WO2017010016A1 - 既製杭埋込み工法 - Google Patents

既製杭埋込み工法 Download PDF

Info

Publication number
WO2017010016A1
WO2017010016A1 PCT/JP2015/071283 JP2015071283W WO2017010016A1 WO 2017010016 A1 WO2017010016 A1 WO 2017010016A1 JP 2015071283 W JP2015071283 W JP 2015071283W WO 2017010016 A1 WO2017010016 A1 WO 2017010016A1
Authority
WO
WIPO (PCT)
Prior art keywords
cement
expansion
aluminum powder
rate
soil cement
Prior art date
Application number
PCT/JP2015/071283
Other languages
English (en)
French (fr)
Inventor
中野隆夫
Original Assignee
中野隆夫
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中野隆夫 filed Critical 中野隆夫
Priority to US15/739,281 priority Critical patent/US10480145B2/en
Publication of WO2017010016A1 publication Critical patent/WO2017010016A1/ja

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D5/00Bulkheads, piles, or other structural elements specially adapted to foundation engineering
    • E02D5/22Piles
    • E02D5/48Piles varying in construction along their length, i.e. along the body between head and shoe, e.g. made of different materials along their length
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D5/00Bulkheads, piles, or other structural elements specially adapted to foundation engineering
    • E02D5/22Piles
    • E02D5/50Piles comprising both precast concrete portions and concrete portions cast in situ

Definitions

  • the present invention relates to a ready-made pile embedding method using a ready-made pile.
  • a prefabricated pile embedding method is known as a method for forming a foundation pile such as a building.
  • This prefabricated pile embedding method is a prefabricated method in which the ground is loosened and built before being pushed into the ground.
  • the Nakabori pile method of burying the soil while excavating the ground at the tip of the pile using the boring pile method and the hollow part of the pile is known.
  • a drilling hole is constructed to a predetermined depth while discharging water for drilling from the tip of a drilling bit of an excavator, and then a rooting liquid is injected into the tip of the drilling hole.
  • a drilling bit is repeatedly operated up and down to agitate and mix mud and root-setting liquid to form a soil cement.
  • the prefabricated pile is installed in the excavation hole before the soil cement is hardened, and the tip of the prefabricated pile is fixed on the soil cement for consolidation.
  • the Nakabori Pile Method performs excavator ground excavation and pile set-up at the same time, and the construction method of the root consolidation part that is constructed by injecting root consolidation liquid into the excavation hole is the pre-boring pile method. Almost unchanged.
  • the pile tip is usually filled into the excavation hole with cement milk mixed with cement and water as a rooting liquid and hardened to form a rooting part. It becomes the structure which hardens.
  • the water-cement ratio of the cement milk of the support pile generally used is generally 55% to 65%, and the 28-day age strength is controlled at about 11 to 20 N / mm 2 .
  • the soil mixed with the excavated soil is mixed with cement milk having a water-cement ratio equal to or higher than the root-solidification liquid. It is made of cement and is filled with a pile circumference fixing liquid managed at a 28-day age strength of 0.5 N / mm 2 or more.
  • pile fixing liquids as root hardening liquid and pile circumference fixing liquid are those in which an expansion material is added to cement milk to be injected, cereal mixed with blast furnace slag in cement milk, or blast furnace cement B type in cement milk.
  • the following patent document discloses a method for increasing the pile tip support force by using a main material, plaster, or the like.
  • Patent Document 1 discloses a root hardening solution in which 4.5 to 11% of calcium sulfoaluminate-based expansion material is added to cement paste, and the water cement ratio with respect to the total of cement and expansion material is 65% or less.
  • a technique for expanding a bulb in the bulb hardening process and crimping the bulb to the ground is disclosed.
  • the uniaxial restricted expansion rate is 45 ⁇ 10 ⁇ 4 (4500 ⁇ 10 ⁇ 6 )
  • the maximum expansion rate is about 0.45%.
  • Patent Document 2 describes a method of filling a pile periphery fixing liquid composed of cement containing blast furnace slag fine powder, water, fine aggregate, anhydrous gypsum, thickener and water reducing agent around the pile of the excavation hole, A technique for improving the adhesion to the ground is disclosed.
  • the technique of Patent Document 2 since the change in the length of expansion is effective up to 6000 ⁇ 10 ⁇ 6, the maximum expansion rate is 0.6%.
  • Patent Document 3 discloses a pile periphery filling liquid mainly composed of blast furnace cement B type and comprising a binder containing anhydrous gypsum and water.
  • the expansion amount is not less than 1200 ⁇ m (1200 ⁇ 10 ⁇ 6 ) and about 2500 ⁇ m (2500 ⁇ 10 ⁇ 6 ), the maximum expansion rate is 0.25%.
  • an expansion material or gypsum is mixed in cement milk or mortar, and the gap between the outer peripheral surface of the ready-made pile and the inner surface of the excavation hole is filled with the expansion material.
  • the expansion rate is as small as 0.25% to 0.6%, the adhesion with the ground is low, and there is a disadvantage that it cannot be sufficiently integrated with the ground.
  • the present invention has been made in view of such circumstances, in which cement milk or mortar to which a foaming agent having a large expansion action is added is poured into a drilling hole, so that the soil cement and the surroundings are more easily expanded than the conventional method.
  • a prefabricated pile embedding method in which the surface ground and the prefabricated pile are firmly integrated to increase the tip support force, peripheral frictional force, and pulling resistance force of the prefabricated pile.
  • soil cement is produced by injecting cement milk or mortar into a drilling hole excavated in the ground and stirring and mixing with the excavated soil, and the ready-made pile is placed in the soil cement in the drilled hole.
  • It is a ready-made pile embedding method that inserts, by adding a foaming agent having an expansion action in advance to cement milk or mortar, to expand the soil cement formed around the base of the ready-made pile in the excavation hole, The soil cement is formed into a reverse taper shape, or an expansion pressure with a reverse taper shape is generated.
  • the foaming agent having an expanding action at least an aluminum powder that foams a gas by a chemical reaction in the cement composition, an amphoteric metal powder such as zinc, a carbon substance, a peroxide substance, a sulfonyl It is 1 type, or 2 or more types selected from the hydrazide compound, the azo compound, the nitroso compound, and the hydrazine derivative.
  • an amphoteric metal powder such as zinc, a carbon substance, a peroxide substance, a sulfonyl It is 1 type, or 2 or more types selected from the hydrazide compound, the azo compound, the nitroso compound, and the hydrazine derivative.
  • the foaming agent is added so that the expansion rate of cement milk or mortar is 3% to 16%.
  • the amount of the aluminum powder added as the foaming agent is 0.002% to 0.02% with respect to the cement mass so that the expansion rate of the cement milk is 3% to 16%.
  • the amount of aluminum powder added as the foaming agent is 0.007% to 0.04% with respect to the cement mass so that the expansion rate of the mortar is 3% to 16%.
  • the addition amount of the aluminum powder as the foaming agent is set to the cement mass so that the expansion rate of the cement milk is 3% to 16%.
  • the amount of the aluminum powder added as the foaming agent is 0.007% with respect to the cement mass so that the expansion rate of the mortar is 0.002% to 0.4% or the mortar expansion rate is 3% to 16%. To 0.8%.
  • the expanding soil cement contains a fiber substance.
  • soil cement is produced by injecting cement milk or mortar into the excavation hole excavated in the ground and stirring and mixing with excavated soil, and in the soil cement in the excavation hole It is a ready-made pile embedding method that inserts a ready-made pile, and the soil cement formed around the base of the ready-made pile in the excavation hole is expanded by adding a foaming agent having an expansion action to cement milk or mortar in advance.
  • the change in the length of expansion is less than 6000 ⁇ 10 ⁇ 6 , that is, compared with a soil cement mixed with an expansion material or gypsum that had an expansion rate of less than 0.6%. Since the foaming agent has a large expansion coefficient, it is possible to embed a strong ready-made pile.
  • the volume of the soil cement is increased by adding a foaming agent and expanding, and the expansion pressure of the soil cement is applied to the inner wall surface of the drilling hole, and the inner wall surface of the drilling hole (hole Pressure is applied to the soil cement from the wall ground. Further, the expansion pressure of the soil cement is applied to the outer peripheral surface of the ready-made pile, and the reaction force from the ready-made pile is applied to the soil cement.
  • the looseness of the boundary between the inner wall surface of the excavation hole and the soil cement and the gap are closely filled with the expanding soil cement, and the looseness of the boundary between the outer periphery of the prefabricated pile and the soil cement and the clearance between the soil cement are expanded with the soil cement.
  • the adhesion between soil cement and ready-made piles is increased.
  • they can be integrated with the hole wall ground of the excavation hole while applying expansion pressure, and there is an effect that it is possible to construct a strong ready-made pile embedding in which the tip supporting force of the ready-made pile is increased.
  • the soil cement expands and expands greatly in the excavation hole, the tip support force, the peripheral frictional force, and the pulling resistance force are increased as compared with the case where the pile fixing liquid of the prior art is injected.
  • this reverse taper-shaped pile exerts the effect of pushing the ground, improving the pile tip support force and peripheral surface friction force There is an effect to make.
  • the soil cement has the effect of improving the pile tip support force, peripheral surface frictional force and pulling resistance force by curing with the reverse taper-shaped expansion pressure generated .
  • the foaming agent having an expansion action includes at least aluminum powder that foams a gas by a chemical reaction in the cement composition, an amphoteric metal powder such as zinc, a carbon substance, and a peroxide substance. 1 type (s) or 2 or more types selected from a sulfonyl hydrazide compound, an azo compound, a nitroso compound, and a hydrazine derivative are added.
  • the cement composition added in this way promotes the diffusion of the cement by utilizing the buoyancy of the gas when the gas is foamed by a chemical reaction in the cement composition, causing a sufficient foaming function to the soil cement, It is possible to exhibit a dense and uniform expansion and hardening throughout the composition of the soil cement.
  • the looseness of the boundary between the inner wall of the excavation hole and the soil cement and the gap are tightly filled with the expanding soil cement, and the gap between the outer peripheral surface of the prefabricated pile and the soil cement is expanded closely with the soil cement. Buried.
  • the adhesive force between the soil cement and the ready-made pile is increased.
  • these can be integrated while applying expansion pressure to the hole wall ground of the excavation hole, and there is an effect that it is possible to construct a strong ready-made pile embedding with improved tip support force and the like of the ready-made pile.
  • the tip support force, the peripheral frictional force, and the pulling resistance force are increased compared to the case where the pile fixing liquid of the prior art is injected.
  • the said foaming agent since the said foaming agent was added so that the expansion coefficient of cement milk or mortar might be 3% to 16%, it produces
  • the minimum expansion coefficient 1% of this soil cement is 1.66 times or more of the maximum expansion coefficient less than 0.6% disclosed in Patent Documents 1, 2, and 3.
  • the expansion rate of the soil cement produced according to the present invention is 1% to 8%, the expansion pressure is further increased because the expansion of the soil cement is restrained by the hole wall ground of the excavation hole and the expansion is suppressed. However, the soil cement is firmly integrated with the hole wall ground of the excavation hole while the expansion pressure is applied.
  • the present invention has an effect of increasing the tip support force, peripheral surface friction force, and pull-out resistance force as compared with the prior art.
  • the expansion rate of the cement milk or mortar to which the foaming agent is added is less than 3%, the adhesion between the soil cement in the excavation hole and the peripheral ground or ready-made pile is weakened.
  • the expansion rate of the cement milk or mortar to which the foaming agent is added is larger than 16%, the compressive strength is reduced although the adhesion between the soil cement in the excavation hole and the peripheral ground or the ready-made pile is good.
  • the addition amount of the aluminum powder as said foaming agent is 0.002% to 0.00% with respect to cement mass so that the expansion rate of cement milk may be 3% to 16%.
  • the amount of aluminum powder added as the blowing agent is 0.007% to 0.04% with respect to the cement mass so that the expansion rate of the mortar is 3% to 16%. Since the expansion rate of cement milk or mortar has a correlation that increases approximately linearly with the amount of aluminum powder added to the cement mass, the expansion rate of cement milk or mortar is appropriately adjusted by the amount of aluminum powder added. Is possible. Therefore, if a large expansion coefficient is required for cement milk or mortar, a predetermined expansion coefficient can be generated by predictably increasing the amount of aluminum powder added to the cement mass.
  • the expansion rate of cement milk or mortar is increased, so that the pressure at which the soil cement expands in the hole wall ground of the excavated hole Therefore, the expanding soil cement has an effect of being firmly integrated with the hole wall ground of the excavation hole while applying the expansion pressure.
  • the expansion rate of the cement milk to which the aluminum powder is added is less than 0.002% of the cement mass, the expansion rate of the cement milk is less than 3%, and the expansion rate of the resulting soil cement is The soil cement that expands to less than 1% cannot sufficiently apply the expansion pressure to the wall surface of the excavation hole.
  • the expansion rate of cement milk becomes larger than 16%
  • the expansion rate of the soil cement to be generated becomes larger than 8%
  • the peripheral ground In order to increase the strength, it is necessary to increase the amount of cement, resulting in an increase in material cost and poor economic efficiency. If the expansion rate of the mortar to which aluminum powder is added relative to the cement mass is less than 0.007%, the expansion rate of the mortar is less than 3%, and the expansion rate of the resulting soil cement is less than 1%. The expansion pressure cannot be sufficiently applied to the wall surface of the borehole.
  • the addition amount of the aluminum powder as the foaming agent is set to be cement so that the expansion rate of the cement milk is 3% to 16%.
  • Aluminum as the foaming agent so that the expansion rate of the mortar is 3% to 16% when the drilling depth of the drilling hole is deep from 0.002% to 0.4% with respect to the mass.
  • the amount of powder added is 0.007% to 0.8% with respect to the cement mass.
  • the expansion rate of cement milk or mortar in the drilling hole with a deep excavation depth and high water pressure at 3 to 16%
  • the expansion of the soil cement that expands by mixing with the excavated soil The rate can be raised from 1% to 8%, so that the soil cement that expands the root will apply reaction pressure to the hole wall ground of the excavation hole, while the reaction force is applied from the hole wall ground. Therefore, the expanding soil cement has an effect of being firmly integrated with the hole wall ground of the excavation hole while the expansion pressure is applied.
  • the expansion rate of the cement milk to which the aluminum powder is added is less than 0.002% of the cement mass, the expansion rate of the cement milk is less than 3%, and the expansion rate of the resulting soil cement is The soil cement that expands to less than 1% cannot sufficiently apply the expansion pressure to the wall surface of the excavation hole.
  • the addition rate of aluminum powder exceeds 0.4% with respect to the cement mass, the expansion rate of cement milk is greater than 16%, and the expansion rate of the soil cement produced is greater than 8%.
  • the expansion rate of the mortar to which aluminum powder is added relative to the cement mass is less than 0.007%, the expansion rate of the mortar is less than 3%, and the expansion rate of the resulting soil cement is less than 1%.
  • the expansion pressure cannot be sufficiently applied to the wall surface of the borehole.
  • the addition rate of aluminum powder exceeds 0.8% with respect to the cement mass, the expansion rate of the mortar becomes larger than 16%, and the expansion rate of the soil cement to be generated becomes larger than 8%, and the peripheral ground
  • the expanding soil cement contains a fiber material, the expanding soil cement has an effect of improving crack resistance, toughness and strength.
  • FIG. 1 It is a graph which shows transition of expansion amount. It is a graph which shows the relationship between the amount of aluminum addition, and the intensity
  • FIG. It is a table
  • FIG. It is the list
  • FIG. 1 shows transition of expansion amount. It is a graph which shows the relationship between the amount of aluminum addition, and the intensity
  • FIG. 2 It is a table
  • FIG. 2 It is the list
  • FIG. It is a table
  • FIG. It is the list showing the result of the fresh test of concrete. It is the list
  • FIG. (A) Mixing conditions / test, (b) List of used mixers / mixing methods. It is a table
  • This ready-made pile embedding method generates soil cement by injecting cement milk or mortar into the excavation hole excavated in the ground and mixing it with the excavated soil, and inserts the ready-made pile into the soil cement in the excavation hole.
  • an aluminum powder that foams a gas by a chemical reaction in the cement composition an amphoteric metal powder such as zinc, a carbon substance, a peroxide substance, a sulfonyl hydrazide compound, an azo compound, a nitroso compound, One or more selected from hydrazine derivatives.
  • the foaming agent is added so that the expansion rate of cement milk or mortar is 3% to 16%.
  • the amount of aluminum powder added as the foaming agent is 0.002% to 0.02% of the cement mass so that the expansion rate of cement milk is 3% to 16%, or the expansion rate of mortar is
  • the amount of aluminum powder added as the foaming agent is set to 0.007% to 0.04% with respect to the cement mass so as to be 3% to 16%.
  • the addition amount of the aluminum powder as the foaming agent is 0.002% to 0.00% with respect to the cement mass so that the expansion rate of the cement milk is 3% to 16%.
  • the amount of aluminum powder added as the blowing agent is 0.007% to 0.8% with respect to the cement mass so that the expansion rate of mortar is 3% to 16%.
  • S Expanding soil cement contains fiber material.
  • Precast pile embedding method An embodiment of the present invention will be described in detail with reference to the drawings. As an excavation method, a pre-boring method will be described as an example. In addition, the ready-made pile is demonstrated using a ready-made concrete pile. In the following process, explanation will be given in the case of mortar, but the explanation in the case of cement milk is the same construction method, and therefore redundant explanation is omitted. Moreover, in the following construction method, the case where the foaming agent is aluminum powder will be described.
  • an excavator is installed on the ground surface where an embedded pile is constructed, and the underground A is dug down while injecting drilling fluid such as water from the excavating bit 12 of the excavator.
  • the excavation hole 11 is excavated.
  • excavation soil B excavated with a drilling liquid such as water, that is, spouted and agitated, mud and fluidized remains.
  • a mortar 13 finely mixed with cement
  • a predetermined aluminum powder as a blowing agent having an expanding action.
  • the excavation bit 12 is moved while being repeatedly rotated up and down while being filled (injection is a pressure injection, a pressure injection, a pressure injection, etc.).
  • injection is a pressure injection, a pressure injection, a pressure injection, etc.
  • the soil cement 14 is obtained by stirring and mixing with the excavated soil.
  • the excavation bit 12 is pulled up while stirring and mixing the pile periphery fixing liquid C in the excavation hole 11.
  • the pile circumference fixing liquid C was injected and filled in the excavation hole 11, but the mortar 13 added with aluminum powder was injected and filled into the injection part of the pile circumference fixing liquid C, and the mixture was stirred and mixed to form a soil cement. It may be cured.
  • the excavator drill bit 12 is pulled out from the excavation hole 11, the ready-made concrete pile 15 is inserted into the excavation hole 11, and the tip of the ready-made concrete pile 15 is connected to the tip of the excavation hole 11. Insert it to the vicinity of the base (base) and finish the construction.
  • tip part of the ready-made concrete pile 15 may settle to the front-end
  • the soil which has been excavated and agitated by the excavation bit 12 and mud and fluidized and the mortar 13 to which the aluminum powder of the foaming agent is added are agitated and mixed to form a soil cement 14.
  • the aluminum powder of the foaming agent having an appropriately adjusted reaction start time reacts with the mortar 13 to foam hydrogen gas, and the volume of the soil cement is expanded and expanded. Furthermore, the diffusion of the cement can be promoted by utilizing the buoyancy of hydrogen gas, and a sufficient foaming function can be generated in the soil cement to exhibit a dense and uniform expansion and hardening throughout the composition of the soil cement.
  • the soil cement 14 before hardening alleviates the settlement and shrinkage action of the cement material due to the breathing action of the cement, and prevents the formation of gaps in the bottom surface of the aggregate of sand and gravel of the soil cement body. Increase adhesion between gravel and injected mortar. In addition, loosening and gaps that tend to be formed near the inner wall of the borehole due to self-shrinkage of the cement are prevented, the adhesion between the ready-made pile 15 and the soil cement 14 is enhanced by the expansion pressure, and the soil cement exerts an expansion pressure. It has the effect of being firmly integrated with the surrounding ground. In addition, the same effect is produced also in the case of cement milk instead of mortar.
  • the volume of the soil cement expands and increases due to the foaming agent due to the hydrogen gas foaming of the foaming agent, whereby the soil cement 14 expands on the inner wall surface of the excavation hole 11.
  • the pressure P1 is applied
  • the reaction force P2 is applied to the soil cement 14 from the inner wall surface of the excavation hole 11, that is, the hole wall ground
  • the expansion pressure P1 of the soil cement 14 is applied to the ready-made pile 15, and the reaction force from the ready-made pile 15 is applied.
  • P3 is applied to the soil cement 14.
  • Reference symbol P4 represents a reaction force of the soil cement fixed to the periphery of the pile mixed and stirred with the periphery fixing solution C.
  • the gap between the inner wall surface of the excavation hole 11 and the soil cement 14 is tightly filled with the expanding soil cement 14, and the looseness or gap between the outer peripheral surface of the ready-made pile 15 and the soil cement 14 expands.
  • the adhesion between the soil cement 14 and the ready-made pile 15 is increased by being densely filled with the soil cement 14.
  • these can be integrated while applying expansion pressure to the hole wall ground of the excavation hole, and there is an effect that it is possible to construct a strong ready-made pile embedding with enhanced tip support force and the like of the ready-made pile.
  • the amount of aluminum powder added as a foaming agent is increased, the expansion rate increases, but the amount of hydrogen gas generated increases and a large number of microscopic voids are scattered in the soil cement, causing a decrease in strength. .
  • the amount of aluminum powder used as a foaming agent is specified so as to obtain the required expansion rate, and the aluminum powder is added so that the expansion rate of the foaming agent ranges from 3% to 16%. Yes.
  • the amount of aluminum powder added as the foaming agent is 0.002% to 0.02% with respect to the cement mass so that the expansion rate of cement milk is 3% to 16%, or the expansion of mortar
  • the amount of aluminum powder added as the foaming agent is 0.007% to 0.04% with respect to the cement mass so that the rate is 3% to 16%.
  • the soil cement produced by mixing with the excavated soil can generate an expansion rate of 1% to 8%.
  • the wall ground can be firmly integrated with the hole wall ground of the excavation hole while the pressure for expanding the soil cement is applied.
  • the method for embedding ready-made piles excavates the ground while injecting a drilling fluid such as water from the drilling bit 12 to form a drilling hole.
  • the borehole is filled with drilling fluid such as water, the borehole is saturated with mudified fluidized soil and drilling fluid, and the predetermined position of the drilling depth in the borehole is the application of water pressure according to the water depth. It becomes a reduction.
  • the water pressure at the excavation depth is about 1 kg / cm 2 per 10 m of water depth.
  • the pressure is 2 at 10 m below the water, 3 at the water below 20 m, 6 at the water 50 m, and 11 at the water 100 below.
  • the borehole is filled with a drilling fluid such as water and is agitated with a drilling bit and saturated with mudified fluidized soil and drilling fluid. If 8, the pressure applied to the excavation depth is 1.8 times the water pressure. Therefore, even under high water pressure where the digging depth is deep, the foaming agent is used so that the expansion rate of cement milk or mortar is 3% to 16% so that the expansion rate of cement milk or mortar is the same as normal pressure. The amount of aluminum powder added was determined.
  • the amount of aluminum powder added at a deep excavation depth and high water pressure is twice the normal pressure at a drilling depth of 10 m in the excavation hole, 6 times the normal pressure at a water pressure of 50 m excavation depth, What is necessary is just to make it about 11 times the normal pressure under the water pressure of 100 m.
  • the specific gravity of the mudified fluidized soil in the excavation hole is 1.8
  • 6 times the normal pressure at a digging depth of 50 m ⁇ 1.8 10.8 times
  • 11 times the normal pressure at a digging depth of 100 m ⁇ 1.8 19.8 times.
  • the uniaxial compressive strength does not decrease because the restraint pressure in the excavation hole increases proportionally even when the amount of aluminum powder added increases.
  • the maximum excavation depth of the ready-made pile embedding method is about GL-80m
  • the maximum value of the added amount of aluminum powder was determined with the maximum excavation depth being about 100m.
  • the addition amount of the aluminum powder as the foaming agent is 0. 0 relative to the cement mass so that the expansion rate of the cement milk is 3% to 16%. From 002% to 0.4%.
  • the addition amount of the aluminum powder as the foaming agent is 0.007 with respect to the cement mass so that the expansion rate of the mortar is 3% to 16%. % To 0.8%.
  • the expansion rate of the generated soil cement is increased from 1% to 8%. Since the soil cement that expands the root-consolidated part applies expansion pressure to the hole wall ground and conversely receives a reaction force from the hole wall ground, the soil cement that expands applied expansion pressure. It has the effect of being firmly integrated with the hole wall ground of the excavation hole.
  • the expansion rate of the cement milk to which the aluminum powder is added is less than 0.002% of the cement mass, the expansion rate of the cement milk is less than 3%, and the expansion rate of the resulting soil cement is The soil cement that expands to less than 1% cannot sufficiently apply the expansion pressure to the wall surface of the excavation hole.
  • the addition rate of aluminum powder exceeds 0.4% with respect to the cement mass, the expansion rate of cement milk is greater than 16%, and the expansion rate of the soil cement produced is greater than 8%.
  • the expansion rate of the mortar to which the aluminum powder is added is less than 3% when the addition amount of the aluminum powder is less than 0.007% with respect to the cement mass, and the expansion rate of the expanding soil cement is less than 1%.
  • the generated soil cement cannot sufficiently apply the expansion pressure to the wall surface of the excavation hole.
  • the addition rate of aluminum powder exceeds 0.8% with respect to the cement mass, the expansion rate of mortar becomes larger than 16%, and the expansion rate of the soil cement to be generated becomes larger than 8%.
  • the adhesive strength with the ground is increased, the strength is greatly decreased.
  • it is necessary to increase the amount of cement it is necessary to increase the amount of cement, and the material cost increases and the economy is deteriorated.
  • the cement milk or mortar which added the predetermined aluminum powder mentioned above can be applied also to the construction method and various rooting parts which are demonstrated below.
  • the pile shown in FIG. 2 is filled with mortar added with aluminum powder as a foaming agent at the tip of the excavation hole 11 and in the middle of the excavation hole 11 and mixed with the excavated soil to form a soil cement.
  • This is a structure in which a pile 15 is inserted into the excavation hole 11 and a tip root consolidation part 16 and a midway root consolidation part 17 are constructed.
  • a soil cement may be formed in this region by combining the root consolidation part and the mid-root consolidation part.
  • the difference between the pile shown in FIG. 2 and the pile shown in FIG. 1 (e) is the same as the process in FIG. .
  • Example 1 of widened root-set part Based on FIG. 3 to FIG. 5, an aluminum powder of a foaming agent is added to the mortar to the widened portion formed at the tip of the excavation hole 11 or in the middle of the excavation hole 11 to construct a solidified portion integrated with the ready-made pile.
  • an aluminum powder of a foaming agent is added to the mortar to the widened portion formed at the tip of the excavation hole 11 or in the middle of the excavation hole 11 to construct a solidified portion integrated with the ready-made pile.
  • mortar containing aluminum powder as a foaming agent is injected and filled into the widened portion formed at the tip of the excavation hole 11 and further mixed with the excavated soil to form a soil cement. 15 is inserted into the tip of the excavation hole 11 to construct a widened root hardening portion 21.
  • the expansion bit in the pre-boring method expands the expansion blade and forms a widened portion in the excavation hole.
  • a distal end widened portion that is larger than the shaft portion is formed at the distal end portion of the excavation hole 11.
  • prescribed aluminum powder of a foaming agent to the front-end wide part of the excavation hole 11 is inject
  • the expansion blade of the excavator is closed and pulled up while injecting and filling the pile fixing liquid into the excavation hole 11, and the tip of the ready-made pile 15 is inserted to the vicinity of the tip of the excavation hole 11.
  • the mortar to which a predetermined amount of aluminum powder of a foaming agent is added is injected and filled into the widened end portion, and these expand and increase, so that the expansion pressure P1 of the soil cement is applied to the inner wall surface of the excavation hole 11.
  • a reaction force P2 from the hole wall ground of the excavation hole 11 is applied to the soil cement, and an expansion pressure P1 of the soil cement is applied to the ready-made pile 15, and a reaction force P3 from the ready-made pile 15 is applied to the soil cement.
  • the soil cement 14 moves the soil cement itself to every corner of the inner wall surface of the excavation hole 11 while diffusing bubbles in the excavation hole 11, and the expansion pressure of the soil cement 14 causes the hole wall of the excavation hole 11 to move.
  • the ground is pressurized, and the reaction force applies pressure to the soil cement 14.
  • the soil cement 14 is hardened in this state to form the widened solidified portion 21, that is, the soil cement 14 having an increased volume. Can harden and integrate firmly with a large expansion pressure applied to the hole wall ground of the excavation hole 11 and the tip part of the ready-made pile, and the tip supporting force, peripheral friction force and pulling resistance force of the embedded pile can be increased. .
  • Example 2 of widening root-setting part In the embedded pile shown in FIG. 3, the widening portion is formed at the tip of the excavation hole 11, but as shown in FIG. 4, a soil cement to which a foaming agent is added from the upper end of the widening portion to the opening direction of the excavation hole 11 is formed. And you may make it construct
  • an intermediate solidified part in which the soil cement with increased volume is hardened is also constructed in the middle part of the excavation hole, so that the bearing capacity of the embedded pile is further enhanced by the effect of the construction method of FIG. And it has the effect of increasing peripheral frictional force and pulling resistance.
  • Example 3 of widened root firming part As shown in FIG. 5, an intermediate widened portion having a diameter larger than the diameter of the excavation hole 11 is formed by excavating with the expansion bit also in the midway portion of the excavation hole 11. A plurality of midway widening portions can be provided in the excavation hole 11.
  • the mortar 13 added with a predetermined amount of foaming agent aluminum powder is injected and filled in the tip, middle and middle of the excavation hole 11, and the mixture is stirred and mixed with the excavated soil. 14 is formed, and the ready-made pile 15 is inserted into the excavation hole 11 to construct the widened root-solidified portion 23a, the intermediate root-solidified portion 23c, and the midway widened-rooted portion 23b.
  • the mortar to which a predetermined amount of aluminum powder of a foaming agent is added is injected and filled into the tip widened portion and the middle widened portion, and these expand and increase, so that the tip portion of the digging hole 11 and the middle widened portion are expanded.
  • the reaction force P2 from the tip of the excavation hole 11 and the middle widened portion hole wall ground is applied to the soil cement, and the expansion pressure P1 of the soil cement is applied to the outer peripheral surface of the ready-made pile 15.
  • the reaction force P3 from the ready-made pile 15 is applied to the soil cement.
  • the boundary between the outer peripheral surface of the ready-made pile 15 and the soil cement 14 is tightly filled with the soil cement 14 that expands, the adhesion between the soil cement 14 and the ready-made pile 15 is increased, and the excavation hole 11 is loosely filled with the soil cement 14 where the boundary between the tip portion and the middle portion of the soil portion 14 and the soil cement 14 is expanded, and these are integrated with the expansion pressure applied, and the tip support force of the ready-made pile 15 Etc. will increase.
  • the soil cement 14 moves the soil cement itself to every corner of the inner wall surface of the excavation hole 11 while diffusing bubbles in the excavation hole, and the expansion pressure of the soil cement 14 causes the hole wall ground of the excavation hole 11 to move.
  • the reaction force applies pressure to the soil cement 14, and the soil cement 14 is cured in this state, thereby forming the widened root solidified portion 23a, the intermediate root solidified portion 22c, and the intermediate root solidified portion 23b.
  • the soil cement 14 having an increased volume is hardened and integrated firmly with a large expansion pressure applied to the hole wall ground of the excavation hole 11 and the tip, intermediate, and midway portions of the existing pile,
  • the tip support force, the peripheral surface friction force, and the pulling resistance force can be increased.
  • an excavator is installed on the ground surface where an embedded pile is constructed, and the prefabricated pile 15 and the excavation bit 12 of the excavator are connected to an excavation liquid such as water.
  • the excavation hole 11 is excavated by digging up the underground A while spraying.
  • the excavation soil by the excavation bit 12 and the mortar 13 to which the aluminum powder of the foaming agent is added are stirred and mixed to form a soil cement 14, which is contained in the soil cement.
  • the mixed aluminum powder of the foaming agent and the mortar 13 react to generate hydrogen gas, and the volume of the soil cement expands and expands.
  • the volume of the soil cement 14 is increased, and the expansion pressure P1 of the soil cement 14 is applied to the inner wall surface of the excavation hole 11, and the reaction force P2 from the hole wall ground of the excavation hole 11 is applied.
  • the boundary between the inner peripheral surface of the ready-made pile 15 and the soil cement 14 is tightly filled with the soil cement 14 that expands, the adhesion between the soil cement 14 and the ready-made pile 15 is increased, and excavation is performed.
  • the tip of the excavation hole is widened with an enlarged bit, and after forming the widened portion, mortar added with aluminum powder is injected, stirred and mixed to form a soil cement and hardened.
  • a construction method for forming the widened portion may be used.
  • the ready-made pile is a steel pile or a ready-made concrete pile
  • the steel pile is a steel pipe pile, an H-shaped steel pile, a built-up pillar pile, or the like
  • the ready-made concrete pile is a PHC pile (Pretensioned Spun). High Strength concrete Piles), ST pile (Step Tapered Piles), Node pile (Nodular Piles), SC pile (Steel Composite Concrete Piles), PRC pile (Pretensioned & Reniforced Spun Hig Strength Concrete Piles) Sile ), Etc., and even the above-mentioned ready-made piles other than the ready-made concrete piles can construct a predetermined solidified part.
  • the amount of aluminum powder added as a foaming agent is defined so as to obtain a required expansion rate.
  • the aluminum powder is added to the foaming agent so that the expansion rate of the cement milk or mortar is 3% to 16%.
  • the foaming agent only aluminum powder was used as the foaming agent.
  • a foaming agent having an expanding action at least an aluminum powder, a powder of an amphoteric metal such as zinc, which foams a gas by a chemical reaction in the cement composition, It may be one or more selected from carbon materials, peroxide materials, sulfonyl hydrazide compounds, azo compounds, nitroso compounds, and hydrazine derivatives.
  • the amount of added aluminum powder is not enough to produce a cement milk expansion rate of 3% to 16%.
  • the addition rate is in the range of 0.002% to 0.02% with respect to the cement mass. Since the correlation of the expansion rate of cement milk increases substantially linearly as the addition amount of aluminum powder increases, the expected expansion rate of cement milk can be obtained with a predetermined addition amount of aluminum powder. Further, in order to produce a mortar expansion rate of 3% to 16%, the addition amount of aluminum powder is set to an addition rate in the range of 0.007% to 0.04% with respect to the cement mass. Since the correlation increases substantially linearly as the amount of aluminum powder added increases, the expected mortar expansion rate can be obtained with a predetermined amount of aluminum powder added.
  • the strength of cement milk and mortar to which aluminum powder as a foaming agent is added decreases the compressive strength with an increase in the amount of aluminum powder used as a foaming agent, while the correlation between the expansion rate and the compressive strength is Since the compressive strength decreases almost linearly with the increase, the strength decrease can be predicted.
  • the strength of soil cement which is hardened by foaming and expanding soil cement mixed with cement milk or mortar to which aluminum powder as a foaming agent is added and excavated soil (sand layer, gravel layer, gravel layer, etc.)
  • the strength can be predicted by the binder water ratio (cement / water).
  • the aluminum powder used as a foaming agent is preferably scaly and has a purity of 99% or more and a fineness of 180 mesh or more and is coated with stearic acid.
  • JISK 5906 aluminum powder for paint
  • Type II standard sieve 88 ⁇ residue 2% or less It is preferable to adjust the chemical reaction time with cement appropriately.
  • the cement milk to be injected is composed of cement, water and foaming aluminum powder. Further, if necessary, fly ash, blast furnace slag fine powder, silica fine powder, bentonite, expansion material, admixture, carbon fiber, metal wire, etc. may be mixed.
  • the mortar to be injected is composed of cement, water, aluminum powder of foaming agent and sand as fine aggregate. Fly ash, blast furnace slag fine powder, silica fine powder, bentonite, expansion material, admixture, fiber substance, metal wire, etc. may be mixed.
  • the fiber material examples include steel fiber, binion fiber, carbon fiber, and wollastonite fiber.
  • the fiber material When the fiber material is used, crack resistance, toughness, and strength of the soil cement can be improved.
  • sand is used as the fine aggregate, for example, molten slag containing aluminum instead of sand, metal production origin slag (iron slag, non-ferrous metal slag) or the like may be used.
  • Cement is ordinary Portland cement or blast furnace cement, and is not particularly limited.
  • Fly ash is a by-product ash that is composed of silica and alumina as main components and is produced when coal is burned in a thermal power plant. Further, fly ash is used as an admixture or fly ash cement. When high quality fly ash is used, the unit water volume is reduced, the workability is improved, the hydration heat value is lowered, the long-term strength and durability are increased, the water tightness is improved, the chemical resistance is improved, and the chemical resistance is improved. Effects such as improvement can be obtained.
  • Admixtures are water reducing agents, high performance water reducing agents, setting retarders, swelling agents, water retention agents, thickeners and the like. The following effects can be obtained by adding an admixture to mortar or cement milk. (1) The fluidity is good and there is little decrease in fluidity with time. (2) Less material separation. (3) A moderate setting delay property can be obtained. (4) It has moderate expansibility and good adhesion to the coarse aggregate can be obtained. (5) After hardening in the restraint (in the excavation hole), required strength, durability, and water tightness can be obtained, and the peripheral ground in the excavation hole and the ready-made pile can be integrated.
  • the foaming agent aluminum powder can be used together with the expansion material.
  • the expansion material has an action of compensating for shrinkage due to hydration and drying of the cement composition (soil cement) after hardening (zero shrinkage), that is, the initial stage until the cement composition is hardened by the aluminum powder.
  • the expansion material is not particularly limited, but includes calcium, sulfo-aluminate minerals that hydrate with cement and water to produce ettringite (3CaO ⁇ Al 2 O 3 ⁇ 3CaSO 4 ⁇ 32H 2 O). , And those containing lime that expands by generating calcium hydroxide (Ca (OH) 2 ).
  • the foaming agent the sulfonyl hydrazide compound, azo compound, nitroso compound, hydrazine can be used as the foaming agent, a compound that foams nitrogen gas by a chemical reaction in the cement composition.
  • the foaming agent examples thereof include p-toluenesulfonyl hydrazide and benzenesulfonyl hydrazide.
  • a peroxide substance such as percarbonate, persulfate, perborate, permanganate, and hydrogen peroxide, a carbon substance, and the like.
  • foaming agents having an expansion action
  • foaming nitrogen gas or oxygen gas by a chemical reaction in the cement composition
  • the diffusion of the cement is promoted by utilizing the buoyancy of the gas, which is sufficient for soil cement.
  • the foaming function can be generated and a dense expansion and hardening can be exhibited throughout the composition of the soil cement.
  • a foaming agent has sufficient foaming and expansion effect with a single material, a plurality of foaming agents may be used in combination.
  • FIG. 7 is a graph showing the expansion rate when the aluminum powder is added in various amounts to cement paste (water, normal Portland cement, high-performance AE water reducing agent standard form) as cement milk.
  • Table 1 shows an example of blending cement paste and aluminum powder.
  • the amount of aluminum powder (Celmec P) added is shown in Table 2.
  • the graph shown in FIG. 7 shows the relationship between the amount of aluminum powder added as a foaming agent and the expansion rate of cement milk.
  • the expansion rate of the cement milk was shown by the addition amount of the aluminum powder of the foaming agent of 0 g / m 3 , 50 g / m 3 , 100 g / m 3 , 150 g / m 3 , and 200 g / m 3 .
  • the expansion coefficient in the range of the addition amount of aluminum powder from 100 g / m 3 to 200 g / m 3 can be obtained from a predictive approximate straight line indicated by a dotted line.
  • the amounts of aluminum powder added in Table 2 are 0 g / m 3 and 50 g / m. 3 and 100 g / m 3 , the respective expansion coefficients are 0%, 5%, and 8%.
  • the expansion coefficient when the added amount of aluminum powder is 150 g / m 3 is 12% from a predicted approximate straight line.
  • the expansion coefficient when the added amount of aluminum powder is 200 g / m 3 is 16% from the predicted approximate straight line.
  • the addition amount of aluminum powder is estimated to be 30 g / m 3 , (0.465 g) from Table 2 and FIG.
  • the expansion rate is 16%, it can be estimated from FIG. 7 and Table 2 that the added amount of aluminum powder is 200 g / m 3 and (3.1 g).
  • An addition amount of 0.465 g of aluminum powder is 0.00186% with respect to 25 kg of cement mass.
  • the addition amount of aluminum powder 3.1g becomes an addition rate of 0.0124% with respect to 25 kg of cement mass.
  • the addition rate of the aluminum powder that can cause the expansion rate of 3% to 16% of the cement milk to which the foaming agent is added is an addition rate in the range of 0.00186% to 0.0124% with respect to the cement mass.
  • the addition rate of aluminum powder in cement milk has a characteristic that the reaction rate becomes slower and the expansion rate becomes smaller as the temperature becomes lower even at the same addition rate, so the range is from 0.002% to 0.02% with respect to the cement mass. to manage. If the expansion rate of cement milk or mortar to which a foaming agent is added is 3% to 16%, the compressive strength due to the expansion rate decreases approximately linearly, so that it can be predicted.
  • the expansion rate of the generated soil cement generates an expansion of 1% to 8%
  • the expansion of the soil cement is restrained by the hole wall ground of the excavation hole, and the expansion pressure is further increased as the expansion is suppressed.
  • Soil cement is firmly integrated with the hole wall ground in the drilling hole while applying expansion pressure to the hole wall ground of the drilling hole and the ready-made pile. The resistance can be increased.
  • the expansion rate of cement milk to which aluminum powder is added is less than 3%.
  • the soil cement produced by injecting cement milk having an expansion rate of less than 3% into the excavation hole and stirring and mixing with the excavated soil has an expansion rate of less than 1%. The expansion pressure cannot be applied sufficiently.
  • the adhesion between the ready-made pile, the soil cement, and the ground is weakened.
  • the expansion rate of cement milk to which aluminum powder is added is greater than 16%.
  • the soil cement produced by injecting cement milk having an expansion rate larger than 16% into the drilling hole and stirring and mixing with the drilling soil has an expansion rate of more than 8%, and the soil cement is placed on the wall of the drilling hole. While providing a large expansion pressure, the compressive strength of the soil cement may be greatly reduced. That is, although the adhesion between the ready-made pile, the soil cement, and the ground is good, the compressive strength is lowered.
  • Formulation example B is an example in which aluminum powder as a foaming agent and mortar (cement + fine aggregate: sand, etc.) are blended.
  • Table 3 shows the compounding materials.
  • Table 4 shows the blending amounts of the blending materials.
  • Table 5 shows the expansion rate of a mortar containing aluminum powder as a foaming agent as shown in Table 4.
  • the graph shown in FIG. 8 shows the relationship between the amount of aluminum powder added as a foaming agent and the expansion rate of the mortar.
  • the expansion rate of the mortar has a correlation that increases substantially linearly with the increase in the amount of aluminum powder added to the cement mass. From Table 4, the expansion rates when the aluminum powder addition amount is 0 g / m 3 , 20 g / m 3 , and 40 g / m 3 are 0%, 1.09%, and 2.53%, respectively, which are predictive. By drawing an approximate straight line, when the added amount of aluminum powder is 230 g / m 3 , the expansion coefficient is 16.3%.
  • the amount of aluminum powder added to the cement mass of 681 kg / m 3 when the expansion rate is 3% is 47 g / m 3 , and the addition rate is 0.0069%.
  • the amount of aluminum powder added to the cement mass of 681 kg / m 3 when the expansion rate is 16% is 226 g / m 3 , and the addition rate is 0.0332%.
  • the range of expansion rate of the mortar to be injected is set from 3% to 16%
  • the aluminum powder addition rate is 0.0069% with respect to the cement mass when the expansion rate is 3%, and the aluminum with respect to the cement mass when the expansion rate is 16%. It can be predicted that the powder addition rate is 0.0332%.
  • the addition rate of the aluminum powder necessary to obtain the expansion rate of 3% to 16% of the mortar to which the foaming agent is added is 0.0069% to 0.0332% with respect to the cement mass. Therefore, the addition rate of the aluminum powder of the mortar is 0.007% with respect to the cement mass because the reaction rate becomes slower and the expansion rate becomes smaller as the temperature becomes lower even at the same addition rate as in the above-described cement milk. To 0.04%.
  • the addition rate of the aluminum powder in the mortar is less than 0.007%, the expansion rate of the mortar to which the aluminum powder is added can be less than 3%. Therefore, a mortar with an expansion rate of less than 3% is injected into the drilling hole.
  • the expansion rate of the generated soil cement is reduced to less than 1%, and the expansion pressure cannot be sufficiently applied to the wall surface of the excavated hole.
  • the addition rate of aluminum powder in the mortar is greater than 0.04%, the expansion rate of the mortar to which the aluminum powder is added is greater than 16%.
  • the expansion rate of the generated soil cement is larger than 8%, and a large expansion pressure is applied to the wall surface of the excavation hole, but the compressive strength of the soil cement may be greatly reduced.
  • the ready-made pile embedding method of the embodiment of the present invention is carried out. That is, cement milk or mortar with an expansion rate in the range of 3% to 16% is injected into a drilling hole, or a sand layer, a gravel layer, or a gravel layer that becomes a solidified portion in the drilling hole with a drilling bit while being injected.
  • a soil cement rooting portion in the range of 1% to 8% of the expansion rate of the resulting soil cement is formed. Therefore, the expanded soil cement has a predetermined expansion rate of 1% or more. The soil cement is hardened while being expanded.
  • This soil cement hardened body with an expansion rate of 1% to 8% the soil cement applies expansion pressure to the peripheral surface ground and the base peripheral surface of the ready-made pile, and the soil cement and the wall surface of the drilling hole and the base surface of the ready-made pile The looseness and gaps between them are filled with soil cement generated by the expansion pressure and hardened with the remaining expansion pressure applied, improving the peripheral frictional force of the ready-made pile, and supporting the tip end of the pile and pulling resistance Has the effect of increasing
  • FIG. 43 is an image diagram in which fluidized soil and cement milk or mortar are stirred and mixed. This is an image of soil cement by stirring and mixing the root of the cement milk or mortar, and the tip soil is sand and gravel. (In the figure, the mixing ratio is actually displayed, but the injection ratio is displayed. To do).
  • cement milk or mortar to be injected injection is pressure injection, pressure injection, pressure injection, etc.
  • injection amount is the same as the cement milk or the mortar volume 1.0 of the same volume to the height 1.0 of the root solidification part volume 1.0 of the fluidized soil of the root consolidation part agitated and fluidized by the excavating bit.
  • inject at% the soil cement produced by mixing and stirring in the range of 1.0 in the height of the root solidified part is restrained by the wall surface of the excavation hole and rises above the excavated excavation hole. 2.0 is formed.
  • the content of cement milk or mortar in the soil cement having a volume 2.0 of root consolidation and a height of 2.0 is 50%.
  • the height of the root solidified portion is 1.0 within the range of 1.0 as the volume of the root solidified portion.
  • a cement milk or mortar injection rate of 100% height is injected.
  • the soil cement forms a volume of 2.0 and a height of 2.0.
  • the content of cement milk or mortar in the soil cement having a volume of 1.0 and a height of 1.0, which is a root-solidified portion, is 50%.
  • the remaining 50% of the cement milk or mortar having a volume of 0.5 is added to the volume of the pile tip of 1.0 which is the previously produced soil cement volume 2.0 and height 2.0.
  • the mixture is poured, mixed and stirred to form a soil cement.
  • a soil cement injected with 150% is produced, and a soil cement volume of 1.5 and a height of 1.5 is produced and a soil cement content of 67% is produced.
  • the volume of the soil cement to be generated is 2.5 and the height is 2.5. 1.5 and height 1.5, and the content of cement milk or mortar is 67%.
  • the remaining 100% of the cement milk or mortar having a volume of 1.0 is used, and the volume of the pile tip that becomes the rooted portion of the soil cement having a volume of 2.0 and a height of 2.0 is 1.0.
  • the mixture is stirred and mixed to form a soil cement.
  • a 200% injected soil cement is produced, and the soil cement content is 75% at a volume of 2.0 and a height of 2.0.
  • the volume of the soil cement to be generated is 3.0 and the height is 3.0
  • the range of the soil cement having a volume of 1.0 and a height of 1.0, which becomes a root consolidation portion of the pile tip is a volume.
  • 2.0, height 2.0 and cement milk or mortar content is 75%.
  • the expansion rate of cement milk or mortar to which the aluminum powder of the foaming agent is added increases substantially linearly according to the amount of aluminum powder added to the foaming agent, the expansion rate is predictable.
  • the cement milk or mortar to which the powder is added is mixed and stirred with the excavated soil, the expansion rate of the generated soil cement is also increased in a substantially linear manner.
  • the injection rate of cement milk or mortar to be injected is 150% and the content rate of cement milk or mortar and the content rate of aluminum powder are 67%
  • the expansion rate of the cement milk or mortar to be injected is in the range of 3% to 16%, and the expansion rate of the generated soil cement is in the range of 1% to 8%.
  • the expansion rate of cement milk or mortar to which the aluminum powder of the foaming agent is added increases approximately linearly according to the amount of the aluminum powder of the foaming agent, so that the expansion rate can be predicted and controlled.
  • the compressive strength of the hardened cement composition decreases.
  • the compressive strength does not decrease significantly under restraint (the wall of the excavation hole). Therefore, prediction and control itself are possible for the strength reduction.
  • FIG. 9 is a graph showing the transition of the aluminum powder addition rate and the expansion amount
  • FIG. 10 is a graph showing the relationship between the aluminum addition amount on the horizontal axis and the strength on the vertical axis when there is no restraint and under restraint. It is.
  • the cement ratio when the added amount of aluminum powder is 0 g, 20 g, and 40 g with respect to the cement mass of 344 kg is calculated as 0%, 0.0058%, and 0.0116%. Further, the respective expansion coefficients corresponding to the amount of aluminum powder added are ⁇ 0.38%, 0.26%, and 1.58%. The water cement ratio is 45%. As shown in Formulation Example C in FIG. 40, the expansion coefficient of the concrete to which aluminum powder is added increases substantially linearly according to the amount of aluminum powder added. Thus, the amount of aluminum powder added can be calculated by drawing an approximate straight line. Therefore, when aluminum powder is added at an addition rate of 0.025%, the expansion rate of concrete can be predicted to be about 4.5% from a predictive approximate line.
  • the addition rate is 0.030% and the expansion rate is 5.6%. Therefore, the expansion rate of concrete can be appropriately adjusted by the amount of aluminum powder added. Considering the graph of FIG. 10, without restraint, the strength reduction decreases substantially linearly as the addition rate of aluminum powder increases, and the reduction strength rate when the addition rate of aluminum powder in the foaming agent is 0.0058%. When the addition rate of aluminum powder is 0.0116%, the reduction strength rate is 74.9%, and when the addition rate is 0.025%, the reduction strength rate is 45.36%. It can be predicted that the reduced strength rate is 33.78% at 0.030%.
  • the soil cement strength of the aluminum powder added as a foaming agent depends on the cement water ratio C / W. Naturally, the strength increases as the cement content and the unit cement amount increase, but the strength of the resulting soil cement increases. Conversely, when the expansion rate of the soil cement increases, the strength decreases. Therefore, in this construction method, the expansion coefficient and compressive strength of the soil cement produced are adjusted as appropriate by predicting and adding the foaming agent aluminum powder so that the expansion coefficient of the cement milk or mortar to be injected is 3% to 16%. can do.
  • FIG. 11 is a list showing the materials used in Formulation Example 1
  • FIG. 12 shows the amount of materials used in Formulation Example 1
  • FIG. 13 shows the AL (aluminum powder) addition amount in Formulation Example 1 varied.
  • FIG. 14 is a graph showing the relationship between the expansion rate and the elapsed time in Formulation Example 1
  • FIG. 15 is the regression of AL addition amount and expansion rate in Formulation Example 1. It is a graph which shows a type
  • Formulation Example 1 it is an expandable high-fluidity concrete using ordinary Portland cement.
  • the addition rate of aluminum powder as a foaming agent (cement mass ratio) 15 g, 30 g, and 45 g of aluminum powder with respect to 500 kg of cement are cement ratios of 0.003%, 0.006%,. It is calculated as 009%.
  • the expansion coefficient according to the amount of aluminum powder added is 0.2%, 1.0%, and 2.5%.
  • the water cement ratio is 35%.
  • the expansion rate of concrete to which aluminum powder has been added increases substantially linearly according to the amount of aluminum powder added.
  • the expansion rate of the concrete when aluminum powder is added at an addition rate of 0.012%, the expansion rate of the concrete is about 3.6%, and when aluminum powder is added at an addition rate of 0.015%.
  • the expansion rate of the concrete is about 4.77%, and when the aluminum powder is added at the addition rate of 0.020%, the expansion rate of the concrete is about 6.72%, the addition rate of the aluminum powder.
  • it can be predicted from the regression equation that the expansion rate of the concrete is about 8.67%.
  • the expansion rate is 10.62%. Therefore, the expansion rate of concrete can be appropriately adjusted by the amount of aluminum powder added.
  • FIG. 16 is a list showing materials used in Formulation Example 2
  • FIG. 17 shows the amount of materials used in Formulation Example 2
  • FIG. 18 is a fresh test when the AL addition amount in Formulation Example 2 is changed.
  • FIG. 19 is a graph showing a regression equation of the AL addition amount and the expansion coefficient in Formulation Example 2.
  • cement mass ratio 0 g, 25 g, 37.5 g, and 50 g of the aluminum powder with respect to the cement amount of 407 kg are the cement ratios of 0%, 0.006%, It is calculated as 0.009% and 0.012%. Further, the expansion rate corresponding to the amount of aluminum powder added is ⁇ 0.3%, 0.5%, 1.35%, and 1.98%.
  • the water cement ratio is 43%.
  • the expansion rate of concrete to which aluminum powder has been added increases substantially linearly according to the amount of aluminum powder added.
  • the expansion rate of the concrete is about 2.67%, and when aluminum powder is added at an addition rate of 0.020%.
  • the regression formula predicts that the expansion rate of the concrete will be about 3.87%, and when the addition rate of aluminum powder is 0.025%, the expansion rate of the concrete will be about 5.08%. be able to.
  • FIG. 20 is a list showing materials used in the blending example 3
  • FIG. 21 is a list showing blending amounts of the materials used in the blending example 3
  • FIG. 22 is a list showing the results of the fresh test of concrete
  • FIG. FIG. 24 is a list showing the fresh test and the expansion rate when the AL addition amount is changed in Formulation Example 3
  • FIG. 24 is a list showing the AL addition amount and the measurement result of the expansion rate
  • FIG. 26 is a graph showing the relationship between the expansion rate and elapsed time
  • FIG. 26 is a graph showing a regression equation of the AL addition amount and the expansion rate in Formulation Example 3.
  • Formulation Example 3 it is an expandable high-fluidity concrete using a low heat Portland cement.
  • the addition ratio of aluminum powder as a foaming agent (cement mass ratio) 20 g, 40 g, and 60 g of aluminum powder with respect to 500 kg of cement are cement ratios of 0.004%, 0.008%,. It is calculated as 012%.
  • the expansion coefficient according to the amount of aluminum powder added is 0.94%, 3.28%, and 4.67%.
  • the water cement ratio is 34%.
  • the expansion rate of the concrete to which aluminum powder is added increases substantially linearly according to the amount of aluminum powder added.
  • the expansion rate of the concrete when aluminum powder is added at an addition rate of 0.015%, the expansion rate of the concrete is about 6.23%, and when aluminum powder is added at an addition rate of 0.020%.
  • the regression formula predicts that the expansion rate of the concrete is about 8.57%, and that the addition rate of aluminum powder is 0.025%, the expansion rate of the concrete is about 10.9%. be able to.
  • the expansion rate is 13.24%. Therefore, the expansion rate of concrete can be appropriately adjusted by the amount of aluminum powder added.
  • FIG. 27 is a list showing materials used in Formulation Examples 4 and 5
  • FIG. 28 is a list showing (a) mixing conditions and tests, (b) used mixers and mixing methods
  • FIG. 30 is a list showing the blending amounts of the materials used in Example 4
  • FIG. 30 is a list showing the concrete test results when the AL addition amount in Blending Example 4 is changed
  • FIG. FIG. 32 is a graph showing a regression equation of the AL addition amount and the expansion coefficient in Formulation Example 4.
  • cement mass ratio 0 g, 30 g, 37 g, and 44 g of the aluminum powder with respect to the amount of cement of 370 kg are the cement ratios of 0%, 0.008%,. It is calculated as 010% and 0.012%.
  • the expansion coefficient corresponding to the amount of aluminum powder added is ⁇ 0.89%, ⁇ 0.52%, ⁇ 0.26%, and ⁇ 0.02%.
  • the water cement ratio is 50%.
  • the expansion rate of the concrete to which aluminum powder is added increases substantially linearly according to the amount of aluminum powder added.
  • the expansion rate of the concrete is about 0.39%, and when aluminum powder is added at an addition rate of 0.020%.
  • the regression formula predicts that the expansion rate of the concrete will be about 1.05%, and when the addition rate of aluminum powder is 0.025%, the expansion rate of the concrete will be about 1.71%. be able to.
  • FIG. 33 is a list showing the blending amounts of the materials used in blending example 5
  • FIG. 34 is a list representing the concrete test results when the AL addition amount in blending example 5 is changed
  • FIG. 35 is a blending example.
  • 5 is a graph showing the relationship between the expansion rate of 5 and the elapsed time
  • FIG. 36 is a graph showing a regression equation of the AL addition amount and the expansion rate in Formulation Example 5.
  • cement mass ratio 0 g, 30 g, 37 g and 44 g of the aluminum powder with respect to the amount of cement of 370 kg are the cement ratios of 0%, 0.008%,. It is calculated as 010% and 0.012%.
  • expansion coefficient corresponding to the amount of aluminum powder added is ⁇ 0.55%, 0.47%, 0.90%, and 1.25%.
  • the water cement ratio is 45.9%.
  • the expansion rate of the concrete to which aluminum powder is added increases substantially linearly according to the amount of aluminum powder added.
  • the expansion rate of the concrete when aluminum powder is added at an addition rate of 0.015%, the expansion rate of the concrete is about 1.9%, and when aluminum powder is added at an addition rate of 0.020%.
  • the regression formula predicts that the expansion rate of the concrete will be about 2.93%, and when the addition rate of aluminum powder is 0.025%, the expansion rate of the concrete will be about 3.96%. be able to.
  • NO1 indicates the relationship between 0% expansion rate and 35% water cement ratio in Formulation Example 1
  • NO2 indicates the relationship between expansion rate -0.3% and 43% water cement ratio in Formulation Example 2.
  • NO3 indicates the relationship between the expansion rate of 0% of the blending example 3 and the water cement ratio of 34%
  • NO4 indicates the expansion coefficient of -0.89% of the blending example 4 and the water cement ratio of 50%.
  • NO5 indicates the relationship between the expansion coefficient of -0.55% in Formulation Example 5 and the water cement ratio of 45.9%.
  • each plot of the initial expansion coefficient of the water cement ratio of the blending examples C, 2, 4, and 5 is connected by a straight line, and further, an approximate straight line drawn by a dotted line is connected to an expansion coefficient of 0%, thereby providing concrete.
  • the initial expansion rate (when the addition rate of aluminum powder is 0%) is about 39.5% of the water cement ratio.
  • the water cement ratio was set to 39.5% or less, and then the aluminum powder as a foaming agent was added to make the concrete based on the initial expansion coefficient of 0%.
  • the set expansion coefficient can be reliably generated.
  • FIG. 37 is a list showing the blending amounts (without AL) of the materials used in blending examples 4 and 5
  • FIG. 38 is a list representing the concrete test results in blending examples 4 and 5.
  • FIG. 39 is a graph showing the amount of bleeding (cm 3 ) per elapsed time in Formulation Example 4 and Formulation Example 5.
  • NO1 is Formulation Example 4 using the admixture SV10L
  • NO2 is Formulation Example 5 using the admixture SF500S. That is, as shown in FIG. 38, the formulation example 4 of NO1 has a bleeding rate of 3.57% when the admixture SV10L (AE water reducing agent standard form) C ⁇ 1.0%, and the formulation example 5 of NO2 When the agent SF500S (high performance AE water reducing agent) C ⁇ 0.8%, the bleeding rate is 1.24%.
  • the foaming agent aluminum powder (Celmec P) is added to the concrete blend using the high-performance AE water reducing agent of the admixture, the unit water amount can be reduced, so that the amount of sedimentation is reduced, and finally The concrete can be expanded by a predetermined amount.
  • the expansion of concrete due to the amount of aluminum powder added as a foaming agent is determined as appropriate by determining the amount of aluminum powder required for the set expansion rate by adding 0% of the initial expansion rate to suppress bleeding from the water-cement ratio. It is preferable to do.
  • a large expansion coefficient can be obtained by increasing the unit cement amount and increasing the amount of aluminum powder added as a foaming agent.
  • FIG. 41 is a graph showing the relationship between the addition rate of aluminum powder and the concrete compressive strength in Formulation Examples C, 3, 4, and 5.
  • the reduction of the compressive strength changes substantially linearly.
  • the reduction strength rate of Formulation Example 3 is 92.02%
  • the reduction strength rate of Formulation Example 5 is 93.29%
  • the reduction strength rate of Formulation Example 4 is 93. 60%. Therefore, when the aluminum powder addition rate is 0.008%, the reduction strength rate can be predicted to be about 92% at maximum.
  • the reduction strength rate of Formulation Example 3 is 80.67%
  • the reduction strength rate of Formulation Example 5 is 84.91%
  • the reduction strength rate of Formulation Example 4 Is 88.24%. Therefore, when the aluminum powder addition rate is 0.012%, the reduction strength rate can be predicted to be about 80% at the maximum, and the blending plan of the amount of the aluminum powder added as the foaming agent can be made in advance.
  • the reduction strength rate of Formulation Example 3 is 79.36%, which is a reduction of Formulation Example 5.
  • the strength rate is 81.19%, and the reduced strength rate of Formulation Example 4 can be estimated to be 85.15%. Therefore, when the aluminum powder addition rate is 0.015%, the reduction strength rate can be predicted to be about 79% at the maximum.
  • the reduction strength rate of Formulation Example 3 is 68.40%
  • the reduction strength rate of Formulation Example 5 is 75.04%
  • the reduced intensity rate can be estimated as 80.41%. Therefore, when the aluminum powder addition rate is 0.020%, the reduction strength rate can be predicted to be about 68% at the maximum.
  • the concrete compressive strength and the reduced strength rate of the blending examples 3, 5, and 4 can be estimated as follows.
  • the strength of Formulation Example 3 is 34.8 N / mm 2 and the reduction strength rate of Formulation Example 3 is 53.37%. Moreover, the intensity
  • the strength of Formulation Example 4 is 33.8 N / mm 2 , and the reduced strength rate of Formulation Example 4 is 69.69%.
  • the reduction strength rate can be predicted from an approximate straight line with a maximum of about 60%.
  • the reduction strength rate can be predicted from an approximate straight line with a maximum of about 53%.
  • the reduction strength rate is about 92% at the maximum, and when 0.012%, the reduction strength rate is about 80% at the maximum, and the reduction strength rate is 0.015%.
  • the rate is about 79% at the maximum and 0.020%, the reduced strength rate is about 68% at the maximum.
  • the rate is 0.025%, the reduced strength rate is about 60% at the maximum.
  • the maximum value is about 53% and the addition rate of aluminum powder is increased by 0.005%, it can be estimated that the concrete strength decreases substantially linearly in the range of about 7% to 11%.
  • the concrete compressive strength due to the amount of aluminum powder added can be predicted, so the compressive strength of the soil cement of the cement composition can be predicted as well.
  • the strength reduction rate can be estimated as 89.18%, and when the aluminum powder addition rate is 0.030%, the strength reduction rate can be estimated as 86.87%. From the result that this reduction in strength is leveling off, it is considered that the restrained state is much better than the other blending examples 3, 4, and 5 and can form the restrained state.
  • the decrease in strength of the soil cement can be at least leveled, that is, the root
  • the soil cement in the hardened portion can reduce the strength reduction due to expansion.
  • the unrestricted strength reduction in the blending example C shows a substantially linear relationship, and when the addition rate of the aluminum powder is 0.0058%, the strength reduction rate is 89.76%. When the addition rate of the aluminum powder is 0.0116%, the strength reduction rate is 74.9%. Predictably, when the addition rate of aluminum powder is 0.025%, the strength reduction rate can be estimated to be 45.36%. Predictably, when the addition rate of aluminum powder is 0.030%, the strength reduction rate can be estimated to be 33.78%, and the strength can be estimated to greatly decrease to 17.5 N / mm 2 .
  • the restriction of the blending example C is compared with that of the blending example C.
  • the amount of aluminum powder added as a foaming agent in cement milk increases the cement mass. On the other hand, it is in the range of 0.002% to 0.02%.
  • the amount of aluminum powder added as a foaming agent is preferably in the range of 0.007% to 0.04% with respect to the cement mass. .
  • the expansion rate of cement milk or mortar can be generated in the range of 3% to 16%.
  • This method has the effect of greatly improving the pile tip support force, peripheral surface friction force and pulling resistance force of ready-made piles.
  • the expansion rate of the resulting soil cement is less than 1%. While the reduction can be suppressed, the expansion rate applied to the wall surface of the borehole cannot be sufficiently applied because the expansion rate is low.
  • Example 1 of ready-made piles The soil cement at the root consolidation part of the ready-made pile is expanded, that is, the volume of the soil cement that becomes the root consolidation part is expanded.
  • the expansion rate of the root diameter ⁇ 1000 mm to 10 mm by expanding 10 mm is 2.01%.
  • the expansion rate of the root diameter ⁇ 1200 mm of 10 mm to ⁇ 1210 mm is 1.67%.
  • the expansion ratio of the root diameter ⁇ 1500 mm expanded by 10 mm to ⁇ 1510 mm is 1.33%.
  • the expansion ratio for expanding the root diameter ⁇ 2600 mm by 10 mm to ⁇ 2610 mm is 0.77%.
  • the expansion rate to expand the root diameter ⁇ 1000 mm by 20 mm to ⁇ 1020 mm is 4.04%.
  • the expansion ratio of the root diameter ⁇ 1200 mm to 20 mm and ⁇ 1220 mm is 3.36%.
  • the expansion ratio of the root diameter ⁇ 1500 mm to 2015 mm to ⁇ 1520 mm is 2.63%.
  • the expansion ratio of the root-fixed portion diameter ⁇ 2600 mm to 20 mm to ⁇ 2620 mm is 1.54%.
  • the expansion rate to expand the root diameter ⁇ 1000 mm by 30 mm to ⁇ 1030 mm is 6.09%.
  • the expansion ratio of the root diameter ⁇ 1200 mm to 30 mm and ⁇ 1230 mm is 5.06%.
  • the expansion ratio of the root diameter ⁇ 1500 mm expanded by 30 mm to ⁇ 1530 mm is 4.04%.
  • the expansion rate of the root diameter ⁇ 2600 mm to 30 mm to ⁇ 2630 mm is 2.32%.
  • the expansion rate of 0.77% to 6.09% that can expand the root diameter of the pile body from 10mm to 30mm is that the expansion rate of cement milk or mortar to be injected ranges from 3% to 16%.
  • the expansion rate of cement milk or mortar to be injected ranges from 3% to 16%.
  • the expansion rate of the soil cement produced by injecting cement milk at an injection rate of 150% is 8.04%. If the safety factor is “1.5”, the expansion coefficient of the soil cement is 5.36%.
  • the expansion rate of soil cement produced by injecting cement milk at an injection rate of 200% is 9%. If the safety factor is 1.5, the expansion rate of the soil cement is 6%.
  • a soil cement having a root diameter larger than 10 mm to 20 mm can be implemented in this way.
  • the expansion coefficient of the soil cement expanded by 30 mm in pile diameter is 6.09%
  • the expansion coefficient of cement milk or mortar can be 13%.
  • the compressive strength of the soil cement at the root hardening portion is determined by the strength of cement milk or mortar to be injected, it is possible to set a predetermined strength by appropriately adjusting the amount of cement.
  • the expansion amount of the soil cement body of the above-described root-solidified portion is 10 mm to 30 mm.
  • the root-solidified portion having an expanded portion of 10 mm or more on the outer periphery is preferably expanded by 20 mm or more.
  • the expansion rate of cement milk or mortar to which aluminum powder is added is in the range of 3% to 16%
  • the soil excavated and fluidized with a drill bit and cement milk or mortar to which an appropriately adjusted foaming agent is added are stirred and mixed.
  • a soil cement that expands is generated, and a soil cement having an expansion rate of the soil cement in the range of 1% to 8% is generated.
  • the soil cement is hardened to form a solidified portion integrated with the excavated ground. It is possible to greatly improve the performance of the tip support force, peripheral surface friction force, and pull-out resistance force of the ready-made pile.
  • the initial shrinkage until the soil cement is hardened by the action of the aluminum powder of the foaming agent is achieved if the shrinkage compensation of the soil cement after the soil cement is hardened (zero shrinkage) or more.
  • the shrinkage compensation of the soil cement after the soil cement is hardened (zero shrinkage) or more.
  • crack resistance, toughness, and strength can be improved by mixing a fiber material into the soil cement.
  • inflatable mortar with an injection rate of 200% is injected into a drilling depth of GL-15m to GL-20m at a depth of 5m, and the mortar and excavated soil are stirred and mixed to obtain a root with a mortar content of 75%.
  • a length (height) of 10 m of soil cement to be a hardened portion is generated (see FIG. 43 (d)). Therefore, the mortar content is 75% within the range of 10 m in height of the soil cement to be the rooting portion to be generated, and the expansion rate is 75%.
  • the amount of aluminum powder added is determined based on the depth of digging depth GL-10m (the length of soil cement that becomes the rooting portion to be generated is 10m) from the depth of the drilling depth and the height of the soil cement that becomes the rooting portion. . Since the inside of the excavation hole is saturated with fluidized soil mud and water of the excavation liquid, the expansion rate of the soil cement that will become the solidified part of the excavation depth of 10 m will be 5.4%. The amount of aluminum powder added is determined.
  • This expansion rate of 2.7% is the expansion pressure at which the diameter of the soil cement that becomes the rooted portion at the excavation depth of 10 m is expanded from about 1000 mm to about 1013 mm.
  • the expansion of soil cement which is the root-solidified part generated by the expansive mortar to be injected, causes an expansion rate of 2.7% at a drilling depth of 10 m (2 atm).
  • This expansion rate of 1.8% is the expansion pressure at which the diameter of the soil cement, which becomes the consolidation part at a drilling depth of 20 m, is expanded to a size of approximately ⁇ 1008 mm.
  • an expansion of ⁇ 1008 mm occurs at the tip of a pile with a diameter of ⁇ 1000 mm at a depth of GL-10 m and a depth of ⁇ 1013 mm and a depth of GL-20 m, and the upper part at a height of 10 m is ⁇ 1013 mm and the lower part (pile tip) is the opposite of ⁇ 1008 mm
  • a soil cement is formed which becomes an expanded root-hardened portion having a taper of 5 mm.
  • the soil cement used as the root hardening part which raises the expansion pressure of said shape is formed.
  • the reverse taper can obtain resistance to the settlement of the pile due to the spreading effect, and can improve the peripheral frictional force and the tip support force. Moreover, since the reverse taper of the soil cement used as a root hardening part becomes a wedge shape, it has the effect of improving the pulling-out resistance force of a pile significantly.
  • the diameter of the soil cement that becomes the root-solidified portion is swelled from the surrounding surface ground and the soil cement that becomes the root-solidified portion with an expansion pressure that swells from ⁇ 1000 mm to a reverse taper size of about ⁇ 1013 mm to ⁇ 1008 mm, Pile performance can be greatly improved.
  • the strength of the soil cement that becomes the root-hardened portion is considered to be determined by the cement water ratio (C / W) as well as the strength of general concrete.
  • the soil cement used as the root hardening part to produce forms a swelling cement cement with an amount of cement of 340.5 kg / m 3 and an expansion coefficient of 5.4%
  • the strength of this soil cement is the expansibility of the blending example C It is presumed that the concrete cement amount is close to 344 kg / m 3, so that it is close to the strength relationship of the expansive concrete of Mixing Example C.
  • the strength of the soil cement that becomes the root-solidified portion is estimated to be 50% of the expansive concrete strength of Formulation Example C.
  • the soil cement used as the root hardening part has good BR degree.
  • the expansion rate of the expandable mortar to be injected is 12%.
  • the height of the soil cement with a cement content of 75% which will be the root consolidation, is 10m high Is generated. Moreover, the expansion coefficient of the soil cement used as a root hardening part will be 75%.
  • This expansion rate of 6% is the expansion pressure at which the diameter of the soil cement that becomes the rooting portion at a digging depth of 10 m is expanded to a size of about 1029 mm from ⁇ 1000 mm.
  • the expansion of the soil cement which is a solidified part produced by the expansive mortar to be injected, causes an expansion rate of 6% at a drilling depth of 10 m (2 atm), so the pile tip GL-20 m
  • the expansion rate of 4% is the expansion pressure at which the diameter of the soil cement that becomes the root consolidation part is expanded from ⁇ 1000 mm to ⁇ 1019 mm at the drilling depth of 20 m.
  • the diameter of ⁇ 1000mm is ⁇ 1029mm at the depth of GL-10m and the tip of the pile with the depth of GL-20m causes expansion of ⁇ 1019mm
  • the top of the 10m height is ⁇ 1029mm
  • the bottom (pile tip) is the opposite of ⁇ 1019mm
  • a soil cement is formed which becomes an expanded root hardening portion having a taper of 10 mm.
  • the soil cement used as the root hardening part which raises the expansion pressure of said shape is formed.
  • the strength of the soil cement that becomes the root hardening part is good.
  • the diameter of the soil cement that becomes the root-solidified portion is swelled by the expansion pressure that expands the diameter of ⁇ 1000 mm from about ⁇ 1029 mm to a reverse tapered shape of ⁇ 1019 mm, and the soil cement that becomes the root-solidified portion is firmly integrated, Pile performance can be greatly improved.
  • the expansion coefficient of the expansive mortar to be injected is increased from 5.4% to 12%
  • the expansion coefficient of the soil cement that will form the rooting portion to be generated is increased from 2.7% to 6%.
  • the reverse taper becomes large, and by increasing the height of the reverse taper shape, the effect of spreading can be enhanced, and the tip support force and circumferential frictional force of the pile and This has the effect of improving the pulling resistance.
  • cement milk or mortar to which a foaming agent having an expanding action of the present invention is added is injected and generated. It is also possible to carry out the following construction method in which soil cement of cement composition, cement milk or mortar is expanded under the restraint of underground ground.
  • soil cement of cement composition, cement milk or mortar is expanded under the restraint of underground ground.
  • ground improvement piles that have been developed in many ways, such as foundation piles, wall piles and underground continuous walls, have the function of supporting force and frictional force (For example, cylindrical shape, rectangular shape, lattice shape, etc.)
  • the mechanical stirring method, the jet stirring method and the composite stirring method can be implemented.
  • the soil cement generated in the ground expands, receives a reaction force from the peripheral ground, and the expanded soil cement and peripheral ground are firmly integrated. It is possible to improve the peripheral frictional force and the ground strength. Moreover, horizontal resistance can be exhibited more by putting steel etc. in this expanding soil cement body.
  • the chemical solution here refers to a non-chemical solution system mainly composed of cement milk or mortar to which a foaming agent is added, or a solution type grout chemical system such as water glass mixed with cement milk or mortar.

Landscapes

  • Engineering & Computer Science (AREA)
  • Structural Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Mining & Mineral Resources (AREA)
  • Paleontology (AREA)
  • Civil Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Piles And Underground Anchors (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)

Abstract

掘削孔と埋設した既製杭を強固に一体化して、既製杭の先端支持力や周面摩擦力の増大及び引抜抵抗力の向上を図った既製杭埋込み杭工法を提供すること。 セメントミルク又はモルタルには予め膨張作用を有する発泡剤を添加しておくことにより、掘削孔中の既製杭の基部周辺に形成したソイルセメントを膨張させる既製杭埋込み工法。

Description

既製杭埋込み工法
 本発明は、既製杭を用いた既製杭埋込み工法に関するものである。
 従来より、建造物等の基礎杭を形成する方法としては、既製杭埋込み工法が知られており、この既製杭埋込み工法には、既製杭を地中に押し込む前に地盤を緩めて築造するプレボーリング杭工法と杭の中空部を利用して杭の先端部の地盤を掘削しつつ排土しながら埋め込む中堀杭工法が知られている。
 まず、プレボーリング杭工法は、掘削機の掘削ビットの先端部から掘削用の水を吐出しながら所定の深度まで掘削孔を築造し、次に掘削孔の先端部分に根固め液を注入しながら掘削ビットを上下反復作動して泥土と根固め液とを攪拌・混合してソイルセメントを形成する。次に掘削ビットを掘削孔から引き抜いた後に、ソイルセメントが硬化する前に既製杭を掘削孔に建込み、根固め用のソイルセメントに既製杭の先端を定着して施工する工法である。
 他方の中堀杭工法は、掘削機の地盤の掘削作業と杭の沈設とを同時に行うものであり、掘削孔に根固め液を注入して築造する根固め部の築造方法はプレボーリング杭工法とほとんど変わらない。
 このような2種類の工法を用いながら杭先端には、通常、セメントと水とを混合したセメントミルクを根固め液として掘削孔に充填して、硬化させて根固め部が形成され、支持地盤を硬化する構造となる。一般的に使用される支持杭のセメントミルクの水セメント比は、一般的に55%から65%であり、28日材齢強度が11から20N/mm程度で管理されている。
 プレボーリング杭工法では、掘削孔に建込んだ既製杭の周囲と掘削孔周壁面との一体化を図る目的で、水セメント比が根固め液の同等以上のセメントミルクを掘削土と攪拌したソイルセメントとなし、28日材齢強度が0.5N/mm以上で管理された杭周固定液が充填される。
 また、根固め液や杭周固定液としての杭固定液は、注入するセメントミルクに膨張材を添加したものやセメントミルクに高炉スラグ混入セメントを使用したものや或いはセメントミルクに高炉セメントB種を主材としたものや石膏等を使用することで杭先端支持力を増大する工法が次の特許文献により開示されている。
 特許文献1には、セメントペーストに4.5から11%のカルシウムサルホアアルミネート系の膨張材を添加して、セメント及び膨張材の合計に対する水セメント比を65%以下とした根固め液を、球根硬化過程で膨張させて球根を地盤に圧着させる技術が開示されている。特許文献1の技術では、一軸拘束膨張率が45×10-4(4500×10-6)を最大としているので、最大の膨張率は0.45%程度である。
 また、特許文献2には、高炉スラグ微粉末混入セメントと水と細骨材と無水石膏と増粘剤と減水剤とから成る杭周固定液を掘削孔の杭周囲に充填して、杭と地盤との密着性を向上させる技術が開示されている。特許文献2の技術では、膨張の長さの変化が6000×10-6まで有効としているので最大の膨張率は0.6%である。
 さらに、特許文献3には、高炉セメントB種を主体とし、無水石膏を含有する結合材と水とからなる杭周充填液が開示されている。特許文献3の技術では、膨張量が1200μm(1200×10-6)以上で2500μm(2500×10-6)程度としているので、最大の膨張率は0.25%である。
特許開2000-080647号公報 特許開2003-277738号公報 特許開2006-283521号公報
 通常のセメントミルク等を掘削孔内に注入する場合に、そのセメントミルクが硬化すると土壌と混合したソイルセメントが収縮し、既製杭の根固め部のソイルセメントの外周面と掘削孔の内壁面との間に緩みや隙間が生じていた。
 この緩みや隙間は、既製杭の先端側での先端支持力の低下、既製杭の根固め部のソイルセメントの外周面での周面摩擦力の低下及び引抜抵抗力の低下にも繋がっていた。
 このように、従来の既製杭埋込み工法においては、既製杭全体の機能低下を招いていた。
 かかる欠点を解決するために上記各特許文献では、セメントミルク又はモルタル中に膨張材や石膏を混入して、既製杭の外周面と掘削孔の内側面との間隙を膨張材で充填しているが、膨張率が0.25%から0.6%のように小さいために地盤との密着力が低く、充分に地盤と一体化することができないという欠点を有している。
 本発明は、斯かる事情に鑑みてなされたものであって、大きな膨張作用の発泡剤を添加したセメントミルクやモルタルを掘削孔中に注入して、従来工法より大きな膨張性によりソイルセメントと周面地盤及び既製杭とを強固に一体化させ、既製杭の先端支持力や周面摩擦力及び引抜き抵抗力の増大を図った既製杭埋込み工法を提供する。
 請求項1に記載の発明は、地中内に掘削した掘削孔にセメントミルク又はモルタルを注入して掘削土壌と攪拌混合することによりソイルセメントを生成し、掘削孔中のソイルセメント中に既製杭を挿入する既製杭埋込み工法であって、セメントミルク又はモルタルには予め膨張作用を有する発泡剤を添加しておくことにより、掘削孔中の既製杭の基部周辺に形成したソイルセメントを膨張させ、ソイルセメントを逆テーパー形状に形成する或いは逆テーパー形状の膨張圧力を生起する。
 請求項2に記載の発明は、膨張作用を有する発泡剤としては、セメント組成物中における化学反応によりガスを発泡する少なくともアルミニウム粉末、亜鉛等の両性金属の粉末、炭素物質、過酸化物質、スルホニルヒドラジド化合物、アゾ化合物、ニトロソ化合物、ヒドラジン誘導体から選択した1種又は2種以上である。
 請求項3に記載の発明は、セメントミルク又はモルタルの膨張率が3%から16%となるように前記発泡剤を添加した。
 請求項4に記載の発明は、セメントミルクの膨張率が3%から16%となるように、前記発泡剤としてのアルミニウム粉末の添加量がセメント質量に対して0.002%から0.02%とする、又はモルタルの膨張率が3%から16%となるように、前記発泡剤としてのアルミニウム粉末の添加量がセメント質量に対して0.007%から0.04%とする。
 請求項5に記載の発明は、掘削孔の掘削深度が深い場合には、セメントミルクの膨張率が3%から16%となるように、前記発泡剤としてのアルミニウム粉末の添加量がセメント質量に対して0.002%から0.4%とする、又はモルタルの膨張率が3%から16%となるように、前記発泡剤としてのアルミニウム粉末の添加量がセメント質量に対して0.007%から0.8%とする。
 請求項6に記載の発明は、膨張するソイルセメントには繊維物質を含有する。
 請求項1に記載の発明によれば、地中内に掘削した掘削孔にセメントミルク又はモルタルを注入して掘削土壌と攪拌混合することによりソイルセメントを生成し、掘削孔中のソイルセメント中に既製杭を挿入する既製杭埋込み工法であって、セメントミルク又はモルタルには予め膨張作用を有する発泡剤を添加しておくことにより、掘削孔中の既製杭の基部周辺に形成したソイルセメントを膨張させることにより、従来技術であれば膨張の長さの変化は6000×10-6未満、すなわち、0.6%未満の膨張率でしかなかった膨張材や石膏等を混入したソイルセメントと比べて、発泡剤は大きな膨張率であるため、強固な既製杭の埋め込みを行うことができる。
 すなわち、本発明では、発泡剤を添加して膨張することによりソイルセメントの体積が増大し、掘削孔の内壁面にはソイルセメントの膨張圧力が加わり、その反力として掘削孔の内壁面(孔壁地盤)から圧力がソイルセメントにかかる。また、既製杭の外周面にはソイルセメントの膨張圧力が加わり、既製杭からの反力がソイルセメントにかかることになる。
 これにより、掘削孔の内壁面とソイルセメントとの境の緩みや隙間が膨張するソイルセメントで密に埋められ、既製杭の外周面とソイルセメントとの境の緩みや隙間が膨張するソイルセメントで密に埋められソイルセメントと既製杭との付着力が高まる。且つ、掘削孔の孔壁地盤に、膨張圧力をかけたままこれらを一体化することができ、既製杭の先端支持力等を高めた強固な既製杭埋込みを構築できる効果を有する。また、掘削孔内でソイルセメントが大きく発泡膨張するため、従来技術の杭固定液を注入した場合に比べて先端支持力や周面摩擦力及び引抜抵抗力が増大する効果を有する。
 また、ソイルセメントは、打設高さの範囲において、逆テーパー形状に形成されるので、この逆テーパー形状の杭が地盤を押し広げる効果を発現し、杭先端支持力や周面摩擦力を向上させる効果がある。或いは、掘削孔の内壁面の地盤が固い場合に、ソイルセメントは逆テーパー形状の膨張圧力を生起したまま硬化することにより杭先端支持力や周面摩擦力及び引抜き抵抗力を向上させる効果がある。
 請求項2に記載の発明によれば、膨張作用を有する発泡剤としては、セメント組成物中における化学反応によりガスを発泡する少なくともアルミニウム粉末、亜鉛等の両性金属の粉末、炭素物質、過酸化物質、スルホニルヒドラジド化合物、アゾ化合物、ニトロソ化合物、ヒドラジン誘導体から選択した1種又は2種以上を添加する。このように添加したセメント組成物は、セメント組成物中における化学反応によりガスを発泡する際にガスの浮遊力を利用してセメントの拡散を促し、ソイルセメントに充分な発泡機能を生起して、ソイルセメントの組成物全般にわたるち密で均一な膨張硬化を発揮することができる。
 これにより、掘削孔の内壁面とソイルセメントとの境の緩みや隙間が膨張するソイルセメントで密に埋められ、既製杭の外周面とソイルセメントとの境の隙間が膨張するソイルセメントで密に埋められる。また、ソイルセメントと既製杭のとの付着力が高まる。且つ、掘削孔の孔壁地盤に膨張圧力をかけたままこれらを一体化することができ、既製杭の先端支持力等を高めた強固な既製杭の埋込みを構築できる効果を有する。また、掘削孔内でソイルセメントが大きく発泡膨張し硬化するため、従来技術の杭固定液を注入した場合に比べて先端支持力や周面摩擦力及び引抜抵抗力が増大する効果を有する。
 請求項3に記載の発明によれば、セメントミルク又はモルタルの膨張率が3%から16%となるように前記発泡剤を添加したので、膨張率1%から8%のソイルセメントを生成することができる。
 このソイルセメントの最小設定の膨張率1%は、特許文献1,2,3で開示された最大膨張率0.6%未満の1.66倍以上である。また、本発明の生成するソイルセメントの膨張率は1%から8%であるので、掘削孔の孔壁地盤にソイルセメントの膨張は拘束されて膨張が抑えられた分、膨張する圧力はより増大し、ソイルセメントは膨張圧力をかけたまま、掘削孔の孔壁地盤と強固に一体化する。本発明は、従来技術と比べて先端支持力や周面摩擦力及び引抜抵抗力が増大する効果を有する。
 発泡剤を添加したセメントミルク又はモルタルの膨張率が3%未満の場合には、掘削孔内のソイルセメントと周面地盤や既製杭との密着力が弱くなる。
 発泡剤を添加したセメントミルク又はモルタルの膨張率が16%より大きい場合には、掘削孔内のソイルセメントと周面地盤や既製杭との密着力が良いものの圧縮強度が低下してしまう。
 請求項4に記載の発明によれば、セメントミルクの膨張率が3%から16%となるように、前記発泡剤としてのアルミニウム粉末の添加量がセメント質量に対して0.002%から0.02%とする、又はモルタルの膨張率が3%から16%となるように、前記発泡剤としてのアルミニウム粉末の添加量がセメント質量に対して0.007%から0.04%としている。
 セメントミルク又はモルタルの膨張率はセメント質量に対して、アルミニウム粉末の添加量に応じて略直線的に増加する相関関係があるので、セメントミルク又はモルタルの膨張率は、アルミニウム粉末添加量で適宜調整することが可能である。
 よって、セメントミルク又はモルタルに大きな膨張率が必要であれば、セメント質量に対してアルミニウム粉末の添加量を予測的に多くすることで、所定の膨張率を生成するができる。
 このようにして、セメントミルク又はモルタルの膨張率を大きく設定することで、掘削土壌と攪拌混合による生成するソイルセメントの膨張率を高めることで、掘削孔の孔壁地盤にソイルセメントの膨張する圧力がより増大するので、膨張するソイルセメントは膨張圧力をかけたまま掘削孔の孔壁地盤と強固に一体化する効果を有する。
 アルミニウム粉末を添加したセメントミルクの膨張率が、セメント質量に対しアルミニウム粉末の添加量が0.002%未満の場合では、セメントミルクの膨張率が3%未満となり、生成するソイルセメントの膨張率が1%未満となり、膨張するソイルセメントが掘削孔の壁面に膨張圧力を充分に与えることができない。
 また、セメント質量に対しアルミニウム粉末の添加率が0.02%を越える場合では、セメントミルクの膨張率が16%より大きくなり、生成するソイルセメントの膨張率は8%より大きくなり、周面地盤との密着力が高まるものの、一方で強度低下が大きくなってしまう、そこで強度を上げるためにはセメント量を多くする必要があり、材料コストが上昇して経済性が悪くなる。
 セメント質量に対してアルミニウム粉末を添加したモルタルの膨張率が、0.007%未満ではモルタルの膨張率が3%未満となり、生成するソイルセメントの膨張率が1%未満となり、膨張するソイルセメントが掘削孔の壁面に膨張圧力を充分に与えることができない。
 また、セメント質量に対してアルミニウム粉末の添加率が0.04%を越える場合では、モルタルの膨張率が16%より大きくなり、生成するソイルセメントの膨張率は8%より大きくなり、周面地盤との密着力が高まるものの、一方で強度低下が大きくなってしまう、そこで強度を上げるためにはセメント量を多くする必要があり、材料コストが上昇して経済性が悪くなる。
 請求項5に記載の発明によれば、掘削孔の掘削深度が深い場合には、セメントミルクの膨張率が3%から16%となるように、前記発泡剤としてのアルミニウム粉末の添加量がセメント質量に対して0.002%から0.4%とする、また、掘削孔の掘削深度が深い場合には、モルタルの膨張率が3%から16%となるように、前記発泡剤としてのアルミニウム粉末の添加量がセメント質量に対して0.007%から0.8%とする。
 このようにして、掘削深度が深く、且つ高水圧下の掘削孔内のセメントミルク又はモルタルの膨張率を3%から16%で設定することで、掘削土壌と攪拌混合による膨張するソイルセメントの膨張率を1%から8%で生起することができるので、根固め部の膨張するソイルセメントは掘削孔の孔壁地盤にソイルセメントの膨張する圧力をかけつつ逆に孔壁地盤からは反力を受けるので、膨張するソイルセメントは膨張圧力をかけたまま掘削孔の孔壁地盤と強固に一体化する効果を有する。
 アルミニウム粉末を添加したセメントミルクの膨張率が、セメント質量に対しアルミニウム粉末の添加量が0.002%未満の場合では、セメントミルクの膨張率が3%未満となり、生成するソイルセメントの膨張率が1%未満となり、膨張するソイルセメントが掘削孔の壁面に膨張圧力を充分に与えることができない。
 また、セメント質量に対しアルミニウム粉末の添加率が0.4%を越える場合では、セメントミルクの膨張率が16%より大きくなり、生成するソイルセメントの膨張率は8%より大きくなり、周面地盤との密着力が高まるものの、一方で強度低下が大きくなってしまう、そこで強度を上げるためにはセメント量を多くする必要があり、材料コストが上昇して経済性が悪くなる。
 セメント質量に対してアルミニウム粉末を添加したモルタルの膨張率が、0.007%未満ではモルタルの膨張率が3%未満となり、生成するソイルセメントの膨張率が1%未満となり、膨張するソイルセメントが掘削孔の壁面に膨張圧力を充分に与えることができない。
 また、セメント質量に対してアルミニウム粉末の添加率が0.8%を越える場合では、モルタルの膨張率が16%より大きくなり、生成するソイルセメントの膨張率は8%より大きくなり、周面地盤との密着力が高まるものの、一方で強度低下が大きくなってしまう、そこで強度を上げるためにはセメント量を多くする必要があり、材料コストが上昇して経済性が悪くなる。
 請求項6に記載の発明によれば、膨張するソイルセメントには繊維物質を含有するので、膨張するソイルセメントはひび割れ抵抗性や靱性及び強度が向上する効果がある。
既製杭埋込み工法を示す工程図である。 既製杭埋込み工法で構築した杭の他の例を示す断面図である。 既製杭埋込み工法で構築した拡大杭を示す断面図である。 既製杭埋込み工法で構築した拡大杭の他の例を示す断面図である。 既製杭埋込み工法で構築した拡大杭の変形例を示す断面図である。 既製杭埋込み工法(中堀工法)を示す断面図である。 発泡剤とセメントミルクとの関係を表わすグラフである。 発泡剤とモルタルとの関係を表わすグラフである。 膨張量の推移を示すグラフである。 拘束なしの場合と拘束下の場合におけるアルミニウム添加量と強度との関係を示すグラフである。 配合例1に使用する材料を表わした一覧である。 配合例1の使用材料の配合量を表わす表である。 配合例1におけるAL(アルミニウム粉末)添加量を変化させた時のフレッシュ試験と膨張率を表わした一覧である。 配合例1の膨張率と経過時間との関係を示すグラフである。 配合例1におけるAL添加量と膨張率の回帰式を示すグラフである 配合例2に使用する材料を表わした一覧である。 配合例2の使用材料の配合量を表わす表である。 配合例2におけるAL添加量を変化させた時のフレッシュ試験と膨張率を表わした一覧である。 配合例2におけるAL添加量と膨張率の回帰式を示すグラフである 配合例3に使用する材料を表わした一覧である。 配合例3の使用材料の配合量を表わす表である。 コンクリートのフレッシュ試験の結果を表わした一覧である。 配合例3におけるAL添加量を変化させた時のフレッシュ試験と膨張率を表わした一覧である。 AL添加量と膨張率測定結果を表わした一覧である。 配合例3の膨張率と経過時間との関係を示すグラフである。 配合例3におけるAL添加量と膨張率の回帰式を示すグラフである 配合例4および5に使用する材料を表わした一覧である。 (a)配合条件・試験、(b)使用ミキサ・練り混ぜ方法を表わした一覧である。 配合例4の使用材料の配合量を表わす表である。 配合例4におけるAL添加量を変化させた時のフレッシュ試験と膨張率を表わした一覧である。 配合例4の膨張率と経過時間との関係を示すグラフである。 配合例4におけるAL添加量と膨張率の回帰式を示すグラフである 配合例5の使用材料の配合量を表わした一覧である。 配合例5におけるAL添加量を変化させた時のコンクリート試験結果を表わした一覧である。 配合例5の膨張率と経過時間との関係を示すグラフである。 配合例5におけるAL添加量と膨張率の回帰式を示すグラフである。 配合例4および配合例5の使用材料の配合量(ALなし)を表わした一覧である。 配合例4および配合例5においてのコンクリート試験結果を表わした一覧である。 配合例4および配合例5においての経過時間あたりのブリーディング量(cm3)を表わすグラフである。 配合例A,B,C,1から5におけるアルミニウム粉末の添加率と膨張率との関係を表わしたグラフである。 配合例C,3,4,5におけるアルミニウム粉末の添加率とコンクリート圧縮強度との関係を表わしたグラフである。 配合例C,1から5におけるアルミニウム粉末の添加率0%の初期膨張率と水セメント比との関係を表わしたグラフである。 流動化土とセメントミルク又はモルタルとを攪拌混合したイメージ図である。
 本既製杭埋込み工法は、地中内に掘削した掘削孔にセメントミルク又はモルタルを注入して掘削土壌と攪拌混合することによりソイルセメントを生成し、掘削孔中のソイルセメント中に既製杭を挿入する既製杭埋込み工法であって、セメントミルク又はモルタルには予め膨張作用を有する発泡剤を添加しておくことにより、掘削孔中の既製杭の基部周辺に形成したソイルセメントを膨張させ、ソイルセメントを逆テーパー形状に形成する或いは逆テーパー形状の膨張圧力を生起する。
 膨張作用を有する発泡剤としては、セメント組成物中における化学反応によりガスを発泡する少なくともアルミニウム粉末、亜鉛等の両性金属の粉末、炭素物質、過酸化物質、スルホニルヒドラジド化合物、アゾ化合物、ニトロソ化合物、ヒドラジン誘導体から選択した1種又は2種以上である。
 セメントミルク又はモルタルの膨張率が3%から16%となるように前記発泡剤を添加している。
 セメントミルクの膨張率が3%から16%となるように、前記発泡剤としてのアルミニウム粉末の添加量がセメント質量に対して0.002%から0.02%とする、又はモルタルの膨張率が3%から16%となるように、前記発泡剤としてのアルミニウム粉末の添加量がセメント質量に対して0.007%から0.04%とする。
 掘削孔の掘削深度が深い場合には、セメントミルクの膨張率が3%から16%となるように、前記発泡剤としてのアルミニウム粉末の添加量がセメント質量に対して0.002%から0.4%とする、又はモルタルの膨張率が3%から16%となるように、前記発泡剤としてのアルミニウム粉末の添加量がセメント質量に対して0.007%から0.8%とする。
 膨張するソイルセメントには繊維物質を含有する。
[既製杭埋込み工法]
 この発明の実施例を図面に基づき詳説する。掘削の工法としては、プレボーリング工法を一例としながら説明する。なお、既製杭には、既製コンクリート杭を用いて説明する。
下記工程ではモルタルの場合の説明を行うが、セメントミルクの場合の説明については同様な工法であるので重複説明を省略する。また、下記工法においては、発泡剤をアルミニウム粉末とした場合について説明する。
 図1(a)及び(b)に示すように、掘削機が埋込み杭を構築する地上面に設置され、掘削機の掘削ビット12より水等の掘削液を噴射しながら地中Aを掘り下げて掘削孔11が掘削される。掘削孔11内には、水等の掘削液で掘削し、すなわち、噴出攪拌され泥土化及び流動化した掘削土Bが残ったままとなっている。
 図1(c)に示すように、掘削孔11を所定の深度まで掘削したのち、掘削孔11の先端部に膨張作用を有する発泡剤としての所定のアルミニウム粉末を添加したモルタル13(セメントに細骨材の砂と水等を練り合わせたもの)を注入(注入とは加圧注入や加圧噴出及び加圧噴射等である)充填しつつ、掘削ビット12を上下方向に反復回転しながら移動して、掘削土壌と攪拌混合させてソイルセメント14とする。さらに、掘削孔11内に杭周固定液Cを攪拌混合しながら掘削ビット12を引き上げる。なお、掘削孔11内において杭周固定液Cを注入充填したが、杭周固定液Cの注入部分にアルミニウム粉末を添加したモルタル13を注入充填して、攪拌混合してソイルセメントを形成して硬化させるようにしてもよい。
 図1(d)に示すように、掘削孔11より掘削機の掘削ビット12を引き抜いて、既製コンクリート杭15を掘削孔11に挿入して、既製コンクリート杭15の先端部を掘削孔11の先端部(基部)付近まで挿入し、施工を終了する。なお、既製コンクリート杭15の先端部は、掘削孔11の先端部に着底してもよいし、離間するようにしてもよい。
 掘削孔11内においては、掘削ビット12による掘削攪拌して泥土化及び流動化した土壌と発泡剤のアルミニウム粉末を添加したモルタル13とは攪拌混合してソイルセメント14となり、このソイルセメント中に混和した反応開始時間を適宜調整した発泡剤のアルミニウム粉末とモルタル13とが反応し、水素ガスを発泡してソイルセメントの体積が発泡膨張して増大する。さらに、水素ガスの浮遊力を利用してセメントの拡散を促し、ソイルセメントに充分な発泡機能を生起して、ソイルセメントの組成物全般にわたるち密で均一な膨張硬化を発揮することができる。
 更に、硬化前のソイルセメント14は、セメントのブリージング作用によるセメント素材の沈下収縮作用を緩和させると共に、ソイルセメント体の砂・礫の骨材下面に隙間が生じるのを防ぎ、膨張圧によって砂・礫と注入モルタルとの付着力を高める。且つセメントの自己収縮による掘削孔内壁面の近傍に形成されがちな緩みや隙間を防ぎ、膨張圧力によって既製杭15とソイルセメント14との付着力を高め、さらに、ソイルセメントが膨張圧力をかけたまま周辺地盤と強固に一体化する効果がある。なお、モルタルに変えてセメントミルクの場合についても同様の作用効果が生じる。
 また、図1(e)に示すように、発泡剤の水素ガス発泡によりソイルセメントの体積が発泡剤の働きで膨張して増大することで、掘削孔11の内壁面にはソイルセメント14の膨張圧力P1が加わり、掘削孔11の内壁面すなわち孔壁地盤から反力P2がソイルセメント14にかかり、且つ、既製杭15にはソイルセメント14の膨張圧力P1が加わり、既製杭15からの反力P3がソイルセメント14にかかる。符号P4は、杭周固定液Cで混合攪拌された杭周固定のソイルセメントの反力である。
 これにより、掘削孔11の内壁面とソイルセメント14との境の隙間が膨張するソイルセメント14で密に埋められ、既製杭15の外周面とソイルセメント14との境の緩みや隙間が膨張するソイルセメント14で密に埋められソイルセメント14と既製杭15との付着力が高まる。且つ、掘削孔の孔壁地盤に膨張圧力をかけたままこれらを一体化することができ、既製杭の先端支持力等を高めた強固な既製杭埋込みを構築できる効果を有する。
 掘削孔内のソイルセメント体中で発泡剤の水素ガスが大きく発泡膨張するため、既製杭15と一体の根固め部16は、特許文献1から3に開示された杭固定液を注入した場合に比べて先端支持力や周面摩擦力及び引抜抵抗力が増大することができる。
 発泡剤のアルミニウム粉末の添加量を多量とすると膨張率は大きくなるものの、水素ガスの発生量が多くなりソイルセメント中に微空隙を多数気孔状に散在されることになって強度低下を生起する。そのために、所要の膨張率を得られるように発泡剤のアルミニウム粉末の使用量を規定することとし、発泡剤はその膨張率が3%から16%となるようにアルミニウム粉末を添加するようにしている。
 また、セメントミルクの膨張率が3%から16%となるように、前記発泡剤としてのアルミニウム粉末の添加量がセメント質量に対して0.002%から0.02%とする、又はモルタルの膨張率が3%から16%となるように、前記発泡剤としてのアルミニウム粉末の添加量がセメント質量に対して0.007%から0.04%とする。
 上記の通りセメント質量に対してアルミニウム粉末の添加量を規定することで、掘削土壌と攪拌混合による生成するソイルセメントは膨張率を1%から8%で生起することができるので、掘削孔の孔壁地盤にソイルセメントの膨張する圧力をかけたまま掘削孔の孔壁地盤と強固に一体化することができる。
 上述した通り既製杭の埋込み工法は、掘削ビット12より水等の掘削液を噴射しながら、地中を掘削して掘削孔が形成される。掘削孔内は水等の掘削液で満たされ、掘削孔内は泥土化された流動化土と掘削液で飽和状態であり、掘削孔内の掘削深度の所定位置は水深に合わせた水圧の加圧下となる。
 掘削深度が浅い場合には、この水圧の加圧力が小さくなり、膨張するソイルセメントの生成に影響は少ない。しかし、掘削深度が深い場合には、水圧の加圧力が深度に応じて大きくなる。掘削深度の水圧は水深10mにつき約1kg/cmの圧力がかかる。
 例えば、水深10m下では2気圧、水深20m下では3気圧、水深50m下では6気圧、水深100下では11気圧となる。
 また、ボイルの法則により、温度が一定のとき、気体の体積は圧力の大きさに反比例するので、気体に圧力がかかるほど、気体自体の体積は小さくなる。
 ここで、ソイルセメント内のアルミニウム粉末がセメントと反応して水素ガスを発生させるが、しかしながら掘削孔中の高水圧下においては掘削深度が深くなるほど水圧が大きくかかり、水素ガスの体積が小さくなり、ソイルセメントの膨張率も小さくなってしまう。
 また、掘削孔内には、水等の掘削液で満たされ掘削ビットで掘削攪拌され、泥土化された流動化土と掘削液で飽和状態となっているので、流動化土の比重を1.8とすると、掘削深度にかかる圧力は水圧力の1.8倍となる。
 よって、掘削深度が深くなる高水圧下においても、セメントミルク又はモルタルの膨張率が常圧と同じようになるように、セメントミルク又はモルタルの膨張率が3%から16%となるように発泡剤のアルミニウム粉末の添加量を定めた。
 すなわち、掘削深度が深く、且つ高水圧下のアルミニウム粉末の添加量は、掘削孔の掘削深度10mの水圧下で常圧の2倍、掘削深度50mの水圧下で常圧の6倍、掘削深度100mの水圧下で常圧の約11倍とすればよい。さらに、掘削孔内の泥土化された流動化土の比重を1.8とした場合には、それぞれ1.8倍して、掘削深度10mで常圧の2倍×1.8(流動化土の比重)=3.6倍、掘削深度50mで常圧の6倍×1.8=10.8倍、掘削深度100mで常圧の11倍×1.8=19.8倍となる。また、アルミニウム粉末の添加量が増加しても掘削孔内の拘束圧力が比例して高くなるので、一軸圧縮強度は低下しないと考えられる。
 既製杭埋込み工法の掘削深度が最大GL-80m程度とされているので、最大掘削深度100m程度として、アルミニウム粉末の添加量の最大値を決定した。
 したがって、アルミニウム粉末を添加したセメントミルクの膨張率が深い深度においても3%から16%生起できるように、最大掘削深度を100mとするセメント質量に対して、0.0396%(=0.002%×19.8)から0.396%(=0.02%×19.8)となるので、アルミニウム粉末の添加量の上限値をセメント質量に対して0.4%の添加率とする。
 よって、掘削孔の掘削深度が100mまでと深い場合には、セメントミルクの膨張率が3%から16%となるように、前記発泡剤としてのアルミニウム粉末の添加量がセメント質量に対して0.002%から0.4%とする。
 また、アルミニウム粉末を添加したモルタルの膨張率が深い深度においても3%から16%生起できるように、最大掘削深度を100mとするセメント質量に対して0.1386%(=0.007×19.8)から0.792%(=0.04×19.8)となるので、アルミニウム粉末の添加量をセメント質量に対する上限値を0.8%の添加率とする。
 よって、掘削孔の掘削深度が100mまでと深い場合には、モルタルの膨張率が3%から16%となるように、前記発泡剤としてのアルミニウム粉末の添加量がセメント質量に対して0.007%から0.8%とする。
 このようにして、掘削深度が深く、且つ高水圧下の掘削孔内のセメントミルク又はモルタルの膨張率を3%から16%で設定することで、生成するソイルセメントの膨張率を1%から8%で生起することができるので、根固め部の膨張するソイルセメントは孔壁地盤に膨張圧力をかけつつ逆に孔壁地盤からは反力を受けるので、膨張するソイルセメントは膨張圧力をかけたまま掘削孔の孔壁地盤と強固に一体化する効果を有する。
 アルミニウム粉末を添加したセメントミルクの膨張率が、セメント質量に対しアルミニウム粉末の添加量が0.002%未満の場合では、セメントミルクの膨張率が3%未満となり、生成するソイルセメントの膨張率が1%未満となり、膨張するソイルセメントが掘削孔の壁面に膨張圧力を充分に与えることができない。
 また、セメント質量に対しアルミニウム粉末の添加率が0.4%を越える場合では、セメントミルクの膨張率が16%より大きくなり、生成するソイルセメントの膨張率は8%より大きくなり、周面地盤との密着力が高まるものの、一方で強度低下が大きくなってしまう、そこで強度を上げるためにはセメント量を多くする必要があり、材料コストが上昇して経済性が悪くなる。
 アルミニウム粉末を添加したモルタルの膨張率が、セメント質量に対してアルミニウム粉末を添加量が0.007%未満ではモルタルの膨張率が3%未満となり、膨張するソイルセメントの膨張率が1%未満となり、生成するソイルセメントが掘削孔の壁面に膨張圧力を充分に与えることができない。
 また、セメント質量に対してアルミニウム粉末の添加率が0.8%を越える場合では、モルタルの膨張率が16%より大きくなり、生成するソイルセメントの膨張率は8%より大きくなるり、周面地盤との密着力が高まるものの、一方で強度低下が大きくなってしまう、そこで強度を上げるためにはセメント量を多くする必要があり、材料コストが上昇して経済性が悪くなる。
 なお、掘削深度が深く高水圧下の掘削孔であれば、上述した所定のアルミニウム粉末を添加したセメントミルク又はモルタルを以下に説明する工法や各種根固め部にも適用することができる。
 [根固め部の他の例]
 図2に示す杭は、掘削孔11の先端部と掘削孔11の中途部とに発泡剤のアルミニウム粉末を添加したモルタルを注入充填して掘削土壌と攪拌混合してソイルセメントを形成し、既製杭15を掘削孔11に挿入し、先端根固め部16と中途根固め部17を構築した構造である。図示しないが先端根固め部と中途根固め部とを1つにしてこの領域にソイルセメントを形成するようにしてもよい。図2に示す杭と図1(e)に示す杭との違いは、中途根固め部17を構築する工程が追加された以外、上述した図1の工程と同様であるため重複説明を省略する。
 このような工法を行うことで、さらに、掘削孔の中途部にも体積が増大したソイルセメントが硬化した中途根固め部が構築されるため、図1(e)の工法の効果よりさらに埋込み杭の支持力と周面摩擦力と引抜抵抗力を高める効果がある。
[拡幅根固め部の例1]
 図3から図5に基づき、掘削孔11の先端部又は掘削孔11の中途部に形成した拡幅部に、モルタルに発泡剤のアルミニウム粉末を添加して既製杭と一体の
根固め部を構築する工法を説明する。
 図3に示すように、掘削孔11の先端部に形成した拡幅部に発泡剤のアルミニウム粉末を添加したモルタルを注入充填して、さらに掘削土壌と攪拌混合してソイルセメントを形成し、既製杭15を掘削孔11の先端部に挿入し、拡幅した根固め部21を構築している。
 すなわち、拡幅した根固め部の工法について説明する。
 掘削孔11の先端部が拡幅した拡幅部(先端拡幅部)を形成する掘削方法として、掘削拡大ビットを備えた掘削機(図示せず)を使用する。
 すなわち、プレボーリング工法における拡大ビットが拡大翼を拡翼させて、掘削孔内に拡幅部を形成する。
 掘削機により、掘削孔11の先端部に軸部よりも拡大させた先端拡幅部が形成される。
そして、掘削孔11の先端拡幅部に発泡剤の所定のアルミニウム粉末を添加したモルタルを注入充填し、掘削土壌と攪拌混合させてソイルセメントとする。
 掘削機の拡大翼を閉翼して、掘削孔11中に杭固定液を注入充填しながら引き上げて、既製杭15の先端部を掘削孔11の先端部付近まで挿入する。
 このように、先端拡幅部に所定量の発泡剤のアルミニウム粉末を添加したモルタルを注入充填し、これらが膨張して増大することで、掘削孔11の内壁面にはソイルセメントの膨張圧力P1が加わり、掘削孔11の孔壁地盤からの反力P2がソイルセメントにかかり、且つ、既製杭15にはソイルセメントの膨張圧力P1が加わり、既製杭15からの反力P3がソイルセメントにかかる。
 これにより、既製杭15の外周面とソイルセメント14との境の緩みや隙間が膨張するソイルセメント14で密に埋められ、ソイルセメント14と既製杭15との付着力が高まり、且つ、掘削孔11の内壁面とソイルセメント14との境の緩みや隙間が膨張するソイルセメント14で密に埋められ、膨張圧力をかけたままこれらが一体となって、既製杭15の先端支持力等が増大することになる。
 従って、ソイルセメント14は掘削孔11内で気泡を拡散しながら、そのソイルセメント自体を掘削孔11の内壁面の隅々にまで移動させて、ソイルセメント14の膨張圧力が掘削孔11の孔壁地盤を加圧して、その反力がソイルセメント14に圧力をかけることとなり、この状態のままソイルセメント14が硬化することで拡幅根固め部21を構成し、すなわち、体積が増大したソイルセメント14が掘削孔11の孔壁地盤と既製杭の先端部分に大きな膨張圧力を加えたまま硬化して強固に一体化し、埋込み杭の先端支持力と周面摩擦力と引抜抵抗力を高めることができる。
[拡幅根固め部の例2]
 なお、図3に示す埋込み杭では、掘削孔11の先端に拡幅部を形成したが図4に示すように拡幅部の上端からさらに掘削孔11の開口方向にかけて発泡剤を添加したソイルセメントを形成して、拡幅根固め部22aと中間根固め部22bとを構築するようにしてもよい。
 このような工法を行うことで、さらに、掘削孔の中間部にも体積が増大したソイルセメントが硬化した中間根固め部が構築されるため、図3の工法の効果よりさらに埋込み杭の支持力と周面摩擦力と引抜抵抗力を高める効果がある。
[拡幅根固め部の例3]
 図5に示すように、掘削孔11の中途部においても拡大ビットにより掘削することで、掘削孔11径より径の大きい中途拡幅部を形成する。中途拡幅部は、掘削孔11内に複数設けることができる。
 そして、図5に示すように、掘削孔11内の先端部と中間部と中途部に所定量の発泡剤のアルミニウム粉末を添加したモルタル13を注入充填し、掘削土壌と攪拌混合させてソイルセメント14を形成し、既製杭15を掘削孔11に挿入し、拡幅根固め部23aと中間根固め部23cと中途拡幅根固め部23bを構築している。
 このように、先端拡幅部及び中途拡幅部に所定量の発泡剤のアルミニウム粉末を添加したモルタルを注入充填し、これらが膨張して増大することで、掘削孔11の先端部及び中途拡幅部にはソイルセメントの膨張圧力P1が加わり、掘削孔11の先端部及び中途拡幅部孔壁地盤からの反力P2がソイルセメントにかかり、且つ、既製杭15の外周面にはソイルセメントの膨張圧力P1が加わり、既製杭15からの反力P3がソイルセメントにかかる。
 これにより、既製杭15の外周面とソイルセメント14との境の緩みや隙間が膨張するソイルセメント14で密に埋められ、ソイルセメント14と既製杭15との付着力が高まり、且つ、掘削孔11の先端部及び中途部とソイルセメント14との境の緩みや隙間が膨張するソイルセメント14で密に埋められ、膨張圧力をかけたままこれらが一体となって、既製杭15の先端支持力等が増大することになる。
 従って、ソイルセメント14は掘削孔内で気泡を拡散しながら、そのソイルセメント自体を掘削孔11の内壁面の隅々にまで移動させて、ソイルセメント14の膨張圧力が掘削孔11の孔壁地盤を加圧して、その反力がソイルセメント14に圧力をかけることとなり、この状態のままソイルセメント14が硬化することで拡幅根固め部23a、中間根固め部22c、中途根固め部23bを構成し、すなわち、体積が増大したソイルセメント14が掘削孔11の孔壁地盤と既製杭の先端部分、中間部、中途部に大きな膨張圧力を加えたまま硬化して強固に一体化し、埋込み杭の先端支持力と周面摩擦力と引抜抵抗力を高めることができる。なお、拡幅根固め部23aや中間根固め部23cや中途根固め部23bの各層において、膨張率を異なるように発泡剤を添加することも可能である。
[中堀工法]
 上述した掘削の工法としては、プレボーリング工法を一例としながら説明をしたが、中堀工法についても本既製杭埋込み工法と同様の工法を適用することができる。
 中堀工法においては、図6(a)に示すように、掘削機が埋込み杭を構築する地上面に設置され、掘削機の断面筒状の既製杭15と掘削ビット12とを水等の掘削液を噴射しながら地中Aを掘り下げて掘削孔11が掘削される。
 図6(b)に示すように、掘削孔11内においては、掘削ビット12による掘削土壌と発泡剤のアルミニウム粉末を添加したモルタル13とは攪拌混合してソイルセメント14となり、このソイルセメント中に混和した発泡剤のアルミニウム粉末とモルタル13とが反応し、水素ガスを発生してソイルセメントの体積が発泡膨張して増大する。
 図6(c)に示すように、ソイルセメント14の体積が増大して、掘削孔11の内壁面にはソイルセメント14の膨張圧力P1が加わり、掘削孔11の孔壁地盤からの反力P2がソイルセメント14にかかり、且つ、既製杭15の内周面にはソイルセメント14の膨張圧力P1が加わり、既製杭15の外壁地盤からの反力P2がソイルセメント14にかかる。
 これにより、既製杭15の内周面とソイルセメント14との境の緩みや隙間が膨張するソイルセメント14で密に埋められ、ソイルセメント14と既製杭15との付着力が高まり、且つ、掘削孔11の内壁面とソイルセメント14との境の緩みや隙間が膨張するソイルセメント14で密に埋められ、膨張圧力をかけたままこれらが一体となって、既製杭15の先端支持力等が増大することになる。このように中堀工法においてもプレボーリング工法と同様の効果を得ることができる。
 なお、中堀工法においても掘削孔の先端部を拡大ビットにより拡幅掘削し、拡幅部を形成したのち、アルミニウム粉末を添加したモルタルを注入して、攪拌混合してソイルセメントを形成し、硬化させて、拡幅部を形成する工法であってもよい。
 また、上述した実施例においてモルタルを一例として説明したが、モルタルに変えてセメントミルクにアルミニウム粉末を添加したものであってもよい。
 なお、上述した工法において既製杭は、鋼杭や既製コンクリート杭であり、鋼杭は鋼管杭、H型鋼杭、構真柱杭等であり、或いは、既製コンクリ―ト杭はPHC杭(Pretensioned Spun High Strength concrete Piles)、ST杭(Step Tapered Piles)、節杭(Nodular Piles)、SC杭(Steel Composite Concrete Piles)、PRC杭(Pretensioned & Reniforced Spun Hig Strength Concrete Piles)、SL杭(Slip Layer Compund Piles)等であり、既製コンクリート杭以外の上記既製杭であっても所定の根固め部を構築することができる。
 上述した通り発泡剤のアルミニウム粉末の添加量を多量とすると膨張率は大きくなるものの、ガスの発生量が多くなりソイルセメント中に微空隙を多数気孔状に散在されることになって強度低下を生起する。そのために、所要の膨張率を得られるように発泡剤のアルミニウム粉末の使用量を規定することとした。
 よって、発泡剤はそのセメントミルク又はモルタルの膨張率が3%から16%となるようにアルミニウム粉末を添加するようにしている。上記実施例では発泡剤としてアルミニウム粉末のみを用いたが、その他、膨張作用を有する発泡剤として、セメント組成物中における化学反応によりガスを発泡する少なくとも、アルミニウム粉末、亜鉛等の両性金属の粉末、炭素物質、過酸化物質、スルホニルヒドラジド化合物、アゾ化合物、ニトロソ化合物、ヒドラジン誘導体から選択した1種又は2種以上であってもよい。
 以下の実証試験の結果では、膨張作用を有する発泡剤のアルミニウム粉末(フローリック社製 セルメックP)において、セメントミルクの膨張率が3%から16%を生成するには、アルミニウム粉末の添加量がセメント質量に対して0.002%から0.02%の範囲の添加率とする。セメントミルクの膨張率は、アルミニウム粉末の添加量が増加するにつれて相関関係が略直線的に増加することから、アルミニウム粉末の所定の添加量で予定のセメントミルクの膨張率を得ることができる。
 また、モルタルの膨張率が3%から16%を生成するには、アルミニウム粉末の添加量がセメント質量に対して0.007%から0.04%の範囲の添加率とする。モルタル膨張率は、アルミニウム粉末の添加量が増加するにつれて、相関関係が略直線的に増加することから、アルミニウム粉末の所定の添加量で予定のモルタルの膨張率を得ることができる。
 また、発泡剤のアルミニウム粉末を添加したセメントミルクやモルタルの強度は、発泡剤のアルミニウム粉末の使用量の増加によって圧縮強度が低下する、一方、膨張率と圧縮強度の相関関係は、膨張率の増加により圧縮強度は略直線的に低下するので、強度低下は予測可能である。また、発泡剤のアルミニウム粉末を添加したセメントミルクやモルタルと掘削土壌(砂層、砂礫層、礫層等)と攪拌混合したソイルセメントを発泡膨張して硬化したソイルセメントの強度は、一般のコンクリートと同様に結合材水比(セメント/水)によって強度予測が可能である。
 発泡剤のアルミニウム粉末は、うろこ状で純度99%以上、粉末度180メッシュ以上でステアリン酸により被覆されたものが好ましく、通常JISK5906(塗料用アルミニウム粉末)第2種標準ふるい88μ残分2%以下に適合するもので、セメントとの化学反応時間を適宜調整したものが好ましい。
 注入するセメントミルクは、セメントと水と発泡剤のアルミニウム粉末から構成される。さらに、必要に応じて、フライアッシュ、高炉スラグ微粉末、シリカ微粉末、ベントナイト、膨張材、混和剤、炭素繊維、金属製の針金等を混入するようにしてもよい。
 注入するモルタルは、セメントと水と発泡剤のアルミニウム粉末と細骨材としての砂から構成される。フライアッシュ、高炉スラグ微粉末、シリカ微粉末、ベントナイト、膨張材、混和剤、繊維物質、金属製の針金等を混入するようにしてもよい。
 なお、繊維物質としては、例えば、スチールファイバー、ビニオンファイバー、炭素繊維、ワラストナイト繊維等であり、繊維物質を使用するとソイルセメントのひび割れ抵抗性や靱性及び強度を向上させることができる。
 細骨材として砂を用いたが例えば、砂の代わりにアルミニウムを含有する溶融スラグや金属製造起源スラグ(鉄鋼スラグ、非鉄金属スラグ)等を使用してもよい。
 セメントは、普通ポルトランドセメントや高炉セメント等であり、特に限定されるものではない。
 フライアッシュは、シリカやアルミナを主成分で構成され、火力発電所で石炭を燃焼する際に生成される副産物の灰である。また、フライアッシュは混和材やフライアッシュセメントとして用いられる。良質なフライアッシュを使用した場合には、単位水量の低減、ワーカビリティーの改善、水和発熱量の低下、長期強度及び耐久性の増進、水密性の改善、化学抵抗性の改善、化学抵抗性の向上などの効果が得られる。
 混和剤は、減水剤、高性能減水剤、凝結遅延剤、膨張剤、保水剤、増粘剤等である。混和剤をモルタル又はセメントミルクに添加することで、次のような効果を得ることができる。
(1)流動性が良好となり、経時に伴う流動性の低下が少ない。
(2)材料分離が少ない。
(3)適度の凝結遅延性を得ることができる。
(4)適度の膨張性をもち、粗骨材との良好な付着性を得ることができる。
(5)拘束内(掘削孔内)での硬化後、所要の強度、耐久性、水密性を得ることができ、掘削孔中の周面地盤と既製杭とを一体化することができる。
 発泡剤のアルミニウム粉末は、膨張材とともに使用することもできる。膨張材は、硬化後のセメント組成物(ソイルセメント)の水和や乾燥による収縮を補償する(収縮をゼロとする)作用を有するため、すなわち、アルミニウム粉末によってセメント組成物が硬化するまでの初期収縮を補償する以上の体積増大を図り、膨張材によって硬化後のセメント組成物の収縮を補償することにより、セメント組成物の収縮を使用期間全体にわたって保障することが可能となる。
 膨張材としては、特に限定されないが、セメント、水とともに水和し、エトリンガイト(3CaO・Al・3CaSO・32HO)を生成して膨張するカルシウム・サルフォ・アルミネート鉱物を含むもの、及び水酸化カルシウム(Ca(OH))を生成して膨張する石灰を含むものを使用する。
 上述した本工法において、発泡剤としてアルミニウム粉末を一例として説明したが、その他に発泡剤としてセメント組成物中における化学反応により窒素ガスを発泡する化合物として、スルホニルヒドラジド化合物、アゾ化合物、ニトロソ化合物、ヒドラジン誘導体等を例示でき、具体的にはp-トルエンスルホニルヒドラジド、ベンゼンスルホニルヒドラジド等である。
 また、セメント組成物中における化学反応によりガス発泡物質としては、過炭酸塩、過硫酸塩、過ホウ酸塩、過マンガン酸塩、過酸化水素等の過酸化物質や炭素物質等である。
 これらの膨張作用を有する発泡剤を用いることで、セメント組成物中における化学反応により窒素ガス或いは酸素ガス等を発泡する際にガスの浮遊力を利用してセメントの拡散を促し、ソイルセメントに充分な発泡機能を生起して、ソイルセメントの組成物全般にわたるち密な膨張硬化を発揮することができる。
 また、発泡剤は単独の材料で十分な発泡・膨張効果を有するが、複数の発泡剤を併用して使用してもよい。
 以下、配合の一例を示しながら、膨張率と発泡剤のアルミニウム粉末の添加量について説明する。
[配合例A]
 図7は、セメントミルクとしてのセメントペースト(水、普通ポルトランドセメント、高性能AE減水剤標準形)にアルミニウム粉末の量を変えて添加した場合の膨張率を示すグラフである。セメントペーストとアルミニウム粉末の配合例は表1の通りとなる。
[表1]
 
Figure JPOXMLDOC01-appb-I000001
J14ロート流下時間 25秒・アルミニウム粉末(セルメックP)の添加量は表2に示す。
 [表2]
 
Figure JPOXMLDOC01-appb-I000002
 膨張率試験は、土木学会規準(JSCE-F 522)プレバックドコンクリートの注入モルタルの膨張率試験方法(ポリエチレン袋方法)によって測定した。
 すなわち、図7に示すグラフは、発泡剤のアルミニウム粉末の添加量とセメントミルクの膨張率との関係を示すものである。発泡剤のアルミニウム粉末の添加量0g/m、50g/m、100g/m、150g/m、200g/mによるセメントミルクの膨張率を示した。アルミニウム粉末の添加量100g/mから200g/mの範囲における膨張率は、点線で示す予測的な近似直線から得ることができる。
 セメントミルクの膨張率は、セメント質量に対してアルミニウム粉末添加量の増加に応じて略直線的に増加する相関関係があることから、表2のアルミニウム粉末添加量が0g/m、50g/m、100g/mの場合のそれぞれの膨張率は、0%、5%、8%である。アルミニウム粉末添加量150g/mの膨張率は予測的な近似直線から12%となる。アルミニウム粉末添加量200g/mの膨張率は予測的な近似直線から16%となる。
 注入するセメントミルクの膨張率の範囲を3%から16%に設定すると、膨張率3%の場合は、表2及び図7よりアルミニウム粉末の添加量30g/m、(0.465g)と推定でき、膨張率16%の場合は、図7及び表2からアルミニウム粉末の添加量200g/m、(3.1g)と推定することができる。
 アルミニウム粉末の添加量0.465gは、セメント質量25kgに対して0.00186%の添加率となる。また、アルミニウム粉末の添加量3.1gは、セメント質量25kgに対して0.0124%の添加率となる。
 従って、発泡剤を添加したセメントミルクの膨張率3%から16%が生起できるアルミニウム粉末の添加率は、セメント質量に対して0.00186%から0.0124%の範囲の添加率となる。セメントミルクのアルミニウム粉末の添加率は、同じ添加率でも温度が低くなるほど反応速度が遅くなり、膨張率が小さくなる特性があるのでセメント質量に対して0.002%から0.02%の範囲で管理する。
 発泡剤を添加したセメントミルク又はモルタルの膨張率が3%から16%であれば、膨張率による圧縮強度は略直線的に低下するので予測可能である。生成されるソイルセメントの膨張率は1%から8%の膨張を生成するので、掘削孔の孔壁地盤にソイルセメントの膨張は拘束され、膨張は抑えられた分、膨張圧力はより増大し、ソイルセメントは掘削孔の孔壁地盤と既製杭に膨張圧力をかけたまま、掘削孔内の孔壁地盤と強固に一体化するので、従来技術と比べて先端支持力や周面摩擦力及び引抜抵抗力を増大することができる。
 セメントミルクのアルミニウム粉末添加率が0.002%未満の場合では、アルミニウム粉末を添加したセメントミルクの膨張率が3%未満となる。このような3%未満の膨張率のセメントミルクを掘削孔内に注入し、掘削土壌と攪拌混合して生成したソイルセメントは膨張率が1%未満となってしまい、ソイルセメントが掘削孔壁面に膨張圧力を充分に与えることができなくなる。すなわち、既製杭とソイルセメントと地盤との密着力が弱くなる。
 セメントミルクのアルミニウム粉末添加率が0.02%を超える場合では、アルミニウム粉末を添加したセメントミルクの膨張率が16%より大きくなる。このような16%より大きい膨張率のセメントミルクを掘削孔内に注入し、掘削土壌と攪拌混合して生成したソイルセメントは膨張率が8%より大きくなってしまい、ソイルセメントが掘削孔壁面に大きな膨張圧力を与える反面で、ソイルセメントの圧縮強度が大きく低下してしまうことがある。すなわち、既製杭とソイルセメントと地盤との密着力が良いものの圧縮強度が低下してしまう。
 [配合例B]
 配合例Bは、発泡剤のアルミニウム粉末とモルタル(セメント+細骨材:砂 等)と配合した例である。表3は配合材料を示すものである。表4は配合材料の配合量を示したものである。表5は表4のとおり発泡剤のアルミニウム粉末入りモルタルを配合してその膨張率を示すものである。
 [表3]
 
Figure JPOXMLDOC01-appb-I000003
 [表4]
 
Figure JPOXMLDOC01-appb-I000004
 [表5]
 
Figure JPOXMLDOC01-appb-I000005
 膨張率試験は、土木学会規準(JSCE-F 522)プレバックドコンクリートの注入モルタルブリーディング率および膨張率試験方法(ポリエチレン袋方法)によって測定した。
 すなわち、図8に示すグラフは、発泡剤のアルミニウム粉末の添加量とモルタルの膨張率との関係を示すものである。
 モルタルの膨張率は、セメント質量に対してアルミニウム粉末添加量の増加に応じて略直線的に増加する相関関係がある。
 表4より、アルミニウム粉末添加量が0g/m、20g/m、40g/mの場合のそれぞれの膨張率は、0%、1.09%、2.53%であり、予測的な近似直線を描くことで、アルミニウム粉末添加量が230g/mの場合は、膨張率16.3%を示す。予測的な近似直線から膨張率3%の場合のセメント質量681kg/mに対するアルミニウム粉末添加量は47g/mとなり、添加率は0.0069%となる。
 予測的な近似直線から膨張率16%の場合のセメント質量681kg/mに対するアルミニウム粉末添加量は226g/mとなり、添加率は0.0332%となる。
 注入するモルタルの膨張率の範囲を3%から16%に設定すると、膨張率3%ではセメント質量に対してアルミニウム粉末添加率0.0069%であり、膨張率16%ではセメント質量に対してアルミニウム粉末添加率0.0332%と予測できる。
 したがって、発泡剤を添加したモルタルの膨張率3%から16%を得るために必要なアルミニウム粉末の添加率は、セメント質量に対して0.0069%から0.0332%となる。よって、モルタルのアルミニウム粉末の添加率は、上述したセメントミルクと同様に同じ添加率でも温度が低くなるほど反応速度が遅くなり、膨張率が小さくなる特性があるのでセメント質量に対して0.007%から0.04%の範囲として管理する。
 ここでモルタルのアルミニウム粉末の添加率が0.007%未満の場合は、アルミニウム粉末を添加したモルタルの膨張率が3%未満となりうるので、膨張率3%未満のモルタルを掘削孔内に注入し、掘削土壌と攪拌混合すると、生成したソイルセメントの膨張率が1%未満と小さくなり、掘削孔壁面に膨張圧力を充分に与えることができなくなる。
 モルタルのアルミニウム粉末の添加率が0.04%より大きい場合は、アルミニウム粉末を添加したモルタルの膨張率が16%より大きくなるので、膨張率16%より大きいモルタルを掘削孔内に注入し、掘削土壌と攪拌混合すると、生成したソイルセメントの膨張率が8%より大きくなり、掘削孔壁面に大きな膨張圧力を与えるが、ソイルセメントの圧縮強度が大きく低下してしまうことがある。
 上記配合例A又は配合例Bによって、本発明の実施例の既製杭埋込み工法を実施する。
すなわち、膨張率3%から16%の範囲のセメントミルク又はモルタルを掘削孔中に注入して、または注入しながら掘削ビットで掘削孔中の根固め部となる砂層や砂礫層或いは礫層等の支持層となる掘削土壌と攪拌混合して、生成するソイルセメントの膨張率1%以上8%の範囲のソイルセメント根固め部を形成するので、膨張するソイルセメントは膨張率を1%以上の所定の膨張率に生起させて、膨張したままソイルセメントを硬化させることになる。
 この膨張率1%から8%からなるソイルセメント硬化体は、ソイルセメントが周面地盤と既製杭の基部周面に膨張圧力をかけて、ソイルセメントと掘削孔壁面や既製杭の基部面との間の緩みや隙間を膨張圧力で生起させたソイルセメントで埋め、余力の膨張圧力をかけたまま硬化するので、既製杭の周面摩擦力を向上させて、杭の先端支持力や引抜き抵抗力を増大させる効果がある。
 注入するセメントミルク又はモルタルと根固め部となる掘削土壌の攪拌混合を説明する。図43は、流動化土とセメントミルク又はモルタルとを攪拌混合したイメージ図である。セメントミルク又はモルタル注入による根固め部の攪拌混合によるソイルセメントのイメージであり、先端部土質が砂・砂礫の場合である(図中において、実際には混合攪拌されているが、注入比率を表示する)。
 例えば、図43(b)に示すように、膨張作用を有する発泡剤のアルミニウム粉末を添加した注入(注入とは加圧注入や加圧噴出及び加圧噴射等である)するセメントミルク又はモルタルの注入量は、掘削ビットで攪拌流動化した根固め部の流動化土の容積1.0の根固め部の高さ1.0に、同じ容積のセメントミルク又はモルタル容積1.0を注入率100%で注入する。次に、根固め部の高さ1.0の範囲で混合攪拌して生成したソイルセメントは、掘削孔壁面に拘束され掘削された掘削孔の上方へ盛り上がり、ソイルセメントは容積2.0、高さ2.0を形成する。根固め部の容積2.0、高さ2.0のソイルセメント中のセメントミルク又はモルタルの含有率は50%となる。
 また、図43(c)に示すように、セメントミルク又はモルタルの注入率150%の場合には、先ず、根固め部の容積1.0とした根固め部の高さ1.0の範囲の流動化土に対して、セメントミルク又はモルタルの注入率100%の高さ1.0を注入する。次に、根固め部の高さ1.0の範囲で混合攪拌すれば、ソイルセメントは容積2.0、高さ2.0を形成する。根固め部となる容積1.0、高さ1.0のソイルセメント中のセメントミルク又はモルタルの含有率は50%なる。
 続いて残りの50%の0.5の容積のセメントミルク又はモルタルを、先に生成したソイルセメントの容積2.0、高さ2.0の根固め部となる杭先端部の容積1.0、高さ1.0の範囲で、注入し混合攪拌してソイルセメントを生成する。150%注入したソイルセメントが生成され、ソイルセメントの容積1.5、高さ1.5でソイルセメントの含有率は67%が生成形成される。
 このようにして、生成するソイルセメントの容積2.5、高さ2.5が形成され、杭先端部の根固め部となる容積1.0、高さ1.0のソイルセメントの範囲は容積1.5、高さ1.5で形成され、セメントミルク又はモルタルの含有率は67%になる。
 また、図43(d)に示すように、セメントミルク又はモルタルの注入率200%の場合には、注入率150%の場合と同様に、先ず、根固め部の容積1.0とした根固め部の高さ1.0の範囲で、セメントミルク又はモルタルの注入率100%の高さ1.0を注入する。次に、混合攪拌してソイルセメントの容積2.0、高さ2.0を生成する。根固め部となる容積1.0、高さ1.0のソイルセメント中のセメントミルク又はモルタルの含有率は50%になる。
 続いて残りの100%の1.0の容積のセメントミルク又はモルタルを、先に生成したソイルセメントの容積2.0、高さ2.0の根固め部となる杭先端部の容積1.0、高さ1.0の範囲で、注入し混合攪拌してソイルセメント生成形成する。200%注入したソイルセメントが生成され、ソイルセメントの容積2.0、高さ2.0でソイルセメントの含有率は75%になる。
 このようにして、生成するソイルセメントの容積3.0、高さ3.0が形成され、杭先端部の根固め部となる容積1.0、高さ1.0のソイルセメントの範囲は容積2.0、高さ2.0で形成され、セメントミルク又はモルタルの含有率は75%になる。
 発泡剤のアルミニウム粉末を添加するセメントミルク又はモルタルの膨張率は、発泡剤のアルミニウム粉末の添加量に応じて略直線的に増加することから、膨張率は予測可能であるので、発泡剤のアルミニウム粉末を添加したセメントミルク又はモルタルを掘削土壌と混合攪拌すると、生成するソイルセメントの膨張率も同じように略直線的に増加することになる。
 このことから、注入するセメントミルク又はモルタルの膨張率が3%の場合には、注入するセメントミルク又はモルタルの注入率が100%でセメントミルク又はモルタルの含有率及びアルミニウム粉末の含有率が50%になることから、根固め部となるソイルセメントの膨張率は前記含有率50%から算出して、3×0.5=1.5%となる。
 また、注入するセメントミルク又はモルタルの注入率が150%でセメントミルク又はモルタルの含有率及びアルミニウム粉末の含有率が67%になることから、根固め部となるソイルセメントの膨張率は前記含有率67%から算出して、3×0.67=2.01%となる。
 また、注入するセメントミルク又はモルタルの注入率が200%でセメントミルク又はモルタルの含有率及びアルミニウム粉末の含有率が75%になることから、根固め部となるソイルセメントの膨張率は前記含有率75%から算出して、3×0.75=2.25%となる。
 同様に、注入するセメントミルク又はモルタルの膨張率が16%の場合には、注入するセメントミルク又はモルタルの注入率が100%でセメントミルク又はモルタルの含有率及びアルミニウム粉末の含有率が50%になることから、根固め部となるソイルセメントの膨張率は前記含有率50%から算出して、16×0.5=8%となる。
 また、注入するセメントミルク又はモルタルの膨張率16%で注入率が150%で根固め部となるソイルセメントの膨張率は含有率67%から算出して、16×0.67=10.72%となる。
 また、注入するセメントミルク又はモルタルの膨張率16%で注入率が200%で根固め部となるソイルセメントの膨張率は含有率75%から算出して、16×0.75=12%となる。
 さらに、現場施工を考えた場合、生成するソイルセメントの膨張率の安全率を「1.5」とする。
 注入するセメントミルク又はモルタルの膨張率を3%から16%の範囲に設定しているので、最小の3%の膨張率で注入すると、注入率100%で生成するソイルセメントの膨張率は1.5%になることから、1.5%(膨張率)÷1.5(安全率)=1%となる。
 注入率が150%で生成するソイルセメントの膨張率は2.01%になることから、2.01%÷1.5=1.34%となる。
 注入率200%で生成するソイルセメントの膨張率は2.25%になることから、2.25%÷1.5=1.5%となる。
 よって、注入するセメントミルク又はモルタルの膨張率が最小の3%で、注入率100%から200%で生成するソイルセメントの膨張率が1%から1.5%となることから、生成するソイルセメントの最小膨張率を1%とする。
 注入するセメントミルク又はモルタルの膨張率を最大16%で注入すると、注入率100%で生成するソイルセメントの膨張率は8%になることから、8%÷1.5=5.33%となる。
 注入率150%で生成するソイルセメントの膨張率は10.72%になることから、10.72%÷1.5=7.15%となる。
 注入率200%で生成するソイルセメントの膨張率は12%になることから、12%÷1.5=8%となる。
 よって、注入するセメントミルク又はモルタルの膨張率が最大の16%で、注入率100%から200%で生成するソイルセメントの膨張率が5.33%から8%となることから、生成するソイルセメントの最大膨張率を8%とする。
 従って、注入するセメントミルク又はモルタルの膨張率が3%から16%の範囲で、生成するソイルセメントの膨張率が1%から8%の範囲で膨張形成するようにしている。
 発泡剤のアルミニウム粉末を添加したセメントミルク又はモルタルの膨張率は、発泡剤のアルミニウム粉末の添加量に応じて略直線的に増加することから、膨張率の予測や制御が可能であり、一方で膨張率が大きくなると硬化したセメント組成物(ソイルセメント)の圧縮強度が低下することとなるが、拘束下(掘削孔の壁)であれば、圧縮強度は大きく低下することはない。したがって、その強度低下についても予測や制御自体可能となる。
[配合例C]
 ここで、普通ポルトランドセメントを用いた膨張性コンクリート(スランプ配合)において、表6(使用材料表)、表7(コンクリート配合表)、表8(コンクリート試験結果)の基づき、コンクリートの膨張性と拘束なしの場合と拘束下の場合において圧縮強度の実証試験を行った。図9は、アルミニウム粉末添加率と膨張量の推移を示すグラフであり、図10は、拘束なしの場合と拘束下の場合における横軸にアルミニウム添加量と縦軸に強度との関係を示すグラフである。
 セメント質量344kgに対して、アルミニウム粉末の添加量0g、20g、40gの場合のセメント比は0%、0.0058%、0.0116%と算出される。また、アルミニウム粉末の添加量に応じた各膨張率は、-0.38%、0.26%、1.58%となる。なお、水セメント比は45%である。
 図40中の配合例Cに示すように、アルミニウム粉末を添加したコンクリートの膨張率はアルミニウム粉末の添加量に応じて略直線的に増加するため、所定の膨張率を得たい場合には、予測的に近似直線を描いてアルミニウム粉末の添加量を算出することができる。
 従って、アルミニウム粉末を添加率0.025%で添加した場合には、コンクリートの膨張率が予測的な近似直線から約4.5%と予測できる。添加率0.030%で膨張率5.6%である。よって、コンクリートの膨張率は、アルミニウム粉末の添加量で適宜調整することができる。
 図10のグラフについて考察すると、拘束なしにおいては、アルミニウム粉末の添加率が多くなると強度低下は略直線的に低下し、発泡剤のアルミニウム粉末の添加率が0.0058%の場合は低減強度率89.76%となり、アルミニウム粉末の添加率が0.0116%の場合は低減強度率74.9%となり、予測的に添加率0.025%の場合は低減強度率45.36%と添加率0.030%で低減強度率33.78%と予測することができる。
 拘束下においては、アルミニウム粉末の添加率が0.0058%の場合は低減強度率94%となり、アルミニウム粉末の添加率が0.0116%の場合は低減強度率94.98%となり、予測的に添加率0.025%の場合は低減強度率89.18%と添加率0.030%で低減強度率86.87%と予測することができる。
 このグラフから拘束下においては圧縮強度が大きく低下しないことが明らかである。
[表6]
 
Figure JPOXMLDOC01-appb-I000006
[表7]
 
Figure JPOXMLDOC01-appb-I000007
[表8]
 
Figure JPOXMLDOC01-appb-I000008
圧縮供試体は15kgの重石で翌日脱型まで拘束
 ・膨張は2時間程度で開始し、4から5時間程度で終了した(図9参照)。
 ・供試体の拘束がない場合の強度低下は、膨張率1.5%程度で25%低下した。
 ・供試体を拘束することで強度低下を抑えることが出来る。
 
 また、より精査を高めるために、アルミニウム粉末の添加量による膨張性コンクリートの膨張率と強度の推移についても実証試験を行った。
 根固め部のソイルセメントでは、発泡剤のアルミニウム粉末を添加したセメントミルク又はモルタルを掘削孔内に注入して、或いは注入しながら、砂層、砂礫層、礫層を掘削ビットで攪拌混合しながら上下方向に反復作動して、生成した均一に膨張するソイルセメントであるので、このソイルセメントはモルタル及びコンクリートに近いセメント組成物となり、その後、硬化して根固め部となる。
 したがって、発泡剤のアルミニウム粉末添加のソイルセメント強度はセメント水比C/Wに依存している。当然ながら強度はセメント含有率や単位セメント量が多くなると、生成するソイルセメントの強度は上昇するが、逆にソイルセメントの膨張率が大きくなると強度低下が起こる。よって、本工法では注入するセメントミルク又はモルタルの膨張率が3%から16%となるように発泡剤のアルミニウム
粉末を予測して添加することで生成するソイルセメントの膨張率と圧縮強度を適宜調整することができる。
 [膨張するコンクリートの実証試験]
 以下において膨張性コンクリートの各種実証試験を行い、発泡剤のアルミニウム粉末を添加した膨張性コンクリートの実証試験について詳説する。実証試験を行うにあたり、5種類の配合例を作製し、各配合例を順次説明したのち考察している。
 [配合例1]
 図11は配合例1に使用する材料を表わした一覧であり、図12は配合例1の使用材料の配合量を表わし、図13は配合例1におけるAL(アルミニウム粉末)添加量を変化させた時のフレッシュ試験と膨張率を表わした一覧であり、図14は配合例1の膨張率と経過時間との関係を示すグラフであり、図15は配合例1におけるAL添加量と膨張率の回帰式を示すグラフである。
 配合例1では、普通ポルトランドセメントを用いた膨張性高流動コンクリートである。
図13に示すように発泡剤のアルミニウム粉末の添加率(セメント質量比)セメント量500kgに対してアルミニウム粉末を15g、30g、45gはセメント比、それぞれ0.003%、0.006%、0.009%と算出される。また、アルミニウム粉末の添加量に応じた膨張率は、0.2%、1.0%、2.5%となる。なお、水セメント比は35%である。
 図15に示すように、アルミニウム粉末を添加したコンクリートの膨張率は、アルミニウム粉末の添加量に応じて略直線的に増加するため、所定の膨張率を得たい場合にはアルミニウム粉末添加量と膨張率との回帰式 y=0.078X-1.0733又は予測的に近似直線を描いてアルミニウム粉末の添加量を算出することができる。
 従って、図40に示すようにアルミニウム粉末を添加率0.012%で添加した場合には、そのコンクリートの膨張率が約3.6%となり、アルミニウム粉末を添加率0.015%で添加した場合には、そのコンクリートの膨張率が約4.77%となり、アルミニウム粉末を添加率0.020%で添加した場合には、そのコンクリートの膨張率が約6.72%となり、アルミニウム粉末の添加率0.025%で添加した場合、そのコンクリートの膨張率が約8.67%となることを回帰式より予測することができる。添加率0.030%で添加した場合、膨張率10.62%である。
 よって、コンクリートの膨張率は、アルミニウム粉末添加量で適宜調整することが可能である。
 [配合例2]
 図16は配合例2に使用する材料を表わした一覧であり、図17は配合例2の使用材料の配合量を表わし、図18は配合例2におけるAL添加量を変化させた時のフレッシュ試験と膨張率を表わした一覧であり、図19は配合例2におけるAL添加量と膨張率の回帰式を示すグラフである。
 配合例2では、高炉セメントB種を用いた膨張性高流動コンクリートである。図18に示すように発泡剤のアルミニウム粉末の添加率(セメント質量比)セメント量407kgに対してアルミニウム粉末を0g、25g、37.5g、50gはセメント比、それぞれ0%、0.006%、0.009%、0.012%と算出される。また、アルミニウム粉末の添加量に応じた膨張率は、-0.3%、0.5%、1.35%、1.98%となる。
なお、水セメント比は43%である。
 図19に示すように、アルミニウム粉末を添加したコンクリートの膨張率は、アルミニウム粉末の添加量に応じて略直線的に増加するため、所定の膨張率を得たい場合にはアルミニウム粉末添加量と膨張率との回帰式 y=0.0592X-0.9433又は予測的に近似直線を描いてアルミニウム粉末の添加量を算出することができる。
 従って、図40に示すようにアルミニウム粉末を添加率0.015%で添加した場合には、そのコンクリートの膨張率が約2.67%となり、アルミニウム粉末を添加率0.020%で添加した場合には、そのコンクリートの膨張率が約3.87%となり、アルミニウム粉末の添加率0.025%で添加した場合、そのコンクリートの膨張率が約5.08%となることを回帰式より予測することができる。添加率0.030%で添加した場合、膨張率6.28%である。
 この膨張率は、アルミニウム粉末の添加率0%でコンクリートの膨張率-0.3%であるので、実質膨張率は(0.3+6.28=)6.58%である。
 よって、コンクリートの膨張率は、アルミニウム粉末添加量で適宜調整することが可能である。
 [配合例3]
 図20は配合例3に使用する材料を表わした一覧であり、図21は配合例3の使用材料の配合量を表わし、図22はコンクリートのフレッシュ試験の結果を表わした一覧であり、図23は配合例3におけるAL添加量を変化させた時のフレッシュ試験と膨張率を表わした一覧であり、図24はAL添加量と膨張率測定結果を表わした一覧であり、図25は配合例3の膨張率と経過時間との関係を示すグラフであり、図26は配合例3におけるAL添加量と膨張率の回帰式を示すグラフである。
 配合例3では、低熱ポルトランドセメントを用いた膨張性高流動コンクリートである。
図23に示すように発泡剤のアルミニウム粉末の添加率(セメント質量比)セメント量500kgに対してアルミニウム粉末を20g、40g、60gはセメント比、それぞれ0.004%、0.008%、0.012%と算出される。また、アルミニウム粉末の添加量に応じた膨張率は、0.94%、3.28%、4.67%となる。なお、水セメント比は34%である。
 図26に示すように、アルミニウム粉末を添加したコンクリートの膨張率は、アルミニウム粉末の添加量に応じて略直線的に増加するため、所定の膨張率を得たい場合にはアルミニウム粉末添加量と膨張率との回帰式 y=0.0935X-0.78又は予測的に近似直線を描いてアルミニウム粉末の添加量を算出することができる。
 従って、図40に示すようにアルミニウム粉末を添加率0.015%で添加した場合には、そのコンクリートの膨張率が約6.23%となり、アルミニウム粉末を添加率0.020%で添加した場合には、そのコンクリートの膨張率が約8.57%となり、アルミニウム粉末の添加率0.025%で添加した場合、そのコンクリートの膨張率が約10.9%となることを回帰式より予測することができる。添加率0.030%で添加した場合、膨張率13.24%である。
 よって、コンクリートの膨張率は、アルミニウム粉末添加量で適宜調整することが可能である。
 [配合例4]
 図27は配合例4および5に使用する材料を表わした一覧であり、図28は(a)配合条件・試験、(b)使用ミキサ・練り混ぜ方法を表わした一覧であり、図29は配合例4の使用材料の配合量を表わした一覧であり、図30は配合例4におけるAL添加量を変化させた時のコンクリート試験結果を表わした一覧であり、図31は配合例4の膨張率と経過時間との関係を示すグラフであり、図32は配合例4におけるAL添加量と膨張率の回帰式を示すグラフである。
 配合例4では、普通ポルトランドセメントを用いた膨張性コンクリート(スランプ配合18cm)である。図30に示すように発泡剤のアルミニウム粉末の添加率(セメント質量比)セメント量370kgに対してアルミニウム粉末を0g、30g、37g、44gはセメント比、それぞれ0%、0.008%、0.010%、0.012%と算出される。また、アルミニウム粉末の添加量に応じた膨張率は、-0.89%、-0.52%、-0.26%、-0.02%となる。なお、水セメント比は50%である。
 図32に示すように、アルミニウム粉末を添加したコンクリートの膨張率は、アルミニウム粉末の添加量に応じて略直線的に増加するため、所定の膨張率を得たい場合にはアルミニウム粉末添加量と膨張率との回帰式 y=0.0357X-1.5881又は予測的に近似直線を描いてアルミニウム粉末の添加量を算出することができる。
 従って、図40に示すようにアルミニウム粉末を添加率0.015%で添加した場合には、そのコンクリートの膨張率が約0.39%となり、アルミニウム粉末を添加率0.020%で添加した場合には、そのコンクリートの膨張率が約1.05%となり、アルミニウム粉末の添加率0.025%で添加した場合、そのコンクリートの膨張率が約1.71%となることを回帰式より予測することができる。添加率0.030%で添加した場合、膨張率2.37%である。
 この膨張率は、アルミニウム粉末の添加率0%でコンクリートの膨張率-0.89%であるので、実質膨張率は(0.89+2.37=)3.26%である。
 よって、コンクリートの膨張率は、アルミニウム粉末添加量で適宜調整することが可能である。
 [配合例5]
 図33は配合例5の使用材料の配合量を表わした一覧であり、図34は配合例5におけるAL添加量を変化させた時のコンクリート試験結果を表わした一覧であり、図35は配合例5の膨張率と経過時間との関係を示すグラフであり、図36は配合例5におけるAL添加量と膨張率の回帰式を示すグラフである。
 配合例5では、普通ポルトランドセメントを用いた膨張性コンクリート(スランプ配合18cm)である。図34に示すように発泡剤のアルミニウム粉末の添加率(セメント質量比)セメント量370kgに対してアルミニウム粉末を0g、30g、37g、44gはセメント比、それぞれ0%、0.008%、0.010%、0.012%と算出される。
また、アルミニウム粉末の添加量に応じた膨張率は、-0.55%、0.47%、0.90%、1.25%となる。なお、水セメント比は45.9%である。
 図36に示すように、アルミニウム粉末を添加したコンクリートの膨張率は、アルミニウム粉末の添加量に応じて略直線的に増加するため、所定の膨張率を得たい場合にはアルミニウム粉末添加量と膨張率との回帰式 y=0.0557X-1.1881又は予測的に近似直線を描いてアルミニウム粉末の添加量を算出することができる。
 従って、図40に示すようにアルミニウム粉末を添加率0.015%で添加した場合には、そのコンクリートの膨張率が約1.9%となり、アルミニウム粉末を添加率0.020%で添加した場合には、そのコンクリートの膨張率が約2.93%となり、アルミニウム粉末の添加率0.025%で添加した場合、そのコンクリートの膨張率が約3.96%となることを回帰式より予測することができる。添加率0.030%で添加した場合、膨張率4.99%である。
 この膨張率は、アルミニウム粉末の添加率0%でコンクリートの膨張率-0.55%であるので、実質膨張率は(0.55+4.99=)5.54%である。
 よって、コンクリートの膨張率は、アルミニウム粉末添加量で適宜調整することが可能である。
 [配合例C、1から5のまとめ]
 上述した配合例1から5の実証試験から、発泡剤のアルミニウム粉末の添加率に基づいた膨張するコンクリートの膨張率は事前に予測することが可能となり、当然にコンクリートの膨張率はアルミニウム粉末の添加量で適宜調整することができる。
 また、配合例1および配合例3においては発泡剤のアルミニウム粉末の添加率0%の場合に図14および図25に示すように初期膨張率0%である。図12に示すように配合例1の水セメント比は35%であり、図21に示すように配合例3の水セメント比は34%である。
 従って、配合例1から5より、初期膨張率0%にする水セメント比は、コンクリート初期膨張率(アルミニウム粉末の添加率0%のとき)と水セメント比との関係から推測することができる。
 ここで、アルミニウム粉末添加率0%の初期膨張率と水セメント比との関係を図47のグラフとして示した。図42中のNO1は配合例1の膨張率0%と水セメント比35%との関係を示しており、NO2は配合例2の膨張率-0.3%と水セメント比43%との関係を示しており、NO3は配合例3の膨張率0%と水セメント比34%との関係を示しており、NO4は配合例4の膨張率-0.89%と水セメント比50%との関係を示しており、NO5は配合例5の膨張率-0.55%と水セメント比45.9%との関係を示している。
 図42に示すように、配合例C,2,4,5の水セメント比の初期膨張率の各プロットを直線で結び、さらに点線で描いた近似直線を膨張率0%まで結ぶことで、コンクリート初期膨張率(アルミニウム粉末の添加率0%のとき)が水セメント比39.5%程度であると予測的に読み取ることができる。
 これにより、配合例C、1から5については水セメント比を39.5%以下となる配合としたのちに、発泡剤のアルミニウム粉末を添加することにより、初期膨張率0%を基準としたコンクリートの設定膨張率を確実に生成することができる。
 また、配合例4および5についてブリーディング試験を実施した。
 図37は配合例4および配合例5の使用材料の配合量(ALなし)を表わした一覧であり、図38は、配合例4および配合例5においてのコンクリート試験結果を表わした一覧であり、図39は配合例4および配合例5においての経過時間あたりのブリーディング量(cm3)を表わすグラフである。
 図37中のNO1は混和剤SV10Lを用いた配合例4であり、NO2は混和剤SF500Sを用いた配合例5である。すなわち、図38に示すように、NO1の配合例4は、混和剤SV10L(AE減水剤標準形)C×1.0%のときブリーディング率3.57%となり、NO2の配合例5は、混和剤SF500S(高性能AE減水剤)C×0.8%のときブリーディング率1.24%となる。
 一方、混和剤のAE減水剤を用いたコンクリート配合に発泡剤のアルミニウム粉末(セルメックP)を添加した場合には元の沈降量が大きいために膨張によってその沈降量をキャンセルするが、最終的にコンクリートが膨張した量は小さくなる。
 他方、混和剤の高性能AE減水剤を用いたコンクリート配合に発泡剤のアルミニウム粉末(セルメックP)を添加した場合には単位水量を低減することができるので、沈降量が小さくなり、最終的にコンクリートを所定の量だけ膨張させることができる。
 図38および図39に示すように、コンクリートのブリーディング量が多くなるとコンクリートの沈降量が大きくなる。したがって、コンクリートの沈降量が大きくなると発泡剤のアルミニウム粉末(セルメックP)による膨張量は小さくなる。
 かかることからコンクリートのブリーディング率が0%になるように、混和剤の高性能AE減水剤等の添加量を適宜決定して使用することで初期膨張率0からの膨張率を生成することが可能となる。
 従って、発泡剤のアルミニウム粉末の添加量によるコンクリートの膨張は、コンクリート配合を水セメント比からとブリーディングを抑える初期膨張率を0%配合して、設定膨張率に必要なアルミニウム粉末の量を適宜決定することが好ましい。
 また、コンクリートの膨張率を上げるには、単位セメント量を多くして、かつ、発泡剤のアルミニウム粉末の添加量を多くすることで、大きな膨張率を得ることが出来る。
 [ALの添加量に応じたコンクリート圧縮強度実証試験]
 図41は、配合例C、3,4,5におけるアルミニウム粉末の添加率とコンクリート圧縮強度との関係を表わしたグラフである。
 図41に示すように、配合例3,5,4は発泡剤のアルミニウム粉末の添加率が増加するにつれて、圧縮強度の低減が略直線的に推移する。アルミニウム粉末添加率が0.008%の場合において、配合例3の低減強度率は92.02%となり、配合例5の低減強度率は93.29%となり、配合例4の低減強度率は93.60%となる。よって、アルミニウム粉末添加率が0.008%の場合では、低減強度率を最大約92%程度と予測することができる。
 また、アルミニウム粉末添加率が0.012%の場合において、配合例3の低減強度率は80.67%となり、配合例5の低減強度率は84.91%となり、配合例4の低減強度率は88.24%となる。よって、アルミニウム粉末添加率が0.012%の場合では、低減強度率を最大約80%程度と予測して、発泡剤のアルミニウム粉末の添加量の配合計画を事前に行うことができる。
 また、圧縮強度の低減が略直線的に推移することから予測的にアルミニウム粉末添加率が0.015%の場合において、配合例3の低減強度率は79.36%と、配合例5の低減強度率は81.19%と、配合例4の低減強度率は85.15%と推定できる。よって、アルミニウム粉末添加率が0.015%の場合では、低減強度率を最大約79%程度と予測することができる。
 また、予測的にアルミニウム粉末添加率が0.020%の場合において、配合例3の低減強度率は68.40%と、配合例5の低減強度率は75.04%と、配合例4の低減強度率は80.41%と推定できる。よって、アルミニウム粉末添加率が0.020%の場合では、低減強度率を最大約68%程度と予測することができる。
 また、図41の配合例3,4,5に示すように、アルミニウム粉末の添加率が0.025%の場合においては、配合例3の低減強度率は60.58%と、配合例5の低減強度率は68.9%と、配合例4の低減強度率は75.25%と推定できる。
 また、予測的にアルミニウム粉末添加量が0.030%の場合において、配合例3,5,4のコンクリート圧縮強度と低減強度率は、次のように推定できる。
 すなわち、配合例3の強度は、34.8N/mmとなり、配合例3の低減強度率は、53.37%となる。また、配合例5の強度は、34.0N/mmとなり、配合例5の低減強度率は、63.31%となる。配合例4の強度は、33.8N/mmとなり、配合例4の低減強度率は、69.69%となる。
 従って、アルミニウム粉末の添加率が0.025%の場合では、低減強度率を最大約60%程度と近似直線から予測できる。
 また、アルミニウム粉末の添加率が0.030%の場合では、低減強度率を最大約53%程度と近似直線から予測できる。
 このことから、アルミニウム粉末添加率が0.008%の場合で低減強度率が最大92%程度、0.012%の場合で低減強度率が最大80%程度、0.015%の場合で低減強度率が最大79%程度、0.020%の場合で低減強度率が最大68%程度、0.025%の場合で低減強度率が最大60%程度、0.030%の場合で低減強度率が最大値53%程度となり、アルミニウム粉末の添加率が0.005%ずつ増加すると、コンクリート強度は逆に約7%から11%の範囲で略直線的に低下することが推定できる。
 よって、アルミニウム粉末添加量とセメント量とは、相関関係にあることから、アルミニウム粉末添加量によるコンクリート圧縮強度は、予測できるので、セメント組成物のソイルセメントの圧縮強度も同様に予測できる。
 配合例Cの拘束ありと拘束なし(自由膨張)の実証試験について説明する。
 先ず、配合例Cの拘束ありの場合において、アルミニウム粉末添加率が0%の場合では、コンクリート強度51.8N/mmとなる。アルミニウム粉末添加率が0.0058%の場合では、コンクリート強度48.7N/mmで強度低減率94.01%となる。
アルミニウム粉末添加率が0.0116%の場合では、コンクリート強度49.2N/mmで強度低減率94.98%となる。
 予測的にアルミニウム粉末の添加率が、0.025%の場合では、コンクリート強度46.2N/mmで強度低減率89.18%と推定でき、予測的にアルミニウム粉末の添加率が、0.030%の場合では、コンクリート強度45.0N/mmで強度低減率86.87%と推定できる。
 この強度関係から、アルミニウム粉末添加率が0.0058%より、添加量の多い0.0116%のコンクリート強度が僅かであるが増加していることから、ガス発生によるコンクリートの膨張が型枠の存在によって抑制される結果、骨材とセメントとの付着が改善されて、それに伴って強度も僅かながら増加するものと考えられる。
 しかし、予測的にアルミニウム粉末添加率0.025%の場合では強度低減率89.18%と推定でき、アルミニウム粉末添加率0.030%で強度低減率86.87%と推定できる。この強度の低減が、横ばいとなっている結果からも他の配合例3、4、5より拘束ありの状態が非常によく拘束状態を形成できているものと考えられる。
 このことは、本発明の既製杭埋込み工法では、膨張するソイルセメントを拘束下の状態(掘削孔内)におくことで、ソイルセメントの強度低下は少なくとも横ばい状態とすることができ、すなわち、根固め部のソイルセメントは、膨張による強度低下を少なくすることができる。
 逆に、配合例Cの拘束なしの場合においては、アルミニウム粉末の添加量が増加するとコンクリート強度は大きく低下してしまう。
 配合例Cの拘束なしの強度低下は略直線的な関係を示しており、アルミニウム粉末の添加率が0.0058%の場合では強度低減率が89.76%となる。アルミニウム粉末の添加率が0.0116%の場合では強度低減率が74.9%となる。予測的にアルミニウム粉末の添加率が0.025%の場合では強度低減率が45.36%と推定できる。予測的にアルミニウム粉末の添加率が0.030%の場合では強度低減率が33.78%と推定でき、強度は17.5N/mmと大きく低下すると推定できる。
 さらに、アルミニウム粉末の添加率が0.030%の場合において、配合例Cの拘束なしを配合例Cの拘束ありと比較する。この配合例Cの拘束なしの強度低減率33.78%は配合例Cの拘束ありの強度低減率86.87%の(33.78÷86.87×100=)約1/2.5であり、配合例4の強度低減率69.69%の(33.78÷69.69×100=)約1/2となる。よって、拘束なしと拘束ありとは大きな圧縮強度差が出るが、根固め部のソイルセメントは掘削孔壁面により確実に拘束されるため、配合例Cの拘束ありと同じように良好な拘束状態を形成できるので、膨張による強度低下が少なくソイルセメントを生成することができる。
 結果的に、発泡剤のアルミニウム粉末添加率とセメントミルク又はモルタルの膨張率とコンクリートの膨張率及びコンクリート圧縮強度との関係から、セメントミルクにおいては発泡剤としてのアルミニウム粉末の添加量がセメント質量に対して0.002%から0.02%の範囲であり、モルタルにおいては発泡剤としてのアルミニウム粉末の添加量がセメント質量に対して0.007%から0.04%の範囲であることが好ましい。
 アルミニウム粉末の添加率をこれらの範囲とすることにより、セメントミルク又はモルタルの膨張率が3%から16%の範囲で生成することができる。
 膨張率3%から16%の範囲のセメントミルク又はモルタルを掘削孔内に注入して、掘削ビットを回転して掘削土壌と攪拌混合することにより、生成するソイルセメントの膨張率を1%から8%の範囲で生起することができ、その後、ソイルセメントが掘削孔内で膨張圧力を生起して掘削孔壁に圧力をかけた状態となり、掘削孔壁地盤からは反作用の反力が生起する状態となる。この状態のまま、掘削孔内で既製杭とソイルセメントが硬化することで、根固め部となるソイルセメントと周辺地中地盤と既製杭とは強固に一体化する。
 本工法によれば、既製杭の杭先端支持力や周面摩擦力及び引抜抵抗力を大きく向上できる効果がある。
 アルミニウム粉末の添加率がセメントミルクの場合で0.002%未満、又はモルタルの場合で0.007%未満では、生成するソイルセメントの膨張率が1%未満となるので、ソイルセメントの圧縮強度の低下は抑えられる反面、膨張率が低いため掘削孔の壁面に与える膨張圧力を充分に与えることができない。
 アルミニウム粉末の添加率がセメントミルクの場合で0.02%より大きく、又はモルタルの場合で0.04%より大きい際では、生成するソイルセメントの膨張率が8%より大きくなるり、周面地盤との密着力が高まるものの、ソイルセメントの圧縮強度の低下が大きくなり、強度を上げるためにセメント量を多くする必要があって、材料コストが上昇して経済性が悪くなる。
 [既製杭の例1]
 既製杭の根固め部のソイルセメントを膨張させ、すなわち、その根固め部となるソイルセメントの体積を拡大させる。
 例えば、根固め部径φ1000mmを10mm膨張してφ1010mmにする膨張率は、2.01%になる。根固め部径φ1200mmを10mm膨張してφ1210mmにする膨張率は、1.67%になる。根固め部径φ1500mmを10mm膨張してφ1510mmにする膨張率は、1.33%になる。根固め部径φ2600mmを10mm膨張してφ2610mmにする膨張率は、0.77%になる。
 例えば、根固め部径φ1000mmを20mm膨張してφ1020mmにする膨張率は、4.04%になる。根固め部径φ1200mmを20mm膨張してφ1220mmにする膨張率は、3.36%になる。根固め部径φ1500mmを20mm膨張してφ1520mmにする膨張率は、2.63%になる。根固め部径φ2600mmを20mm膨張してφ2620mmにする膨張率は、1.54%になる。
 例えば、根固め部径φ1000mmを30mm膨張してφ1030mmにする膨張率は、6.09%になる。根固め部径φ1200mmを30mm膨張してφ1230mmにする膨張率は、5.06%になる。根固め部径φ1500mmを30mm膨張してφ1530mmにする膨張率は、4.04%になる。根固め部径φ2600mmを30mm膨張してφ2630mmにする膨張率は、2.32%になる。
 このように杭体の根固め部径を10mmから30mm膨張することができる膨張率0.77%から6.09%は、注入するセメントミルク又はモルタルの膨張率を3%から16%の範囲としている。
 例えば、膨張率12%のセメントミルクを掘削孔に注入して掘削ビットで掘削土壌と攪拌混合した場合において、注入率100%でセメントミルクを注入して生成したソイルセメントの膨張率は6%となる。安全率「1.5」とするとソイルセメントの膨張率は4%となる。
 また、注入率150%でセメントミルクを注入して生成したソイルセメントの膨張率は8.04%となる。安全率「1.5」とするとソイルセメントの膨張率は5.36%となる。
 また、注入率200%でセメントミルクを注入して生成したソイルセメントの膨張率は9%となる。安全率「1.5」とするとソイルセメントの膨張率は6%となる。
 したがって、根固め部径を10mmから20mm大きく膨張したソイルセメントは、このようにして実施可能である。杭径を30mm大きく膨張したソイルセメントの膨張率6.09%の場合は、セメントミルク又はモルタルの膨張率を13%で実施可能である。
 また、根固め部のソイルセメントの圧縮強度は、注入するセメントミルク又はモルタルの強度で決まるので、セメント量を適宜調整することで所定の強度設定を行うことが可能である。
 このように根固め部径を10mmから30mm大きく膨張させることは可能であり、より大きな膨張率とすることも可能である。大きな膨張率は、掘削中に緩んだ地盤をソイルセメントの膨張圧力で解消し、膨張圧力を掘削孔壁にかけたままとすることができ、掘削孔壁地盤より反作用の反力を生起する状態となり、この状態のまま、ソイルセメントが硬化するので、ソイルセメントと周辺地盤と既製杭とは強固に一体化する。本工法によれば、既製杭の先端支持力や周面摩擦力及び引抜抵抗力を大きく向上することができる。
 上述した根固め部のソイルセメント体の膨張量は、10mmから30mmであるが、好適には外周に10mm以上の膨張部分をもつ根固め部径を20mm以上膨張させるとが好ましい。
 アルミニウム粉末を添加したセメントミルク又はモルタルの膨張率が3%から16%の範囲であれば、掘削ビットで掘削流動化した土壌と、適宜調整した発泡剤を添加したセメントミルク又はモルタルとを攪拌混合して、膨張するソイルセメントを生成し、ソイルセメントの膨張率が1%から8%の範囲となるソイルセメントを生成して、その後、硬化させ、掘削地盤と一体化した根固め部を形成することができ、既製杭の先端支持力や周面摩擦力及び引抜抵抗力の性能を大きく向上させることができる。
 さらに、ソイルセメントに膨張材を混入すれば、ソイルセメントの硬化後のソイルセメントの収縮補償(収縮ゼロ)以上とすれば、発泡剤のアルミニウム粉末の作用によってソイルセメントが硬化するまでの初期収縮を補償する以上の体積増大を図り、膨張材によって硬化後のソイルセメントの収縮を補償することにより、ソイルセメントの収縮を使用期間全体にわたって、補償することがさらに可能となる。
 また、ソイルセメントに繊維物質を混入することで、ひび割れ抵抗性や靱性及び強度を向上させることが可能である。
 [既成杭の例2]
 配合例Bにおいての膨張性モルタルの予測膨張率5.4%(セメント量681kg/m×アルミニウム粉末添加率0.0116%≒79g/mとなり、図8より膨張率5.4%を拾い出す)の数値を用いて、既製杭埋め込み工法のプレボーリング根固め工法を実施する。
 例えば、軸部掘削径φ1000mm、既製杭径φ800mm、根固め部径φ1000mm、根固め部の長さ10m、掘削孔の掘削深さGL-20m、杭の長さ20mで実施する。
 先ず、掘削ビットφ1000mmで掘削深さGL-20mの掘削孔を掘削し、掘削孔の掘削先端部GL-15mからGL-20mの深さの5mの範囲に、セメントとの化学反応時間を適宜調整したアルミニウム粉末を添加した膨張性モルタルを注入しながら、掘削ビットで掘削土壌と攪拌混合して根固め部となるソイルセメントを生成する。
 すなわち、注入率200%で膨張性モルタルを掘削深さGL-15mからGL-20mの深さの5mの範囲に注入し、モルタルと掘削土壌を攪拌混合し、モルタル含有率が75%となる根固め部となるソイルセメントの長さ(高さ)10mを生成する(図43(d)参照)。
 よって、生成する根固め部となるソイルセメント高さ10mの範囲のモルタル含有率75%となり、その膨張率は75%の生起となる。
 アルミニウム粉末の添加量は、掘削深さと根固め部となるソイルセメントの高さから掘削深さGL-10m(生成する根固め部となるソイルセメントの長さ10m)の深さをもとに定める。
 掘削孔内は泥土化された流動化土と掘削液の水等で飽和状態となっているので、掘削深さ10mの根固め部となるソイルセメントの膨張率が5.4%となるようにアルミニウム粉末の添加量を定める。
 アルミニウム粉末の添加量は、掘削深さ10mの水圧下において、常圧と同じ膨張率を得るには常圧の2倍(2気圧=深さ10m)のアルミニウム粉末の添加量と掘削孔内の泥土の圧力を加味する必要がある。
 常圧下において5.4%の膨張率のアルミニウム粉末の添加率はセメント質量に対して0.0116%であるから、0.0116%×2倍(2気圧)=0.0232%となり、さらに、泥土の比重を1.8とする1.8を乗じて、0.0232%×1.8≒0.04176%となる添加量を添加する。
 よって、GL-10mの深さの根固め部となるソイルセメントの膨張率は、5.4%(常圧の膨張率)×75%(モルタル含有率)÷1.5(安全率)=2.7%となる。
 この2.7%の膨張率の大きさは、掘削深さ10mで根固め部となるソイルセメントの径はφ1000mmを約φ1013mmの大きさに膨らます膨張圧力となる。
 また、注入する膨張性モルタルで生成する根固め部となるソイルセメントの膨張は、掘削深さ10m(2気圧)で2.7%の膨張率を生起するようにしているので、杭先端部のGL-20mで生成する根固め部となるソイルセメントの膨張率は、ボイルの法則(温度が一定であるとき、気体の圧力と体積は反比例する)から、2.7%×2(2気圧)=5.4%となり、5.4%÷3(3気圧)=1.8%である。
 この1.8%の膨張率の大きさは、掘削深さ20mで根固め部となるソイルセメント径はφ1000mmを約φ1008mmの大きさに膨らます膨張圧力となる。
 よって、φ1000mmの径がGL-10mの深さでφ1013mm、GL-20mの深さの杭先端でφ1008mmの膨張を生起し、高さ10mの上部がφ1013mmで下部(杭先端部)がφ1008mmの逆テーパー5mmの膨張した根固め部となるソイルセメントを形成する。
 あるいは、上記の形状の膨張圧力を生起する根固め部となるソイルセメントを形成する。
 逆テーパーは押し広げる効果により杭の沈下に対する抵抗力を得ると共に、周面摩擦力及び先端支持力を向上させることができる。また、根固め部となるソイルセメントの逆テーパーはくさび形状となるので杭の引抜き抵抗力を大きく向上させる効果がある。
 また、根固め部となるソイルセメント径はφ1000mmmを約φ1013mmからφ1008mmの逆テーパー形状の大きさに膨らます膨張圧力で、周面地盤と根固め部となるソイルセメントとを強固に一体化を図り、杭の性能を大きく向上させることができる。
 根固め部となるソイルセメントはセメント組成物であるから、一般コンクリートの強度同様に根固め部となるソイルセメントの強度はセメント水比(C/W)で決まると考えられる。
 配合例Bの膨張性モルタル(単位セメント量681kg/m、W/C=45%)を200%注入すれば、生成する根固め部となるソイルセメントのセメント含有率は、681kg/m(単位セメント量)×75%(セメント含有率)÷1.5(安全率)=340.5kg/mとなる。
 よって、生成する根固め部となるソイルセメントは、セメント量340.5kg/mで膨張率5.4%の膨張するソイルセメントを形成するので、このソイルセメントの強度は配合例Cの膨張性コンクリートのセメント量344kg/mに近い配合であるから配合例Cの膨張性コンクリートの強度の関係に近いものと推測する。
 また、注入するモルタルの水セメント比は45%であるので、泥土化された掘削土壌と攪拌混合して根固め部となるソイルセメントを生成するので、このソイルセメントの水セメント比は高くなり強度低下が起きる。モルタル含有率と同じように推測すると、根固め部となるソイルセメントの強度は配合例Cの膨張性コンクリート強度の50%と推測する。
 よって、配合例Cのアルミニウム粉末の添加率0.0116%での膨張性コンクリート強度は、拘束有りで49.2N/mmであるから、49.2N/mm×50%=24.6N/mmと予測できる。根固め部となるソイルセメントの・BR>ュ度は良好である。
 次に、注入する膨張性モルタルの膨張率を12%で実施する。
 配合例Bの膨張性モルタルの予測膨張率12%(セメント量681kg/m×アルミニウム粉末の添加率0.025%≒170g/mとなり、図8より膨張率12%を拾い出す)を200%で注入する。
 軸部掘削径φ1000mm、既製杭径φ800mm、根固め部径φ1000mm、根固め部の長さ10m、掘削孔の掘削深さGL-20m、杭の長さ20mで実施する。
 掘削先端部GL-15mからGL-20mの深さの5mの範囲に、膨張性モルタルを200%で注入すると、根固め部となるセメント含有率75%のソイルセメントの高さは10mの高さを生成する。また、根固め部となるソイルセメントの膨張率は75%となる。
 アルミニウム粉末の添加量は根固め部となるソイルセメントの高さが10mとなるGL-10mの深さの水圧下において、アルミニウム粉末の添加量を定める。掘削深さ10mにおいて、常圧と同じ膨張率を得るには常圧の2倍(2気圧=深さ10m)の添加量に掘削孔内の泥土の圧力を加味する。
 常圧下において12%の膨張率のアルミニウム粉末の添加率はセメント質量に対して0.025%であるから、0.025%×2倍(2気圧)=0.05%となり、0.05%×1.8(泥土比重)=0.09%となる添加量を添加する。
 GL-10mの深さでの根固め部となるソイルセメントの膨張率は、12%(常圧の膨張率)×75%(モルタル含有率)÷1.5(安全率)=6%となる。
 この6%の膨張率の大きさは、掘削深さ10mで根固め部となるソイルセメントの径はφ1000mmを約1029mmの大きさに膨らます膨張圧力となる。
 また、注入する膨張性モルタルで生成する根固め部となるソイルセメントの膨張は、掘削深さ10m(2気圧)で6%の膨張率を生起するようにしているので、杭先端部GL-20mで生成する根固め部となるソイルセメントの膨張率は、ボイルの法則から6%×2(2気圧)=12%となり、12%÷3(3気圧=深さ20m)=4%である。
 この4%の膨張率は掘削深さ20mにおいて、根固め部となるソイルセメントの径はφ1000mmをφ1019mmの大きさに膨らます膨張圧力となる。
 よって、φ1000mmの径がGL-10mの深さでφ1029mm、GL-20mの深さの杭先端でφ1019mmの膨張を生起し、高さ10mの上部がφ1029mmで下部(杭先端部)がφ1019mmの逆テーパー10mmの膨張した根固め部となるソイルセメントを形成する。
 あるいは、上記の形状の膨張圧力を生起する根固め部となるソイルセメントを形成する。
 また、根固め部となるソイルセメントの強度は、前記と同様に配合例Cの膨張性コンクリートの拘束ありのコンクリート強度から、アルミニウム粉末の添加率0.025%の予測値46.2N/mmであるから、46.2N/mm×50%=23.1N/mmと予測できる。
 根固め部となるソイルセメントの強度は良好である。
 また、根固め部となるソイルセメント径はφ1000mmを約φ1029mmからφ1019mmの逆テーパー形状の大きさに膨らます膨張圧力で、周面地盤と根固め部となるソイルセメントとが強固に一体化を図り、杭の性能を大きく向上させることができる。
 従って、注入する膨張性モルタルの膨張率を5.4%から12%と大きくして、生成する根固め部となるソイルセメントの膨張率を2.7%から6%に生起するようにすれば、根固め部となるソイルセメント長さ(高さ)10mで逆テーパーを5mmから10mmに大きくすることで、逆テーパーは杭の沈下に対する抵抗力をより大きく向上させ、杭の沈下を抑える効果がある。
 このように、生成する根固め部となるソイルセメントの膨張率を大きくすることで、杭先端支持力や周面摩擦力及び引抜き抵抗力を向上させることができる。また、根固め部の膨張率を大きくすることで逆テーパーが大きくなり、逆テーパー形状の高さを長くすることで押し広げる効果を高めることができ、杭の先端支持力や周面摩擦力及び引抜抵抗力を向上させる効果がある。
 以上、本発明の実施の形態のいくつかを図面に基づいて詳細に説明したが、これらは例示であり、本発明の膨張作用を有する発泡剤を添加したセメントミルク又はモルタルを注入し、生成するセメント組成物のソイルセメント、又はセメントミルク又はモルタルを地中地盤の拘束下で膨張させる次のような工法でも実施することが可能である。例えば、回転杭工法、鋼管ソイルセメント杭工法、マイクロパイル工法、アンカー工法、地山補強土工法、地中連続壁工法、地すべり抑止杭工法、水・セメントミルクジェット併用バイブロハンマ工法等において、根固め部に、発泡剤を添加したセメントミルク又はモルタルを注入し、生成するソイルセメント、又はセメントミルク又はモルタルを地中内で膨張硬化させ、膨張する圧力による周面地盤からの反力を受けることで強固に一体化することができ、先端支持力や周面摩擦力及び引抜抵抗力を向上することができる。
 また、地盤改良工法において、構造物の基礎として、基礎杭や壁杭及び地中連続壁等と同じように支持力や摩擦力の機能を持つ地盤改良工法が多く開発されている地盤改良杭(例えば、円柱形状、矩形状、格子形状等)工法や地盤改良壁杭及び地盤改良地中連続壁において、機械攪拌工法や噴射攪拌工法及び複合攪拌工法(機械と噴射を併用)で、本工法で実施することができる。すなわち、発泡剤を添加したセメントミルク又はモルタルを注入することで、地中内で生成するソイルセメントを膨張させ、周面地盤から反力を受け、膨張したソイルセメントと周面地盤を強固に一体化させることができ、周面摩擦力の向上と地耐力を強化することができる。また、この膨張するソイルセメント体中に鋼材等を入れることでより水平抵抗力が発揮できる。
 また、薬液注入工法(ここでの薬液とは、発泡剤を添加したセメントミルク又はモルタルを主とした非薬液系や、セメントミルク又はモルタルを混入した水ガラスなどの溶液型グラウトの薬液系を言う)で削孔機により削孔した後、孔内に注入材(発泡剤を添加したセメントミルク又はモルタル等)を注入し、膨張圧力により地盤の止水や地盤の強化を図る工法にも実施することが可能である。
 また、発泡剤を添加したセメントミルク又はモルタル及びコンクリートを注入又は打設し膨張させる場所打ち杭工法で実施することができる。
  また、発明の開示の欄に記載の態様を始めとして、当業者の知識に基づいて種々の変形、改良を施した他の形態で本発明を実施することが可能である。
A 地中B 掘削土C 杭周固定液11 掘削孔12 掘削ビット13 モルタル14 ソイルセメント15 既製杭16 先端根固め部

Claims (6)

  1.  地中内に掘削した掘削孔にセメントミルク又はモルタルを注入して掘削土壌と攪拌混合することによりソイルセメントを生成し、掘削孔中のソイルセメント中に既製杭を挿入する既製杭埋込み工法であって、
     セメントミルク又はモルタルには予め膨張作用を有する発泡剤を添加しておくことにより、掘削孔中の既製杭の基部周辺に形成したソイルセメントを膨張させ、ソイルセメントを逆テーパー形状に形成する或いは逆テーパー形状の膨張圧力を生起する
     既製杭埋込み工法。
  2.  膨張作用を有する発泡剤としては、セメント組成物中における化学反応によりガスを発泡する少なくともアルミニウム粉末、亜鉛等の両性金属の粉末、炭素物質、過酸化物質、スルホニルヒドラジド化合物、アゾ化合物、ニトロソ化合物、ヒドラジン誘導体から選択した1種又は2種以上である
     請求項1に記載の既製杭埋込み工法。
  3.  セメントミルク又はモルタルの膨張率が3%から16%となるように前記発泡剤を添加した
     請求項2に記載の既製杭埋込み工法。
  4.  セメントミルクの膨張率が3%から16%となるように、前記発泡剤としてのアルミニウム粉末の添加量がセメント質量に対して0.002%から0.02%とする、又はモルタルの膨張率が3%から16%となるように、前記発泡剤としてのアルミニウム粉末の添加量がセメント質量に対して0.007%から0.04%とする
     請求項3に記載の既製杭埋込み工法。
  5.  掘削孔の掘削深度が深い場合には、セメントミルクの膨張率が3%から16%となるように、前記発泡剤としてのアルミニウム粉末の添加量がセメント質量に対して0.002%から0.4%とする、又はモルタルの膨張率が3%から16%となるように、前記発泡剤としてのアルミニウム粉末の添加量がセメント質量に対して0.007%から0.8%とする
     請求項3に記載の既製杭埋込み工法。
  6.  膨張するソイルセメントには繊維物質を含有する
     請求項1から5の何れか1項に記載の既製杭埋込み工法。
PCT/JP2015/071283 2014-11-11 2015-07-27 既製杭埋込み工法 WO2017010016A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/739,281 US10480145B2 (en) 2014-11-11 2015-07-27 Method for burying precast pile

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2014228598 2014-11-11
JP2015108462 2015-05-28
JP2015141220A JP6006381B1 (ja) 2014-11-11 2015-07-15 既製杭埋込み工法
JP2015-141220 2015-07-15

Publications (1)

Publication Number Publication Date
WO2017010016A1 true WO2017010016A1 (ja) 2017-01-19

Family

ID=57123259

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/071283 WO2017010016A1 (ja) 2014-11-11 2015-07-27 既製杭埋込み工法

Country Status (3)

Country Link
US (1) US10480145B2 (ja)
JP (2) JP6006381B1 (ja)
WO (1) WO2017010016A1 (ja)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6941553B2 (ja) * 2017-12-18 2021-09-29 株式会社竹中工務店 杭体施工方法
JP7171328B2 (ja) * 2018-09-13 2022-11-15 大成建設株式会社 場所打ち拡径杭の構築方法
CN110397047B (zh) * 2019-06-25 2024-08-16 湖南工业大学 边坡防护桩及其边坡监测与防护系统
CN110241816B (zh) * 2019-06-28 2021-02-02 常州工学院 一种含气土层灌注桩施工的沉管装置及其施工方法
CN110528519A (zh) * 2019-08-05 2019-12-03 浙江二十冶建设有限公司 一种抛石填海新造陆地长螺旋引孔加锤击沉桩的施工方法
JP2021067163A (ja) * 2019-10-25 2021-04-30 朝日精機株式会社 固定手段の固定装置
US11708678B2 (en) 2019-12-18 2023-07-25 Cyntech Anchors Ltd Systems and methods for supporting a structure upon compressible soil
CN111174755B (zh) * 2020-01-09 2022-02-15 青岛市勘察测绘研究院 膨胀土地区平面高程测量控制点装置及安装方法
JP7333291B2 (ja) * 2020-06-03 2023-08-24 鹿島建設株式会社 基礎の根固め構造および基礎の根固め方法
CN113774906A (zh) * 2021-07-29 2021-12-10 安徽省交通规划设计研究总院股份有限公司 一种扩引孔灌注充盈砂浆植入复合截面空心桩施工工艺
KR102419846B1 (ko) * 2022-02-04 2022-07-12 성운건설 주식회사 토목섬유거푸집을 이용한 지하수 오염을 예방하는 말뚝시공방법
CN114482029A (zh) * 2022-02-14 2022-05-13 安徽省交通规划设计研究总院股份有限公司 一种扩引孔植入式浆石固结根固扩体预制桩
CN115110523B (zh) * 2022-08-04 2024-05-17 中国水利水电科学研究院 一种螺杆桩完整性缺陷注浆修复方法
CN118145943B (zh) * 2024-05-10 2024-07-12 中国兵器工业北方勘察设计研究院有限公司 预制桩安装方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63277319A (ja) * 1987-04-11 1988-11-15 Oyo Chishitsu Kk 壁状摩擦杭の打設方法
JPH0258634A (ja) * 1988-08-24 1990-02-27 Showa Concrete Kogyo Kk 基礎据付工法
JPH03115669A (ja) * 1989-09-27 1991-05-16 Chubu Chishitsu Shikenjo:Kk 柱状体埋設工法およびそれに用いられる膨張・固化パッケージ
JPH04185818A (ja) * 1990-11-21 1992-07-02 Ohbayashi Corp 法面の補強土構造
JP2001355233A (ja) * 2000-06-14 2001-12-26 East Japan Railway Co 混合攪拌による場所打ち杭の造成方法
JP2003227133A (ja) * 2002-02-01 2003-08-15 Shimizu Corp 基礎杭およびその構築方法
JP2003277738A (ja) * 2002-03-25 2003-10-02 Nippon Koatsu Concrete Kk 杭周固定液、及び地中杭の造成方法
JP2004316182A (ja) * 2003-04-15 2004-11-11 Sootekku:Kk 鋼線を用いた工法における鋼線の延焼防止法

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1900622A (en) * 1930-10-18 1933-03-07 Tada Renzo Apparatus for forming concrete piles
US2187316A (en) * 1938-11-23 1940-01-16 Gerald G Greulich Bearing pile construction
US2187318A (en) * 1938-11-23 1940-01-16 Gerald G Greulich Concrete bearing pile
US2434301A (en) * 1941-07-03 1948-01-13 Louis S Wertz Process of increasing the strength of porous structures
US3191390A (en) * 1960-12-02 1965-06-29 Bell Bottom Foundation Co Method of preparing subsurface and forming concrete column therein
US3423944A (en) * 1967-08-28 1969-01-28 Shell Oil Co Method for forming end bearing concrete piles
US3685302A (en) * 1970-08-06 1972-08-22 Raymond Int Inc Method for forming expanded base piles for uplift loads
US3875752A (en) * 1970-12-14 1975-04-08 Stanley Merjan Piling
US3913337A (en) * 1972-03-17 1975-10-21 Stanley Merjan Piling
US3751931A (en) * 1972-03-17 1973-08-14 S Merjan Piling
US3916635A (en) * 1972-12-13 1975-11-04 Horn Construction Co Inc Piling and method of installation
US3971227A (en) * 1974-02-19 1976-07-27 Raymond International Inc. Installation of expanded base piles
US4132082A (en) * 1975-05-04 1979-01-02 Stanley Merjan Piling
JPS5358105A (en) * 1976-11-08 1978-05-25 Nippon Concrete Ind Co Ltd Method of generating supporting force for middle excavation system
US4199277A (en) * 1976-11-26 1980-04-22 Stanley Merjan Piling
US4293242A (en) * 1977-04-29 1981-10-06 Stanley Merjan Piles
FR2601707B1 (fr) * 1986-07-21 1989-12-22 Frankignoul Pieux Armes Procede d'ancrage d'un pieu prefabrique dans le sol et pieu pour l'execution de ce procede
US4909675A (en) * 1988-08-24 1990-03-20 Osamu Taki In situ reinforced structural diaphragm walls and methods of manufacturing
JP2000080647A (ja) 1998-09-03 2000-03-21 Toyo Asano Found Co Ltd 拡大球根の造成方法
JP4546313B2 (ja) 2005-04-05 2010-09-15 ジャパンパイル株式会社 杭周充填液

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63277319A (ja) * 1987-04-11 1988-11-15 Oyo Chishitsu Kk 壁状摩擦杭の打設方法
JPH0258634A (ja) * 1988-08-24 1990-02-27 Showa Concrete Kogyo Kk 基礎据付工法
JPH03115669A (ja) * 1989-09-27 1991-05-16 Chubu Chishitsu Shikenjo:Kk 柱状体埋設工法およびそれに用いられる膨張・固化パッケージ
JPH04185818A (ja) * 1990-11-21 1992-07-02 Ohbayashi Corp 法面の補強土構造
JP2001355233A (ja) * 2000-06-14 2001-12-26 East Japan Railway Co 混合攪拌による場所打ち杭の造成方法
JP2003227133A (ja) * 2002-02-01 2003-08-15 Shimizu Corp 基礎杭およびその構築方法
JP2003277738A (ja) * 2002-03-25 2003-10-02 Nippon Koatsu Concrete Kk 杭周固定液、及び地中杭の造成方法
JP2004316182A (ja) * 2003-04-15 2004-11-11 Sootekku:Kk 鋼線を用いた工法における鋼線の延焼防止法

Also Published As

Publication number Publication date
US10480145B2 (en) 2019-11-19
JP2016205111A (ja) 2016-12-08
JP6006381B1 (ja) 2016-10-12
JP2016205129A (ja) 2016-12-08
US20180216305A1 (en) 2018-08-02

Similar Documents

Publication Publication Date Title
JP6006381B1 (ja) 既製杭埋込み工法
JP6139749B2 (ja) 場所打ち杭工法
CA2871595C (en) Foamed cement compositions containing metal silicides usable in subterranean well operations
JPWO2006129884A1 (ja) 可塑状ゲル注入材および地盤強化方法
WO2005095300A1 (ja) コンクリート組成物とその製造方法、粘性調整方法、及び、このコンクリート組成物を用いた場所打ちコンクリート杭の構築方法
JP6481840B2 (ja) 環境にやさしい土留め壁及びその施工方法
Lee et al. Shear strength and interface friction characteristics of expandable foam grout
Shirlaw et al. Recent experience in automatic tail void grouting with soft ground tunnel boring machines
KR101066587B1 (ko) 액상 초고점성 및 유동성 그라우트재를 이용한 속채움 구조체 시공 방법
JP5809369B2 (ja) 場所打ちコンクリート杭工法
KR20180037442A (ko) 변단면 형상의 개량체를 지중에 형성하는 저하중 건축물용 지내력 기초 시공방법
KR101235797B1 (ko) 유동성과 재료분리 저항성을 갖는 경량성토재
JP5535581B2 (ja) 既設マンホールの浮上沈下防止工法
JP6757947B2 (ja) 耐震補強工法
KR101067662B1 (ko) 친환경 조강형 팽창성 그라우트 혼합재, 그라우트재 및 이를 이용한 지반보강 앵커공법
JP5317938B2 (ja) ソイルセメント柱およびソイルセメント連続壁の造成方法
JPH0452327A (ja) 安定処理土および安定処理土を用いた工法
JP6014288B1 (ja) 先端翼付き鋼管杭の回転工法
JP2007077796A (ja) 補強土工法
JP7381623B2 (ja) 超高強度鉄筋コンクリートセグメント及びその製造方法
JP4953007B2 (ja) 可塑性グラウト材の製造方法
JP2004353310A (ja) 多量の石炭灰を含む混練物による地盤改良工法
JP2001354960A (ja) 建設残土の利用方法
JP2003277738A (ja) 杭周固定液、及び地中杭の造成方法
KR20110096626A (ko) 액상 초고점성 및 유동성 그라우트재를 이용한 강관 속채움 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15898328

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15739281

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15898328

Country of ref document: EP

Kind code of ref document: A1