WO2022041326A1 - 一种应用于催化环酯开环聚合和聚酯材料可控解聚的锌催化剂及其催化方法 - Google Patents

一种应用于催化环酯开环聚合和聚酯材料可控解聚的锌催化剂及其催化方法 Download PDF

Info

Publication number
WO2022041326A1
WO2022041326A1 PCT/CN2020/114663 CN2020114663W WO2022041326A1 WO 2022041326 A1 WO2022041326 A1 WO 2022041326A1 CN 2020114663 W CN2020114663 W CN 2020114663W WO 2022041326 A1 WO2022041326 A1 WO 2022041326A1
Authority
WO
WIPO (PCT)
Prior art keywords
opening polymerization
ring
polyester
reaction
zinc catalyst
Prior art date
Application number
PCT/CN2020/114663
Other languages
English (en)
French (fr)
Inventor
王庆刚
徐广强
杨茹琳
周丽
Original Assignee
中国科学院青岛生物能源与过程研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202010877970.5A external-priority patent/CN112076790B/zh
Priority claimed from CN202010879046.0A external-priority patent/CN112079999B/zh
Application filed by 中国科学院青岛生物能源与过程研究所 filed Critical 中国科学院青岛生物能源与过程研究所
Publication of WO2022041326A1 publication Critical patent/WO2022041326A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/22Organic complexes

Definitions

  • the invention relates to the technical field of polymer synthetic material technology and polyester depolymerization, in particular to a zinc catalyst used for catalyzing ring-opening polymerization of cyclic esters and controllable depolymerization of polyester materials and a catalytic method thereof.
  • polyester can be degraded into carbon dioxide and water as a degradable polymer, it usually requires harsh environmental conditions and takes a long time.
  • polyester is converted into useful chemicals under the catalysis of catalysts, and the recycling of polyester is realized, which is in line with the principle of sustainable development and has important research significance and application value.
  • the present invention provides a zinc catalyst for catalyzing ring-opening polymerization of cyclic esters and controllable depolymerization of polyester materials. Catalyst and catalytic method thereof.
  • a zinc catalyst used for catalyzing ring-opening polymerization of cyclic esters and controllable depolymerization of polyester materials is bis(hexaalkyldisilazane) zinc, and the molecular formula is Zn[N(SiR 3 ) 2 ] 2 , the structural formula is:
  • R represents an alkyl group
  • R is methyl
  • the method for the above-mentioned zinc catalyst catalyzed cyclic ester ring-opening polymerization is:
  • cyclic ester monomer is used as the polymerized monomer, in organic solvent or solvent-free polymerization, under the catalysis of bis(hexaalkyldisilazane) zinc catalyst, from alcohols The compound initiates the ring-opening polymerization of the cyclic lactone.
  • the molar ratio of the cyclic ester monomer, the catalyst and the alcohol compound is (5000-20): 1: (1-500), and the reaction of the ring-opening polymerization reaction
  • the temperature is -20°C ⁇ 100°C
  • the reaction time is 1min ⁇ 24h
  • the concentration of the cyclic ester monomer is 0.1mol/L ⁇ 8mol/L.
  • the molar ratio of the cyclic ester monomer, the catalyst and the alcohol compound is (5000-20): 1: (1-500), and the reaction temperature of the ring-opening polymerization is The temperature is 0°C ⁇ 200°C, and the reaction time is 1min ⁇ 96h.
  • cyclic ester monomer structure is:
  • R 1 , R 2 , R 3 , R 4 represent hydrogen or an alkyl group or an alkoxy group or an aryl group or a halogen atom, and n is an integer not less than 1.
  • the alcohol compound is an alcohol containing 1-50 carbon atoms.
  • the alcohol compound is formed by mixing one or more of methanol, ethanol, isopropanol, butanol, tert-butanol, benzyl alcohol, and phenylpropanol in any proportion.
  • the organic solvent is formed by mixing one or more of benzene, toluene, xylene, dichloromethane and tetrahydrofuran in any proportion.
  • the method for the controllable depolymerization of the above-mentioned zinc catalyst catalyzed polyester material is:
  • the polyester Under the protection of normal pressure and inert gas, under the catalysis of bis(hexaalkyldisilazane) zinc catalyst, at a certain temperature, the polyester is dissolved in an organic solvent or without adding other solvents, and under the initiation of alcohol compounds Depolymerization of the polyester material is carried out to obtain small organic molecules, and the recycling of the polyester material is realized.
  • R 1 and R 2 represent hydrogen or alkyl or alkoxy or aryl or halogen atom, and n is an integer not less than 1;
  • the number average molecular weight of the polyester material is 10 2 to 10 7 g/mol.
  • the alcohol compound is an alcohol containing 1-50 carbon atoms.
  • the alcohol compound is formed by mixing one or more of methanol, ethanol, isopropanol, butanol, tert-butanol, benzyl alcohol, and phenylpropanol in any proportion.
  • reaction temperature is 20°C to 200°C
  • amount of catalyst added accounts for 0.1 to 10% by weight of the polyester
  • the molar ratio of the amount of alcohol compound added to the ester bond connecting unit of the polymer is (500 to 1): 1
  • the solvent is composed of one or more of benzene, toluene, xylene, dichloromethane and tetrahydrofuran mixed in any proportion.
  • the invention provides a bis(hexaalkyldisilazane) zinc catalyst with simple structure and environmental protection, which can realize the efficient and controllable activity polymerization of different lactones under mild conditions. Meanwhile, through the transesterification reaction catalyzed by the alcohol compound, the polyester material can be quickly and efficiently depolymerized into small organic molecules to realize the reuse of waste polyester.
  • the present invention adopts a zinc catalyst with a simple structure.
  • Metal zinc is non-toxic, colorless, cheap and easy to obtain.
  • As one of the trace elements in the human body it has good biocompatibility, making the production process more green and environmentally friendly, and the catalyst structure is simple and does not require There are few steps involved in the synthesis of ligands, which reduces the cost and energy consumption of the ligand synthesis process, making the production cost more economical and more in line with the principle of green development;
  • the zinc catalyst used in the present invention catalyzes the ring-opening polymerization of lactone, the reaction can be carried out efficiently under mild conditions, the activity is controllable, and has the characteristics of active polymerization, and the molecular weight and molecular weight distribution of the obtained polymer can be precisely controlled.
  • the equivalent ratio of monomer to initiator can realize the regulation of molecular weight from thousands to hundreds of thousands, and obtain high molecular weight polyester materials. different polyester materials;
  • the present invention utilizes the transesterification reaction catalyzed by the zinc catalyst through the participation of alcohol compounds to depolymerize the polyester material into small organic molecules, thereby realizing the secondary utilization of the waste polymer, and the polymerization can be realized under mild conditions.
  • Depolymerization of ester does not require harsh reaction conditions such as high temperature, and has good depolymerization effect for polyester materials with different structures;
  • the same catalyst can be used to realize the polymerization process to obtain polyester materials, and at the same time, through the regulation of reaction conditions, the obtained polyester materials can be depolymerized into useful small molecules to realize a real cycle process.
  • Fig. 1 is the relation diagram of the molecular weight and the degree of polymerization of polylactide in Example 2;
  • Fig. 2 is the nuclear magnetic spectrum of the polymer obtained by ⁇ -butyrolactone polymerization in Example 7;
  • Fig. 3 is the nuclear magnetic spectrum of the polymer obtained by ⁇ -valerolactone polymerization in Example 8.
  • Fig. 4 is the nuclear magnetic spectrogram of polylactide depolymerization product in embodiment 13;
  • Zinc catalyst catalyzes ring-opening polymerization of cyclic esters.
  • Example 1 Catalytic ring-opening polymerization of racemic lactide under different addition amounts of alcohol initiators.
  • Table 1 presents the results of the ring-opening polymerization of racemic lactide with different addition amounts of alcohol initiators.
  • Group 1 is when the benzyl alcohol initiator is not added, the polymerization does not proceed smoothly.
  • Group 2 is that when 1 equivalent of benzyl alcohol is added, the reaction reaches 74% conversion within 30 minutes, but the molecular weight distribution is wider and the reaction controllability is poor.
  • Group 3 is that when two equivalents of benzyl alcohol are added, the high activity polymerization of racemic lactide can be achieved, the conversion rate of 96% can be obtained within 3 minutes, the molecular weight distribution is significantly narrowed, and the controllability of the polymerization is improved.
  • Group 4 is that when four equivalents of benzyl alcohol are added, the controllability of the reaction is further improved, the molecular weight is more in line with the theoretical value, and the molecular weight distribution is also narrower. Change the reaction solvent to toluene (group 5), the reaction still has good activity and controllability.
  • Example 2 Ethyl lactate initiates ring-opening polymerization of racemic lactide.
  • Example 3 Catalytic ring-opening polymerization of racemic lactide with different monomer equivalents.
  • Table 2 presents the ring-opening polymerization of racemic lactide with different monomer equivalent ratios. With the increase of the monomer equivalent ratio, the molecular weight of the obtained polymer increases proportionally.
  • Figure 3 shows the relationship between the molecular weight of the polymer and the degree of polymerization, showing an excellent linear relationship. The reaction has the characteristics of living polymerization. The equivalent ratio of monomers can obtain polylactide with different molecular weights.
  • Example 4 Catalytic Solventless Polymerization of Racemic Lactide.
  • Examples 5 to 6 provide polylactide obtained by catalyzing the ring-opening polymerization of optically pure lactide monomer.
  • Example 5 Catalytic ring-opening polymerization of D-lactide.
  • Example 6 Catalytic ring-opening polymerization of L-lactide.
  • the isotacticity of the obtained polymer is greater than 0.99, indicating that there are few side reactions of racemization in the polymerization, and an optically pure polymer can be obtained through this catalytic system.
  • Example 7 Catalytic monomer ⁇ -butyrolactone ring-opening polymerization
  • the reaction was quenched by benzoic acid.
  • the reaction conversion rate was determined to be 80% by NMR.
  • the solvent was removed in vacuo, and the polymer was isolated by washing with ice methanol and dried in vacuo to constant weight.
  • the obtained polymer had a molecular weight ( Mn ) of 5400 g/mol and a molecular weight distribution (PDI) of 1.16 as measured by gel permeation chromatography (GPC).
  • polyhydroxybutyric acid is obtained by ring-opening polymerization of ⁇ -butyrolactone.
  • Figure 1 shows the NMR spectrum of the polymer. It can be seen from the spectrum that the polymerization is initiated by benzyl alcohol and has benzyl alcohol chain ends. The absence of obvious crotonate chain ends on the NMR spectrum indicates that the elimination of chain end dehydration is less during the catalytic polymerization process.
  • Example 8 Catalytic ring-opening polymerization of monomer delta-valerolactone
  • polyvalerolactone is obtained by ring-opening polymerization of delta-valerolactone.
  • Polymerization is highly reactive and controllable.
  • Figure 2 presents the NMR spectrum of the polymer with well-defined benzyl alcohol chain ends.
  • Example 9 Catalytic ring-opening polymerization of monomer ⁇ -caprolactone.
  • polycaprolactone is obtained by ring-opening polymerization of ⁇ -caprolactone. Polymerization is highly reactive and controllable.
  • Example 10 Catalytic ring-opening polymerization of monomeric ethyl glycolide.
  • Example 11 Catalytic ring-opening polymerization of monomeric benzyl glycolide.
  • Zinc catalyst catalyzes the controllable depolymerization of polyester materials.
  • Example 12 Depolymerization of poly-beta-butyrolactone. The reaction process is as follows:
  • Example 13 Depolymerization of polylactide. The reaction process is as follows:
  • Example 14 Depolymerization of polylactide. The reaction process is as follows:
  • Example 15 Depolymerization of polylactide. The reaction process is as follows:
  • Example 16 Depolymerization of Polyethylglycolide. The reaction process is as follows:
  • Example 17 Depolymerization of polybenzyl glycolide. The reaction process is as follows:
  • Example 18 Depolymerization of poly-delta-valerolactone. The reaction process is as follows:
  • Example 19 Depolymerization of poly-epsilon-caprolactone. The reaction process is as follows:

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Polyesters Or Polycarbonates (AREA)

Abstract

本发明公开了一种应用于催化环酯开环聚合和聚酯材料可控解聚的锌催化剂及其催化方法,属高分子合成材料技术以及聚酯解聚技术领域。本发明解决了目前存在的聚酯合成缺乏绿色环保工艺以及缺乏温和高效的废弃聚酯的循环利用方法等问题。本发明采用绿色环保的且不需要配体参与的双(六烷基二硅基氮烷)锌催化剂,在温和条件下即可实现不同内酯的高效高可控活性聚合,具有很好的单体普适性,从而获得各种具有不同结构的聚酯材料。同时,本发明应用该锌催化剂,在醇类化合物的参与下,通过该催化剂催化的酯交换反应,快速将聚酯材料解聚为有机小分子实现废弃聚酯的再利用,从而实现真正的可持续发展与循环经济。

Description

一种应用于催化环酯开环聚合和聚酯材料可控解聚的锌催化剂及其催化方法 技术领域
本发明涉及高分子合成材料技术以及聚酯解聚技术领域,具体涉及一种应用于催化环酯开环聚合和聚酯材料可控解聚的锌催化剂及其催化方法。
背景技术
废弃塑料产生的白色污染对生态环境以及人类健康带来了诸多危害。随着人们环保意识的不断增强,环境友好型的可降解聚合物成为目前的研究及应用开发热点。具有生物来源的脂肪族聚酯作为一种典型的可降解聚合物,因其具有良好的生物相容性和可媲美传统石油基聚合物的机械性能,被广泛应用于食品包装、医疗器械、医用高分子等领域。但是目前脂肪族聚酯的合成与应用仍存在一些问题,阻碍了其进一步发展。脂肪族聚酯主要通过环酯开环聚合生产获得,但是目前发展的催化剂只有辛酸亚锡能够成功实现工业化,而金属锡固有的毒性限制了所得聚酯材料在生物医药等领域的应用。因此,亟需发展更加绿色环保的聚合工艺实现环酯的高效可控开环聚合。同时,大量产生的废弃聚酯的后处理也是目前备受关注的问题,虽然作为可降解聚合物,聚酯可降解为二氧化碳和水,但通常需要苛刻的环境条件且耗时较长。通过化学循环的方法,在催化剂的催化下将聚酯转变为有用的化学品,实现聚酯的循环利用,符合可持续发展原则,具有重要的研究意义与应用价值。但是目前该领域缺乏简单高效的催化体系。通常情况下,实现环酯开环聚合合成聚酯与化学循环降解聚酯的过程都对催化剂有一定要求,鲜有报道的催化剂既能实现聚酯的可控高效合成,又能化学降解聚酯材料,此类型催化剂的研究能够实现真正的绿色循环过程,对于环境保护具有重要意义。
发明内容
针对目前存在的聚酯合成缺乏绿色环保工艺以及缺乏温和高效的废弃聚酯的循环利用方法等问题,本发明提供了一种应用于催化环酯开环聚合和聚酯材料可控解聚的锌催化剂及其催化方法。
一种应用于催化环酯开环聚合和聚酯材料可控解聚的锌催化剂,该催化剂为双(六烷基二硅基氮烷)锌,分子式为Zn[N(SiR 3) 2] 2,结构式为:
Figure PCTCN2020114663-appb-000001
其中R代表烷基。
进一步地,R为甲基。
上述锌催化剂催化环酯开环聚合的方法,该方法为:
在常压、惰性气体保护的条件下,以环酯单体为聚合单体,在有机溶剂或采用无溶剂聚合,在双(六烷基二硅基氮烷)锌催化剂催化下,由醇类化合物引发环内酯进行开环聚合反应。
进一步地,开环聚合反应在有有机溶剂条件下聚合时,环酯单体、催化剂和醇类化合物的摩尔比为(5000~20):1:(1~500),开环聚合反应的反应温度为-20℃~100℃,反应时间为1min~24h,环酯单体的浓度为0.1mol/L~8mol/L。
进一步地,开环聚合反应在无溶剂条件下聚合时,环酯单体、催化剂和醇类化合物的摩尔比为(5000~20):1:(1~500),开环聚合反应的反应温度为0℃~200℃,反应时间为1min~96h。
进一步地,环酯单体结构为:
Figure PCTCN2020114663-appb-000002
中一种或几种组合,其中,R 1、R 2、R 3、R 4代表氢或烷基或烷氧基或芳基或卤原子,n为不小于1的整数。
进一步地,醇类化合物为含碳个数为1~50的醇。
进一步地,醇类化合物为甲醇、乙醇、异丙醇、丁醇、叔丁醇、苄醇、苯丙醇中的一种或几种以任意比例混合组成。
进一步地,有机溶剂为苯、甲苯、二甲苯、二氯甲烷、四氢呋喃中的一种或几种以任意比例混合组成。
上述锌催化剂催化聚酯材料可控解聚的方法,该方法为:
在常压、惰性气体保护下,在双(六烷基二硅基氮烷)锌催化剂催化下,在一定温度下,将聚酯溶于有机溶剂或不添加其他溶剂,在醇类化合物引发下进行聚酯材料的解聚获得有机小分子,实现聚酯材料的回收利用。
进一步地,聚酯材料的聚合单元结构式为:
Figure PCTCN2020114663-appb-000003
其中R 1、R 2代表氢或烷基或烷氧基或芳基或卤原子,n为不小于1的整数;
所述的聚酯材料的数均分子量为10 2~10 7g/mol。
进一步地,醇类化合物为含碳个数为1~50的醇。
更进一步地,醇类化合物为甲醇、乙醇、异丙醇、丁醇、叔丁醇、苄醇、苯丙醇中的一种或几种以任意比例混合组成。
进一步地,反应温度为20℃~200℃,催化剂添加量占聚酯的0.1~10wt%,醇类化合物添加量与聚合物的酯键连接单元的摩尔比为(500~1):1,有机溶剂为苯、甲苯、二甲苯、二氯甲烷、四氢呋喃中的一种或几种以任意比例混合组成。
本发明提供了一种结构简单绿色环保的双(六烷基二硅基氮烷)锌催化剂,在温和条件下即可实现不同内酯的高效高可控活性聚合。同时,通过该催化剂催化的醇类化合物参与的酯交换反应,可快速高效将聚酯材料解聚为有机小分子实现废弃聚酯的再利用。所取得的技术效果总结如下:
(1)本发明采用结构简单的锌催化剂,金属锌无毒、无色、廉价易得,作为人体的微量元素之一,生物相容性好,使得生产工艺更加绿色环保,且催化剂结构简单无需配体的参与合成步骤少,减少了配体合成过程所需的成本以及能量消耗,使得生产成本更加经济,更加符合绿色发展的原则;
(2)本发明所采用的锌催化剂催化内酯开环聚合,反应可在温和条件下高效进行,活性可控,具有活性聚合的特点,所得聚合物的分子量以及分子量分布能够精确控制,通过调节单体与引发剂当量比可实现分子量几千到十几万的调控,获得高分子量聚酯材料,对于各种不同结构的环酯单体均具有很好的催化聚合效果,获得结构及性能各异的聚酯材料;
(3)本发明利用锌催化剂催化下的通过醇类化合物参与的酯交换反应,将聚酯材料解聚为有机小分子,从而实现废弃聚合物的二次利用,在温和条件下即可实现聚酯的解聚,不需要高温等苛刻的反应条件,对于结构各异的聚酯材料,均具有良好的解聚效果;
(4)本发明可利用同一种催化剂既能实现聚合过程获得聚酯材料,同时通过反应条件的调控可将所获得聚酯材料解聚为有用小分子,实现一个真正的循环过程。
附图说明
图1是实施例2中聚丙交酯的分子量与聚合度的关系图;
图2是实施例7中β-丁内酯聚合获得的聚合物的核磁谱图;
图3是实施例8中δ-戊内酯聚合获得的聚合物的核磁谱图;
图4是实施例13中聚丙交酯解聚产物的核磁谱图;
图5是实施例18中聚δ-戊内酯解聚产物的核磁谱图。
具体实施方式
下述实施例中所使用的其他实验方法如无特殊说明均为常规方法。所用材料、试剂、方法和仪器,未经特殊说明,均为本领域常规材料、试剂、方法和仪器,本领域技术人员均可通过商业渠道获得。
一、锌催化剂催化环酯开环聚合。
实施例1:不同醇引发剂添加量下催化外消旋丙交酯开环聚合。
1、取5mL的Schlenk瓶,抽烤并置换氩气后,于手套箱中,加入3.86mg(10μmol,1eq.)的Zn[N(SiMe 3) 2] 2催化剂,溶于1mL溶剂,然后加入不同当量苄醇的1mol/L的甲苯溶液,搅拌五分钟。然后加入144mg(1mmol,100eq.)的外消旋丙交酯单体,室温搅拌反应。
2、反应结束后,苯甲酸淬灭反应。核磁测定反应转化率。真空去除溶剂,冰甲醇洗涤分离出聚合物,并真空干燥至恒重。所得聚合物通过凝胶渗透色谱(GPC)测得聚合物的分子量(M n)及分子量分布(PDI),通过同核去耦核磁谱图计算等规度,结果如下表1所示:
表1.不同醇引发剂添加量下外消旋丙交酯的开环聚合
Figure PCTCN2020114663-appb-000004
表1给出了不同醇引发剂添加量下外消旋丙交酯的开环聚合的结果。组别1为当不添加苄醇引发剂时,聚合不能顺利进行。组别2为当添加1当量苄醇时,反应在30分钟内达到74%的转化率,但分子量分布较宽,反应可控性较差。组别3为当添加两当量苄醇时,可实现外消旋丙交酯的高活性聚合,3分钟内即可获得96%的转化率,分子量分布显著变窄,聚合的可控性提高。组别4为当添加四当量苄醇时,反应的可控性进一步提高,分子量更加符合理论值,分子量分布也更窄。改变反应溶剂至甲苯(组别5),反应仍具有很好的活性和可控性。
实施例2:乳酸乙酯引发外消旋丙交酯开环聚合。
1、取5mL的Schlenk瓶,抽烤并置换氩气后,于手套箱中,加入3.86mg(10μmol,1eq.) 的Zn[N(SiMe 3) 2] 2催化剂,溶于1mL甲苯溶剂,然后加入40μL乳酸乙酯的1mol/L的甲苯溶液,搅拌五分钟。然后加入144mg(1mmol,100eq.)的外消旋丙交酯单体,室温搅拌反应。
2、反应8分钟后,苯甲酸淬灭反应。核磁测定反应转化率为97%。真空去除溶剂,冰甲醇洗涤分离出聚合物,并真空干燥至恒重。所得聚合物通过凝胶渗透色谱(GPC)测得聚合物的分子量(M n)为9400g/mol及分子量分布(PDI)为1.26,通过同核去耦核磁谱图计算等规度为0.62。
实施例3:不同单体当量下催化外消旋丙交酯开环聚合。
1、取10mL的Schlenk瓶,抽烤并置换氩气后,于手套箱中,加入3.86mg(10μmol,1eq.)的Zn[N(SiMe 3) 2] 2催化剂,溶于1mL二氯甲烷溶剂,然后加入20μL苄醇的1mol/L的甲苯溶液,搅拌五分钟。然后加入不同当量比的外消旋丙交酯单体,控制单体浓度为1mol/L,加入溶剂溶解单体,室温搅拌反应。
2、反应结束后,苯甲酸淬灭反应。核磁测定反应转化率。真空去除溶剂,冰甲醇洗涤分离出聚合物,并真空干燥至恒重。所得聚合物通过凝胶渗透色谱(GPC)测得聚合物的分子量(M n)及分子量分布(PDI),通过同核去耦核磁谱图计算等规度,结果如下表2所示:
表2.不同单体当量比下外消旋丙交酯的开环聚合
Figure PCTCN2020114663-appb-000005
表2给出了不同单体当量比下外消旋丙交酯的开环聚合。随着单体当量比的增加,所得聚合物的分子量成比例增加,图三给出了聚合物的分子量与聚合度之间的关系,呈优异的线性关系,反应具有活性聚合的特征,通过调节单体的当量比可获得不同分子量的聚丙交酯。
实施例4:催化外消旋丙交酯的无溶剂聚合。
1、取5mL的Schlenk瓶,抽烤并置换氩气后,于手套箱中,加入1.93mg(5μmol,1eq.)的Zn[N(SiMe 3) 2] 2催化剂,溶于0.25mL甲苯,然后加入20μL苄醇的1mol/L的甲苯溶液,搅拌五分钟。然后加入1440mg(10mmol,2000eq.)的外消旋丙交酯单体,130℃下反应。
2、反应60分钟后,苯甲酸淬灭反应。核磁测定反应转化率为88%。所得聚合物通过凝胶渗透色谱(GPC)测得聚合物的分子量(M n)为110500g/mol及分子量分布(PDI)为 1.54,通过同核去耦核磁谱图计算等规度为0.58。
以下实施例5至实施例6提供了催化光学纯丙交酯单体开环聚合获得聚丙交酯。
实施例5:催化D-丙交酯的开环聚合。
1、取10mL的Schlenk瓶,抽烤并置换氩气后,于手套箱中,加入3.86mg(10μmol,1eq.)的Zn[N(SiMe 3) 2] 2催化剂,溶于5mL二氯甲烷溶剂,然后加入20μL苄醇的1mol/L的甲苯溶液,搅拌五分钟。然后加入720mg(1mmol,500eq.)的D-丙交酯单体,室温搅拌反应。
2、反应45分钟后,苯甲酸淬灭反应。核磁测定反应转化率为90%。真空去除溶剂,冰甲醇洗涤分离出聚合物,并真空干燥至恒重。所得聚合物通过凝胶渗透色谱(GPC)测得聚合物的分子量(M n)为43300g/mol及分子量分布(PDI)为1.11,通过同核去耦核磁谱图计算等规度为大于0.99。
实施例6:催化L-丙交酯的开环聚合。
1、取10mL的Schlenk瓶,抽烤并置换氩气后,于手套箱中,加入3.86mg(10μmol,1eq.)的Zn[N(SiMe 3) 2] 2催化剂,溶于5mL二氯甲烷溶剂,然后加入20μL苄醇的1mol/L的甲苯溶液,搅拌五分钟。然后加入720mg(1mmol,500eq.)的L-丙交酯单体,室温搅拌反应。
2、反应45分钟后,苯甲酸淬灭反应。核磁测定反应转化率为88%。真空去除溶剂,冰甲醇洗涤分离出聚合物,并真空干燥至恒重。所得聚合物通过凝胶渗透色谱(GPC)测得聚合物的分子量(M n)为39500g/mol及分子量分布(PDI)为1.09,通过同核去耦核磁谱图计算等规度为大于0.99。
本实施例中,对于光学纯丙交酯的开环聚合,所得聚合物的等规度大于0.99,说明聚合中外消旋化的副反应较少,通过该催化体系可获得光学纯聚合物。
实施例7:催化单体β-丁内酯开环聚合
1、取5mL的Schlenk瓶,抽烤并置换氩气后,于手套箱中,加入3.86mg(10μmol,1eq.)的Zn[N(SiMe 3) 2] 2催化剂,溶于1mL甲苯溶剂,然后加入20μL苄醇的1mol/L的甲苯溶液,搅拌五分钟。然后加入86mg(1mmol,100eq.)的β-丁内酯单体,将反应管移出手套箱,60℃搅拌反应。
2、反应240分钟后,苯甲酸淬灭反应。核磁测定反应转化率为80%。真空去除溶剂,冰甲醇洗涤分离出聚合物,并真空干燥至恒重。所得聚合物通过凝胶渗透色谱(GPC)测得聚合物的分子量(M n)为5400g/mol及分子量分布(PDI)为1.16。
本实施例中,通过β-丁内酯开环聚合获得聚羟基丁酸。图1给出了聚合物的核磁谱图, 从谱图上可以看出,聚合是由苄醇引发的具有苄醇链端。核磁谱图上没有明显的巴豆酸酯链末端说明在该催化聚合过程中,链末端脱水的消除副反应较少。
实施例8:催化单体δ-戊内酯开环聚合
1、取5mL的Schlenk瓶,抽烤并置换氩气后,于手套箱中,加入3.86mg(10μmol,1eq.)的Zn[N(SiMe 3) 2] 2催化剂,溶于1mL甲苯溶剂,然后加入20μL苄醇的1mol/L的甲苯溶液,搅拌五分钟。然后加入100mg(1mmol,100eq.)的δ-戊内酯单体,室温搅拌反应。
2、反应1分钟后,苯甲酸淬灭反应。核磁测定反应转化率为91%。真空去除溶剂,冰甲醇洗涤分离出聚合物,并真空干燥至恒重。所得聚合物通过凝胶渗透色谱(GPC)测得聚合物的分子量(M n)为7400g/mol及分子量分布(PDI)为1.22。
本实施例中,通过δ-戊内酯开环聚合获得聚戊内酯。聚合具有高活性与可控性。图2给出了聚合物的核磁谱图,具有明确的苄醇链端。
实施例9:催化单体ε-己内酯开环聚合。
1、取5mL的Schlenk瓶,抽烤并置换氩气后,于手套箱中,加入3.86mg(10μmol,1eq.)的Zn[N(SiMe 3) 2] 2催化剂,溶于1mL甲苯溶剂,然后加入20μL苄醇的1mol/L的甲苯溶液,搅拌五分钟。然后加入114mg(1mmol,100eq.)的ε-己内酯单体,室温搅拌反应。
2、反应1分钟后,苯甲酸淬灭反应。核磁测定反应转化率为95%。真空去除溶剂,冰甲醇洗涤分离出聚合物,并真空干燥至恒重。所得聚合物通过凝胶渗透色谱(GPC)测得聚合物的分子量(M n)为8300g/mol及分子量分布(PDI)为1.16。
本实施例中,通过ε-己内酯开环聚合获得聚己内酯。聚合具有高活性与可控性。
实施例10:催化单体乙基乙交酯开环聚合。
1、取5mL的Schlenk瓶,抽烤并置换氩气后,于手套箱中,加入3.86mg(10μmol,1eq.)的Zn[N(SiMe 3) 2] 2催化剂,溶于1mL二氯甲烷溶剂,然后加入20μL苄醇的1mol/L的甲苯溶液,搅拌五分钟。然后加入86mg(0.5mmol,50eq.)的乙基乙交酯单体,室温搅拌反应。
2、反应2分钟后,苯甲酸淬灭反应。核磁测定反应转化率为95%。真空去除溶剂,冰甲醇洗涤分离出聚合物,并真空干燥至恒重。所得聚合物通过凝胶渗透色谱(GPC)测得聚合物的分子量(M n)为17000g/mol及分子量分布(PDI)为1.26。
实施例11:催化单体苄基乙交酯开环聚合。
1、取5mL的Schlenk瓶,抽烤并置换氩气后,于手套箱中,加入3.86mg(10μmol,1eq.)的Zn[N(SiMe 3) 2] 2催化剂,溶于1mL二氯甲烷溶剂,然后加入20μL苄醇的1mol/L的甲苯溶液,搅拌五分钟。然后加入148mg(0.5mmol,50eq.)的苄基乙交酯单体,室温搅拌反应。
2、反应30分钟后,苯甲酸淬灭反应。核磁测定反应转化率为88%。真空去除溶剂, 冰甲醇洗涤分离出聚合物,并真空干燥至恒重。所得聚合物通过凝胶渗透色谱(GPC)测得聚合物的分子量(M n)为9200g/mol及分子量分布(PDI)为1.22。
二、锌催化剂催化聚酯材料可控解聚。
实施例12:聚β-丁内酯的解聚。反应过程如下所示:
Figure PCTCN2020114663-appb-000006
取5mL的Schlenk瓶,抽烤并置换氩气后,于手套箱中,加入86mg聚β-丁内酯(M n=5400g/mol,PDI=1.16),然后加入3.9mg的Zn[N(SiMe 3) 2] 2催化剂,于手套箱外,加入1mL甲醇,常温搅拌反应。反应24h后,核磁检测反应体系,聚合物转化率为93%,获得醇解产物为3-羟基丁酸甲酯。
实施例13:聚丙交酯的解聚。反应过程如下所示:
Figure PCTCN2020114663-appb-000007
取5mL的Schlenk瓶,抽烤并置换氩气后,于手套箱中,加入144mg聚丙交酯(M n=11300g/mol,PDI=1.17),然后加入7.7mg的Zn[N(SiMe 3) 2] 2催化剂,于手套箱外,加入1mL甲醇,常温搅拌反应。反应2h后,核磁检测反应体系,聚合物转化率为99%,获得醇解产物为乳酸甲酯。
实施例14:聚丙交酯的解聚。反应过程如下所示:
Figure PCTCN2020114663-appb-000008
取5mL的Schlenk瓶,抽烤并置换氩气后,于手套箱中,加入11.0g聚丙交酯(M n=49900g/mol,PDI=1.13),然后加入550mg的Zn[N(SiMe 3) 2] 2催化剂,于手套箱外,加入30mL甲醇,常温搅拌反应。反应40分钟后,核磁检测反应体系,聚合物转化率为99%,获得醇解产物为乳酸甲酯。过蒸馏去除剩余甲醇,获得14.2g乳酸甲酯,产率为92%。
实施例15:聚丙交酯的解聚。反应过程如下所示:
Figure PCTCN2020114663-appb-000009
取5mL的Schlenk瓶,抽烤并置换氩气后,于手套箱中,加入144mg聚丙交酯(M n=11300g/mol,PDI=1.17),溶于1mL二氯甲烷溶剂,然后加入7.7mg的Zn[N(SiMe 3) 2] 2催化剂,于手套箱外,加入1mL甲醇,常温搅拌反应。反应2h后,核磁检测反应体系,聚合物转化率为99%,获得醇解产物为乳酸甲酯。
实施例16:聚乙基乙交酯的解聚。反应过程如下所示:
Figure PCTCN2020114663-appb-000010
取5mL的Schlenk瓶,抽烤并置换氩气后,于手套箱中,加入86mg聚乙基乙交酯(M n=17000g/mol,PDI=1.26),然后加入3.9mg的Zn[N(SiMe 3) 2] 2催化剂,于手套箱外,加入1mL甲醇,常温搅拌反应。反应2h后,核磁检测反应体系,聚合物转化率为99%,获得醇解产物为2-羟基丁酸甲酯。
实施例17:聚苄基乙交酯的解聚。反应过程如下所示:
Figure PCTCN2020114663-appb-000011
取5mL的Schlenk瓶,抽烤并置换氩气后,于手套箱中,加入148mg聚苄基乙交酯(M n=9200g/mol,PDI=1.22),然后加入3.9mg的Zn[N(SiMe 3) 2] 2催化剂,于手套箱外,加入1mL甲醇,常温搅拌反应。反应2h后,核磁检测反应体系,聚合物转化率为99%,获得醇解产物为苯基乳酸甲酯。
实施例18:聚δ-戊内酯的解聚。反应过程如下所示:
Figure PCTCN2020114663-appb-000012
取5mL的Schlenk瓶,抽烤并置换氩气后,于手套箱中,加入200mg聚δ-戊内酯(M n=7400g/mol,PDI=1.22),然后加入7.7mg的Zn[N(SiMe 3) 2] 2催化剂,于手套箱外,加入1mL甲醇,常温搅拌反应。反应72h后,核磁检测反应体系,聚合物转化率为92%,获得醇解产物为5-羟基戊酸甲酯。
实施例19:聚ε-己内酯的解聚。反应过程如下所示:
Figure PCTCN2020114663-appb-000013
取5mL的Schlenk瓶,抽烤并置换氩气后,于手套箱中,加入228mg聚苄基乙交酯(M n=8300g/mol,PDI=1.16),然后加入7.7mg的Zn[N(SiMe 3) 2] 2催化剂,于手套箱外,加入1mL甲醇,50℃下搅拌反应。反应72h后,核磁检测反应体系,聚合物转化率为89%,获得醇解产物为6-羟基己酸甲酯。
虽然本发明已以较佳的实施例公开如上,但其并非用以限定本发明,任何熟悉此技术的人,在不脱离本发明的精神和范围内,都可以做各种改动和修饰,因此本发明的保护范围应 该以权利要求书所界定的为准。

Claims (14)

  1. 一种应用于催化环酯开环聚合和聚酯材料可控解聚的锌催化剂,其特征在于,该催化剂为双(六烷基二硅基氮烷)锌,分子式为Zn[N(SiR 3) 2] 2,结构式为:
    Figure PCTCN2020114663-appb-100001
    其中R代表烷基。
  2. 根据权利要求1所述的一种应用于催化环酯开环聚合和聚酯材料可控解聚的锌催化剂,其特征在于,所述的R为甲基。
  3. 应用权利要求1所述的锌催化剂催化环酯开环聚合的方法,该方法为:
    在常压、惰性气体保护的条件下,以环酯单体为聚合单体,在有机溶剂或采用无溶剂聚合,在双(六烷基二硅基氮烷)锌催化剂催化下,由醇类化合物引发环内酯进行开环聚合反应。
  4. 根据权利要求3所述的锌催化剂催化环酯开环聚合的方法,其特征在于,所述的开环聚合反应在有有机溶剂条件下聚合时,环酯单体、催化剂和醇类化合物的摩尔比为(5000~20):1:(1~500),开环聚合反应的反应温度为-20℃~100℃,反应时间为1min~24h,环酯单体的浓度为0.1mol/L~8mol/L。
  5. 根据权利要求3所述的锌催化剂催化环酯开环聚合的方法,其特征在于,所述的开环聚合反应在无溶剂条件下聚合时,环酯单体、催化剂和醇类化合物的摩尔比为(5000~20):1:(1~500),开环聚合反应的反应温度为0℃~200℃,反应时间为1min~96h。
  6. 根据权利要求3所述的锌催化剂催化环酯开环聚合的方法,其特征在于,所述的环酯单体结构为:
    Figure PCTCN2020114663-appb-100002
    中一种或几种组合,其中,R 1、R 2、R 3、R 4代表氢或烷基或烷氧基或芳基或卤原子,n为不小于1的整数。
  7. 根据权利要求3所述的锌催化剂催化环酯开环聚合的方法,其特征在于,所述的醇类化合物为含碳个数为1~50的醇。
  8. 根据权利要求7所述的锌催化剂催化环酯开环聚合的方法,其特征在于,所述的醇类化合物为甲醇、乙醇、异丙醇、丁醇、叔丁醇、苄醇、苯丙醇中的一种或几种以任意比例混 合组成。
  9. 根据权利要求3或4所述的锌催化剂催化环酯开环聚合的方法,其特征在于,所述的有机溶剂为苯、甲苯、二甲苯、二氯甲烷、四氢呋喃中的一种或几种以任意比例混合组成。
  10. 根据权利要求1所述的锌催化剂催化聚酯材料可控解聚的方法,该方法为:
    在常压、惰性气体保护下,在双(六烷基二硅基氮烷)锌催化剂催化下,在一定温度下,将聚酯溶于有机溶剂或不添加其他溶剂,在醇类化合物引发下进行聚酯材料的解聚获得有机小分子,实现聚酯材料的回收利用。
  11. 根据权利要求10所述的锌催化剂催化聚酯材料可控解聚的方法,其特征在于,所述的聚酯材料的聚合单元结构式为:
    Figure PCTCN2020114663-appb-100003
    其中R 1、R 2代表氢或烷基或烷氧基或芳基或卤原子,n为不小于1的整数;
    所述的聚酯材料的数均分子量为10 2~10 7g/mol。
  12. 根据权利要求10所述的锌催化剂催化聚酯材料可控解聚的方法,其特征在于,所述的醇类化合物为含碳个数为1~50的醇。
  13. 根据权利要求10所述的锌催化剂催化聚酯材料可控解聚的方法,其特征在于,所述的醇类化合物为甲醇、乙醇、异丙醇、丁醇、叔丁醇、苄醇、苯丙醇中的一种或几种以任意比例混合组成。
  14. 根据权利要求10所述的锌催化剂催化聚酯材料可控解聚的方法,其特征在于,所述的反应温度为20℃~200℃,催化剂添加量占聚酯的0.1~10wt%,醇类化合物添加量与聚合物的酯键连接单元的摩尔比为(500~1):1,有机溶剂为苯、甲苯、二甲苯、二氯甲烷、四氢呋喃中的一种或几种以任意比例混合组成。
PCT/CN2020/114663 2020-08-27 2020-09-11 一种应用于催化环酯开环聚合和聚酯材料可控解聚的锌催化剂及其催化方法 WO2022041326A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202010879046.0 2020-08-27
CN202010877970.5A CN112076790B (zh) 2020-08-27 2020-08-27 一种应用聚酯材料可控解聚的锌催化剂及其催化方法
CN202010879046.0A CN112079999B (zh) 2020-08-27 2020-08-27 一种锌催化剂催化环酯开环聚合的方法
CN202010877970.5 2020-08-27

Publications (1)

Publication Number Publication Date
WO2022041326A1 true WO2022041326A1 (zh) 2022-03-03

Family

ID=80442741

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/114663 WO2022041326A1 (zh) 2020-08-27 2020-09-11 一种应用于催化环酯开环聚合和聚酯材料可控解聚的锌催化剂及其催化方法

Country Status (1)

Country Link
WO (1) WO2022041326A1 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114805776A (zh) * 2022-06-02 2022-07-29 四川大学 一种聚酯解聚或环酯合成催化剂及制备方法和应用
CN114853800A (zh) * 2022-06-07 2022-08-05 山西大学 一种硅桥联吡啶基[n,n]锂配合物及制备方法和应用
CN114891035A (zh) * 2022-06-07 2022-08-12 山西大学 一种双功能四核金属锂配合物及制备方法和应用
CN115260217A (zh) * 2022-08-19 2022-11-01 大连理工大学 一类桥连双噁唑啉稀土金属催化剂、制备方法及应用
CN115260217B (zh) * 2022-08-19 2024-06-07 大连理工大学 一类桥连双噁唑啉稀土金属催化剂、制备方法及应用

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101538361A (zh) * 2009-04-10 2009-09-23 中国科学院长春应用化学研究所 环酯类化合物聚合催化剂及制法和应用
CN102105502A (zh) * 2008-07-28 2011-06-22 道达尔石化法国公司 具有单乙烯基芳族聚合物嵌段的二嵌段共聚物的制造方法
CN102639599A (zh) * 2009-12-03 2012-08-15 富特罗股份有限公司 用于丙交酯的本体聚合的方法
CN110628005A (zh) * 2019-07-30 2019-12-31 复旦大学 一类含碘聚酯材料及其制备方法与应用

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102105502A (zh) * 2008-07-28 2011-06-22 道达尔石化法国公司 具有单乙烯基芳族聚合物嵌段的二嵌段共聚物的制造方法
CN101538361A (zh) * 2009-04-10 2009-09-23 中国科学院长春应用化学研究所 环酯类化合物聚合催化剂及制法和应用
CN102639599A (zh) * 2009-12-03 2012-08-15 富特罗股份有限公司 用于丙交酯的本体聚合的方法
CN110628005A (zh) * 2019-07-30 2019-12-31 复旦大学 一类含碘聚酯材料及其制备方法与应用

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
TEN BRETELER M.R., J. FEIJEN, P.J. DIJKSTRA, FI. SIGNORI: "Synthesis and thermal properties of hetero-bifunctional PLA oligomers and their stereocomplexes", REACTIVE & FUNCTIONAL POLYMERS, vol. 73, 2 November 2012 (2012-11-02), pages 30 - 38, XP055903077, DOI: 10.1016/j.reactfunctpolym.2012.10.003 *
YUAN YUPING, XIABIN JING, HAIHUA XIAO, XUESI CHEN, YUBIN HUANG: "Zinc-Based Catalyst for the Ring-Opening Polymerization of Cyclic Esters", JOURNAL OF APPLIED POLYMER SCIENCE, JOHN WILEY & SONS, INC., US, vol. 121, no. 4, 21 March 2011 (2011-03-21), US , XP055903079, ISSN: 0021-8995, DOI: 10.1002/app.33956 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114805776A (zh) * 2022-06-02 2022-07-29 四川大学 一种聚酯解聚或环酯合成催化剂及制备方法和应用
CN114853800A (zh) * 2022-06-07 2022-08-05 山西大学 一种硅桥联吡啶基[n,n]锂配合物及制备方法和应用
CN114891035A (zh) * 2022-06-07 2022-08-12 山西大学 一种双功能四核金属锂配合物及制备方法和应用
CN114853800B (zh) * 2022-06-07 2023-12-26 山西大学 一种硅桥联吡啶基[n,n]锂配合物及制备方法和应用
CN114891035B (zh) * 2022-06-07 2023-12-26 山西大学 一种双功能四核金属锂配合物及制备方法和应用
CN115260217A (zh) * 2022-08-19 2022-11-01 大连理工大学 一类桥连双噁唑啉稀土金属催化剂、制备方法及应用
CN115260217B (zh) * 2022-08-19 2024-06-07 大连理工大学 一类桥连双噁唑啉稀土金属催化剂、制备方法及应用

Similar Documents

Publication Publication Date Title
WO2022041326A1 (zh) 一种应用于催化环酯开环聚合和聚酯材料可控解聚的锌催化剂及其催化方法
CN112079999B (zh) 一种锌催化剂催化环酯开环聚合的方法
WO2018210106A1 (zh) 一种开环制备聚内酯的方法
CN112076790B (zh) 一种应用聚酯材料可控解聚的锌催化剂及其催化方法
CN108467411B (zh) 一种磷腈和脲二元体系催化环酯类单体可控开环聚合的方法
CN109627429B (zh) 一种高分子量聚(γ-丁内酯)的制备方法
CN110092892B (zh) 一种聚酯的制备方法
WO2018196730A1 (zh) 一种聚酯的制备方法
CN109880073B (zh) 一种聚内酯的制备方法
CN109851764B (zh) 一种聚内酯的制备方法
WO2021243870A1 (zh) 一种环状单体开环聚合方法
CN107022068B (zh) ε-己内酯和L-丙交酯共聚催化剂及共聚方法
CN100497350C (zh) 催化丙交酯立体选择性聚合稀土配合物
Chen et al. Controlled/living ring-opening polymerization of ɛ-caprolactone catalyzed by phosphoric acid
CN105367762A (zh) 一种脂肪族聚酯的制备方法
CN113698584B (zh) 一种镁催化体系催化丙交酯及其类似物开环聚合的方法
CN109679081B (zh) 利用双核手性胺亚胺镁配合物催化己内酯聚合的方法
CN105367763A (zh) 一种开环聚合制备聚酯的方法
CN108503803B (zh) 一种利用脲/醇盐制备聚γ-丁内脂的方法
CN102333785B (zh) 聚乳酸树脂及其制备方法
CN101353420A (zh) 聚乳酸-聚乙二醇共聚物的溶剂热合成制备方法
CN109705159B (zh) 一种含磷氮配体烷基铝化合物的制备方法与应用
CN109749072B (zh) 利用双核胺亚胺镁配合物催化丙交酯聚合的方法
CN113527650B (zh) 一种酸碱对催化剂催化乙交酯丙交酯共聚的方法
CN113527652B (zh) 一种路易斯酸碱对催化丙交酯开环聚合的方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20950995

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20950995

Country of ref document: EP

Kind code of ref document: A1