WO2016197655A1 - 有机胍—无毒醇催化丙交酯活性开环聚合受控合成聚乳酸的工艺 - Google Patents

有机胍—无毒醇催化丙交酯活性开环聚合受控合成聚乳酸的工艺 Download PDF

Info

Publication number
WO2016197655A1
WO2016197655A1 PCT/CN2016/076957 CN2016076957W WO2016197655A1 WO 2016197655 A1 WO2016197655 A1 WO 2016197655A1 CN 2016076957 W CN2016076957 W CN 2016076957W WO 2016197655 A1 WO2016197655 A1 WO 2016197655A1
Authority
WO
WIPO (PCT)
Prior art keywords
lactide
catalyst
monomer
initiator
polymerization
Prior art date
Application number
PCT/CN2016/076957
Other languages
English (en)
French (fr)
Inventor
李弘�
张全兴
黄伟
盛家业
李爱民
Original Assignee
南京大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南京大学 filed Critical 南京大学
Priority to JP2017554893A priority Critical patent/JP6538876B2/ja
Priority to US15/269,942 priority patent/US9637590B2/en
Publication of WO2016197655A1 publication Critical patent/WO2016197655A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/78Preparation processes
    • C08G63/82Preparation processes characterised by the catalyst used
    • C08G63/823Preparation processes characterised by the catalyst used for the preparation of polylactones or polylactides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/02Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds
    • C08G63/06Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds derived from hydroxycarboxylic acids
    • C08G63/08Lactones or lactides

Definitions

  • the invention belongs to the field of biodegradable polymer synthetic chemistry, and particularly relates to a process for synthesizing biodegradable polylactic acid by controlled synthesis of lactide active bulk ring-opening polymerization using an organic hydrazine-non-toxic alcohol.
  • Polylactic acid PLA is a synthetic polyester with excellent biodegradability. It has been used in many important applications in the biomedical field. For example, it can improve the efficacy when used as a carrier for controlled release drugs (such as anti-cancer and anti-AIDS targeted drugs). Reduce the advantages of side effects.
  • PLA should not contain any toxic heavy metals and other toxic organic and inorganic components to prevent tissue damage due to longer-term use. Therefore, this requires that the selected catalytic system can not only catalyze the active ring-opening polymerization of lactide, but also requires its high biosafety, which is one of the problems in the field of PLA synthetic chemistry.
  • pharmaceutical PLA products are prepared by ring-opening polymerization of lactide using stannous octoate as a catalyst.
  • the disadvantages of this preparation method are as follows: (1) The catalyst stannous octoate is cytotoxic, and since it is impossible to completely remove from the product after the polymerization reaction, there is a safety hazard when the synthesized PLA is used as a controlled release drug carrier; 2) Stannous octoate catalyzed ring-opening polymerization of lactide is an inactive polymerization reaction, so it is impossible to control the synthesis of PLA by adjusting the initial molar ratio of monomer to initiator according to practical application requirements. On the other hand, in recent years, there have been reports on the use of organic catalysts-alcohols to initiate the polymerization of lactide. For example, J. Hedrick et al.
  • the present inventors have long been engaged in the research work of bioorganic ruthenium catalyzed synthesis of biodegradable polymers, and recently successfully developed an organic hydrazine-non-toxic alcohol efficient, non-toxic catalytic system for catalyzing the active ring opening polymerization of lactide.
  • a new process for the reaction-controlled synthesis of biodegradable polylactic acid This process is extensive and heavy in the field of biomedical science. The application prospects.
  • the object of the present invention is to design a non-toxic and high-efficiency organic catalytic system for synthesizing the target polymer product PLA according to the requirements of the active ring-opening polymerization of lactide to provide a non-toxic and efficient organic
  • the rhodium-non-toxic alcohol catalytic system is used to catalyze the controlled synthesis of biodegradable polylactic acid with high biosafety by active lactone ring-opening polymerization of lactide.
  • the initial molar input [R'OH] 0 is calculated according to the target product PLA number average molecular weight M n as follows:
  • the air in the polymerization reactor is driven out by the "vacuum-nitrogen-filled" cycle operation.
  • the pressure in the autoclave is constant at 1.0-0.1 torr
  • the reaction kettle is sealed and stirred for 30-40 minutes. The temperature is raised to 95 to 96 ° C, and then reacted at 96 ⁇ 1 to 130 ⁇ 1 ° C for 5 to 300 minutes.
  • PLA synthesized number-average molecular weight M n of the present invention according to the practical application, by modulating the starting monomer to initiator molar ratio of [LA] 0 / [R'OH] 0, at 0.5 ⁇ 10 4 ⁇ 5.0 ⁇ 10 4 In the range of synthesis; product polymer molecular weight distribution index PDI is 1.10 ⁇ 1.25, polymerization monomer conversion rate of 100%, color snow white.
  • the lactide LA of the present invention comprises L-lactide LLA, D-lactide DLA, racemic lactide DLLA;
  • the polylactic acid PLA comprises poly(L-lactic acid) PLLA, poly (D - Lactic acid) PDLA, poly(D, L-lactic acid) PDLLA.
  • the catalyst cyclic oxime carboxylate RCOOCG of the present invention is the following cyclic guanidine CG, 2-aminobenzimidazole, guanine, 1,5,7-triazabicyclo[5.5.0]non-5-ene, 7-Methyl-1,5,7-triazabicyclo[5.5.0]non-5-ene or 2,3,5,6-tetrahydro-1H-imidazo[1,2-A]imidazole It is prepared by reacting with one of the following non-toxic organic carboxylic acids RCOOH, lactic acid, glycolic acid, benzoic acid or acetic acid. The preparation principle is as follows:
  • the catalyst used in the cyclic hydrazine carboxylate has high catalytic activity and low dosage, and the organic alcohol initiator used is safe and non-toxic;
  • the solvent is synthesized by the solvent-free and bulk ring-opening polymerization method, and there is no three waste discharge in the polymer synthesis process, which belongs to the “green” synthesis process;
  • the product PLA is highly biosafe and has a wide range of applications in the biomedical field.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Polyesters Or Polycarbonates (AREA)
  • Biological Depolymerization Polymers (AREA)

Abstract

一种采用有机胍—无毒醇为催化剂催化丙交酯活性开环聚合反应受控合成聚乳酸的工艺。该工艺采用无毒的有机环胍羧酸盐为催化剂、无毒有机醇为引发剂、本体熔融聚合法进行丙交酯的活性开环聚合反应,其特点为:催化剂活性高、聚合反应温度低、反应时间短、产品聚合物数均分子量可根据实际应用需求在Mn 0.5×104~5.0×104范围内受控合成、聚合物分子量分布窄(PDI 1.10~1.25)、聚合物中无单体残留(单体转化率100%)、产品色泽雪白;产品聚合物具有高度生物安全性。

Description

有机胍—无毒醇催化丙交酯活性开环聚合受控合成聚乳酸的工艺 技术领域
本发明属于生物可降解聚合物合成化学领域,特别涉及采用有机胍—无毒醇催化丙交酯活性本体开环聚合反应受控合成生物可降解聚乳酸的工艺。
背景技术
近年来随着生物医药领域的快速发展,国内外对具有优良生物相容性和安全性的医用可降解材料的需求也在急剧增长。聚乳酸PLA是具有优良生物降解性的合成聚酯,现已在生物医学领域得到多种重要应用,例如用作控释药物(如抗癌、抗艾滋病靶向药物)载体时具有可提高疗效、降低毒副作用的优点。PLA作为控释药物载体材料时要求:(1)PLA的数均分子量Mn应根据实际应用的不同需求在Mn 0.5×104~5.0×104范围内合成,以满足不同药物缓释周期不同的需求;(2)PLA不应含有任何有毒重金属及其他毒性有机、无机成分,以防止由于较长期使用导致组织病变。因此,这就要求所选用的催化体系不仅能够催化丙交酯的活性开环聚合,更需要其具有高度的生物安全性,这也是PLA合成化学领域的难题之一。目前医药用PLA商品采用辛酸亚锡为催化剂催化丙交酯开环聚合制备。这一制备方法的缺点为:(1)催化剂辛酸亚锡具有细胞毒性,并且由于聚合反应后不可能从产品中彻底去除,因而所合成的PLA用作控释药物载体时存在安全性隐患;(2)辛酸亚锡催化的丙交酯开环聚合为非活性聚合反应,因此不可能按实际应用需求通过调节单体与引发剂的起始摩尔比受控合成PLA。另一方面,近年来文献虽有报道采用有机催化剂—醇引发丙交酯活性聚合的报道,例如:J.Hedrick等曾报道采用4-二甲胺基吡啶、三苯基磷为催化剂与醇(乙醇、苄醇)可实现丙交酯的活性聚合(N.Fredrik,et al.,Angew.Chem.,Int.Ed.,2001,40,2712-2715;M.Matthew,et al.,J.Polym.Sci.,Part A:Polym.Chem.,2002,40,844-851),但是所用催化剂4-二甲胺基吡啶、三苯基磷均具有一定的毒性,且催化剂用量较大。因此,采用高效、无毒的催化剂通过活性聚合实现PLA的受控合成是近年来生物医用降解材料合成领域倍受关注的研究课题。我国学者李弘教授曾报道采用无毒醋酸双环胍为催化剂实现丙交酯的活性开环聚合(CN101318960A),虽聚合反应速率快,但仅能用于合成Mn<3.9×104的PLLA。
本发明人在长期从事生物有机胍催化合成生物可降解聚合物研究工作的基础上,最近成功的研发出有机胍—无毒醇高效、无毒催化体系用于催化丙交酯活性本体开环聚合反应受控合成生物可降解聚乳酸的新工艺。这一工艺在生物医药科学领域具有广泛、重 要的应用前景。
发明内容
本发明的目的是设计一种无毒、高效的有机催化体系用以通过实现丙交酯的活性开环聚合反应达到根据需求受控合成目标聚合物产品PLA,提供一种无毒、高效的有机胍—无毒醇催化体系用于催化丙交酯活性本体开环聚合反应受控合成具有高度生物安全性的生物可降解聚乳酸的工艺。
本发明的技术方案:
一种采用有机胍—无毒醇催化丙交酯LA活性本体开环聚合反应合成生物可降解聚乳酸PLA的工艺,该工艺采用无毒的有机环胍羧酸盐RCOOCG为催化剂、无毒有机醇R’OH为引发剂,采用本体聚合法进行LA的活性开环聚合反应;
合成步骤:
将单体LA,催化剂RCOOCG与引发剂R’OH加入聚合反应釜,其中单体与催化剂的起始摩尔比为[LA]0/[RCOOCG]0=1000~1500:1;引发剂R’OH起始摩尔投入量[R’OH]0根据目标产物PLA数均分子量Mn要求按下式计算:
Figure PCTCN2016076957-appb-000001
式中[LA]0为单体的起始摩尔投入量;
单体、催化剂、引发剂投入反应釜后,通过“抽真空—充氮气”循环操作以驱除聚合釜中空气,待釜内压力恒定为1.0~0.1torr后密封反应釜,搅拌下于30~40min内升温至95~96℃,然后在96±1~130±1℃反应5~300min。
本发明所合成的PLA数均分子量Mn可根据实际应用,通过调变单体与引发剂起始摩尔比[LA]0/[R’OH]0,在0.5×104~5.0×104范围内合成;产品聚合物分子量分布指数PDI为1.10~1.25,聚合反应单体转化率100%,色泽雪白。
本发明所述的丙交酯LA包括L-丙交酯LLA、D-丙交酯DLA、外消旋丙交酯DLLA;所述的聚乳酸PLA包括聚(L-乳酸)PLLA、聚(D-乳酸)PDLA、聚(D,L-乳酸)PDLLA。
本发明所述的催化剂环胍羧酸盐RCOOCG为下述环胍CG,2-氨基苯并咪唑、鸟嘌呤、1,5,7-三氮杂双环[5.5.0]癸-5-烯、7-甲基-1,5,7-三氮杂双环[5.5.0]癸-5-烯或2,3,5,6-四氢-1H-咪唑并[1,2-A]咪唑之一与下述无毒有机羧酸RCOOH,乳酸、乙醇酸、苯甲酸或醋酸之一反应制备,制备原理如下所示:
Figure PCTCN2016076957-appb-000002
本发明所述无毒有机醇引发剂R’OH可为乙醇(R’=—CH2CH3)或月桂醇(R’=—(CH2)11CH3)。
本发明的优点和有益效果
1、所用催化剂环胍羧酸盐催化活性高、用量少,所用有机醇引发剂安全无毒;
2、产品聚合物Mn可根据应用需求受控合成、分子量分布指数PDI窄,产品聚合物无单体残留,聚合物色泽雪白;
3、采用无溶剂、本体开环聚合法合成PLA,聚合物合成工艺过程中无任何三废排放,属“绿色”合成工艺;
4、产品PLA具有高度生物安全性,在生物医药领域应用范围广。
具体实施方式
实施例1
将单体LLA 50.0g(0.347mol),催化剂2-氨基苯并咪唑乙醇酸盐0.048g(0.231mmol)与引发剂乙醇0.461g(10.000mmol)加入聚合反应釜,通过三次“抽真空—充氮气”循环操作以驱除聚合釜中空气,待釜内压力恒定为1.0torr后密封反应釜,搅拌下于30min内升温至96℃,然后在130±1℃反应5min。产品PLLA:Mn 0.5×104,PDI 1.14,单体转化率100%,色泽雪白。
实施例2
将单体DLA 50.0g(0.347mol),催化剂1,5,7-三氮杂双环[5.5.0]癸-5-烯苯甲酸盐0.060g(0.231mmol)与引发剂乙醇0.230g(5.000mmol)加入聚合反应釜,通过三次“抽真空—充氮气”循环操作以驱除聚合釜中空气,待釜内压力恒定为1.0torr后密封反应釜,搅拌下于30min内升温至96℃,然后在125±1℃反应30min。产品PLLA:Mn 1.0×104,PDI1.15,单体转化率100%,色泽雪白。
实施例3
将单体DLLA 100.0g(0.694mol),催化剂2,3,5,6-四氢-1H-咪唑并[1,2-A]咪唑乳酸盐 0.095g(0.463mmol)与引发剂乙醇0.307g(6.667mmol)加入聚合反应釜,通过三次“抽真空—充氮气”循环操作以驱除聚合釜中空气,待釜内压力恒定为0.6torr后密封反应釜,搅拌下于30min内升温至96℃,然后在118±1℃反应60min。产品PLLA:Mn 1.5×104,PDI 1.10,单体转化率100%,色泽雪白。
实施例4
将单体LLA 100.0g(0.694mol),催化剂鸟嘌呤醋酸盐0.098g(0.463mmol)与引发剂乙醇0.230g(5.000mmol)加入聚合反应釜,通过三次“抽真空—充氮气”循环操作以驱除聚合釜中空气,待釜内压力恒定为0.6torr后密封反应釜,搅拌下于30min内升温至96℃,然后在115±1℃反应80min。产品PLLA:Mn 2.0×104,PDI 1.18,单体转化率100%,色泽雪白。
实施例5
将单体DLA 150.0g(1.042mol),催化剂7-甲基-1,5,7-三氮杂双环[5.5.0]癸-5-烯醋酸盐0.185g(0.868mmol)与引发剂乙醇0.276g(6.000mmol)加入聚合反应釜,通过三次“抽真空—充氮气”循环操作以驱除聚合釜中空气,待釜内压力恒定为0.4torr后密封反应釜,搅拌下于30min内升温至96℃,然后在112±1℃反应120min。产品PLLA:Mn 2.5×104,PDI 1.21,单体转化率100%,色泽雪白。
实施例6
将单体DLLA 150.0g(1.042mol),催化剂1,5,7-三氮杂双环[5.5.0]癸-5-烯乳酸盐0.199g(0.868mmol)与引发剂月桂醇0.932g(5.000mmol)加入聚合反应釜,通过三次“抽真空—充氮气”循环操作以驱除聚合釜中空气,待釜内压力恒定为0.4torr后密封反应釜,搅拌下于40min内升温至95℃,然后在108±1℃反应150min。产品PLLA:Mn 3.0×104,PDI 1.23,单体转化率100%,色泽雪白。
实施例7
将单体LLA 200.0g(1.389mol),催化剂7-甲基-1,5,7-三氮杂双环[5.5.0]癸-5-烯乙醇酸盐0.265g(1.157mmol)与引发剂月桂醇1.065g(5.714mmol)加入聚合反应釜,通过三次“抽真空—充氮气”循环操作以驱除聚合釜中空气,待釜内压力恒定为0.2torr后密封反应釜,搅拌下于40min内升温至95℃,然后在105±1℃反应180min。产品PLLA:Mn 3.5×104,PDI 1.20,单体转化率100%,色泽雪白。
实施例8
将单体DLA 200.0g(1.389mol),催化剂鸟嘌呤苯甲酸盐0.380g(1.389mmol)与引发剂月桂醇0.932g(5.000mmol)加入聚合反应釜,通过三次“抽真空—充氮气”循环操作以驱除聚合釜中空气,待釜内压力恒定为0.2torr后密封反应釜,搅拌下于40min内升温至95℃,然后在102±1℃反应220min。产品PLLA:Mn 4.0×104,PDI 1.21,单体转化率100%,色泽雪白。
实施例9
将单体DLLA 250.0g(1.736mol),催化剂2-氨基苯并咪唑醋酸盐0.335g(1.736mmol)与引发剂月桂醇1.035g(5.556mmol)加入聚合反应釜,通过三次“抽真空—充氮气”循环操作以驱除聚合釜中空气,待釜内压力恒定为0.1torr后密封反应釜,搅拌下于40min内升温至95℃,然后在99±1℃反应250min。产品PLLA:Mn 4.5×104,PDI 1.22,单体转化率100%,色泽雪白。
实施例10
将单体LLA 250.0g(1.736mol),催化剂2,3,5,6-四氢-1H-咪唑并[1,2-A]咪唑乙醇酸盐0.325g(1.736mmol)与引发剂月桂醇0.932g(5.000mmol)加入聚合反应釜,通过三次“抽真空—充氮气”循环操作以驱除聚合釜中空气,待釜内压力恒定为0.1torr后密封反应釜,搅拌下于40min内升温至95℃,然后在96±1℃反应300min。产品PLLA:Mn5.0×104,PDI 1.25,单体转化率100%,色泽雪白。

Claims (5)

  1. 一种采用有机胍—无毒醇催化丙交酯LA活性本体开环聚合反应合成生物可降解聚乳酸PLA的工艺,该工艺采用无毒的有机环胍羧酸盐RCOOCG为催化剂、无毒有机醇R’OH为引发剂,采用本体聚合法进行LA的活性开环聚合反应;
    合成步骤:
    将单体LA,催化剂RCOOCG与引发剂R’OH加入聚合反应釜,其中单体与催化剂的起始摩尔比为[LA]0/[RCOOCG]0=1000~1500:1;引发剂R’OH起始摩尔投入量[R’OH]0根据目标产物PLA数均分子量Mn要求按下式计算:
    Figure PCTCN2016076957-appb-100001
    式中[LA]0为单体的起始摩尔投入量;
    单体、催化剂、引发剂投入反应釜后,通过“抽真空—充氮气”循环操作以驱除聚合釜中空气,待釜内压力恒定为1.0~0.1torr后密封反应釜,搅拌下于30~40min内升温至95~96℃,然后在96±1~130±1℃反应5~300min。
  2. 根据权利要求1所述的工艺,其特征为:所合成的PLA数均分子量Mn可根据实际应用,通过调变单体与引发剂起始摩尔比[LA]0/[R’OH]0,在0.5×104~5.0×104范围内合成;产品聚合物分子量分布指数PDI为1.10~1.25,聚合反应单体转化率100%,色泽雪白。
  3. 根据权利要求1或2所述的工艺,其特征为:所述的丙交酯LA包括L-丙交酯LLA、D-丙交酯DLA、外消旋丙交酯DLLA;所述的聚乳酸PLA包括聚(L-乳酸)PLLA、聚(D-乳酸)PDLA、聚(D,L-乳酸)PDLLA。
  4. 根据权利要求1或2所述的工艺,其特征为:所述的催化剂环胍羧酸盐RCOOCG为下述环胍CG,2-氨基苯并咪唑、鸟嘌呤、1,5,7-三氮杂双环[5.5.0]癸-5-烯、7-甲基-1,5,7-三氮杂双环[5.5.0]癸-5-烯或2,3,5,6-四氢-1H-咪唑并[1,2-A]咪唑之一与下述无毒有机羧酸 RCOOH,乳酸、乙醇酸、苯甲酸或醋酸之一反应制备,制备原理如下所示:
    Figure PCTCN2016076957-appb-100002
  5. 根据权利要求1或2所述的工艺,其特征为:所述无毒有机醇引发剂R’OH可为乙醇(R’=—CH2CH3)或月桂醇(R’=—(CH2)11CH3)。
PCT/CN2016/076957 2015-06-11 2016-03-22 有机胍—无毒醇催化丙交酯活性开环聚合受控合成聚乳酸的工艺 WO2016197655A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2017554893A JP6538876B2 (ja) 2015-06-11 2016-03-22 有機グアニジン−非毒性アルコール触媒の活性ラクチド開環重合に制御されてポリ乳酸を合成するプロセス
US15/269,942 US9637590B2 (en) 2015-06-11 2016-09-19 Method for synthesizing polylactide via living ring-opening polymerization

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510319853.6A CN104892916B (zh) 2015-06-11 2015-06-11 有机胍—无毒醇催化丙交酯活性开环聚合受控合成聚乳酸的工艺
CN201510319853.6 2015-06-11

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/269,942 Continuation-In-Part US9637590B2 (en) 2015-06-11 2016-09-19 Method for synthesizing polylactide via living ring-opening polymerization

Publications (1)

Publication Number Publication Date
WO2016197655A1 true WO2016197655A1 (zh) 2016-12-15

Family

ID=54025913

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/076957 WO2016197655A1 (zh) 2015-06-11 2016-03-22 有机胍—无毒醇催化丙交酯活性开环聚合受控合成聚乳酸的工艺

Country Status (4)

Country Link
US (1) US9637590B2 (zh)
JP (1) JP6538876B2 (zh)
CN (1) CN104892916B (zh)
WO (1) WO2016197655A1 (zh)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104892916B (zh) * 2015-06-11 2017-01-11 南京大学 有机胍—无毒醇催化丙交酯活性开环聚合受控合成聚乳酸的工艺
CN105131259B (zh) * 2015-09-14 2017-05-31 南京大学 生物胍复合体系催化熔融‑固相聚合合成高分子量聚α‑羟基酸
CN105367763B (zh) * 2015-12-14 2018-07-06 南京工业大学 一种开环聚合制备聚酯的方法
CN107090079A (zh) * 2017-05-26 2017-08-25 南京大学 一种聚乳酸‑聚乙二醇单甲醚双嵌段共聚物及其制备方法
CN107540824B (zh) * 2017-09-21 2019-07-05 南京大学 大分子引发剂暨缩合-开环-固相聚合联用合成超高等规度聚l-/d-乳酸的方法
CN109337052B (zh) * 2018-04-05 2021-02-02 河南金丹乳酸科技股份有限公司 利用l-丙交酯开环聚合生产聚l-乳酸的方法
CN111499842B (zh) * 2020-04-26 2022-07-12 万华化学(四川)有限公司 开环聚合法制备聚乳酸的生产方法及预聚物混合物和聚乳酸
WO2021217299A1 (zh) 2020-04-26 2021-11-04 万华化学(四川)有限公司 开环聚合法制备聚乳酸的生产方法及预聚物混合物和聚乳酸
CN111690124B (zh) * 2020-07-10 2022-05-17 上海典范医疗科技有限公司 一种分子量可控的医用聚乳酸及其制备方法
CN112094407B (zh) * 2020-09-27 2021-10-08 江南大学 一种双胍基共价有机框架材料及其制备方法和应用

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101318960A (zh) * 2008-07-22 2008-12-10 南开大学 醋酸双环胍合成方法及催化合成聚丙交酯和聚丝氨酸吗啉二酮
CN103159959A (zh) * 2013-03-07 2013-06-19 清华大学深圳研究生院 一种m-plga-tpgs星型两亲性共聚物及其制备方法与应用
US8507640B2 (en) * 2010-08-19 2013-08-13 International Business Machines Corporation Methods of ring opening polymerization and catalysts therefor
CN104892916A (zh) * 2015-06-11 2015-09-09 南京大学 有机胍—无毒醇催化丙交酯活性开环聚合受控合成聚乳酸的工艺

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101665565B (zh) * 2008-09-01 2012-01-04 南京工业大学 一种用卡宾衍生物催化制备聚乳酸的方法
KR20110102335A (ko) * 2008-12-23 2011-09-16 세게티스, 인코포레이티드. 케탈 아미드 화합물, 제조 방법 및 적용분야
FI20115504A0 (fi) * 2011-05-23 2011-05-23 Teknologian Tutkimuskeskus Vtt Oy Menetelmä glykolidipolyesterin valmistamiseksi renkaanavauspolymeroinnilla
CN102702488A (zh) * 2012-06-07 2012-10-03 上海绿色盛世生态材料有限公司 一种聚乳酸的制备方法
CN102757433A (zh) * 2012-07-06 2012-10-31 南开大学 乳酸双环胍合成及其催化开环聚合合成可降解聚合物的工艺方法
JP2014095067A (ja) * 2012-10-11 2014-05-22 Ricoh Co Ltd 高分子化合物、包接化合物、シート、および、水分散体
CN102875779B (zh) * 2012-10-16 2014-01-15 南京大学 双环胍催化乳酸缩聚合成医用生物降解性聚乳酸的工艺方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101318960A (zh) * 2008-07-22 2008-12-10 南开大学 醋酸双环胍合成方法及催化合成聚丙交酯和聚丝氨酸吗啉二酮
US8507640B2 (en) * 2010-08-19 2013-08-13 International Business Machines Corporation Methods of ring opening polymerization and catalysts therefor
CN103159959A (zh) * 2013-03-07 2013-06-19 清华大学深圳研究生院 一种m-plga-tpgs星型两亲性共聚物及其制备方法与应用
CN104892916A (zh) * 2015-06-11 2015-09-09 南京大学 有机胍—无毒醇催化丙交酯活性开环聚合受控合成聚乳酸的工艺

Also Published As

Publication number Publication date
US9637590B2 (en) 2017-05-02
JP6538876B2 (ja) 2019-07-03
CN104892916B (zh) 2017-01-11
US20170009011A1 (en) 2017-01-12
CN104892916A (zh) 2015-09-09
JP2018513902A (ja) 2018-05-31

Similar Documents

Publication Publication Date Title
WO2016197655A1 (zh) 有机胍—无毒醇催化丙交酯活性开环聚合受控合成聚乳酸的工艺
JP5458216B2 (ja) クレアチニンを触媒とする乳酸からの重縮合による医療用生分解性ポリ乳酸の製造方法
CN104448261B (zh) 高性能高分子量聚l-乳酸合成工艺
JP6250802B2 (ja) ポリエチレングリコールモノメチルエーテル−ポリ乳酸ブロック共重合体の調製方法
CN110283305B (zh) 一种医药用生物可降解高分子材料聚乙丙交酯的制备方法
WO2022041326A1 (zh) 一种应用于催化环酯开环聚合和聚酯材料可控解聚的锌催化剂及其催化方法
CN105131259B (zh) 生物胍复合体系催化熔融‑固相聚合合成高分子量聚α‑羟基酸
WO2016011939A1 (zh) 生物质肌酐催化法合成聚(丁二酸丁二醇酯-共-己二酸丁二醇酯)的工艺方法
CN101367921A (zh) 一种丙交酯开环合成聚乳酸的方法
CN101318960B (zh) 醋酸双环胍合成方法及催化合成聚丙交酯和聚丝氨酸吗啉二酮
CN105367763A (zh) 一种开环聚合制备聚酯的方法
CN1234750C (zh) 生物质有机胍化物催化合成医用生物降解材料的工艺方法
CN101353420A (zh) 聚乳酸-聚乙二醇共聚物的溶剂热合成制备方法
CN108129647A (zh) 一种星型聚酯化合物及其制备方法
CN102443166B (zh) 醋酸双环胍催化开环共聚合合成乳酸-丝氨酸共聚物的工艺方法
JP5229917B2 (ja) 乳酸オリゴマーおよびその製造方法
CN111004373A (zh) 一种医用多臂聚己内酯的制备方法
US9062159B2 (en) Poly(lactic-co-glycolic acid) synthesized via copolycondensation catalyzed by biomass creatinine
Chang et al. Ring-opening polymerization of ε-caprolactone initiated by the antitumor agent doxifluridine
Bian et al. End-chain fluorescent highly branched poly (l-lactide) s: synthesis, architecture-dependence, and fluorescent visible paclitaxel-loaded microspheres
CN102875779A (zh) 双环胍催化乳酸缩聚合成医用生物降解性聚乳酸的工艺方法
CN102504227B (zh) 醋酸双环胍催化开环共聚合合成乳酸-赖氨酸共聚物的工艺方法
CN102702488A (zh) 一种聚乳酸的制备方法
CN102850531B (zh) 氯化双环胍催化乳酸缩聚合成医用生物降解性聚乳酸的工艺方法
CN106832243B (zh) 一种无金属催化制备聚己内酯的方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16806553

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017554893

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16806553

Country of ref document: EP

Kind code of ref document: A1