WO2017000571A1 - 晶体振荡器电路及其输出信号幅度的控制方法 - Google Patents

晶体振荡器电路及其输出信号幅度的控制方法 Download PDF

Info

Publication number
WO2017000571A1
WO2017000571A1 PCT/CN2016/074685 CN2016074685W WO2017000571A1 WO 2017000571 A1 WO2017000571 A1 WO 2017000571A1 CN 2016074685 W CN2016074685 W CN 2016074685W WO 2017000571 A1 WO2017000571 A1 WO 2017000571A1
Authority
WO
WIPO (PCT)
Prior art keywords
crystal oscillator
oscillator circuit
reference voltage
current
amplitude
Prior art date
Application number
PCT/CN2016/074685
Other languages
English (en)
French (fr)
Inventor
李超
谢豪律
张鹏北
Original Assignee
深圳市中兴微电子技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市中兴微电子技术有限公司 filed Critical 深圳市中兴微电子技术有限公司
Publication of WO2017000571A1 publication Critical patent/WO2017000571A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03JTUNING RESONANT CIRCUITS; SELECTING RESONANT CIRCUITS
    • H03J7/00Automatic frequency control; Automatic scanning over a band of frequencies
    • H03J7/02Automatic frequency control
    • H03J7/04Automatic frequency control where the frequency control is accomplished by varying the electrical characteristics of a non-mechanically adjustable element or where the nature of the frequency controlling element is not significant

Definitions

  • the present invention relates to the field of crystal oscillator technology, and in particular, to a crystal oscillator circuit and a method for controlling the amplitude of an output signal thereof.
  • the Digitally Compensated Crystal Oscillator (DCXO) circuit is widely used in modern wireless communication chip systems. It is usually composed of the following parts: an oscillating amplifier that provides the negative resistance required for oscillation, ensuring the amplitude detection and control of the oscillating Circuits, some designs also add temperature compensation circuits to correct the drift of the oscillation frequency caused by temperature changes; among them, the oscillation amplitude detection and control circuit is used to ensure the start-up and / or fast start.
  • the control of the output signal amplitude is an effective way to improve the reliability of the crystal oscillator circuit and thereby prolong the life of the crystal; therefore, a control scheme for the amplitude of the output signal of the crystal oscillator circuit is provided. It has become an urgent problem to improve the reliability of the crystal oscillator circuit and thus extend the life of the crystal.
  • embodiments of the present invention are expected to provide a crystal oscillator circuit and a method for controlling the amplitude of the output signal thereof, which can improve the reliability of the crystal oscillator circuit, thereby prolonging the life of the crystal and enhancing the user experience.
  • Embodiments of the present invention provide a method for controlling an output signal amplitude of a crystal oscillator circuit, the method comprising: acquiring a current first detection voltage of a crystal oscillator circuit;
  • the magnitude of the current of the crystal oscillator circuit is adjusted by the control signal to achieve control of the amplitude of the output signal of the crystal oscillator circuit.
  • the acquiring the first detection voltage of the crystal oscillator circuit includes:
  • the corresponding voltage value is the first detection voltage.
  • the preset reference voltage includes a first reference voltage and a second reference voltage; comparing the first detection voltage with a preset reference voltage, and generating a corresponding control signal according to the comparison result includes:
  • first reference voltage is less than the second reference voltage.
  • the adjusting the magnitude of the current of the crystal oscillator circuit by the control signal to achieve the control of the output signal amplitude of the crystal oscillator circuit includes:
  • controlling the current source switch in the crystal oscillator circuit according to the control signal comprises:
  • N current source switches in the current crystal oscillator circuit being turned off, or controlling the M current source switches in the current crystal oscillator circuit to be turned off, or maintaining the current crystal oscillator circuit Current in the on/off state
  • the number of source switches is unchanged; where N is a positive integer and M is a positive integer.
  • the embodiment of the invention further provides a crystal oscillator circuit, the crystal oscillator circuit comprising: a peak detector, an amplitude comparator and an amplitude control state machine; wherein
  • the peak detector is configured to acquire a current first detection voltage of the crystal oscillator circuit
  • the amplitude comparator is configured to compare the first detection voltage with a preset reference voltage, and generate a corresponding control signal according to the comparison result;
  • the amplitude control state machine is configured to adjust a current magnitude of the crystal oscillator circuit by the control signal to achieve control of an output signal amplitude of the crystal oscillator circuit.
  • the peak detector is configured to detect a magnitude of a sine wave currently output by the crystal oscillator circuit, and convert the detected amplitude amount into a corresponding voltage value; the corresponding voltage value is a first detection voltage.
  • the preset reference voltage includes a first reference voltage and a second reference voltage
  • the crystal oscillator circuit further includes a reference voltage generator configured to generate the first reference voltage and the second reference voltage;
  • the amplitude comparator is configured to output a first comparison result when the first detection voltage is less than the first reference voltage, and generate a first control signal according to the first comparison result;
  • first reference voltage is less than the second reference voltage.
  • the amplitude control state machine is configured to control a current source switch in the crystal oscillator circuit according to the control signal, and adjust a current of the crystal oscillator circuit by controlling the current source switch to achieve Control of the output amplitude of the crystal oscillator circuit.
  • the amplitude control state machine is configured to control according to the control signal
  • the N current source switches in the current crystal oscillator circuit are turned off, or the M current source switches that are in the current state of the crystal oscillator circuit are turned off, or the current crystal oscillator circuit is turned on/off.
  • the number of current source switches is constant; wherein N is a positive integer and M is a positive integer.
  • the method for controlling the output signal amplitude of the crystal oscillator circuit and the crystal oscillator circuit acquires the current first detection voltage of the crystal oscillator circuit; and compares the first detection voltage with a preset reference voltage And generating a corresponding control signal according to the comparison result; adjusting a current magnitude of the crystal oscillator circuit by the control signal to implement control of an output signal amplitude of the crystal oscillator circuit. In this way, the reliability of the crystal oscillator circuit can be improved, thereby extending the life of the crystal and enhancing the user experience.
  • FIG. 1 is a flow chart showing a method for controlling an amplitude of an output signal of a crystal oscillator circuit according to an embodiment of the present invention
  • FIG. 2 is a schematic flow chart of a control method for outputting a signal amplitude of a crystal oscillator circuit according to a second embodiment of the present invention
  • FIG. 3 is a schematic structural diagram of a crystal oscillator circuit according to an embodiment of the present invention.
  • FIG. 4 is a schematic circuit diagram of a crystal oscillator according to an embodiment of the present invention.
  • the current first detection voltage of the crystal oscillator circuit is obtained; the first detection voltage is compared with a preset reference voltage, and a corresponding control signal is generated according to the comparison result; The magnitude of the current of the crystal oscillator circuit is adjusted to achieve control of the amplitude of the output signal of the crystal oscillator circuit.
  • FIG. 1 is a diagram showing a method for controlling the amplitude of an output signal of a crystal oscillator circuit according to an embodiment of the present invention Schematic diagram of the flow, as shown in FIG. 1, the method for controlling the output signal amplitude of the crystal oscillator circuit according to the embodiment of the present invention includes:
  • Step 101 Acquire a current first detection voltage of the crystal oscillator circuit.
  • the crystal oscillator circuit may be a digitally compensated crystal oscillator DCXO circuit
  • the step includes: detecting, by the peak detector, an amplitude of a sine wave currently outputted by the crystal oscillator circuit, and converting the detected amplitude amount into a corresponding voltage value; the corresponding voltage value is a first detection voltage; The detection voltage is also the peak voltage output by the crystal oscillator circuit.
  • the detecting may be periodic detection or real-time detection; the period may be set according to actual needs.
  • Step 102 Compare the first detection voltage with a preset reference voltage, and generate a corresponding control signal according to the comparison result;
  • the preset reference voltage includes: a first reference voltage V1 and a second reference voltage Vh; the first reference voltage and the second reference voltage may be generated by a reference voltage generator; wherein the first reference voltage is smaller than the second The reference voltage, the values of the first reference voltage and the second reference voltage may be set according to actual needs.
  • the first reference voltage may be 0.7V
  • the second reference voltage may be 0.75. V.
  • the first comparison result is 00.
  • the first control signal is +N, that is, the value of the current default control word is added by N; N is a positive integer, which can be set according to requirements. In one embodiment, the value of N is 1; the default control word is used to indicate the current crystal The number of current sources in the oscillator circuit that are on;
  • the second comparison result is 11.
  • the second control signal is -M, that is, the value of the current default control word minus M; M is a positive integer, which can be set as needed; in an embodiment , the value of M is 1;
  • the third comparison result is 01.
  • the second control signal is 0, that is, the current default control word is kept unchanged.
  • Step 103 Adjust a current magnitude of the crystal oscillator circuit by using the control signal to implement control of an output signal amplitude of the crystal oscillator circuit.
  • the step includes: an amplitude control state machine controlling a current source switch in the crystal oscillator circuit according to the control signal, and adjusting a magnitude of the crystal oscillator circuit current by controlling the current source switch to implement the crystal oscillator Control of the output amplitude of the circuit;
  • the crystal oscillator circuit includes more than one current source, and each current source can correspond to a current source switch;
  • the controlling the current source switch in the crystal oscillator circuit according to the control signal comprises:
  • the amplitude control state machine controls the N current source switches in the current crystal oscillator circuit to be turned off according to the control signal, or controls the M current source switches in the current crystal oscillator circuit to be turned off, or maintain the current
  • the number of current source switches in the crystal oscillator circuit in the on/off state is unchanged; to turn on the N current sources in the current crystal oscillator circuit in the off state, or to turn off the M states in the current crystal oscillator circuit that are in the on state.
  • the current source, or the number of current sources that are in the on/off state in the current crystal oscillator circuit is unchanged.
  • FIG. 2 is a schematic flow chart of a method for controlling an output signal amplitude of a crystal oscillator circuit according to a second embodiment of the present invention.
  • a method for controlling an output signal amplitude of a crystal oscillator circuit according to an embodiment of the present invention includes:
  • Step 201 Acquire a current first detection voltage of the crystal oscillator circuit.
  • the crystal oscillator circuit may be a DCXO circuit
  • the step includes: detecting, by the peak detector, an amplitude of a sine wave currently outputted by the crystal oscillator circuit, and converting the detected amplitude amount into a corresponding voltage value; the corresponding voltage value is a first detection voltage; The detection voltage is also the peak voltage output by the crystal oscillator circuit.
  • the detecting may be periodic detection or real-time detection; the period may be set according to actual needs.
  • Step 202 Determine whether the first detection voltage is less than the first reference voltage, or greater than the second reference voltage, or greater than or equal to the first reference voltage and less than or equal to the second reference voltage; if less than the first reference voltage, step 203 is performed; If it is greater than the second reference voltage, step 204 is performed; if it is greater than or equal to the first reference voltage and less than or equal to the second reference voltage, step 205 is performed;
  • the values of the first reference voltage and the second reference voltage are preset, and the specific value may be set according to actual needs; the first reference voltage and the second reference voltage may be generated by the reference voltage generator; A reference voltage is less than the second reference voltage; in the embodiment of the invention, the first reference voltage may be 0.7V, and the second reference voltage may be 0.75V.
  • Step 203 output a first comparison result, generate a first control signal according to the first comparison result, and perform step 206;
  • the first comparison result is 00.
  • the first control signal is +N, that is, the value of the current default control word is added by N; N is a positive integer, which can be set according to requirements.
  • the value of N is 1; the default control word is used to indicate the number of current sources in the current crystal oscillator circuit that are in an on state.
  • Step 204 output a second comparison result, generate a second control signal according to the second comparison result, and perform step 207;
  • the second comparison result is 11.
  • the second control signal is -M, that is, the value of the current default control word is decreased by M; M is a positive integer, which may be based on actual needs. To be set; in the embodiment of the present invention, the value of M is 1.
  • Step 205 output a third comparison result, generate a third control signal according to the third comparison result, and perform step 208;
  • the third comparison result is 01.
  • the second control signal is 0, that is, the current default control word is kept unchanged.
  • Step 206 Adjust the current magnitude of the crystal oscillator circuit by the first control signal to achieve control of the output signal amplitude of the crystal oscillator circuit, and perform step 209;
  • the crystal oscillator circuit includes more than one current source, and each current source may correspond to a current source switch.
  • the step includes: the amplitude control state machine controls the N current source switches in the crystal oscillator circuit to be turned off according to the generated first control signal, to turn on the N current sources in the current crystal oscillator circuit that are in the off state, and change The magnitude of the crystal oscillator circuit current, in turn, enables control of the output amplitude of the crystal oscillator circuit.
  • Step 207 adjusting the current magnitude of the crystal oscillator circuit by the second control signal to achieve control of the output signal amplitude of the crystal oscillator circuit, and performing step 209;
  • the step includes: the amplitude control state machine controls the M current source switches in the crystal oscillator circuit to be turned on according to the generated second control signal to turn off the M current sources in the current crystal oscillator circuit that are turned on, and change The magnitude of the crystal oscillator circuit current, in turn, enables control of the output amplitude of the crystal oscillator circuit.
  • Step 208 Control a current magnitude of the crystal oscillator circuit by using the third control signal to implement control of an output signal amplitude of the crystal oscillator circuit.
  • the step includes: the amplitude control state machine keeps the number of current source switches in the current crystal oscillator circuit in an on/off state according to the generated third control signal, so as to keep the current crystal oscillator circuit in an on/off state.
  • the number of current sources is constant, enabling control of the amplitude of the output signal of the crystal oscillator circuit.
  • Step 209 End this process flow.
  • the crystal oscillator circuit of the embodiment of the present invention comprises: a peak detector 31, an amplitude comparator 32, and an amplitude control state machine 33; among them,
  • the peak detector 31 is configured to acquire a current first detection voltage of the crystal oscillator circuit
  • the amplitude comparator 32 is configured to compare the first detection voltage with a preset reference voltage, and generate a corresponding control signal according to the comparison result;
  • the amplitude control state machine 33 is configured to adjust a current magnitude of the crystal oscillator circuit by the control signal to implement control of an output signal amplitude of the crystal oscillator circuit;
  • the crystal oscillator circuit may be a DCXO circuit.
  • the peak detector 31 acquiring the current first detection voltage of the crystal oscillator circuit includes:
  • the peak detector 31 detects the amplitude of the sine wave currently outputted by the crystal oscillator circuit, and converts the detected amplitude amount into a corresponding voltage value; the corresponding voltage value is the first detection voltage Vpeak ; a detection voltage, that is, a peak voltage output by the crystal oscillator circuit;
  • the crystal oscillator circuit may further include an oscillator core circuit 34 configured to output the sine wave;
  • the detection may be periodic detection or real-time detection; the period may be set according to actual needs.
  • the preset reference voltage includes a first reference voltage V1 and a second reference voltage Vh; the first reference voltage is smaller than the second reference voltage; and the values of the first reference voltage and the second reference voltage may be Setting according to actual needs, in an embodiment, the first reference voltage may be 0.7V, and the second reference voltage may be 0.75V;
  • the crystal oscillator circuit further includes a reference voltage generator 35 configured to generate The first reference voltage and the second reference voltage;
  • the amplitude comparator 32 compares the first detection voltage with a preset reference voltage, and generates a corresponding control signal according to the comparison result, including:
  • the amplitude comparator 32 determines that the first detection voltage is less than the first reference voltage, outputs a first comparison result, and generates a first control signal according to the first comparison result;
  • the amplitude comparator 32 may include: a first comparator and a second comparator; a reference voltage corresponding to the first comparator is a first reference voltage, and a reference voltage corresponding to the second comparator is a first Two reference voltages;
  • FIG. 4 is a schematic diagram of a crystal oscillator circuit according to an embodiment of the present invention.
  • the first comparison result is 00.
  • the first control signal is +N, that is, the value of the current default control word is added by N; N is a positive integer, which can be set according to requirements. In one embodiment, the value of N is 1; the default control word is used to indicate the number of current sources in the current crystal oscillator circuit that are in an on state;
  • the second comparison result is 11.
  • the second control signal is -M, that is, the value of the current default control word minus M; M is a positive integer, which can be set as needed; in an embodiment , the value of M is 1;
  • the third comparison result is 01.
  • the second control signal is 0, that is, the current default control word is kept unchanged.
  • the amplitude control state machine 33 adjusts the current magnitude of the crystal oscillator circuit by the control signal to achieve control of the output signal amplitude of the crystal oscillator circuit, including:
  • the amplitude control state machine 33 controls a current source switch in the crystal oscillator circuit according to the control signal, and adjusts a magnitude of the crystal oscillator circuit current by controlling the current source switch to implement the crystal oscillator circuit Control of the output amplitude;
  • the crystal oscillator circuit includes more than one current source, each current source corresponding to a current source switch; the current source switch may be located in the oscillator core circuit 34;
  • the amplitude control state machine 33 controls the current source switch in the crystal oscillator circuit according to the control signal, including:
  • the amplitude control state machine 33 controls the N current source switches in the current crystal oscillator circuit to be turned off according to the control signal, or controls the M current source switches in the current crystal oscillator circuit to be turned on, Or keeping the number of current source switches in the current crystal oscillator circuit in an on/off state unchanged; to turn on the N current sources in the current crystal oscillator circuit in the off state, or to turn off the current crystal oscillator circuit in the on state.
  • the M current sources, or the number of current sources that are in the on/off state in the current crystal oscillator circuit are unchanged.
  • the crystal oscillator circuit further includes a clock buffer 36 and a clock divider 37; the clock buffer 36 and the clock divider 37 are configured to generate the peak detector 31 and the amplitude comparator 32 and the amplitude control state machine 33 clock signal.
  • the embodiment of the present invention obtains a current first detection voltage of the crystal oscillator circuit; compares the first detection voltage with a preset reference voltage, and generates a corresponding control signal according to the comparison result; and adjusts the crystal oscillation by using the control signal The magnitude of the current of the circuit to control the amplitude of the output signal of the crystal oscillator circuit. In this way, the reliability of the crystal oscillator circuit can be improved, thereby extending the life of the crystal and enhancing the user experience.

Abstract

本发明公开了一种晶体振荡器电路输出信号幅度的控制方法,所述方法包括:获取晶体振荡器电路当前的第一检测电压;将所述第一检测电压与预设的参考电压进行比较,并依据比较结果产生对应的控制信号;通过所述控制信号调节晶体振荡器电路的电流大小,以实现对所述晶体振荡器电路的输出信号幅度的控制。本发明还公开了一种晶体振荡器电路。

Description

晶体振荡器电路及其输出信号幅度的控制方法 技术领域
本发明涉及晶体振荡器技术领域,尤其涉及一种晶体振荡器电路及其输出信号幅度的控制方法。
背景技术
数字补偿晶体振荡器(DCXO,Digitally Compensated Crystal Oscillator)电路在现代无线通信芯片系统中得到广泛应用,通常由以下几部分组成:提供振荡所需负阻的振荡放大器,保证起振的振幅检测与控制电路,有的设计还会加上温度补偿电路来修正温度变化带来的振荡频率的漂移;其中,振荡幅度检测和控制电路用来保证起振和/或快速的启动。
在晶体振荡器起振后,对输出信号幅度很好的控制是提高晶体振荡器电路的可靠性,进而延长晶体寿命的有效方式;因此,提供一种晶体振荡器电路输出信号幅度的控制方案,能够提高晶体振荡器电路的可靠性,进而延长晶体寿命,已成为亟待解决的问题。
发明内容
有鉴于此,本发明实施例期望提供一种晶体振荡器电路及其输出信号幅度的控制方法,能够提高晶体振荡器电路的可靠性,进而延长晶体寿命,增强用户体验。
为达到上述目的,本发明实施例的技术方案是这样实现的:
本发明实施例提供了一种晶体振荡器电路输出信号幅度的控制方法,所述方法包括:获取晶体振荡器电路当前的第一检测电压;
将所述第一检测电压与预设的参考电压进行比较,并依据比较结果产生对应的控制信号;
通过所述控制信号调节晶体振荡器电路的电流大小,以实现对所述晶体振荡器电路的输出信号幅度的控制。
上述方案中,所述获取晶体振荡器电路当前的第一检测电压包括:
检测晶体振荡器电路当前输出的正弦波的幅度,并将检测得到的幅度量转换成对应的电压值;所述对应的电压值为第一检测电压。
上述方案中,所述预设的参考电压包括第一参考电压及第二参考电压;将所述第一检测电压与预设的参考电压进行比较,并依据比较结果产生对应的控制信号包括:
确定所述第一检测电压小于第一参考电压时,输出第一比较结果,依据所述第一比较结果产生第一控制信号;
确定所述第一检测电压大于第二参考电压时,输出第二比较结果,依据所述第二比较结果产生第二控制信号;
确定所述第一检测电压大于等于第一参考电压且小于等于第二参考电压时,输出第三比较结果,依据所述第三比较结果产生第三控制信号;
其中,第一参考电压小于第二参考电压。
上述方案中,所述通过所述控制信号调节晶体振荡器电路的电流大小,以实现对所述晶体振荡器电路的输出信号幅度的控制包括:
依据所述控制信号控制晶体振荡器电路中的电流源开关,通过控制所述电流源开关调节所述晶体振荡器电路电流的大小,以实现对所述晶体振荡器电路的输出幅度的控制。
上述方案中,所述依据所述控制信号控制晶体振荡器电路中的电流源开关包括:
依据所述控制信号,控制当前晶体振荡器电路中处于关闭状态的N个电流源开关开启,或者控制当前晶体振荡器电路中处于开启状态的M个电流源开关关闭,或者保持当前晶体振荡器电路中处于开启/关闭状态的电流 源开关的数目不变;其中,N为正整数,M为正整数。
本发明实施例还提供了一种晶体振荡器电路,所述晶体振荡器电路包括:峰值检波器、幅度比较器及幅度控制状态机;其中,
所述峰值检波器,配置为获取晶体振荡器电路当前的第一检测电压;
所述幅度比较器,配置为将所述第一检测电压与预设的参考电压进行比较,并依据比较结果产生对应的控制信号;
所述幅度控制状态机,配置为通过所述控制信号调节晶体振荡器电路的电流大小,以实现对所述晶体振荡器电路的输出信号幅度的控制。
上述方案中,所述峰值检波器,配置为检测晶体振荡器电路当前输出的正弦波的幅度,并将检测得到的幅度量转换成对应的电压值;所述对应的电压值为第一检测电压。
上述方案中,所述预设的参考电压包括第一参考电压及第二参考电压;
相应的,所述晶体振荡器电路还包括参考电压生成器,配置为产生所述第一参考电压及第二参考电压;
所述幅度比较器,配置为确定所述第一检测电压小于第一参考电压时,输出第一比较结果,依据所述第一比较结果产生第一控制信号;
确定所述第一检测电压大于第二参考电压时,输出第二比较结果,依据所述第二比较结果产生第二控制信号;
确定所述第一检测电压大于等于第一参考电压且小于等于第二参考电压时,输出第三比较结果,依据所述第三比较结果产生第三控制信号;
其中,第一参考电压小于第二参考电压。
上述方案中,所述幅度控制状态机,配置为依据所述控制信号控制晶体振荡器电路中的电流源开关,通过控制所述电流源开关调节所述晶体振荡器电路电流的大小,以实现对所述晶体振荡器电路的输出幅度的控制。
上述方案中,所述幅度控制状态机,配置为依据所述控制信号,控制 当前晶体振荡器电路中处于关闭状态的N个电流源开关开启,或者控制当前晶体振荡器电路中处于开启状态的M个电流源开关关闭,或者保持当前晶体振荡器电路中处于开启/关闭状态的电流源开关的数目不变;其中,N为正整数,M为正整数。
本发明实施例所提供的晶体振荡器电路输出信号幅度的控制方法及晶体振荡器电路,获取晶体振荡器电路当前的第一检测电压;将所述第一检测电压与预设的参考电压进行比较,并依据比较结果产生对应的控制信号;通过所述控制信号调节晶体振荡器电路的电流大小,以实现对所述晶体振荡器电路的输出信号幅度的控制。如此,能够提高晶体振荡器电路的可靠性,进而延长晶体寿命,增强用户体验。
附图说明
图1为本发明实施例一晶体振荡器电路输出信号幅度的控制方法流程示意图;
图2为本发明实施例二晶体振荡器电路输出信号幅度的控制方法流程示意图;
图3为本发明实施例晶体振荡器电路的组成结构示意图;
图4为本发明实施例晶体振荡器电路示意图。
具体实施方式
在本发明实施例中,获取晶体振荡器电路当前的第一检测电压;将所述第一检测电压与预设的参考电压进行比较,并依据比较结果产生对应的控制信号;通过所述控制信号调节晶体振荡器电路的电流大小,以实现对所述晶体振荡器电路的输出信号幅度的控制。
实施例一
图1所示为本发明实施例一晶体振荡器电路输出信号幅度的控制方法 流程示意图,如图1所示,本发明实施例晶体振荡器电路输出信号幅度的控制方法包括:
步骤101:获取晶体振荡器电路当前的第一检测电压;
这里,所述晶体振荡器电路可以为数字补偿晶体振荡器DCXO电路;
本步骤包括:峰值检波器检测晶体振荡器电路当前输出的正弦波的幅度,并将检测得到的幅度量转换成对应的电压值;所述对应的电压值为第一检测电压;所述第一检测电压也即所述晶体振荡器电路输出的峰值电压。
在一实施例中,所述检测可以为周期性的检测或者实时检测;所述周期可以依据实际需要进行设置。
步骤102:将所述第一检测电压与预设的参考电压进行比较,并依据比较结果产生对应的控制信号;
这里,所述预设的参考电压包括:第一参考电压Vl及第二参考电压Vh;可由参考电压生成器产生所述第一参考电压及第二参考电压;其中,第一参考电压小于第二参考电压,所述第一参考电压及第二参考电压的值可以依据实际需要进行设定,在一实施例中,所述第一参考电压可以为0.7V,所述第二参考电压可以为0.75V。
本步骤包括:确定所述第一检测电压小于第一参考电压时,输出第一比较结果,依据所述第一比较结果产生第一控制信号;
确定所述第一检测电压大于第二参考电压时,输出第二比较结果,依据所述第二比较结果产生第二控制信号;
确定所述第一检测电压大于等于第一参考电压且小于等于第二参考电压时,输出第三比较结果,依据所述第三比较结果产生第三控制信号;
在本发明实施例中,所述第一比较结果为00,相应的,所述第一控制信号为+N,即当前默认的控制字的值加N;N为正整数,可以依据需要进行设定;在一实施例中,N的值为1;所述默认的控制字用于指示当前晶体 振荡器电路中处于开启状态的电流源的数目;
所述第二比较结果为11,相应的,所述第二控制信号为-M,即当前默认的控制字的值减M;M为正整数,可以依据需要进行设定;在一实施例中,M的值为1;
所述第三比较结果为01,相应的,所述第二控制信号为0,即保持当前默认的控制字不变。
步骤103:通过所述控制信号调节晶体振荡器电路的电流大小,以实现对所述晶体振荡器电路的输出信号幅度的控制;
本步骤包括:幅度控制状态机依据所述控制信号控制晶体振荡器电路中的电流源开关,通过控制所述电流源开关调节所述晶体振荡器电路电流的大小,以实现对所述晶体振荡器电路的输出幅度的控制;
其中,所述晶体振荡器电路包括一个以上电流源,每个电流源可以对应一个电流源开关;
所述依据所述控制信号控制晶体振荡器电路中的电流源开关包括:
幅度控制状态机依据所述控制信号,控制当前晶体振荡器电路中处于关闭状态的N个电流源开关开启,或者控制当前晶体振荡器电路中处于开启状态的M个电流源开关关闭,或者保持当前晶体振荡器电路中处于开启/关闭状态的电流源开关的数目不变;以开启当前晶体振荡器电路中处于关闭状态的N个电流源,或者关闭当前晶体振荡器电路中处于开启状态的M个电流源,或者保持当前晶体振荡器电路中处于开启/关闭状态的电流源的数目不变。
实施例二
图2所示为本发明实施例二晶体振荡器电路输出信号幅度的控制方法流程示意图,如图2所示,本发明实施例晶体振荡器电路输出信号幅度的控制方法包括:
步骤201:获取晶体振荡器电路当前的第一检测电压;
这里,所述晶体振荡器电路可以为DCXO电路;
本步骤包括:峰值检波器检测晶体振荡器电路当前输出的正弦波的幅度,并将检测得到的幅度量转换成对应的电压值;所述对应的电压值为第一检测电压;所述第一检测电压也即所述晶体振荡器电路输出的峰值电压。
在一实施例中,所述检测可以为周期性的检测或者实时检测;所述周期可以依据实际需要进行设置。
步骤202:判断所述第一检测电压是否小于第一参考电压,或者大于第二参考电压,或者大于等于第一参考电压且小于等于第二参考电压;如果小于第一参考电压,执行步骤203;如果大于第二参考电压,执行步骤204;如果大于等于第一参考电压且小于等于第二参考电压,执行步骤205;
这里,所述第一参考电压及第二参考电压的值为预先设置,具体值可依据实际需要进行设定;可由参考电压生成器产生所述第一参考电压及第二参考电压;其中,第一参考电压小于第二参考电压;在本发明实施例中,所述第一参考电压可以为0.7V,所述第二参考电压可以为0.75V。
步骤203:输出第一比较结果,依据所述第一比较结果产生第一控制信号,并执行步骤206;
在本发明实施例中,所述第一比较结果为00,相应的,所述第一控制信号为+N,即当前默认的控制字的值加N;N为正整数,可以依据需要进行设定;在本发明实施例中,N的值为1;所述默认的控制字用于指示当前晶体振荡器电路中处于开启状态的电流源的数目。
步骤204:输出第二比较结果,依据所述第二比较结果产生第二控制信号,并执行步骤207;
在本发明实施例中,所述第二比较结果为11,相应的,所述第二控制信号为-M,即当前默认的控制字的值减M;M为正整数,可以依据实际需 要进行设定;在本发明实施例中,M的值为1。
步骤205:输出第三比较结果,依据所述第三比较结果产生第三控制信号,并执行步骤208;
在本发明实施例中,所述第三比较结果为01,相应的,所述第二控制信号为0,即保持当前默认的控制字不变。
步骤206:通过所述第一控制信号调节晶体振荡器电路的电流大小,以实现对所述晶体振荡器电路的输出信号幅度的控制,并执行步骤209;
在本发明实施例中,所述晶体振荡器电路包括一个以上电流源,每个电流源可以对应一个电流源开关。
本步骤包括:幅度控制状态机依据产生的第一控制信号控制晶体振荡器电路中处于关闭状态的N个电流源开关开启,以开启当前晶体振荡器电路中处于关闭状态的N个电流源,改变所述晶体振荡器电路电流的大小,进而实现对所述晶体振荡器电路的输出幅度的控制。
步骤207:通过所述第二控制信号调节晶体振荡器电路的电流大小,以实现对所述晶体振荡器电路的输出信号幅度的控制,并执行步骤209;
本步骤包括:幅度控制状态机依据产生的第二控制信号控制晶体振荡器电路中处于开启状态的M个电流源开关关闭,以关闭当前晶体振荡器电路中处于开启状态的M个电流源,改变所述晶体振荡器电路电流的大小,进而实现对所述晶体振荡器电路的输出幅度的控制。
步骤208:通过所述第三控制信号控制晶体振荡器电路的电流大小,以实现对所述晶体振荡器电路的输出信号幅度的控制;
本步骤包括:幅度控制状态机依据产生的第三控制信号保持当前晶体振荡器电路中处于开启/关闭状态的电流源开关的数目不变,以保持当前晶体振荡器电路中处于开启/关闭状态的电流源的数目不变,实现对所述晶体振荡器电路的输出信号幅度的控制。
步骤209:结束本次处理流程。
实施例三
图3为本发明实施例晶体振荡器电路的组成结构示意图;如图3所示,本发明实施例晶体振荡器电路的组成包括:峰值检波器31、幅度比较器32及幅度控制状态机33;其中,
所述峰值检波器31,配置为获取晶体振荡器电路当前的第一检测电压;
所述幅度比较器32,配置为将所述第一检测电压与预设的参考电压进行比较,并依据比较结果产生对应的控制信号;
所述幅度控制状态机33,配置为通过所述控制信号调节晶体振荡器电路的电流大小,以实现对所述晶体振荡器电路的输出信号幅度的控制;
这里,所述晶体振荡器电路可以为DCXO电路。
在一实施例中,所述峰值检波器31获取晶体振荡器电路当前的第一检测电压包括:
所述峰值检波器31检测晶体振荡器电路当前输出的正弦波的幅度,并将检测得到的幅度量转换成对应的电压值;所述对应的电压值为第一检测电压Vpeak;所述第一检测电压也即所述晶体振荡器电路输出的峰值电压;
相应的,所述晶体振荡器电路还可以包括振荡器核心电路34,配置为输出所述正弦波;
这里,所述检测可以为周期性的检测或者实时检测;所述周期可以依据实际需要进行设置。
在一实施例中,所述预设的参考电压包括第一参考电压Vl及第二参考电压Vh;第一参考电压小于第二参考电压;所述第一参考电压及第二参考电压的值可以依据实际需要进行设定,在一实施例中,所述第一参考电压可以为0.7V,所述第二参考电压可以为0.75V;
相应的,所述晶体振荡器电路还包括参考电压生成器35,配置为产生 所述第一参考电压及第二参考电压;
所述幅度比较器32将所述第一检测电压与预设的参考电压进行比较,并依据比较结果产生对应的控制信号,包括:
所述幅度比较器32确定所述第一检测电压小于第一参考电压时,输出第一比较结果,依据所述第一比较结果产生第一控制信号;
确定所述第一检测电压大于第二参考电压时,输出第二比较结果,依据所述第二比较结果产生第二控制信号;
确定所述第一检测电压大于等于第一参考电压且小于等于第二参考电压时,输出第三比较结果,依据所述第三比较结果产生第三控制信号;
相应的,所述幅度比较器32可以包括:第一比较器及第二比较器;所述第一比较器对应的参考电压为第一参考电压,所述第二比较器对应的参考电压为第二参考电压;如图4所示为本发明实施例晶体振荡器电路示意图;
在本发明实施例中,所述第一比较结果为00,相应的,所述第一控制信号为+N,即当前默认的控制字的值加N;N为正整数,可以依据需要进行设定;在一实施例中,N的值为1;所述默认的控制字用于指示当前晶体振荡器电路中处于开启状态的电流源的数目;
所述第二比较结果为11,相应的,所述第二控制信号为-M,即当前默认的控制字的值减M;M为正整数,可以依据需要进行设定;在一实施例中,M的值为1;
所述第三比较结果为01,相应的,所述第二控制信号为0,即保持当前默认的控制字不变。
在一实施例中,所述幅度控制状态机33通过所述控制信号调节晶体振荡器电路的电流大小,以实现对所述晶体振荡器电路的输出信号幅度的控制,包括:
所述幅度控制状态机33依据所述控制信号控制晶体振荡器电路中的电流源开关,通过控制所述电流源开关调节所述晶体振荡器电路电流的大小,以实现对所述晶体振荡器电路的输出幅度的控制;
其中,所述晶体振荡器电路包括一个以上电流源,每个电流源对应一个电流源开关;所述电流源开关可以位于所述振荡器核心电路34中;
所述幅度控制状态机33依据所述控制信号控制晶体振荡器电路中的电流源开关,包括:
所述幅度控制状态机33依据所述控制信号,控制当前晶体振荡器电路中处于关闭状态的N个电流源开关开启,或者控制当前晶体振荡器电路中处于开启状态的M个电流源开关关闭,或者保持当前晶体振荡器电路中处于开启/关闭状态的电流源开关的数目不变;以开启当前晶体振荡器电路中处于关闭状态的N个电流源,或者关闭当前晶体振荡器电路中处于开启状态的M个电流源,或者保持当前晶体振荡器电路中处于开启/关闭状态的电流源的数目不变。
在一实施例中,所述晶体振荡器电路还包括时钟缓冲器36及时钟分频器37;所述时钟缓冲器36及时钟分频器37配置为产生所述峰值检波器31、幅度比较器32及幅度控制状态机33的时钟信号。
以上所述仅为本发明的较佳实施例而已,并非用于限定本发明的保护范围。
工业实用性
本发明实施例获取晶体振荡器电路当前的第一检测电压;将所述第一检测电压与预设的参考电压进行比较,并依据比较结果产生对应的控制信号;通过所述控制信号调节晶体振荡器电路的电流大小,以实现对所述晶体振荡器电路的输出信号幅度的控制。如此,能够提高晶体振荡器电路的可靠性,进而延长晶体寿命,增强用户体验。

Claims (10)

  1. 一种晶体振荡器电路输出信号幅度的控制方法,所述方法包括:获取晶体振荡器电路当前的第一检测电压;
    将所述第一检测电压与预设的参考电压进行比较,并依据比较结果产生对应的控制信号;
    通过所述控制信号调节晶体振荡器电路的电流大小,以实现对所述晶体振荡器电路的输出信号幅度的控制。
  2. 根据权利要求1所述方法,其中,所述获取晶体振荡器电路当前的第一检测电压包括:
    检测晶体振荡器电路当前输出的正弦波的幅度,并将检测得到的幅度量转换成对应的电压值;所述对应的电压值为第一检测电压。
  3. 根据权利要求1或2所述方法,其中,所述预设的参考电压包括第一参考电压及第二参考电压;将所述第一检测电压与预设的参考电压进行比较,并依据比较结果产生对应的控制信号包括:
    确定所述第一检测电压小于第一参考电压时,输出第一比较结果,依据所述第一比较结果产生第一控制信号;
    确定所述第一检测电压大于第二参考电压时,输出第二比较结果,依据所述第二比较结果产生第二控制信号;
    确定所述第一检测电压大于等于第一参考电压且小于等于第二参考电压时,输出第三比较结果,依据所述第三比较结果产生第三控制信号;
    其中,第一参考电压小于第二参考电压。
  4. 根据权利要求1或2所述方法,其中,所述通过所述控制信号调节晶体振荡器电路的电流大小,以实现对所述晶体振荡器电路的输出信号幅度的控制包括:
    依据所述控制信号控制晶体振荡器电路中的电流源开关,通过控制所 述电流源开关调节所述晶体振荡器电路电流的大小,以实现对所述晶体振荡器电路的输出幅度的控制。
  5. 根据权利要求4所述方法,其中,所述依据所述控制信号控制晶体振荡器电路中的电流源开关包括:
    依据所述控制信号,控制当前晶体振荡器电路中处于关闭状态的N个电流源开关开启,或者控制当前晶体振荡器电路中处于开启状态的M个电流源开关关闭,或者保持当前晶体振荡器电路中处于开启/关闭状态的电流源开关的数目不变;其中,N为正整数,M为正整数。
  6. 一种晶体振荡器电路,所述晶体振荡器电路包括:峰值检波器、幅度比较器及幅度控制状态机;其中,
    所述峰值检波器,配置为获取晶体振荡器电路当前的第一检测电压;
    所述幅度比较器,配置为将所述第一检测电压与预设的参考电压进行比较,并依据比较结果产生对应的控制信号;
    所述幅度控制状态机,配置为通过所述控制信号调节晶体振荡器电路的电流大小,以实现对所述晶体振荡器电路的输出信号幅度的控制。
  7. 根据权利要求6所述晶体振荡器电路,其中,所述峰值检波器,配置为检测晶体振荡器电路当前输出的正弦波的幅度,并将检测得到的幅度量转换成对应的电压值;所述对应的电压值为第一检测电压。
  8. 根据权利要求6或7所述晶体振荡器电路,其中,所述预设的参考电压包括第一参考电压及第二参考电压;
    相应的,所述晶体振荡器电路还包括参考电压生成器,配置为产生所述第一参考电压及第二参考电压;
    所述幅度比较器,配置为确定所述第一检测电压小于第一参考电压时,输出第一比较结果,依据所述第一比较结果产生第一控制信号;
    确定所述第一检测电压大于第二参考电压时,输出第二比较结果,依 据所述第二比较结果产生第二控制信号;
    确定所述第一检测电压大于等于第一参考电压且小于等于第二参考电压时,输出第三比较结果,依据所述第三比较结果产生第三控制信号;
    其中,第一参考电压小于第二参考电压。
  9. 根据权利要求6或7所述晶体振荡器电路,其中,所述幅度控制状态机,配置为依据所述控制信号控制晶体振荡器电路中的电流源开关,通过控制所述电流源开关调节所述晶体振荡器电路电流的大小,以实现对所述晶体振荡器电路的输出幅度的控制。
  10. 根据权利要求9所述晶体振荡器电路,其中,所述幅度控制状态机,配置为依据所述控制信号,控制当前晶体振荡器电路中处于关闭状态的N个电流源开关开启,或者控制当前晶体振荡器电路中处于开启状态的M个电流源开关关闭,或者保持当前晶体振荡器电路中处于开启/关闭状态的电流源开关的数目不变;其中,N为正整数,M为正整数。
PCT/CN2016/074685 2015-06-29 2016-02-26 晶体振荡器电路及其输出信号幅度的控制方法 WO2017000571A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510369109.7 2015-06-29
CN201510369109.7A CN106330134B (zh) 2015-06-29 2015-06-29 一种晶体振荡器电路及其调谐方法

Publications (1)

Publication Number Publication Date
WO2017000571A1 true WO2017000571A1 (zh) 2017-01-05

Family

ID=57607752

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/074685 WO2017000571A1 (zh) 2015-06-29 2016-02-26 晶体振荡器电路及其输出信号幅度的控制方法

Country Status (2)

Country Link
CN (1) CN106330134B (zh)
WO (1) WO2017000571A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018094893A1 (zh) * 2016-11-22 2018-05-31 深圳市中兴微电子技术有限公司 一种信号幅度的校准方法及装置、计算机存储介质

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109617528B (zh) * 2018-12-05 2023-03-21 深圳忆联信息系统有限公司 一种用于修正有源振荡器频率的方法及其系统
CN110401611B (zh) * 2019-06-29 2021-12-07 西南电子技术研究所(中国电子科技集团公司第十研究所) 快速检测cpfsk信号的方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2376142Y (zh) * 1999-01-04 2000-04-26 向明 阻容网络压控正弦波振荡器
CN102611433A (zh) * 2005-08-01 2012-07-25 马维尔国际贸易有限公司 低噪声高稳定性晶体振荡器
CN101764514B (zh) * 2008-12-22 2012-08-15 联发科技股份有限公司 电压转换器和电压产生方法
CN103944514A (zh) * 2014-04-28 2014-07-23 无锡中星微电子有限公司 振幅检测控制电路和数控晶体振荡器系统

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5760656A (en) * 1996-12-17 1998-06-02 Motorola Inc. Temperature compensation circuit for a crystal oscillator and associated circuitry
JP2010130141A (ja) * 2008-11-26 2010-06-10 Epson Toyocom Corp 電圧制御型温度補償圧電発振器
CN103001583B (zh) * 2012-12-17 2016-08-03 华为技术有限公司 温度补偿方法及晶体振荡器

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2376142Y (zh) * 1999-01-04 2000-04-26 向明 阻容网络压控正弦波振荡器
CN102611433A (zh) * 2005-08-01 2012-07-25 马维尔国际贸易有限公司 低噪声高稳定性晶体振荡器
CN101764514B (zh) * 2008-12-22 2012-08-15 联发科技股份有限公司 电压转换器和电压产生方法
CN103944514A (zh) * 2014-04-28 2014-07-23 无锡中星微电子有限公司 振幅检测控制电路和数控晶体振荡器系统

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018094893A1 (zh) * 2016-11-22 2018-05-31 深圳市中兴微电子技术有限公司 一种信号幅度的校准方法及装置、计算机存储介质

Also Published As

Publication number Publication date
CN106330134B (zh) 2019-10-22
CN106330134A (zh) 2017-01-11

Similar Documents

Publication Publication Date Title
WO2017000571A1 (zh) 晶体振荡器电路及其输出信号幅度的控制方法
TW200625817A (en) Voltage controlled oscillator with anti supply voltage variation and/or process variation
US8653901B2 (en) Oscillator and control circuit thereof
JP2006332915A (ja) 位相同期ループ、信号発生装置および同期方法
KR20090026146A (ko) 발진 주파수 제어 회로
US20140144233A1 (en) Apparatus and method for automatic gain control of sensor, and sensor apparatus
US20200136597A1 (en) Clock generation circuit and clock adjustment method thereof
US9614513B2 (en) Vibration generation apparatus
JP2018072271A (ja) 自励共振回路
CN108092625B (zh) 一种信号幅度的校准方法及装置
JP2008283333A (ja) 電圧制御発振器およびそれを用いたpll回路
KR101128613B1 (ko) 빠른 안정 상태를 갖는 크리스털 오실레이터 및 이의 캘리브레이션 방법
JP2013164296A (ja) 自励共振回路
JP2002353807A (ja) 周波数同期装置および周波数同期制御方法
US9645122B2 (en) Vibration generation apparatus
JP6229243B2 (ja) 電流検出装置
JP2015154249A (ja) 位相同期回路および同期方法
CN109842374B (zh) 限幅高频振荡电路及振荡信号产生方法
JP2003188718A (ja) 基準クロック発生装置の周波数自動調整方法及び周波数自動調整装置
JP2009212995A (ja) 位相同期発振回路
JP2009152747A (ja) 発振器
JP2006329665A (ja) 容量式物理量センサのセンサ回路
JP2006164667A (ja) 継電器制御装置
KR20070118398A (ko) 발진 안정화 검출회로
JP2004072244A (ja) デジタルvco及びそのデジタルvcoを用いたpll回路

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16816936

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16816936

Country of ref document: EP

Kind code of ref document: A1