see FIG. 2) is also input with a value changed according to the change in the pulse rate, etc. Is performed.
  • control means 21 of the imaging console 2 performs the same process. Can be configured.
  • the control means 21 of the imaging console 2 calculates the radiation irradiation condition to be set in the radiation irradiation control device 12 of the radiation source 11 based on the analysis result and information attached to the past moving image, and the radiation source. 11 is configured to be set in the radiation irradiation control device 12, it is possible to appropriately perform photographing with reference to a past moving image.
  • the determined radiation irradiation conditions are set not only in the radiation irradiation control device 12 but also in the radiation detection unit 13 and the reading control device 14 that receive radiation and generate an image.
  • the radiation irradiation conditions such as the calculated radiation irradiation period and pulse rate (frame rate) are displayed, and the radiation is received when the imaging engineer approves the radiation irradiation conditions. It is also possible to configure so that the irradiation conditions are changed.
  • It may be used in the field of radiographic imaging (especially in the medical field).
  • Imaging console 11 Radiation source 13 Radiation detector (semiconductor image sensor) 21 Control means (control unit) 24 Display means (display unit) 100 Radiation imaging system D Vertical height of diaphragm (analysis result) M Subject P2 to P6 Patient information P7, P8 Imaging region information

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Medical Informatics (AREA)
  • Public Health (AREA)
  • Physics & Mathematics (AREA)
  • Pathology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • Optics & Photonics (AREA)
  • Radiology & Medical Imaging (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Heart & Thoracic Surgery (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • Biophysics (AREA)
  • Veterinary Medicine (AREA)
  • Human Computer Interaction (AREA)
  • Dentistry (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mathematical Physics (AREA)
  • Physiology (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Data Mining & Analysis (AREA)
  • Databases & Information Systems (AREA)
  • Epidemiology (AREA)
  • Primary Health Care (AREA)
  • Apparatus For Radiation Diagnosis (AREA)

Abstract

過去の動画を参照して撮影を適正に行わせることが可能な撮影用コンソールを提供する。 撮影用コンソール2は、動画を表示可能な表示手段24と、実施される撮影に関する、少なくとも患者の情報P2~P6と撮影部位P7、P8の情報が指定された撮影オーダー情報に基づいて制御を行う制御手段21と、を備え、制御手段21は、撮影オーダー情報を入手し、又は撮影オーダー情報が入力されると、その時点で、当該撮影オーダー情報が動画の撮影を指定する撮影オーダー情報である場合には、当該撮影オーダー情報に指定されている患者の情報P2~P6又は撮影部位の情報P7、P8の少なくとも1つの情報に基づいて、当該患者を撮影した過去の動画又は当該撮影部位を撮影した過去の動画を入手して、表示手段24上に入手した過去の動画を表示させる。

Description

撮影用コンソール及び放射線画像撮影システム
 本発明は、撮影用コンソール及び放射線画像撮影システムに関する。
 FPD(flat panel detector)等の半導体イメージセンサーは従来のフィルム/スクリーンや輝尽性蛍光体プレート等に代わって放射線の静止画撮影用の装置として開発されてきたが、このような半導体イメージセンサーを利用して撮影部位(検査対象部位)の動態画像を撮影し、診断に応用する試みがなされるようになってきている(例えば特許文献1、2等参照)。
 具体的には、半導体イメージセンサーの画像データの読み出しと残存電荷リセットの応答性の早さを利用し、半導体イメージセンサーの読取・消去のタイミングと合わせて放射線源からパルス状の放射線を連続照射し、通常1秒間に複数回の撮影を行って、撮影部位の動態を撮影する。撮影により取得された一連の複数枚の画像や、それらの解析結果を重ね合わせた画像を順次表示する等することにより、医師は撮影部位の一連の動きを認識することが可能となる。
 そして、動態撮影については、撮影を適正に行うための技術がいくつか提案されている。例えば特許文献1では、本撮影前にプレ撮影を行い、プレ撮影時の複数の動態画像を画像解析して、本撮影時の撮影条件を算出し、算出された撮影条件に基づいて本撮影を行わせるシステムが記載されている。また、特許文献2では、過去の撮影に基づいて今回の撮影における、連続する呼吸動作の中で撮影に適切なタイミングをユーザーに通知する等して、撮影を適正に行うことができるように誘導するシステムが記載されている。
特開2011-152154号公報 国際公開第2013/058055号 特開2013-048746号公報
 ところで、上記の半導体イメージセンサーを用いて単純撮影(一般撮影等ともいう。すなわち放射線源から放射線を1回照射して1枚の画像を撮影する撮影)のように歴史が長く、診断用の画像としてどのような画像がよいか等が確立されている分野では、例えば特許文献3に記載されているように、過去の撮影のうち適正に行われた撮影における撮影条件を抽出して今回の撮影に適用することで撮影を適正に行わせるように構成することが可能である。
 しかしながら、上記のような動態解析の技術、すなわち半導体イメージセンサーを用いて被写体の撮影部位の動態画像を撮影して診断に応用することを試みる技術は、歴史が浅い新しい検査方法であるため、現状では、診断用の画像としてどのような画像がよいか等を表すリファレンスとなるものが確立されている(或いは存在している)とは言えない状況にある。
 本発明は、上記の点を鑑みてなされたものであり、過去の動画等をリファレンスとして撮影を適正に行わせることが可能な撮影用コンソール及び放射線画像撮影システムを提供することを目的とする。
 前記の問題を解決するために、本発明の撮影用コンソールや放射線画像撮影システムは、
 動画を表示可能な表示手段と、
 実施される撮影に関する、少なくとも患者の情報と撮影部位の情報が指定された撮影オーダー情報に基づいて制御を行う制御手段と、
を備え、
 制御手段は、撮影オーダー情報を入手し、又は撮影オーダー情報が入力されると、その時点で、当該撮影オーダー情報が動画の撮影を指定する撮影オーダー情報である場合には、当該撮影オーダー情報に指定されている患者の情報又は撮影部位の情報の少なくとも1つの情報に基づいて、当該患者を撮影した過去の動画又は当該撮影部位を撮影した過去の動画を入手して、表示手段上に入手した過去の動画を表示させることを特徴とする。
 本発明のような方式のコンソールや放射線画像撮影システムによれば、過去の動画等をリファレンスとして撮影を適正に行わせることが可能となる。
医療情報管理システムの構成を表す図である。 本実施形態に係る放射線画像撮影システムの一例の構成を表す図である。 撮影用コンソールの制御部で実行される撮影制御処理を示すフローチャートである。 診断用コンソールの制御部で実行される画像解析処理を示すフローチャートである。 1つの呼吸サイクルにおいて撮影された複数の時間位相のフレーム画像を表す図である。 横隔膜の上下方向の高さの時間変化を表すグラフである。 撮影用コンソールの構成例を表す図である。 撮影オーダー情報の一例を表す図である。
 以下、本発明に係る撮影用コンソール及び放射線画像撮影システムの実施の形態について、図面を参照して説明する。ただし、本発明は図示例のものに限定されるものではない。
 なお、以下では、動画撮影が動態撮影である場合について説明するが、本発明は、これに限らず、例えばトモシンセシス撮影のように複数の画像(フレーム画像)を時間的に連続して撮影する他の動画撮影の場合にも適用可能である。また、この場合の動画の撮像行為はいわば制約付き動画撮影と言ってよいものであり、その制約とは時間の制限であったり、表示のリアルタイム性を保証しない点で制約のない通常の動画撮影とは異なっている。
 本実施形態に係る放射線画像撮影システム100は、例えば図1に示すように、ネットワークNを介して、HIS(Hospital Information System;病院情報システム)4やRIS(Radiology Information System;放射線科情報システム)5、PACS(Picture Archiving and Communication System)6等の外部システム、サーバー等の外部コンピューター7で構成される医療情報管理システム1に接続され、或いは医療情報管理システム1の一部として構成されている。
[放射線画像撮影システムの構成について]
 次に、本実施形態に係る放射線画像撮影システム100の一例として動態画像撮影を行う場合について説明する。図2に、この場合の放射線画像撮影システム100の構成例を示す。図2に示すように、放射線画像撮影システム100は、撮影技師が撮影に用いる撮影用コンソール2や、医師が診断に用いる診断用コンソール3を備えている。そして、撮影装置10と、撮影用コンソール2とが通信ケーブル等により接続され、撮影用コンソール2と、診断用コンソール3とがLAN(Local Area Network)等の通信ネットワークNTを介して接続されて構成されている。
[撮影装置10の構成]
 撮影装置10は、例えば、呼吸運動に伴う肺の膨張及び収縮の形態変化、心臓の拍動等の、周期性(サイクル)を持つ胸部の動態を撮影する装置である。動態撮影は、人体の胸部に対し、X線等の放射線を連続照射して複数の画像を取得(即ち、連続撮影)することにより行う。この連続撮影により得られた一連の画像を動態画像と呼ぶ。また、動態画像を構成する複数の画像のそれぞれをフレーム画像と呼ぶ。
 なお、本実施形態に係る放射線画像撮影システム100では、上記のように肺や心臓等の動態以外にも、例えば人体の関節部分の屈伸動作を動態撮影する等して、関節部分の屈伸機能解析処理等を行うように構成することも可能である。
 撮影装置10は、図2に示すように、放射線源11、放射線照射制御装置12、放射線検出部13、読取制御装置14、サイクル検出センサー15、サイクル検出装置16等を備えて構成されている。なお、放射線検出部13と読取制御装置14を一体的に構成すること(すなわち放射線検出部13が読取制御装置14を内包するように構成すること)も可能である。
 放射線源11は、放射線照射制御装置12の制御に従って、被写体Mに対し放射線(X線)を照射する。放射線照射制御装置12は、撮影用コンソール2に接続されており、撮影用コンソール2から入力された放射線照射条件に基づいて放射線源11を制御して放射線撮影を行う。撮影用コンソール2から入力される放射線照射条件は、例えば、連続照射時のパルスレート、パルス幅、パルス間隔、撮影開始/終了タイミング、X線管電流の値、X線管電圧の値、フィルター種等である。パルスレートは、1秒あたりの放射線照射回数であり、後述するフレームレートと一致している。パルス幅は、放射線照射1回当たりの放射線照射時間である。パルス間隔は、連続撮影において、1回の放射線照射開始から次の放射線照射開始までの時間であり、後述するフレーム間隔と一致している。
 放射線検出部13は、FPD等の半導体イメージセンサーにより構成される。FPDは、例えば、ガラス基板等を有しており、基板上の所定位置に、放射線源11から照射されて少なくとも被写体Mを透過した放射線をその強度に応じて検出し、検出した放射線を電気信号に変換して蓄積する複数の画素がマトリックス状に配列されている。各画素は、例えばTFT(Thin Film Transistor)等のスイッチング部により構成されている。
 読取制御装置14は、撮影用コンソール2に接続されている。読取制御装置14は、撮影用コンソール2から入力された画像読取条件に基づいて放射線検出部13の各画素のスイッチング部を制御して、当該各画素に蓄積された電気信号の読み取りをスイッチングしていき、放射線検出部13に蓄積された電気信号を読み取ることにより、画像データを取得する。この画像データがフレーム画像である。そして、読取制御装置14は、取得したフレーム画像を撮影用コンソール2に出力する。
 画像読取条件は、例えば、フレームレート(或いはフレーム間隔)、画素サイズ、画像サイズ(マトリックスサイズ)等である。フレームレートは、1秒あたりに取得するフレーム画像数であり、パルスレートと一致している。フレーム間隔は、連続撮影において、1回のフレーム画像の取得動作開始から次のフレーム画像の取得動作開始までの時間であり、パルス間隔と一致している。
 ここで、放射線照射制御装置12と読取制御装置14は互いに接続されており、互いに同期信号をやりとりして放射線照射動作と画像の読み取りの動作を同調させるようになっている。
 サイクル検出センサー15は、被写体Mの呼吸運動の状態を検出して検出情報をサイクル検出装置16に出力する。サイクル検出センサー15としては、例えば、呼吸モニターベルト、CCD(Charge Coupled Device)カメラ、光学カメラ、スパイロメーター等を適用することができる。
 サイクル検出装置16は、サイクル検出センサー15により入力された検出情報に基づいて、呼吸サイクル数、及び現在呼吸運動の1サイクル中のどの状態であるか(例えば、吸気、吸気から呼気の変換点、呼気、呼気から吸気の変換点のどの状態か)を検出し、検出結果(サイクル情報)を撮影用コンソール2の制御部21に出力する。サイクル検出装置16は、例えば、サイクル検出センサー15(呼吸モニターベルト、CCDカメラ、光学カメラ、スパイロメーター等)により肺の状態が吸気から呼気への変換点であることを示す検出情報が入力されたタイミングを1サイクルの基点とし、次にこの状態が検出されるタイミングまでの間を1サイクルとして認識する。
[撮影用コンソール2の構成]
 次に、撮影用コンソール2の一般的な構成について説明する。本実施形態に係る撮影用コンソール2の詳しい構成等については後で説明する。
 撮影用コンソール2は、放射線照射条件や画像読取条件を撮影装置10に出力して撮影装置10による放射線撮影及び放射線画像の読み取り動作を制御するとともに、撮影装置10により取得された動態画像を撮影技師によるポジショニングの確認や診断に適した画像であるか否かの確認用に表示する。
 撮影用コンソール2は、図2に示すように、制御部21、記憶部22、操作部23、表示部24、通信部25を備えて構成され、各部はバス26により接続されている。
 制御部21は、CPU(Central Processing Unit)、RAM(Random Access Memory)等により構成される。制御部21のCPUは、操作部23の操作に応じて、記憶部22に記憶されているシステムプログラムや各種処理プログラムを読み出してRAM内に展開し、展開されたプログラムに従って後述する撮影制御処理を始めとする各種処理を実行し、撮影用コンソール2各部の動作や、撮影装置10の放射線照射動作及び読み取り動作を集中制御する。
 記憶部22は、不揮発性の半導体メモリーやハードディスク等により構成される。記憶部22は、制御部21で実行される各種プログラムやプログラムにより処理の実行に必要なパラメーター、或いは処理結果等のデータを記憶する。例えば、記憶部22は、図3に示す撮影制御処理を実行するための撮影制御処理プログラムを記憶している。また、記憶部22は、検査対象部位に対応付けて放射線照射条件及び画像読取条件を記憶している。各種プログラムは、読取可能なプログラムコードの形態で格納され、制御部21は、当該プログラムコードに従った動作を逐次実行する。
 操作部23は、カーソルキー、数字入力キー、及び各種機能キー等を備えたキーボードと、マウス等のポインティングデバイスを備えて構成され、キーボードに対するキー操作やマウス操作により入力された指示信号を制御部21に出力する。また、操作部23は、表示部24の表示画面にタッチパネルを備えても良く、この場合、タッチパネルを介して入力された指示信号を制御部21に出力する。
 表示部24は、LCD(Liquid Crystal Display)やCRT(Cathode Ray Tube)等のモニターにより構成され、制御部21から入力される表示信号の指示に従って、動態画像を再生して表示したり、各種のデータや、操作部23から入力された指示内容等を表示する。
 通信部25は、LANアダプターやモデムやTA(Terminal Adapter)等を備え、通信ネットワークNTに接続された各装置との間のデータ送受信を制御する。
[診断用コンソール3の構成]
 診断用コンソール3は、撮影用コンソール2から動態画像を取得し、取得した動態画像を表示して医師が読影診断するための動画像処理装置である。なお、撮影用コンソール2から動態画像が一旦PACS(Picture Archiving and Communication System)等の外部システムに送られた後で診断用コンソール3が外部システムから動態画像を取得するような場合もある。また、撮影用コンソール2と診断用コンソール3が一体化されている、すなわち1台の装置が撮影用コンソール2も診断用コンソール3も兼ねるように構成される場合もある。
 診断用コンソール3は、図2に示すように、制御部31、記憶部32、操作部33、表示部34、通信部35を備えて構成され、各部はバス36により接続されている。
 制御部31は、CPU、RAM等により構成される。制御部31のCPUは、操作部33の操作に応じて、記憶部32に記憶されているシステムプログラムや、各種処理プログラムを読み出してRAM内に展開し、展開されたプログラムに従って、後述する画像解析処理を始めとする各種処理を実行し、診断用コンソール3各部の動作を集中制御する。制御部31は、後述する画像解析処理を実行することにより画像解析手段を実現する。
 記憶部32は、不揮発性の半導体メモリーやハードディスク等により構成される。記憶部32は、制御部31で画像解析処理を実行するための画像解析処理プログラムを始めとする各種プログラムやプログラムにより処理の実行に必要なパラメーター、或いは処理結果等のデータを記憶する。これらの各種プログラムは、読取可能なプログラムコードの形態で格納され、制御部31は、当該プログラムコードに従った動作を逐次実行する。
 操作部33は、カーソルキー、数字入力キー、及び各種機能キー等を備えたキーボードと、マウス等のポインティングデバイスを備えて構成され、キーボードに対するキー操作やマウス操作により入力された指示信号を制御部31に出力する。また、操作部33は、表示部34の表示画面にタッチパネルを備えても良く、この場合、タッチパネルを介して入力された指示信号を制御部31に出力する。
 表示部34は、LCDやCRT等のモニターにより構成され、制御部31から入力される表示信号の指示に従って、動態画像を再生して表示したり、各種のデータや、操作部33から入力された指示内容等を表示する。
 通信部35は、LANアダプターやモデムやTA等を備え、通信ネットワークNTに接続された各装置との間のデータ送受信を制御する。
[放射線画像撮影システム100の動作]
 次に、上記放射線画像撮影システム100における動作について説明する。
[撮影装置10、撮影用コンソール2の動作]
 まず、撮影装置10による撮影動作、及び撮影が行われる際の撮影用コンソール2による一般的な撮影動作について説明する。図3に、撮影用コンソール2の制御部21において実行される撮影制御処理を示す。撮影制御処理は、制御部21と記憶部22に記憶されている撮影制御処理プログラムとの協働により実行される。
 まず、撮影用コンソール2の操作部23が前述したRIS4(図1参照)から撮影オーダー情報(後述する図8参照)を取得する等して、撮影対象(被写体M)の患者情報(患者の氏名、年齢、性別等)等の撮影用コンソール2への入力が行われる(ステップS1)。次いで、放射線照射条件が記憶部22から読み出されて放射線照射制御装置12に設定されるとともに、画像読取条件が記憶部22から読み出されて読取制御装置14に設定される(ステップS2)。
 次いで、動態撮影は、例えば以下のようにして行われる。すなわち、撮影技師により放射線照射制御装置12(図2参照)の図示しない曝射スイッチが操作されて放射線照射指示が入力されると(ステップS3;YES)、サイクル検出装置16にサイクル検出開始の指示が出力され、サイクル検出センサー15及びサイクル検出装置16による被写体Mの呼吸運動のサイクル検出が開始される(ステップS4)。そして、動態撮影が行われ(ステップS5)、例えばサイクル検出装置16により予め定められた動態サイクル数が検出されると、撮影動作が停止される。
 撮影により取得されたフレーム画像は順次撮影用コンソール2に入力され、撮影順を示す番号と対応付けて記憶部22に記憶されるとともに(ステップS6)、表示部24に表示される(ステップS7)。撮影技師は、表示された動態画像によりポジショニング等を確認し、撮影により診断に適した画像が取得された(撮影成功)か、再撮影が必要(撮影失敗)か、を判断する。そして、操作部23を操作して、判断結果を入力する。
 操作部23の所定の操作により撮影OKを示す判断結果が入力されると(ステップS8;YES)、動態撮影で取得された一連のフレーム画像のそれぞれに、動態画像を識別するための識別IDや、患者情報、検査対象部位、放射線照射条件、画像読取条件、撮影順を示す番号、サイクル情報等の情報が付帯され(例えば画像データのヘッダー領域に書き込まれ)、通信部25を介して診断用コンソール3に送信される(ステップS9)。そして、本処理は終了する。一方、操作部23の所定の操作により撮影NGを示す判断結果が入力されると(ステップS8;NO)、記憶部22に記憶された一連のフレーム画像が削除される(ステップS10)。
 そして、再撮影の要否が判断され(ステップS11)、再撮影が必要であると撮影技師が判断した場合には(ステップS11;YES)、ステップS2以下の各処理が行われ、再撮影は不要であると判断した場合には(ステップS11;NO)、本処理は終了する。
[診断用コンソール3の動作]
 次に、診断用コンソール3における動作について説明する。診断用コンソール3においては、通信部35を介して撮影用コンソール2から動態画像の一連のフレーム画像が受信されると、制御部31と記憶部32に記憶されている画像解析処理プログラムとの協働により図4に示す画像解析処理が実行される。
 なお、診断用コンソール3で、必ずしも換気解析処理と肺血流解析処理の両方を行うように構成する必要はなく、いずれか一方の処理、或いは、それら以外の、例えば前述した人体の関節部分の屈伸機能解析処理等を行うように構成することも可能である。また、画像解析処理における換気解析処理や肺血流解析処理については、特開2010-268979号公報等に詳述されているため、詳しくは同文献等を参照されたい。
 以下、画像解析処理で換気解析処理(ステップS12)を行う場合について簡単に説明する。
 例えば、換気解析処理(ステップS12)では、肺野を撮影した胸部動態画像から、横隔膜の上下方向の高さが指標の値として算出される。横隔膜は、その上下運動によって肺の呼吸運動を促すものである。例えば図5に示す、1つの呼吸サイクルにおいて撮影された複数の時間位相T(T=t0~t6)のフレーム画像に示されるように、呼吸サイクルは、横隔膜の位置が上がる呼気期(T=t~t)と横隔膜の位置が下がる吸気期(T=t~t)により構成される。このように、胸部動態画像において、横隔膜の上下方向の動きは肺の呼吸運動を示す指標となり、横隔膜の上下方向の高さは肺の呼吸運動を示す指標の値(以下、指標値という。)となる。
 そして、図5からも分かるように、各フレーム画像で、肺尖の上下位置は呼気期でも吸気期でもほとんど変わらない。そのため、指標値としての横隔膜の上下方向の高さを、肺尖と横隔膜の垂直方向の距離Dとして表すことができる。そして、例えば図6に示すように、横軸を時間tとしてこの距離Dをプロットすることで、横隔膜の上下方向の高さDの時間変化を取得することができる。
 また、この呼吸運動を示す指標値としての横隔膜の上下方向の高さDに基づいて、例えば肺野領域R(図5参照)内で換気機能に異常があるか否か等を診断することができる。また、説明を省略した、肺血流解析処理(ステップS13)では、心臓の拍動を示す指標値としての心臓壁の位置の時間変化や、それに基づいて肺血流に異常があるか否か等を診断することが可能となるが、これらの点については、前述した特開2010-268979号公報等を参照されたい。
 そして、これらの解析結果は、上記の動態画像のデータに付帯されて、例えばPACS6(図1参照)等に保存される。
[本実施形態に係る撮影用コンソール2の構成等について]
 以下、本実施形態に係る撮影用コンソール2の構成について説明する。また、本実施形態に係る撮影用コンソール2の作用についてもあわせて説明する。
 撮影用コンソール2は、図7に示すように制御手段や入力手段、表示手段を有している。なお、撮影用コンソール2を、例えばいわゆるノート型やタブレット型のコンピューターとして構成することも可能である。そして、図2に示した例では、CPU等からなる制御部21が制御手段に相当し、マウスやキーボード等の操作部23が入力手段に相当し、表示部34が表示手段に相当するため、以下、図7に示すように、制御手段21、入力手段23、表示手段24として説明する。
 前述したように、撮影技師は、撮影を行う際、撮影対象(被写体M)の患者情報等の入力を行い(図3のステップS1参照)、また、撮影用コンソール2は、放射線照射制御装置12に対して放射線照射条件を設定するが、これらは、通常、撮影オーダー情報に基づいて行われる。
 撮影オーダー情報は、例えば図8に例示するように、患者情報としての「患者ID」P2、「患者氏名」P3、「性別」P4、「年齢」P5、「診療科」P6や、撮影部位情報としての「撮影部位」P7や「撮影方向」P8等で構成されている。そして、例えば、撮影オーダーを受け付けた順に、各撮影オーダー情報に対して「撮影オーダーID」P1が自動的に割り当てられる。
 なお、図8の例では、撮影オーダーIDが「001」の撮影オーダー情報において「動態」と指定されていることから分かるように、撮影オーダーID「001」の撮影オーダー情報が動画の撮影(この場合は動態撮影)を指定する撮影オーダーである場合が示されている。例えば、撮影がトモシンセシス撮影である場合には、その旨が撮影オーダー情報中に指定される。なお、図8に示した撮影オーダーID「002」、「003」は胸部側面や腹部正面の単純撮影を指定する撮影オーダー情報である。
 撮影用コンソール2の制御手段21は、放射線照射制御装置12に対して放射線照射条件を設定する際には、撮影技師により選択された撮影オーダー情報に指定されている撮影部位に基づいて(患者情報も参照する場合がある。)、前述したパルスレートやX線管電圧等の放射線照射条件を設定して放射線照射制御装置12を制御して、放射線源11からの放射線照射を制御する。
 一方、撮影に先立って(撮影直前である場合だけでなく前日であってもよい。)、実施する撮影に関する撮影オーダー情報をRIS4(図1参照)等から取得する。また、撮影技師が、撮影オーダー情報を撮影用コンソール2に直接入力する場合もある。なお、撮影用コンソール2がRISクライアントとしても機能している場合は、入力された撮影オーダー情報がRIS4等に送信されて登録される。
 ここまでは、動画の撮影の場合に限らず、単純撮影の場合でも行われる一般的な操作であるが、本実施形態では、撮影用コンソール2の制御手段21は、上記のようにしてRIS4等から撮影オーダー情報を入手し、或いは撮影技師により撮影オーダー情報が直接入力されると、その撮影オーダー情報が動画の撮影を指定する撮影オーダー情報(すなわち図8に示したように「動態」等が指定されている撮影オーダー情報)であるか否かを判断する。
 そして、撮影用コンソール2の制御手段21は、撮影オーダー情報が動画の撮影を指定する撮影オーダー情報である場合には、その時点で、当該撮影オーダー情報に指定されている患者情報や撮影部位情報に基づいて、当該患者の当該撮影部位を撮影した過去の動画を例えばPACS6(図1参照)から入手する。そして、撮影技師の操作に応じて表示手段24上にこの過去の動画を表示させるようになっている。
 このように構成すれば、撮影技師が、撮影用コンソール2の表示手段24上に再生されて表示された過去の動画を見て、例えば患者の呼吸が浅く、前述した肺の換気機能(図5参照)の検査を行いづらいと判断した場合には、撮影時に患者に「深く呼吸してください。」等の指示を行うことが可能となる。
 或いは、撮影技師が、過去の動画に見て、例えば、上記のように撮影用コンソール2が放射線照射制御装置12に対して設定するX線管電圧の値を高くするように変更して設定する等の操作を行うことも可能である。
[効果]
 以上のように、本実施形態に係る撮影用コンソール2によれば、制御手段21が、撮影に先立って、撮影オーダー情報を入手し、或いは入力された時点で、撮影オーダー情報に指定された患者の撮影部位を撮影した過去の動画を入手して表示手段24上で再生させて表示するため、撮影技師が、表示された過去の動画をリファレンスとすることが可能となり、過去の動画をリファレンスとして参照して、過去の撮影でうまく行かなかった点を的確にフィードバックする等して、今回の撮影をより適正に行わせることが可能となる。
 また、前述した特許文献1に記載されているように、本撮影前にプレ撮影を行って撮影を適正に行うように構成すると、プレ撮影を行う分、患者の被曝線量が多くなってしまう虞れがあるが、本実施形態では、このようなプレ撮影を行わず、既に行われた過去の動画をリファレンスとして参照するため、患者の被曝線量が多くなる等の問題が生じることを的確に回避することが可能となる。
 さらに、本実施形態では、撮影用コンソール2の制御手段21が、RIS4(図1参照)等から撮影オーダー情報を入手した場合だけでなく、撮影用コンソール2に撮影オーダー情報が入力された時点で、撮影オーダー情報に指定されている患者の情報や撮影部位の情報に基づいて過去の動画を入手して表示手段24上に入手した過去の動画を表示させる。
 例えば動態撮影等を緊急に行わなければならない場合に、撮影用コンソール2に入力された撮影オーダー情報を、一旦RIS4に送信して登録した後、RIS4から改めてその撮影オーダー情報を入手するのでは時間がかかり、過去の動画を入手して表示手段24上に表示するまでに時間がかかってしまうが、上記のように撮影用コンソール2に撮影オーダー情報が入力された場合にはその時点で過去の動画を入手することで、表示手段24上に過去の動画を速やかに表示することが可能となり、緊急に動態撮影等を行わなければならないような場合にも対処することができる。
 以下、上記の実施形態を応用した構成例について説明する。
[構成例1]
 例えば、動画の撮影を行う対象の患者について、過去に当該患者を撮影した動画がない場合や、当該患者を撮影した動画はあるが少なくとも同じ撮影部位を撮影した動画がない場合等には、例えば、撮影オーダー情報に指定された撮影部位を撮影した他の患者の動画を撮影用コンソール2が入手するように構成することが可能である。
 このように構成すれば、当該患者の動画ではないが、少なくともその撮影部位を撮影する際にどのような問題が生じる可能性があるかを撮影技師が的確に認識して撮影を行うことが可能となり、過去の動画での問題点を的確にフィードバックして今回の撮影をより適正に行わせることが可能となる。
 また、上記の場合、例えば当該患者の他の撮影部位を撮影した動画を撮影用コンソール2が入手するように構成することも可能である。このように構成すれば、当該患者に対して動画を撮影する際にどのような問題が生じる可能性があるかを撮影技師が的確に認識して撮影を行うことが可能となり、過去に動画の撮影を行う際に問題となった点を的確にフィードバックして今回の撮影をより適正に行わせることが可能となる。
[構成例2]
 また、動画のデータ量はギガバイトのレベルになり、例えばPACS6から撮影用コンソール2に動画のデータを送信させる際に非常に時間がかかる場合がある。特にPACS6と撮影用コンソール2との間のデータ送信が前述したDICOM(Digital Image and Communications in Medicine)に則って行われる場合があるが、DICOMでのデータ送信は一般的に転送レートが遅く、時間がかかり易い。
 そのため、例えば予めある患者の動画の撮影が行われることが分かっている場合には、例えばその患者を撮影した過去の動画のデータを、DICOMに則ってデータ送信が行われるPACS6から、より転送レートが速いサーバー等の外部コンピューター7(図1参照)等に予め移しておく。
 そして、撮影用コンソール2は、上記のようにして撮影オーダー情報を入手したり入力されたりした際に、PACS6ではなくこの外部コンピューター7から当該過去の動画のデータを入手するように構成することが可能である。このように構成すれば、DICOMに則ってPACS6から直接入手する場合よりも、より短い時間でデータを入手することが可能となる。
 また、ネットワークNに接続されている複数の外部コンピューター7等にそれぞれ過去の動画のデータをそれぞれ保存しておき、撮影用コンソール2が、その中から最も速やかにデータを転送できる所から過去の動画のデータを入手するように構成することも可能である。このように構成すれば、速やかに過去の動画のデータを入手することが可能となる。
[構成例3]
 一方、過去の動画のデータをより短時間で速やかに入手するために、例えば、撮影用コンソール2の制御手段21が、過去の動画の全データを入手する代わりに、当該過去の動画のうち所定の割合でデータが間引きされた過去の動画のデータを入手するように構成することも可能である。
 その際、準画像を間引く方法としては、時間的に間引く方法と、空間的に間引く方法と、時間的及び空間的に間引く方法とがある。時間的に間引く方法とは、動画の各画像のうち、所定枚数(例えば5枚)ごとに1枚等の割合で画像を抽出し、抽出されなかった画像(すなわち例えば5枚ごとのうちの残りの4枚分のデータ)を間引く方法をいう。また、空間的に間引く方法とは、動画を構成する複数の画像それぞれについて、例えば2画素や4画素ごとに1画素等のデータを抽出し、抽出されなかったデータ(すなわち例えば2画素や4画素ごとのうちの残りの1画素や3画素のデータ)を間引く方法をいう。
 また、時間的及び空間的に間引く方法は、両者をともに行ってデータを間引く方法をいう。なお、データを間引く割合は、上記と同様に、撮影技師が、撮影用コンソール2の表示手段24上に表示された間引かれた過去の動画を参照して、過去の撮影でうまく行かなかった点等を確認できる割合に決められる。
 そして、このように構成することで、撮影技師が、撮影用コンソール2の制御手段21が撮影オーダー情報に基づいて入手して表示手段24上で再生させて表示した、間引かれた過去の動画を参照して過去の撮影でうまく行かなかった点等を的確にフィードバックして今回の撮影をより適正に行わせることが可能となるとともに、撮影用コンソール2が入手するデータ量を低減して、過去の動画(この場合は間引かれた過去の動画)をより短い時間で速やかに入手することが可能となる。
[構成例4]
 また、過去の動画のデータに関する情報をさらに短時間で速やかに入手することを考えた場合、例えば、撮影用コンソール2の制御手段21が、過去の動画のデータを入手する代わりに、当該過去の動画に付帯されている(すなわち当該過去の動画に関連付けられている)解析結果や情報を入手して、表示手段24上にその解析結果や情報を表示させるように構成することも可能である。
 過去の動画に付帯されている解析結果としては、例えば前述した肺野領域Rの動態解析(胸部動態解析)の例で言えば、図6に示したような横隔膜の上下方向の高さDや前述した心臓壁の位置の時間変化等のデータだけでなく、例えば肺野領域R(図5参照)の横幅等の時間変化や、或いは例えばそれらをさらに解析して得られる規定呼吸数(すなわち例えば呼吸3回分)の所要時間や、心拍の周期や振幅、横隔膜の上下方向の高さDや肺野領域Rの横幅の最大値と最小値の差など、過去の動画に付帯されている種々の解析結果を用いることができる。
 このように構成すれば、送信されてくる解析結果のデータ量は過去の動画のデータ量に比べればはるかに少ないため、過去の動画を入手する場合に比べて、今回撮影に関する参考情報としての解析結果をより短い時間で速やかに入手することが可能となる。また、表示手段24に解析結果が表示されれば、撮影技師が過去の動画の解析結果を見て、撮影時に患者に適正に撮影を行うことができるように指示を与えたり、或いは撮影用コンソール2が放射線照射制御装置12に対して設定する放射線照射条件を適切に変更して設定する等の操作を行うことが可能となる。
 また、過去の動画には、診断用コンソール3(図1参照)で上記のような解析結果を得る際に医師が気付いた情報(すなわち例えば呼吸が浅い、心拍が弱い等)や、解析結果を得られなかった原因や所見(すなわち例えば呼吸が非常に浅く周期が速い、規定呼吸数の間姿勢を維持できない等)等の情報が付帯されている場合もある。そして、このような場合も、撮影用コンソール2の制御手段21が、過去の動画のデータを入手する代わりに、当該過去の動画に付帯されている情報を入手して、表示手段24上にその情報を表示させるように構成することも可能である。
 そして、このように構成すれば、送信されてくる情報のデータ量は過去の動画のデータ量に比べればはるかに少ないため、過去の動画を入手する場合に比べて情報をより短い時間で速やかに入手することが可能となる。また、表示手段24に情報が表示されれば、撮影技師が過去の動画に付帯されている情報を見て、撮影時に患者に適正に撮影を行うことができるように指示を与えたり、或いは立位で撮影を行うことができない患者に対しては臥位で撮影を行ったり、或いは撮影用コンソール2が放射線照射制御装置12に対して設定する放射線照射条件を適切に変更して設定する等の操作を行うことが可能となる。
 小児等に見られる心拍の早い患者では、撮影のフレームレートを上げたり、呼吸や心拍の規定回数分の画像を得るためのX線照射時間をより短く設定することも可能である。
[構成例5]
 ところで、以上の実施形態や構成例では、撮影用コンソール2の表示手段2上に過去の動画や間引きされた過去の動画、解析結果、情報等を表示し、それを撮影技師が確認することで、過去の動画を参照して撮影をより適正に行わせる場合について説明したが、その他にも、例えば撮影用コンソール2の制御手段31が、過去の動画に付帯されている解析結果や情報に基づいて、放射線源11の放射線照射制御装置12に設定すべき放射線照射条件を自動的に割り出して放射線源11の放射線照射制御装置12に設定するように構成することも可能である。
 具体的には、例えば肺の換気機能を診断するために胸部動態撮影を行う場合には、3回(規定呼吸数)呼吸をする時間分だけ動画の撮影を行うとされている。そして、それを踏まえ、撮影オーダー情報で胸部動態撮影が指定されている場合には、撮影用コンソール2は、放射線源11(図2参照)から放射線を照射する期間を例えば15秒とするように放射線照射制御装置12に照射期間を設定する。
 しかし、例えば過去の動画に、患者の呼吸の周期が早く、規定呼吸数(3回)の所要時間が短い(例えば12秒)等の解析結果や情報が付帯されているような場合には、撮影用コンソール2の制御手段21は、放射線源11の放射線照射制御装置12に、短い照射期間(例えば12秒)を設定する。
 また、それとともに、撮影用コンソール2の制御手段21は、放射線の照射期間が短くなっても肺野領域Rの時間変化を的確に撮影できるようにするために、放射線照射制御装置12に、放射線11から照射する放射線のパルスレートを、規定呼吸数が15秒に設定される場合のパルスレートよりも速いパルスレートを設定する。なお、この場合、撮影用コンソール2が読取制御装置14(図2参照)に入力する画像読取条件のうちのフレームレート等も、上記のパルスレート等の変更に応じて変更した値を入力する等の処理が行われる。
 また、例えば過去の動画に、心拍の周期が通常の患者の心拍の周期より短い等の解析結果や情報が付帯されている場合も、撮影用コンソール2の制御手段21は同様に処理を行うように構成することができる。
 このように、撮影用コンソール2の制御手段21が、過去の動画に付帯されている解析結果や情報に基づいて放射線源11の放射線照射制御装置12に設定すべき放射線照射条件を割り出して放射線源11の放射線照射制御装置12に設定するように構成することで、過去の動画を参照して撮影を適正に行わせることが可能となる。なお、割り出された放射線照射条件は、放射線照射制御装置12だけではなく、放射線を受けて画像生成する放射線検出部13や読取制御装置14にも設定される。
 なお、この場合、例えば撮影用コンソール2の表示手段24上に、割り出した放射線の照射期間やパルスレート(フレームレート)等の放射線照射条件を表示して、撮影技師がそれを承認した場合に放射線照射条件を変更して設定するように構成することも可能である。
 また、本発明が上記の実施形態や構成例等に限定されず、本発明の趣旨を逸脱しない限り、適宜変更可能であることは言うまでもない。
 放射線画像撮影を行う分野(特に医療分野)において利用可能性がある。
2 撮影用コンソール
11 放射線源
13 放射線検出部(半導体イメージセンサー)
21 制御手段(制御部)
24 表示手段(表示部)
100 放射線画像撮影システム
D 横隔膜の上下方向の高さ(解析結果)
M 被写体
P2~P6 患者情報
P7、P8 撮影部位情報

Claims (4)

  1.  動画を表示可能な表示手段と、
     実施される撮影に関する、少なくとも患者の情報と撮影部位の情報が指定された撮影オーダー情報に基づいて制御を行う制御手段と、
    を備え、
     前記制御手段は、前記撮影オーダー情報を入手し、又は前記撮影オーダー情報が入力されると、その時点で、当該撮影オーダー情報が動画の撮影を指定する撮影オーダー情報である場合には、当該撮影オーダー情報に指定されている前記患者の情報又は前記撮影部位の情報の少なくとも1つの情報に基づいて、当該患者を撮影した過去の動画又は当該撮影部位を撮影した過去の動画を入手して、前記表示手段上に入手した過去の動画を表示させることを特徴とする撮影用コンソール。
  2.  前記制御手段は、前記過去の動画の代わりに、当該過去の動画のうち所定の割合でデータが間引きされた過去の動画のデータを入手して、前記表示手段上に当該間引きされた過去の動画のデータを表示させることを特徴とする請求項1に記載の撮影用コンソール。
  3.  前記制御手段は、前記過去の動画の代わりに、当該過去の動画に付帯されている解析結果又は情報を入手して、前記表示手段上に当該過去の動画の前記解析結果又は前記情報を表示させることを特徴とする請求項1に記載の撮影用コンソール。
  4.  請求項3に記載の撮影用コンソールと、
     被写体を介して半導体イメージセンサーに放射線を照射する放射線源と、
     被写体を透過した放射線をその強度に応じて検出し、検出した放射線を画素ごとに電気信号に変換して蓄積する放射線検出部と、
     前記放射線検出部の各画素に蓄積された電気信号を読み取って画像データを取得する読取制御装置と、
    を備え、
     前記撮影用コンソールの前記制御手段は、前記過去の動画に付帯されている前記解析結果又は前記情報に基づいて前記放射線源に設定すべき放射線照射条件を割り出して、前記放射線源を制御する放射線照射制御装置、前記放射線検出部及び前記読取制御装置に設定することを特徴とする放射線画像撮影システム。
PCT/JP2016/057709 2015-07-24 2016-03-11 撮影用コンソール及び放射線画像撮影システム WO2017017985A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017531031A JP6540807B2 (ja) 2015-07-24 2016-03-11 撮影用コンソール

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015146695 2015-07-24
JP2015-146695 2015-07-24

Publications (1)

Publication Number Publication Date
WO2017017985A1 true WO2017017985A1 (ja) 2017-02-02

Family

ID=56842599

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/057709 WO2017017985A1 (ja) 2015-07-24 2016-03-11 撮影用コンソール及び放射線画像撮影システム

Country Status (4)

Country Link
US (1) US20170020470A1 (ja)
EP (1) EP3120772A1 (ja)
JP (1) JP6540807B2 (ja)
WO (1) WO2017017985A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020036694A (ja) * 2018-09-03 2020-03-12 コニカミノルタ株式会社 画像表示装置及び放射線撮影システム
JP2021083639A (ja) * 2019-11-27 2021-06-03 コニカミノルタ株式会社 放射線撮影システム、動作補助装置及びプログラム

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019049884A (ja) * 2017-09-11 2019-03-28 株式会社東芝 画像処理装置、および故障診断制御方法
JP7180104B2 (ja) 2018-04-03 2022-11-30 コニカミノルタ株式会社 放射線画像表示装置及び放射線撮影システム
JP7183563B2 (ja) 2018-04-11 2022-12-06 コニカミノルタ株式会社 放射線画像表示装置及び放射線撮影システム
JP7006505B2 (ja) * 2018-05-24 2022-01-24 コニカミノルタ株式会社 放射線撮影システム及び撮影ガイドパターン選択装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005110844A (ja) * 2003-10-06 2005-04-28 Canon Inc X線画像撮影装置及び撮影方法
JP2010022653A (ja) * 2008-07-22 2010-02-04 Canon Inc 画像表示制御装置、画像表示制御方法及びプログラム
JP2012157688A (ja) * 2011-01-11 2012-08-23 Toshiba Corp 画像診断装置及び医用画像サーバ
JP2014090743A (ja) * 2012-10-31 2014-05-19 Canon Inc 医用画像撮影装置、医用画像の表示方法及びプログラム
JP2015196073A (ja) * 2014-04-03 2015-11-09 キヤノン株式会社 X線撮影装置及びその動作方法、並びにプログラム

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007114096A1 (ja) * 2006-04-05 2007-10-11 Konica Minolta Medical & Graphic, Inc. 診断システム
JP5046874B2 (ja) * 2007-11-14 2012-10-10 キヤノン株式会社 放射線画像撮影装置及び放射線画像撮影方法
WO2009078297A1 (ja) * 2007-12-19 2009-06-25 Konica Minolta Medical & Graphic, Inc. 動態画像処理システム
JP5195907B2 (ja) * 2008-05-14 2013-05-15 コニカミノルタエムジー株式会社 動態画像撮影制御装置及び動態画像撮影システム
JP2011152154A (ja) 2008-05-15 2011-08-11 Konica Minolta Medical & Graphic Inc 動態撮影システム
EP3235434A1 (en) * 2008-05-20 2017-10-25 Konica Minolta Medical & Graphic, Inc. Radiation image capturing system
JP2010114613A (ja) * 2008-11-06 2010-05-20 Konica Minolta Medical & Graphic Inc 動態画像処理方法、動態画像処理システム
JP5521392B2 (ja) 2009-05-22 2014-06-11 コニカミノルタ株式会社 動態画像診断支援システム及びプログラム
US8550709B2 (en) * 2009-11-09 2013-10-08 Fujifilm Corporation Imaging area specifying apparatus, radiographic system, imaging area specifying method, radiographic apparatus, and imaging table
US8976931B2 (en) * 2010-04-13 2015-03-10 Carestream Health, Inc. Mobile radiography imaging apparatus using prior related images before current image exposure and methods for same
JP5880433B2 (ja) * 2010-05-12 2016-03-09 コニカミノルタ株式会社 放射線画像撮影システム
US9064302B2 (en) * 2010-08-27 2015-06-23 Konica Minolta, Inc. Diagnosis assistance system and computer readable storage medium
JP5765343B2 (ja) * 2010-08-27 2015-08-19 コニカミノルタ株式会社 胸部診断支援システム及びプログラム
JP2012110400A (ja) * 2010-11-22 2012-06-14 Konica Minolta Medical & Graphic Inc 動態診断支援情報生成システム
JP5675533B2 (ja) 2011-08-31 2015-02-25 富士フイルム株式会社 撮影条件決定支援装置及び撮影条件決定支援方法
JP2013070866A (ja) * 2011-09-28 2013-04-22 Fujifilm Corp 撮影条件初期設定支援装置、方法及びプログラム、並びに放射線撮影装置及びシステム
EP2769675B1 (en) 2011-10-17 2017-10-25 Konica Minolta, Inc. Dynamic radiographic imaging system and program
US9990735B2 (en) * 2012-04-04 2018-06-05 Konica Minolta, Inc. Image generation device that acquires images based on a periodic variation of an anatomical structure
JP5859934B2 (ja) * 2012-09-04 2016-02-16 富士フイルム株式会社 放射線撮影システム並びにその作動方法、および放射線画像検出装置並びにその作動プログラム
JP5945513B2 (ja) * 2013-02-20 2016-07-05 富士フイルム株式会社 放射線画像処理装置および方法、並びに放射線撮影装置
JP6217241B2 (ja) * 2013-08-28 2017-10-25 コニカミノルタ株式会社 胸部診断支援システム
US9947093B2 (en) * 2016-05-03 2018-04-17 Konica Minolta, Inc. Dynamic analysis apparatus and dynamic analysis system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005110844A (ja) * 2003-10-06 2005-04-28 Canon Inc X線画像撮影装置及び撮影方法
JP2010022653A (ja) * 2008-07-22 2010-02-04 Canon Inc 画像表示制御装置、画像表示制御方法及びプログラム
JP2012157688A (ja) * 2011-01-11 2012-08-23 Toshiba Corp 画像診断装置及び医用画像サーバ
JP2014090743A (ja) * 2012-10-31 2014-05-19 Canon Inc 医用画像撮影装置、医用画像の表示方法及びプログラム
JP2015196073A (ja) * 2014-04-03 2015-11-09 キヤノン株式会社 X線撮影装置及びその動作方法、並びにプログラム

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020036694A (ja) * 2018-09-03 2020-03-12 コニカミノルタ株式会社 画像表示装置及び放射線撮影システム
JP2021083639A (ja) * 2019-11-27 2021-06-03 コニカミノルタ株式会社 放射線撮影システム、動作補助装置及びプログラム
JP7310568B2 (ja) 2019-11-27 2023-07-19 コニカミノルタ株式会社 放射線撮影システム、動作補助装置及びプログラム

Also Published As

Publication number Publication date
JP6540807B2 (ja) 2019-07-10
JPWO2017017985A1 (ja) 2018-05-17
US20170020470A1 (en) 2017-01-26
EP3120772A1 (en) 2017-01-25

Similar Documents

Publication Publication Date Title
JP6540807B2 (ja) 撮影用コンソール
JP6413927B2 (ja) 動態解析装置及び動態解析システム
JP6597548B2 (ja) 動態解析システム
JP6418091B2 (ja) 胸部画像表示システム及び画像処理装置
JP6217241B2 (ja) 胸部診断支援システム
JP2013081579A (ja) 動態医用画像生成システム
JP2018078974A (ja) 動態画像処理システム
JP6825229B2 (ja) 動態解析システム
JP2019051322A (ja) 動態解析システム
CN116757991A (zh) 图像处理装置、图像处理系统、图像处理方法及记录介质
JP2021194140A (ja) 画像処理装置及び画像処理方法
JP5625799B2 (ja) 動態診断支援情報生成システム
JP6950507B2 (ja) 動態画像処理装置
JP6950483B2 (ja) 動態撮影システム
JP7487566B2 (ja) プログラム、画像処理装置及び画像処理方法
JP7099086B2 (ja) 動態画像処理装置及びプログラム
JP2019005417A (ja) 動態画像処理装置及び動態画像処理システム
JP2017113344A (ja) 動態撮影装置及び動態撮影システム
JP7255319B2 (ja) 動態解析装置、動態解析システム及びプログラム
JP6930638B2 (ja) 動態解析装置、動態解析プログラム、動態解析方法及び制御装置
JP7463923B2 (ja) X線動態画像表示装置、プログラム、x線動態画像表示方法及びx線動態画像表示システム
JP7424532B1 (ja) 放射線画像解析装置及びプログラム
JP6874484B2 (ja) 動態画像処理システム
JP2017217047A (ja) 画像表示システム
JP2023121104A (ja) 肺塞栓症診断支援装置、肺塞栓症診断支援方法及びプログラム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16830090

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017531031

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16830090

Country of ref document: EP

Kind code of ref document: A1