WO2017017980A1 - 接点機構およびこれを用いた電磁継電器 - Google Patents

接点機構およびこれを用いた電磁継電器 Download PDF

Info

Publication number
WO2017017980A1
WO2017017980A1 PCT/JP2016/057153 JP2016057153W WO2017017980A1 WO 2017017980 A1 WO2017017980 A1 WO 2017017980A1 JP 2016057153 W JP2016057153 W JP 2016057153W WO 2017017980 A1 WO2017017980 A1 WO 2017017980A1
Authority
WO
WIPO (PCT)
Prior art keywords
contact
contact mechanism
movable
fixed
yoke
Prior art date
Application number
PCT/JP2016/057153
Other languages
English (en)
French (fr)
Inventor
修一 井戸田
将之 野田
幸二 ▲高▼見
西田 剛
Original Assignee
オムロン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by オムロン株式会社 filed Critical オムロン株式会社
Priority to CN201680022644.8A priority Critical patent/CN107533936B/zh
Priority to DE112016003409.1T priority patent/DE112016003409T5/de
Publication of WO2017017980A1 publication Critical patent/WO2017017980A1/ja
Priority to US15/808,641 priority patent/US10658140B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H50/00Details of electromagnetic relays
    • H01H50/16Magnetic circuit arrangements
    • H01H50/36Stationary parts of magnetic circuit, e.g. yoke
    • H01H50/38Part of main magnetic circuit shaped to suppress arcing between the contacts of the relay
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H50/00Details of electromagnetic relays
    • H01H50/02Bases; Casings; Covers
    • H01H50/04Mounting complete relay or separate parts of relay on a base or inside a case
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H9/00Details of switching devices, not covered by groups H01H1/00 - H01H7/00
    • H01H9/30Means for extinguishing or preventing arc between current-carrying parts
    • H01H9/44Means for extinguishing or preventing arc between current-carrying parts using blow-out magnet

Definitions

  • the present invention relates to a contact mechanism, and more particularly to a contact mechanism that attracts a generated arc in the same direction.
  • a contact mechanism there is an armature that swings by excitation or non-excitation of an electromagnet block, and a movable contact portion that is attached to the armature and swings as the armature swings. And a fixed contact portion having a fixed contact with which the movable contact contacts and separates, wherein the electromagnetic relay extends an arc generated when the movable contact and the fixed contact contact and separate.
  • An electromagnetic relay characterized in that an arc extending space is formed, and a magnetic field generating means is provided for guiding an arc generated when the movable contact and the fixed contact come into contact with and separated from the arc extending space.
  • an object of the contact mechanism according to the present invention is to provide a contact mechanism having a small number of parts and an assembling man-hour, which can easily reduce the size of the apparatus, and has a high degree of design freedom.
  • the contact mechanism according to the present invention is configured such that a first movable contact is provided on a first fixed contact provided on one of the fixed contact terminals of a base and a pair of fixed contact terminals arranged on the base. And a second contact mechanism in which a second movable contact is opposed to a second fixed contact provided on the other fixed contact terminal.
  • a contact mechanism when a reverse current is passed through the first contact mechanism and the second contact mechanism, between the contacts of the first contact mechanism and between the contacts of the second contact mechanism.
  • a magnetic field generating means having a permanent magnet is arranged between the first contact mechanism and the second contact mechanism so that a magnetic field in the reverse direction is generated.
  • a single magnetic field generates a magnetic field in the opposite direction between the contacts of the first contact mechanism and between the contacts of the second contact mechanism. For this reason, a contact mechanism with a small number of parts and assembly steps can be obtained. Further, a space for arranging the permanent magnet can be saved. For this reason, it is easy to miniaturize the apparatus, and a contact mechanism with a high degree of design freedom can be obtained.
  • the space between the first contact mechanism and the second contact mechanism is perpendicular to the first plane passing through the first and second fixed contacts and the first and second movable contacts, and the first fixed contact and It means a region sandwiched between a second plane passing through the first movable contact and a third plane perpendicular to the first horizontal plane and passing through the second fixed contact and the second movable contact.
  • the magnetic field generating means may be arranged on the base so as to attract the arc generated in the first contact mechanism and the second contact mechanism in a direction away from the base. According to this embodiment, since the generated arc is attracted in the direction away from the base, the arc does not contact the base and the base of the fixed contact terminal. For this reason, dust and organic gas are not generated, and contact failure can be prevented, so that a contact mechanism with a long contact life can be obtained.
  • the magnetic field generating means may have a yoke that contacts the permanent magnet.
  • the direction of the lines of magnetic force can be changed to a desired direction by adjusting the shape of the yoke and the contact position with the permanent magnet. For this reason, while being able to adjust the induction direction of an arc, the leakage of magnetic flux is reduced and a contact mechanism with high magnetic efficiency is obtained.
  • the yoke may have a gate shape having a pair of arms facing each other with the first contact mechanism and the second contact mechanism in between. According to this embodiment, since the arm portions of the yoke are arranged on both sides of the permanent magnet, the leakage of magnetic flux is further reduced, and a contact mechanism with good magnetic efficiency can be obtained.
  • the yoke may have a frame shape surrounding the first contact mechanism and the second contact mechanism. According to this embodiment, the magnetic force lines generated from the permanent magnets form a magnetic circuit via the frame-shaped yoke, and a contact mechanism with good magnetic efficiency can be obtained.
  • the electromagnetic relay according to the present invention has the above-described contact mechanism in order to solve the above-described problem.
  • a magnetic field in the reverse direction is generated by one permanent magnet between the contacts of the first contact mechanism and the second contact mechanism. For this reason, the number of parts and the number of assembly steps are small, and a highly productive electromagnetic relay can be obtained. Further, a space for arranging the permanent magnet can be saved. For this reason, it is easy to reduce the size of the apparatus, and there is an effect that an electromagnetic relay with a high degree of design freedom can be obtained.
  • FIG. 2 is an exploded perspective view of the electromagnetic relay shown in FIG. 1 viewed from a different angle.
  • FIG. 3 is an enlarged perspective view of the base shown in FIG. 2.
  • It is a longitudinal cross-sectional view of the electromagnetic relay shown in FIG.
  • It is a longitudinal cross-sectional view of the different position of the electromagnetic relay shown in FIG.
  • It is a cross-sectional view of the electromagnetic relay shown in FIG.
  • It is the schematic which shows the contact mechanism of the electromagnetic relay shown in FIG.
  • FIG. 14 is a distribution diagram of magnetic lines of force of the contact mechanism shown in FIG. 13.
  • FIG. 16 is a distribution diagram of magnetic lines of force of the contact mechanism shown in FIG. 15.
  • FIGS. 1 to 8 An embodiment of a contact mechanism according to the present invention will be described with reference to the accompanying drawings of FIGS.
  • the contact mechanism according to the first embodiment is applied to an electromagnetic relay (FIGS. 1 to 8).
  • FIGS. 2 and 3 generally, the base 10, the fixed contact terminals 21 to 24, the magnetic field, The generating means 30, the electromagnet block 40, the movable iron piece 60, the movable contact pieces 80 and 81, and the cover 90 are configured.
  • the cover 90 is not shown in FIG.
  • the base 10 has a pair of substantially L-shaped partition walls 12 and 12 projecting from left and right sides of a recess 11 provided at the center of the upper surface thereof.
  • the base 10 is provided with a step 13 at one edge among the edges facing each other with the recess 11 in between, and a press-fitting hole 14 at the other edge.
  • the step 13 is for supporting a spool 41 of an electromagnet block 40 which will be described later.
  • the press-fitting hole 14 is used to press-fit the lower end portion 57a of the yoke 55 of the electromagnet block 40.
  • the base 10 is provided with terminal holes 15a, 15b, 15c, and 15d on the same straight line along one edge of the opposing edges on the upper surface, and along the other edge. Terminal holes 16 are provided.
  • a guide recess 17 is disposed between the terminal holes 15b and 15c.
  • a positioning projection 17a is provided on the outer edge facing the guide recess 17.
  • Positioning recesses 17b and 17b are provided on both sides of the positioning projection 17a.
  • the base 10 is provided with positioning ribs 17c and 17c in the vicinity of the outer edge portions of the terminal holes 15a and 15d.
  • the base 10 has arc extinguishing spaces 18 and 18 formed between the partition walls 12 and 12 and the terminal holes 15a and 15d, respectively. According to the present embodiment, there is an advantage that an increase in the size of the electromagnetic relay can be avoided by effectively utilizing the dead space of the base 10 as the arc extinguishing space 18.
  • the fixed contact terminals 21 to 24 have fixed contacts 21a to 24a fixed to their upper ends as shown in FIGS.
  • the fixed contact terminals 21 to 24 have terminal portions 21b to 24b at their lower end portions.
  • the fixed contacts 21a to 24a are aligned on the same straight line by inserting the terminal portions 21b to 24b into the terminal holes 15a to 15d of the base 10, respectively.
  • the four fixed contacts 21a to 24a are arranged to suppress arc generation by lowering the load voltage applied to each fixed contact 21a to 24a when the DC power supply circuit is opened and closed. It is to do.
  • the coil terminal 25 has a connection portion 25a bent at its upper end, and a terminal portion 25b at its lower end.
  • the coil terminals 25 and 25 are aligned on the same straight line by press-fitting the terminal portion 25 b into the terminal hole 16 of the base 10.
  • the magnetic field generating means 30 is composed of a rectangular parallelepiped permanent magnet 31 and a yoke 32 having a substantially gate-shaped cross section.
  • the yoke 32 is assembled along the edge of the base 10 so that the surface of the yoke 32 where the permanent magnet 31 is joined faces the fixed contacts 21a, 22a, 23a, 24a. That is, as shown in FIG. 7, the permanent magnets 31, 31 are positioned by engaging with positioning recesses 17b, 17b (FIG. 4) provided in the base 10, respectively. More specifically, the permanent magnet 31 is disposed in a region surrounded by a second plane and a third plane perpendicular to the first plane (a plane parallel to the paper surface in FIG.
  • the first plane refers to a plane passing through the movable contacts 86a (87a) and 86b (87b) and the fixed contacts 21a (23a) and 22a (24a) (a plane parallel to the paper surface in FIG. 7).
  • the second plane refers to a plane passing through the movable contact 86a (87a) and the fixed contact 21a (23a).
  • the third plane is a plane passing through the movable contact 86b (87b) and the fixed contact 22a (24a).
  • the permanent magnet 31 is most preferably arranged at the center of the second plane and the third plane on the first plane.
  • the permanent magnet 31 is arranged in a direction in which the fixed contacts 21a, 22a, 23a, and 24a and the movable contacts 86a, 86b, 87a, and 87b are in contact with each other. That is, the permanent magnet 31 is arranged in the direction of the movable contacts 86a, 86b, 87a, 87b when viewed from the fixed contacts 21a, 22a, 23a, 24a.
  • the yokes 32, 32 are positioned with their arm portions 33, 33 abutting against the positioning projections 17a and positioning ribs 17c of the base 10, respectively.
  • the magnetic pole surface of the permanent magnet 31 is joined to the surface in the direction in which the arms 33 and 33 of the yoke 32 extend in a substantially gate shape.
  • the movable contact 86 a and the movable contact 86 b are electrically connected by a movable contact piece 80. For this reason, the direction of the current flowing between the adjacent fixed contact 21a and the movable contact 86a is opposite to the direction of the current flowing between the fixed contact 22a and the movable contact 86b.
  • the movable contact 87 a and the movable contact 87 b are electrically connected by a movable contact piece 81. For this reason, the direction of the current flowing between the adjacent fixed contact 23a and the movable contact 87a is opposite to the direction of the current flowing between the fixed contact 24a and the movable contact 87b.
  • the permanent magnet 31 attracts the generated arc in a direction away from the base 10 when a current flows between the fixed contact 21a and the movable contact 86a and between the fixed contact 22a and the movable contact 86b.
  • the direction of the magnetic pole is determined. Specifically, as shown in FIG. 8, the reverse direction is between the fixed contact 21a (23a) and the movable contact 86a (87a) and between the fixed contact 22a (24a) and the movable contact 86b (87b).
  • the magnetic field lines are arranged between the fixed contact 21a (23a) and the movable contact 86a (87a) and between the fixed contact 22a (24a) and the movable contact 86b (87b). ing.
  • the yoke 32 can reduce the leakage of the magnetic flux of the permanent magnet 31 and increase the magnetic efficiency by adjusting the induction direction of the arc.
  • the permanent magnet 31 and the yoke 32 are arranged so as to attract the arc 100 generated between the fixed contact 24 a and the movable contact 87 b in a direction away from the base 10. Further, the permanent magnet 31 and the yoke 32 are arranged so as to be attracted in the opposite direction to the movable contact 87b when viewed from the fixed contact 24a.
  • the electromagnetic relay which concerns on this embodiment is 4 poles
  • produced between fixed contact 21a, 22a, 23a, 24a and movable contact 86a, 86b, 87a, 87b, respectively is made into two permanent.
  • the magnets 31, 31 can be attracted in a desired direction. For this reason, there are advantages that the number of parts and production man-hours are smaller than in the conventional example, and a contact mechanism with high productivity can be obtained.
  • the present invention is not limited to this, and the positions of the fixed contact 21a and the movable contact 86a or the positions of the fixed contact 24a and the movable contact 87b may be interchanged. Even in such a case, the direction of the current flowing between the fixed contacts 21a, 24a and the movable contacts 86a, 87b can be reversed, and the direction of the magnetic pole of the permanent magnet 31 can be selected as appropriate. Thereby, the arc can be attracted so as to go obliquely upward in the direction opposite to the fixed contacts 21a and 22a when viewed from the movable contact 86a and the movable contact 86b.
  • the magnetic field generating means 30 is configured by combining the permanent magnet 31 and the yoke 32. As a result, the arc generated between the fixed contacts 21a and 24a and the movable contacts 86a and 87b is attracted to the arc extinguishing spaces 18 and 18, respectively, and the arc can be erased efficiently.
  • the yoke 32 described above is not limited to the plate-shaped magnetic material having a substantially portal shape in section, but may be a plate-shaped magnetic material having a substantially L-shaped section, for example. According to this modification, by changing the direction of the lines of magnetic force generated from the permanent magnet 31 to a different direction, it is possible to change the induction direction of the arc to a desired direction.
  • the electromagnet block 40 is formed of a spool 41, a coil 51, an iron core 52, and a yoke 55.
  • the spool 41 is provided with a through hole 45 having a square cross section in a body portion 44 having flange portions 42 and 43 at both ends. Further, the spool 41 is engaged with engagement holes 46 provided at both side edge portions of the other flange portion 43 to prevent the relay clips 50 from coming off (FIG. 6).
  • the coil 51 is wound around the trunk portion 44 and soldered with its lead wire entangled with a binding portion 50a (FIG. 2) extending from the relay clip 50.
  • the iron core 52 is formed by laminating a plurality of planar substantially T-shaped plate-like magnetic materials. Then, by inserting the iron core 52 into the through hole 45 of the spool 41, one end portion of the protruding iron core 52 is used as a magnetic pole portion 53, and the protruding other end portion 54 is substantially L-shaped in cross section to be described later.
  • the vertical portion 57 of the shaped yoke 55 is fixed by caulking.
  • the yoke 55 is made of a magnetic plate bent in a substantially L-shaped cross section, and a locking projection 56a is bent at the center of the horizontal portion 56 thereof. And the horizontal part 56 cuts out the support protrusion 56b in the both-sides edge part of the front-end
  • the yoke 55 has a shape in which a lower end portion 57 a of the vertical portion 57 can be press-fitted into the press-fitting hole 14 of the base 10.
  • the movable iron piece 60 is made of a plate-like magnetic material, and has a locking projection 61 projecting from the upper edge thereof.
  • the movable iron piece 60 is provided with notches 62 and 62 at both side edges.
  • the movable iron piece 60 has the notch 62 engaged with the support protrusion 56b of the yoke 55, and the locking protrusion 61 is connected to the locking protrusion 56a of the yoke 55 via a return spring 63. By this, it is supported so that rotation is possible.
  • the movable contact pieces 80 and 81 are substantially T-shaped in front, and movable contacts 86a, 86b, 87a and 87b are fixed to both ends of the wide portions 82 and 83 via conductive backing materials 84 and 85, respectively. .
  • the backing materials 84 and 85 substantially increase the cross-sectional area of the wide portions 82 and 83, thereby reducing electrical resistance and suppressing heat generation.
  • the arc generated as described above is attracted so as to be directed obliquely upward in the direction opposite to the movable contact 86a and the movable contact 87b when viewed from the fixed contacts 21a and 24a. For this reason, it becomes difficult for the arc to contact the movable contact pieces 80 and 81 themselves, and the deterioration of the movable contact pieces 80 and 81 due to the arc can be reduced.
  • the movable contact pieces 80 and 81 have their upper ends integrated with the movable table 74 by insert molding.
  • the movable table 74 is integrated with the spacer 70 and the movable iron piece 60 through a rivet 64.
  • the spacer 70 enhances the insulation characteristics by fitting the movable iron piece 60 into a recess 71 provided on the inward surface thereof.
  • the spacer 70 has an insulating rib 72 (FIG. 3) that projects the side of the movable contact pieces 80 and 81 at the lower edge of the outward surface.
  • the electromagnet block 40 to which the movable contact pieces 80 and 81 are attached is housed in the base 10, and the collar portion 42 of the spool 41 is placed on the step portion 13 of the base 10 (FIG. 5). Further, the lower end portion 57a of the yoke 55 is press-fitted into the press-fitting hole 14 of the base 10 and positioned. Thereby, the relay clip 50 of the electromagnet block 40 clamps the connection part 25a of the coil terminal 25 (FIG. 6).
  • the movable contacts 86a, 86b, 87a, 87b respectively face the fixed contacts 21a, 22a, 23a, 24a so as to be able to contact and separate.
  • the cover 90 has a box shape that can be fitted to the base 10 to which the electromagnet block 40 is assembled.
  • the cover 90 is provided with a pair of vent holes 91, 91 on the ceiling surface.
  • the cover 90 is provided with position restricting ribs 92 (FIG. 6) projecting inward from the ceiling surface. For this reason, when the cover 90 is fitted and fixed to the base 10 to which the electromagnet block 40 is assembled, the position restricting rib 92 abuts against the horizontal portion 56 of the yoke 55 and restricts the floating of the electromagnet block 40. To do. Further, a sealing material (not shown) is injected into the lower surface of the base 10, solidified and sealed, thereby completing the assembly operation.
  • the movable iron piece 60 When a voltage is applied to the coil 51 for excitation, the movable iron piece 60 is attracted to the magnetic pole portion 53 of the iron core 52, and the movable iron piece 60 rotates counterclockwise against the spring force of the return spring 63. Move. For this reason, the movable contact pieces 80 and 81 rotate integrally with the movable iron piece 60. As a result, after the movable contacts 86 a, 86 b, 87 a, 87 b come into contact with the fixed contacts 21 a, 22 a, 23 a, 24 a, the movable iron piece 60 is attracted to the magnetic pole part 53 of the iron core 52.
  • the movable iron piece 60 is rotated clockwise by the spring force of the return spring 63. For this reason, after the movable iron piece 60 is separated from the magnetic pole part 53 of the iron core 52, the movable contacts 86a, 86b, 87a, 87b are separated from the fixed contacts 21a, 22a, 23a, 24a, and return to the original state.
  • the shape, size, material, arrangement and the like of the permanent magnet 31 and the yoke 32 are not limited to those described above, but can be changed as necessary.
  • the arm portions 33 on both sides of the yoke 32 forming the magnetic field generating means 30 are extended to a position covering the sides of the fixed contacts 21a and 22a. Furthermore, the magnetic pole surface of the permanent magnet 31 is disposed at the position where the permanent magnet 31 of the yoke 32 is disposed via an auxiliary yoke 34 that adjusts the position of the permanent magnet 31.
  • the auxiliary yoke 34 is included in the yoke 32. As long as it is magnetically coupled to the yoke 32, the auxiliary yoke 34 and the yoke 32 may be formed integrally or separately.
  • substantially parallel lines of magnetic force can be generated between the fixed contact 21a and the movable contact 86a and between the fixed contact 22a and the movable contact 86b. For this reason, there exists an advantage that the direction which attracts
  • the magnetic field generating means 30 is formed by assembling the permanent magnet 31 on the inner surface of the frame-shaped yoke 32. According to this embodiment, magnetic flux leakage is reduced, and magnetic field generating means with good magnetic efficiency can be obtained.
  • the magnetic field generating means 30 is formed by assembling a permanent magnet 31 into a substantially T shape on a rod-shaped yoke 32. According to the present embodiment, since the bar-shaped yoke 32 as a constituent member has a simple shape, there is an advantage that the magnetic field generating means 30 with a good material yield can be obtained.
  • a magnetic field generating means 30 is formed by spanning a permanent magnet 31 and an auxiliary yoke 34 around a frame-shaped yoke 32. According to this embodiment, magnetic flux leakage is further reduced, and a magnetic field generating means with good magnetic efficiency can be obtained.
  • the distribution of magnetic lines of force having a contact mechanism (FIG. 15) according to the third embodiment was analyzed.
  • the analysis results are shown in FIG.
  • the direction of the lines of magnetic force emitted from the permanent magnet 31 crosses between the fixed contact 21a and the movable contact 86a and between the fixed contact 22a and the movable contact 86b in opposite directions.
  • the magnetic lines of force generated from the permanent magnet 31 formed a magnetic circuit via the frame-shaped yoke 32.
  • this contact mechanism when a single permanent magnet 31 is used to pass a current in the opposite direction between the fixed contact 21a and the movable contact 86a and between the fixed contact 22a and the movable contact 86b, The generated arc can be attracted in the same direction, and magnetic flux leakage can be reduced. For this reason, it has been found that a contact mechanism having a small number of parts and high magnetic efficiency can be obtained.
  • the permanent magnet 31 is not limited to being disposed on the movable contact side, but may be disposed on the fixed contact side.
  • the contact mechanism according to the present invention is not limited to the contact mechanism having the so-called double break contact structure described above, but may be applied to a contact mechanism having a twin contact structure.
  • the present invention is not limited to the electromagnetic relay described above, and may be applied to other electromagnetic relays and switches.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Arc-Extinguishing Devices That Are Switches (AREA)

Abstract

部品点数,組立工数が少ないとともに、装置の小型化が容易で、設計の自由度が大きい接点機構を提供する。このため、ベース10と、前記ベース10に並設した一対の固定接点端子21,22のうち、一方の前記固定接点端子21に設けた固定接点21aに、可動接点86aを接離可能に対向させた第1接点機構と、他方の前記固定接点端子22に設けた固定接点22aに、可動接点86bを接離可能に対向させた第2接点機構と、からなる接点機構である。特に、前記第1接点機構および前記第2接点機構に逆方向の電流を流したときに、前記第1接点機構の接点間と、前記第2接点機構の接点間とのそれぞれに逆方向の磁界が発生するように、前記第1接点機構と前記第2接点機構との間に、永久磁石31を備えた磁界発生手段30を配置した。

Description

接点機構およびこれを用いた電磁継電器
 本発明は接点機構、特に、発生したアークを同一方向に誘引する接点機構に関する。
 従来、接点機構としては、電磁石ブロックの励磁、非励磁によって揺動する接極子と、可動接点を有し、前記接極子に取り付けられて当該接極子の揺動に伴って揺動する可動接点部と、前記可動接点が接離する固定接点を有する固定接点部と、を備える電磁リレーであって、前記電磁リレーには、前記可動接点と前記固定接点とが接離する際に生じるアークを伸長させるアーク伸長空間が形成されており、前記可動接点と前記固定接点とが接離する際に生じるアークを、前記アーク伸長空間に導く磁界発生手段が設けられていることを特徴とする電磁リレーがある(特許文献1参照)。
 そして、前記電磁リレーでは、その図7および図8に示すように、対向する固定接点22aと可動接点21aとの間に生じたアークを、ベース30の上方に位置するアーク伸長空間Sに誘引し、遮断する構成となっている。
特開2013-80692号公報
 しかしながら、前記電磁継電器は、その図4に示すように、4対の対向する固定接点22aおよび可動接点21a毎に永久磁石50を配置している。このため、部品点数が多くなり、組立工数も多くなる。
 また、4個の前記永久磁石50を設置するためのスペースを確保する必要があるので、装置の小型化が容易でなく、設計の自由度が小さいという問題点がある。
 本発明に係る接点機構は、前記問題点に鑑み、部品点数,組立工数が少ないとともに、装置の小型化が容易で、設計の自由度が大きい接点機構を提供することを課題とする。
 本発明に係る接点機構は、前記課題を解決すべく、ベースと、前記ベースに並設した一対の固定接点端子のうち、一方の前記固定接点端子に設けた第1固定接点に、第1可動接点を接離可能に対向させた第1接点機構と、他方の前記固定接点端子に設けた第2固定接点に、第2可動接点を接離可能に対向させた第2接点機構と、からなる接点機構であって、前記第1接点機構および前記第2接点機構に逆方向の電流を流したときに、前記第1接点機構の接点間と、前記第2接点機構の接点間とのそれぞれに逆方向の磁界が発生するように、前記第1接点機構と前記第2接点機構との間に、永久磁石を備えた磁界発生手段を配置した構成としてある。
 本発明によれば、1個の永久磁石で第1接点機構の接点間と、第2接点機構の接点間とのそれぞれに逆方向の磁界が発生する。このため、部品点数,組立工数が少ない接点機構が得られる。
 また、永久磁石を配置するためのスペースを節約できる。このため、装置の小型化が容易であり、設計の自由度が大きい接点機構が得られる。
 なお、第1接点機構と第2接点機構との間とは、第1、第2固定接点および第1、第2可動接点を通る第1平面に対して垂直で、かつ、第1固定接点および第1可動接点を通る第2平面と、前記第1水平面に対して垂直で、かつ、第2固定接点および第2可動接点を通る第3平面と、で挟まれた領域を意味する。
 本発明の実施形態としては、前記第1接点機構および前記第2接点機構に生じたアークを前記ベースから遠ざかる方向に誘引するように、前記ベースに前記磁界発生手段を配置してもよい。
 本実施形態によれば、発生したアークがベースから遠ざかる方向に誘引されるので、前記アークがベースおよび固定接点端子の基部に接触しない。このため、塵埃や有機ガスが発生せず、接触不良を防止できるので、接点寿命の長い接点機構が得られる。
 本発明の他の実施形態としては、前記磁界発生手段が、前記永久磁石に当接するヨークを有していてもよい。
 本実施形態によれば、ヨークの形状や永久磁石との当接位置を調整することにより、磁力線の方向を所望の方向に変えることができる。このため、アークの誘引方向を調整できるとともに、磁束の漏れを少なくし、磁気効率の高い接点機構が得られる。
 本発明の他の実施形態としては、前記ヨークが、前記第1接点機構および前記第2接点機構を間にして対向する一対の腕部を有する門型形状であってもよい。
 本実施形態によれば、永久磁石の両側にヨークの腕部が配置されるので、磁束の漏れがより一層少なくなり、磁気効率の良い接点機構が得られる。
 本発明の別の実施形態としては、前記ヨークが、前記第1接点機構および前記第2接点機構を囲む枠形状であってもよい。
 本実施形態によれば、永久磁石から発生した磁力線が枠形状のヨークを介して磁気回路を形成し、磁気効率の良い接点機構が得られる。
 本発明に係る電磁継電器は、前記課題を解決すべく、前述の接点機構を有している。
 本発明によれば、第1接点機構および第2接点機構の接点間に1個の永久磁石で逆方向の磁界を発生させている。このため、部品点数,組立工数が少なく、生産性の高い電磁継電器が得られる。
 また、永久磁石を配置するためのスペースを節約できる。このため、装置の小型化が容易であり、設計の自由度の大きい電磁継電器が得られるという効果がある。
本発明に係る接点機構の第1実施形態を組み込んだ電磁継電器を示す斜視図である。 図1に示した電磁継電器の分解斜視図である。 図1に示した電磁継電器の異なる角度から見た分解斜視図である。 図2で示したベースの拡大斜視図である。 図1で示した電磁継電器の縦断面図である。 図1で示した電磁継電器の異なる位置の縦断面図である。 図1で示した電磁継電器の横断面図である。 図1で示した電磁継電器の接点機構を示す概略図である。 本発明に係る接点機構の第2実施形態を示す概略図である。 本発明に係る接点機構の第3実施形態を示す概略図である。 本発明に係る接点機構の第4実施形態を示す概略図である。 本発明に係る接点機構の第5実施形態を示す概略図である。 本発明に係る接点機構の実施例1を示す概略図である。 図13で示した接点機構の磁力線の分布図である。 本発明に係る接点機構の実施例2を示す概略図である。 図15で示した接点機構の磁力線の分布図である。
 本発明に係る接点機構の実施形態を図1ないし図12の添付図面に従って説明する。
 第1実施形態に係る接点機構は電磁継電器に適用した場合(図1ないし図8)であり、図2および図3に示すように、大略、ベース10と、固定接点端子21~24と、磁界発生手段30と、電磁石ブロック40と、可動鉄片60と、可動接触片80,81と、カバー90とで構成されている。なお、説明の便宜上、図1においてはカバー90は図示されていない。
 なお、以下の説明では、図面に表された構成を説明するうえで、「上」、「下」、「左」、「右」等の方向を示す用語、及びそれらを含む別の用語を使用するが、それらの用語を使用する目的は図面を通じて実施形態の理解を容易にするためである。したがって、それらの用語は本発明の実施形態が実際に使用されるときの方向を示すものとは限らないし、それらの用語によって特許請求の範囲に記載された発明の技術的範囲が限定的に解釈されるべきでない。
 前記ベース10は、図4に示すように、その上面中央に設けた凹所11の左右両側に一対の断面略L字形状の仕切り壁12,12を突設してある。また、前記ベース10は、前記凹所11を間にして前後で対向する縁部のうち、一方の縁部に段部13を設ける一方、他方の縁部に圧入孔14を設けてある。前記段部13は後述する電磁石ブロック40のスプール41を支持するためのものである。そして、前記圧入孔14は前記電磁石ブロック40のヨーク55の下端部57aを圧入させるためのものである。さらに、前記ベース10は、その上面において対向する縁部のうち、一方の縁部に沿って端子孔15a,15b,15c,15dを同一直線上に設けてある一方、他方の縁部に沿って端子孔16,16を設けてある。また、前記端子孔15b,15cの間にはガイド凹部17を配置している。前記ガイド凹部17に対向する外側縁部には位置決め突起17aを突設してある。そして、前記位置決め突起17aの両側に位置決め凹部17b,17bを設けてある。さらに、前記ベース10は、前記端子孔15a,15dの外側縁部近傍に位置決めリブ17c,17cを突設してある。ついで、前記ベース10は、前記仕切り壁12,12と前記端子孔15a,15dとの間にアーク消去空間18,18をそれぞれ形成してある。
 本実施形態によれば、前記ベース10のデッドスペースをアーク消去空間18として有効に活用することにより、電磁継電器の大型化を回避できるという利点がある。
 固定接点端子21~24は、図2および図3に示すように、その上端部に固定接点21a~24aを固定してある。また、前記固定接点端子21~24は、その下端部に端子部21b~24bを有している。そして、前記端子部21b~24bを前記ベース10の端子孔15a~15dにそれぞれ挿入することにより、前記固定接点21a~24aは同一直線上に整列する。このように、4個の固定接点21a~24aを配置したのは、直流電源回路を開閉する場合に、個々の固定接点21a~24aに負荷される負荷電圧を下げることにより、アークの発生を抑制するためである。
 なお、コイル端子25は、その上端部に屈曲した接続部25aを有する一方、その下端部に端子部25bを有している。そして、前記端子部25bを前記ベース10の端子孔16に圧入することにより、前記コイル端子25,25は同一直線上に整列する。
 磁界発生手段30は、図2,3および図7,8に示すように、直方体形状の永久磁石31と断面略門型のヨーク32とで構成されている。そして、前記ヨーク32の前記永久磁石31を接合した面が前記固定接点21a,22a,23a,24aに対向するように、前記ヨーク32は前記ベース10の縁部に沿って組み付けられている。
 すなわち、図7に示すように、前記永久磁石31,31は、前記ベース10に設けた位置決め凹部17b,17b(図4)にそれぞれ係合して位置決めされている。
 より具体的には、第1平面(図7において紙面に平行な面)に垂直な第2平面,第3平面で囲まれた領域内に、永久磁石31が配置されている。
 ここで、第1平面とは、可動接点86a(87a),86b(87b)および固定接点21a(23a),22a(24a)を通る平面(図7において紙面に平行な面)をいう。また、第2平面とは、可動接点86a(87a)と固定接点21a(23a)とを通る平面をいう。そして、第3平面とは、可動接点86b(87b)と固定接点22a(24a)とを通る平面をいう。なお、永久磁石31は、第1平面上のうち、第2平面と第3平面との中心に配置するのが最も好ましい。
 さらに、前記固定接点21a,22a,23a,24aと、可動接点86a,86b,87a,87bと、がそれぞれ接離する方向に、前記永久磁石31が配置されている。すなわち、固定接点21a,22a,23a,24aから見て可動接点86a,86b,87a,87b側の方向に前記永久磁石31が配置されている。
 一方、前記ヨーク32,32は、その腕部33,33を前記ベース10の位置決め突起17aおよび位置決めリブ17cにそれぞれ当接させて位置決めされている。そして、前記永久磁石31の磁極面は、断面略門型の前記ヨーク32の腕部33,33が延在する方向の面に接合している。
 そして、可動接点86aと可動接点86bとは、可動接触片80によって電気的に接続されている。このため、隣り合う固定接点21aと可動接点86aとの間に流れる電流の方向と、固定接点22aと可動接点86bとの間に流れる電流の方向とは逆方向になる。
 同様に、可動接点87aと可動接点87bとは、可動接触片81によって電気的に接続されている。このため、隣り合う固定接点23aと可動接点87aとの間に流れる電流の方向と、固定接点24aと可動接点87bとの間に流れる電流の方向とは逆方向になる。
 永久磁石31は、固定接点21aと可動接点86aとの間、および、固定接点22aと可動接点86bとの間に逆方向に電流を流した場合に、発生したアークをベース10から遠ざかる方向に誘引するように磁極の方向が定められている。
 具体的には、図8に示すように、固定接点21a(23a)と可動接点86a(87a)との間、および、固定接点22a(24a)と可動接点86b(87b)との間に逆方向の磁界が発生するように配置されている。言い換えれば、固定接点21a(23a)と可動接点86a(87a)との間、および、固定接点22a(24a)と可動接点86b(87b)との間に逆方向の磁力線が発生するように配置されている。
 また、前記ヨーク32は、その形状や位置を調整することにより、永久磁石31から発生した磁力線の向きを所望の方向に変えられる。このため、前記ヨーク32は、アークの誘引方向を調整することにより、前記永久磁石31の磁束の漏れを少なくし、磁気効率を高めることができる。
 例えば、図6に示すように、永久磁石31とヨーク32とは、固定接点24aと可動接点87bとの間に生じたアーク100を、ベース10から遠ざかる方向に誘引するように配置されている。さらに、前記永久磁石31と前記ヨーク32とは、前記固定接点24aから見て可動接点87bとは反対方向に誘引できるように配置されている。
 なお、本実施形態に係る電磁継電器は4極であるが、固定接点21a,22a,23a,24aと、可動接点86a,86b,87a,87bとの間でそれぞれ発生したアークを、2個の永久磁石31,31で所望の方向に誘引できる。このため、従来例よりも部品点数,生産工数が少なく、生産性の高い接点機構が得られるという利点がある。
 本実施形態では、例えば、図7に示すように、アークが固定接点21a,24aから見て可動接点86a,87bとは反対方向の斜め上方に向かうように誘引される構成について説明した。しかし、これに限らず、固定接点21aと可動接点86aとの位置、あるいは、固定接点24aと可動接点87bとの位置を入れ替えてもよい。そのような場合でも、固定接点21a,24aと可動接点86a,87bとの間にそれぞれ流れる電流の方向を逆方向にするとともに、永久磁石31の磁極の方向を適宜選択できる。これにより、アークを可動接点86a,可動接点86bから見て固定接点21a,22aとは反対方向の斜め上方に向かうように誘引できる。
 本実施形態では、永久磁石31とヨーク32とを組み合わせて磁界発生手段30を構成している。これによって、固定接点21a,24aと可動接点86a,87bとの間に生じたアークをアーク消去空間18,18にそれぞれ誘引し、アークを効率的に消去できる。
 前述のヨーク32は、前述の断面略門型の板状磁性材に限らず、例えば、断面略L字形の板状磁性材であってもよい。この変形例によれば、永久磁石31から発生した磁力線の方向を異なる方向に変えることにより、アークの誘引方向を所望の方向に変えることができる。
 電磁石ブロック40は、図2および図3に示すように、スプール41と、コイル51と、鉄芯52と、ヨーク55とで形成されている。
 前記スプール41は、両端に鍔部42,43を有する胴部44に断面方形の貫通孔45を設けてある。また、前記スプール41は、他方の鍔部43の両側縁部に設けた係合孔46に中継クリップ50をそれぞれ係合し、抜け止めしてある(図6)。
 前記コイル51は、前記胴部44に巻回され、その引き出し線を前記中継クリップ50から延在した絡げ部50a(図2)に絡げてハンダ付けされている。
 前記鉄芯52は、複数枚の平面略T字形の板状磁性材を積層したものである。そして、前記鉄芯52を前記スプール41の貫通孔45に挿通することにより、突出する前記鉄芯52の一端部を磁極部53とする一方、突出する他端部54を後述する断面略L字形状のヨーク55の垂直部57にカシメ固定してある。
 前記ヨーク55は、断面略L字状に屈曲した磁性板からなり、その水平部56の中央に係止突起56aを曲げ起こしてある。そして、前記水平部56は、その先端の両側縁部に支持突起56bを切り出してある。また、前記ヨーク55は、その垂直部57の下端部57aを前記ベース10の圧入孔14に圧入可能な形状としてある。
 可動鉄片60は、図2および図3に示すように、板状磁性材からなり、その上辺縁部に係止突起61を突設してある。また、前記可動鉄片60は、その両側縁部に切り欠き部62,62を設けてある。
 そして、前記可動鉄片60は、前記切り欠き部62を前記ヨーク55の支持突起56bに係合し、前記係止突起61を前記ヨーク55の係止突起56aに復帰バネ63を介して連結することにより、回動可能に支持される。
 可動接触片80,81は正面略T字形状であり、その巾広部82,83の両端に導電性の裏打ち材84,85を介して可動接点86a,86b,87a,87bを固定してある。前記裏打ち材84,85は、前記巾広部82,83の断面積を実質的に増大させることにより、電気抵抗を小さくして発熱を抑制する。また、前述したように発生したアークが固定接点21a,24aから見て可動接点86a,可動接点87bとは反対方向の斜め上方に向かうように誘引される。このため、アークが可動接触片80,81自体に接触しにくくなり、アークによる可動接触片80,81の劣化を低減できる。
 前記可動接触片80,81は、その上端部を可動台74にインサート成形で一体化してある。そして、前記可動台74はリベット64を介してスペーサ70および前記可動鉄片60に一体化される。前記スペーサ70は、図5に示すように、その内向面に設けた凹部71に前記可動鉄片60を嵌合することにより、絶縁特性を高めている。また、前記スペーサ70は、その外向面の下辺縁部に前記可動接触片80,81を仕切る絶縁用リブ72(図3)を側方に突設している。
 そして、可動接触片80,81を取り付けた電磁石ブロック40を前記ベース10に収納し、前記ベース10の段部13に前記スプール41の鍔部42を載置する(図5)。また、ヨーク55の下端部57aを前記ベース10の圧入孔14に圧入して位置決めする。これにより、電磁石ブロック40の中継クリップ50がコイル端子25の接続部25aを挟持する(図6)。また、可動接点86a,86b,87a,87bが固定接点21a,22a,23a,24aに接離可能にそれぞれ対向する。
 カバー90は、図2および図3に示すように、前記電磁石ブロック40を組み付けたベース10に嵌合可能な箱形状を有する。そして、前記カバー90は、天井面に一対のガス抜き孔91,91を設けてある。また、前記カバー90は、天井面から内方に向けて位置規制リブ92(図6)を突設してある。
 このため、前記電磁石ブロック40を組み付けたベース10に前記カバー90を嵌合して固定すると、前記位置規制リブ92が前記ヨーク55の水平部56に当接し、前記電磁石ブロック40の浮き上りを規制する。さらに、前記ベース10の下面にシール材(図示せず)を注入,固化して密封することにより、組立作業が完了する。
 次に、前述の実施形態の動作について説明する。
 前記電磁石ブロック40が励磁されていない場合には、図5および図6に示すように、復帰バネ63のバネ力で可動鉄片60が時計回りに付勢されている。このため、可動接点86a,86b,87a,87bが固定接点21a,22a,23a,24aからそれぞれ開離している。
 そして、前記コイル51に電圧を印加して励磁すると、可動鉄片60が鉄芯52の磁極部53に吸引され、前記可動鉄片60が、復帰バネ63のバネ力に抗し、反時計回りに回動する。このため、前記可動鉄片60と一体に可動接触片80,81が回動する。この結果、可動接点86a,86b,87a,87bが固定接点21a,22a,23a,24aにそれぞれ接触した後、可動鉄片60が鉄芯52の磁極部53に吸着する。
 ついで、前記コイル51への電圧の印加を停止すると、前記復帰バネ63のバネ力で可動鉄片60が時計回りに回動する。このため、可動鉄片60が鉄芯52の磁極部53から開離した後、可動接点86a,86b,87a,87bが固定接点21a,22a,23a,24aから開離し、元の状態に復帰する。
 本実施形態によれば、図5および図6に示すように、可動接点86a,86b,87a,87bが、固定接点21a,22a,23a,24aからそれぞれ開離したときにアーク100が生じても、永久磁石31から磁力線がヨーク32を介して前記アーク100に作用する。このため、フレミングの左手の法則に基づき、発生した前記アーク100は前記ベース10から遠ざかる方向にローレンツ力で誘引される。この結果、例えば、図6に示すように、固定接点24aと可動接点87bとの間で発生した前記アーク100は、アーク消去空間18の方向に引き伸ばされて消失する。このとき、固定接点21a,24aの後方に位置するデッドスペースをアーク消去空間18として有効利用するので、装置の大型化を回避できるという利点がある。
 前記永久磁石31および前記ヨーク32の形状、大きさ、材質、配置等は前述のものに限らず、必要に応じて変更できることは勿論である。
 第2実施形態は、図9に示すように、磁界発生手段30を形成するヨーク32の両側の腕部33を固定接点21a,22aの側方を覆う位置まで延在した場合である。さらに、前記ヨーク32の永久磁石31の配置箇所に、前記永久磁石31の位置を調整する補助ヨーク34を介して前記永久磁石31の磁極面を配置してある。
 なお、前記補助ヨーク34はヨーク32に含まれている。そして、ヨーク32と磁気的に結合していれば、補助ヨーク34とヨーク32とは一体に形成してもよく、別体としてもよい。
 本実施形態によれば、固定接点21aと可動接点86aとの間、および、固定接点22aと可動接点86bとの間にはほぼ平行な磁力線を発生させることができる。このため、アークを誘引する方向を制御しやすいという利点がある。
 第3実施形態は、図10に示すように、枠形状のヨーク32の内側面に永久磁石31を組み付けて磁界発生手段30を形成した場合である。
 本実施形態によれば、磁束の漏れが少なくなり、磁気効率の良い磁界発生手段が得られる。
 第4実施形態は、図11に示すように、棒状のヨーク32に永久磁石31を略T字形状に組み付けて磁界発生手段30を形成した場合である。
 本実施形態によれば、構成部材である棒状のヨーク32が簡単な形状であるので、材料の歩留まりの良い磁界発生手段30が得られるという利点がある。
 第5実施形態は、図12に示すように、枠形状のヨーク32に永久磁石31および補助ヨーク34を架け渡して磁界発生手段30を形成した場合である。
 本実施形態によれば、磁束の漏れがより一層少なくなり、磁気効率の良い磁界発生手段が得られる。
 第1実施形態に準じた接点機構(図13)を有する磁力線の分布を解析した。解析結果を図14に示す。
 図14から明らかなように、永久磁石31から出た磁力線の向きが、固定接点21aと可動接点86aとの間、および、固定接点22aと可動接点86bとの間を反対方向に横切っていることが確認できた。
 すなわち、本接点機構によれば、1個の永久磁石31で、固定接点21aと可動接点86aとの間、および、固定接点22aと可動接点86bとの間に逆方向に電流を流した場合に、発生したアークを同じ方向に誘引できる。このため、部品点数,組立工数が少なく、生産性の高い接点機構を得られることが判った。
 第3実施形態に準じた接点機構(図15)を有する磁力線の分布を解析した。解析結果を図16に示す。
 図16から明らかなように、永久磁石31から出た磁力線の向きが、固定接点21aと可動接点86aとの間、および、固定接点22aと可動接点86bとの間を反対方向に横切る。これにより、永久磁石31から出た磁力線が枠形状のヨーク32を介して磁気回路を形成していることを、確認できた。
 すなわち、本接点機構によれば、1個の永久磁石31で、固定接点21aと可動接点86aとの間、および、固定接点22aと可動接点86bとの間に逆方向に電流を流した場合、発生したアークを同じ方向に誘引できるとともに、磁束の漏れを少なくできる。このため、部品点数が少なく、かつ、磁気効率の良い接点機構を得られることが判った。
 なお、前記永久磁石31は可動接点側に配置する場合に限らず、固定接点側に配置してもよいことは勿論である。
 本発明に係る接点機構は前述のいわゆるダブルブレイク接点構造を有する接点機構に限らず、ツイン接点構造を有する接点機構に適用してもよいことは勿論である。
 また、前述の電磁継電器に限らず、他の電磁継電器,開閉器に適用してもよいことは勿論である。
  10 ベース
  11 凹所
  12 仕切り壁
  13 段部
  14 圧入孔
  15a,15b,15c,15d 端子孔
  16 端子孔
  17 ガイド凹部
  18 アーク消去空間
  21~24 固定接点端子
  21a~24a 固定接点
  25 コイル端子
  25a 接続部
  25b 端子部
  30 磁界発生手段
  31 永久磁石
  32 ヨーク
  40 電磁石ブロック
  41 スプール
  42,43 鍔部
  44 胴部
  45 貫通孔
  46 係合孔
  50 中継クリップ
  51 コイル
  52 鉄芯
  53 磁極部
  55 ヨーク
  60 可動鉄片
  70 スペーサ
  71 凹部
  72 絶縁用リブ
  74 可動台
  80 可動接触片
  81 可動接触片
  82 巾広部
  83 巾広部
  84 裏打ち材
  85 裏打ち材
  86a,86b 可動接点
  87a,87b 可動接点
  90 カバー
  91 ガス抜き孔
  92 位置規制リブ
  100 アーク

Claims (6)

  1.  ベースと、
     前記ベースに並設した一対の固定接点端子のうち、一方の前記固定接点端子に設けた第1固定接点に、第1可動接点を接離可能に対向させた第1接点機構と、
     他方の前記固定接点端子に設けた第2固定接点に、第2可動接点を接離可能に対向させた第2接点機構と、
     からなる接点機構であって、
     前記第1接点機構および前記第2接点機構に逆方向の電流を流したときに、
     前記第1接点機構の接点間と、前記第2接点機構の接点間とのそれぞれに逆方向の磁界が発生するように、
     前記第1接点機構と前記第2接点機構との間に、永久磁石を備えた磁界発生手段を配置したことを特徴とする接点機構。
  2.  前記第1接点機構および前記第2接点機構に生じたアークを前記ベースから遠ざかる方向に誘引するように、前記ベースに前記磁界発生手段を配置したことを特徴とする請求項1に記載の接点機構。
  3.  前記磁界発生手段が、前記永久磁石に当接するヨークを有することを特徴とする請求項1または2に記載の接点機構。
  4.  前記ヨークが、前記第1接点機構および前記第2接点機構を間にして対向する一対の腕部を有する門型形状であることを特徴とする請求項3に記載の接点機構。
  5.  前記ヨークが、前記第1接点機構および前記第2接点機構を囲む枠形状であることを特徴とする請求項3または4に記載の接点機構。
  6.  請求項1ないし5のいずれか1項に記載の接点機構を有する電磁継電器。
PCT/JP2016/057153 2015-07-27 2016-03-08 接点機構およびこれを用いた電磁継電器 WO2017017980A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201680022644.8A CN107533936B (zh) 2015-07-27 2016-03-08 触点机构及使用该触点机构的电磁继电器
DE112016003409.1T DE112016003409T5 (de) 2015-07-27 2016-03-08 Kontaktmechanismus und diesen verwendenden elektromagnetisches relais
US15/808,641 US10658140B2 (en) 2015-07-27 2017-11-09 Contact mechanism and electromagnetic relay using the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-147990 2015-07-27
JP2015147990A JP6631068B2 (ja) 2015-07-27 2015-07-27 接点機構およびこれを用いた電磁継電器

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/808,641 Continuation US10658140B2 (en) 2015-07-27 2017-11-09 Contact mechanism and electromagnetic relay using the same

Publications (1)

Publication Number Publication Date
WO2017017980A1 true WO2017017980A1 (ja) 2017-02-02

Family

ID=57884663

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/057153 WO2017017980A1 (ja) 2015-07-27 2016-03-08 接点機構およびこれを用いた電磁継電器

Country Status (5)

Country Link
US (1) US10658140B2 (ja)
JP (1) JP6631068B2 (ja)
CN (1) CN107533936B (ja)
DE (1) DE112016003409T5 (ja)
WO (1) WO2017017980A1 (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6726080B2 (ja) * 2016-10-20 2020-07-22 富士通コンポーネント株式会社 電磁継電器
JP6806007B2 (ja) * 2017-08-31 2020-12-23 オムロン株式会社 電磁継電器
JP7313168B2 (ja) * 2019-03-19 2023-07-24 富士通コンポーネント株式会社 電磁継電器
WO2021177121A1 (ja) * 2020-03-03 2021-09-10 パナソニックIpマネジメント株式会社 接点装置および当該接点装置を搭載した電磁継電器
JP2022021236A (ja) * 2020-07-21 2022-02-02 オムロン株式会社 電磁継電器

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60107551U (ja) * 1983-12-26 1985-07-22 オムロン株式会社 電磁継電器
JPH10154448A (ja) * 1996-11-25 1998-06-09 Matsushita Electric Works Ltd 直流開閉器
JP2009087918A (ja) * 2007-09-14 2009-04-23 Fujitsu Component Ltd リレー
JP2011204478A (ja) * 2010-03-25 2011-10-13 Panasonic Electric Works Co Ltd 接点装置
JP2012160427A (ja) * 2011-01-12 2012-08-23 Fuji Electric Co Ltd 電磁接触器
JP2013164900A (ja) * 2012-02-09 2013-08-22 Nippon Soken Inc 電磁継電器
JP2013232300A (ja) * 2012-04-27 2013-11-14 Fujitsu Component Ltd 電磁継電器

Family Cites Families (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3743122C1 (de) * 1987-12-18 1989-02-16 Sds Relais Ag Elektromagnetisches Schaltgeraet
DE69114865T2 (de) * 1990-01-12 1996-08-22 Omron Tateisi Electronics Co Elektromagnetisches Relais.
DE4219933A1 (de) * 1992-06-17 1993-12-23 Siemens Ag Elektromagnetisches Relais
DE4122704C2 (de) * 1991-07-09 1993-12-16 Siemens Ag Elektromagnetisches Relais
EP0593599B1 (de) * 1991-07-09 1995-02-15 Siemens Aktiengesellschaft Elektromagnetisches umschaltrelais
JPH05274984A (ja) * 1992-03-27 1993-10-22 Omron Corp 電磁継電器
US5264812A (en) * 1992-05-19 1993-11-23 Takamisawa Electric Co., Ltd. Small, economical and stable polarized electromagnetic relay having two groups of electromagnetic relay portions
US5359305A (en) * 1992-06-15 1994-10-25 Matsushita Electric Works, Ltd. Electromagnetic relay
US5332986A (en) * 1993-04-13 1994-07-26 Allen-Bradley Company, Inc. Overload relay mechanism
KR0182806B1 (ko) * 1993-09-17 1999-05-15 다테이시 요시오 전자 계전기 및 그 제조방법
DE4445069A1 (de) * 1994-12-06 1996-06-13 Brose Fahrzeugteile Polarisiertes Relais
JPH08255544A (ja) * 1995-03-20 1996-10-01 Nec Corp リードレス表面実装用リレー
DE19537612C1 (de) * 1995-10-09 1997-01-09 Siemens Ag Elektromagnetisches Relais und Verfahren zu dessen Herstellung
DE59609182D1 (de) * 1995-10-09 2002-06-13 Tyco Electronics Logistics Ag Elektromagnetisches Relais und Verfahren zu dessen Herstellung
FR2742917B1 (fr) * 1995-12-22 1998-02-13 Suisse Electronique Microtech Dispositif miniature pour executer une fonction predeterminee, notamment microrelais
DE69732876T2 (de) * 1996-05-27 2006-04-06 Omron Corp. Elektromagnetisches Relais
FR2756093B1 (fr) * 1996-11-20 1998-12-31 Chauvin Arnoux Agencement de relais electromagnetique bistable
DE19727991C1 (de) * 1997-07-01 1998-11-19 Schrack Components Ag Elektromagnetisches Relais
EP0938119A1 (de) * 1998-02-18 1999-08-25 ELESTA relays GmbH Relais
US5959518A (en) * 1998-05-15 1999-09-28 Siemens Energy & Automation, Inc. Contact mechanism for electronic overload relays
US5910759A (en) * 1998-05-15 1999-06-08 Siemens Energy & Automation, Inc. Contact mechanism for electronic overload relays
US6958671B2 (en) * 2001-11-15 2005-10-25 Square D Company Electrical contactor with positive temperature coefficient resistivity element
JP2007305467A (ja) * 2006-05-12 2007-11-22 Omron Corp 電磁継電器、その調整方法および調整システム
JP5560058B2 (ja) * 2010-01-26 2014-07-23 富士通コンポーネント株式会社 電磁継電器
CN102934190B (zh) * 2010-03-15 2016-01-20 欧姆龙株式会社 接点开关装置
JP5624431B2 (ja) * 2010-11-08 2014-11-12 パナソニック株式会社 電磁リレー
WO2012073780A1 (ja) * 2010-11-30 2012-06-07 富士電機機器制御株式会社 ラッチングリレー
JP5710984B2 (ja) * 2011-01-12 2015-04-30 富士電機株式会社 電磁接触器
JP5727861B2 (ja) * 2011-05-19 2015-06-03 富士電機機器制御株式会社 電磁接触器
KR101354405B1 (ko) 2011-06-07 2014-01-22 후지쯔 콤포넌트 가부시끼가이샤 전자계전기 및 전자계전기의 제조방법
JP5585550B2 (ja) * 2011-07-18 2014-09-10 アンデン株式会社 継電器
JP5838920B2 (ja) * 2011-07-18 2016-01-06 アンデン株式会社 継電器
JP5984087B2 (ja) 2011-09-22 2016-09-06 パナソニックIpマネジメント株式会社 電磁リレー
JP5856426B2 (ja) * 2011-10-07 2016-02-09 富士電機株式会社 接点装置及びこれを使用した電磁接触器
JP5966469B2 (ja) * 2012-03-15 2016-08-10 オムロン株式会社 封止接点装置
JP5938745B2 (ja) * 2012-07-06 2016-06-22 パナソニックIpマネジメント株式会社 接点装置および当該接点装置を搭載した電磁継電器
JP6291931B2 (ja) * 2014-03-14 2018-03-14 オムロン株式会社 電子機器のシール構造およびこの電子機器のシール構造を用いた電磁継電器
JP6403476B2 (ja) * 2014-07-28 2018-10-10 富士通コンポーネント株式会社 電磁継電器
JP2016110843A (ja) * 2014-12-05 2016-06-20 オムロン株式会社 電磁継電器
JP6414453B2 (ja) * 2014-12-05 2018-10-31 オムロン株式会社 電磁継電器
JP6365684B2 (ja) * 2014-12-05 2018-08-01 オムロン株式会社 電磁継電器

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60107551U (ja) * 1983-12-26 1985-07-22 オムロン株式会社 電磁継電器
JPH10154448A (ja) * 1996-11-25 1998-06-09 Matsushita Electric Works Ltd 直流開閉器
JP2009087918A (ja) * 2007-09-14 2009-04-23 Fujitsu Component Ltd リレー
JP2011204478A (ja) * 2010-03-25 2011-10-13 Panasonic Electric Works Co Ltd 接点装置
JP2012160427A (ja) * 2011-01-12 2012-08-23 Fuji Electric Co Ltd 電磁接触器
JP2013164900A (ja) * 2012-02-09 2013-08-22 Nippon Soken Inc 電磁継電器
JP2013232300A (ja) * 2012-04-27 2013-11-14 Fujitsu Component Ltd 電磁継電器

Also Published As

Publication number Publication date
US20180068818A1 (en) 2018-03-08
CN107533936A (zh) 2018-01-02
CN107533936B (zh) 2019-05-31
DE112016003409T5 (de) 2018-04-19
JP2017027892A (ja) 2017-02-02
US10658140B2 (en) 2020-05-19
JP6631068B2 (ja) 2020-01-15

Similar Documents

Publication Publication Date Title
JP6365684B2 (ja) 電磁継電器
JP4810937B2 (ja) 開閉装置
WO2017017980A1 (ja) 接点機構およびこれを用いた電磁継電器
JP6414453B2 (ja) 電磁継電器
US9570259B2 (en) Electromagnetic relay
WO2016088484A1 (ja) 電磁継電器
US20190035585A1 (en) Electromagnetic relay
JP6024287B2 (ja) 電磁石装置、その組立方法およびそれを用いた電磁継電器
JP2017050274A (ja) 接点開閉装置
JP6056264B2 (ja) 電磁石装置およびそれを用いた電磁継電器
JPWO2012073780A1 (ja) ラッチングリレー
JP2016072020A (ja) 接点装置
JP2014044837A5 (ja)
JP2005166431A (ja) 電磁継電器
JP2012104366A (ja) 接点装置
JP2011204476A (ja) 接点装置
JP2012104362A (ja) 接点装置
JP7357193B2 (ja) 電磁継電器
JP5743863B2 (ja) 電磁アクチュエータおよびそれを用いた電磁リレー
JP4258361B2 (ja) 電磁継電器
JP6079054B2 (ja) 電磁石装置およびこれを用いた電磁継電器
JP2012104365A (ja) 接点装置
JP2012104360A (ja) 接点装置
JP2009087856A (ja) 電磁継電器
JP2012104358A (ja) 接点装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16830085

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 112016003409

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16830085

Country of ref document: EP

Kind code of ref document: A1