WO2016195064A1 - 構造体及びその製造方法 - Google Patents

構造体及びその製造方法 Download PDF

Info

Publication number
WO2016195064A1
WO2016195064A1 PCT/JP2016/066551 JP2016066551W WO2016195064A1 WO 2016195064 A1 WO2016195064 A1 WO 2016195064A1 JP 2016066551 W JP2016066551 W JP 2016066551W WO 2016195064 A1 WO2016195064 A1 WO 2016195064A1
Authority
WO
WIPO (PCT)
Prior art keywords
pattern
plane
resin layer
uneven pattern
plane uneven
Prior art date
Application number
PCT/JP2016/066551
Other languages
English (en)
French (fr)
Inventor
幸大 宮澤
Original Assignee
綜研化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 綜研化学株式会社 filed Critical 綜研化学株式会社
Publication of WO2016195064A1 publication Critical patent/WO2016195064A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C59/00Surface shaping of articles, e.g. embossing; Apparatus therefor
    • B29C59/02Surface shaping of articles, e.g. embossing; Apparatus therefor by mechanical means, e.g. pressing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/027Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34

Definitions

  • This invention relates to the structure which has an uneven
  • the imprint technique is a microfabrication technique in which a mold having a concavo-convex pattern is pressed against a transfer material such as a liquid resin on a substrate, thereby transferring the pattern of the mold to the transfer material.
  • the fine concavo-convex pattern ranges from a nanoscale pattern of 10 nm to about 100 ⁇ m, and is used in various fields such as semiconductor materials, optical materials, storage media, micromachines, biotechnology, and the environment.
  • a mold having a nano-order fine concavo-convex pattern on the surface is very expensive because it takes time to form the pattern. Therefore, it is difficult to increase the size (increase in area) of a mold having a nano-order fine concavo-convex pattern on the surface.
  • Patent Document 1 imprinting using a small mold is repeated while shifting the position of the mold so that the processing areas do not overlap (step-and-repeat).
  • a cured resin layer having a concavo-convex pattern is formed by exposing and curing the transfer material in a state where the concavo-convex pattern of the mold is pressed against the transfer material, and then the mold is removed from the cured resin layer. The process is repeated.
  • the present inventor made a detailed study on this method, he noticed that the joints between the resin layers having the concavo-convex pattern may become conspicuous.
  • the present invention has been made in view of such a situation, and provides a structure capable of reducing the visibility of a joint between resin layers having a concavo-convex pattern.
  • the first and second resin layers having an out-of-plane concavo-convex pattern composed of out-of-plane concavo-convex patterns are connected, and the in-plane connection is made between the first and second resin layers.
  • a structure provided with an in-plane uneven pattern having an uneven shape in a direction is provided.
  • Patent Document 1 Since the joint between adjacent resin layers is linear, the incident light is observed when the joint is viewed from a specific direction. It was found that the reflection was reflected in a specific direction and the joints were conspicuous. And based on such knowledge, it discovered that the visibility of a joint can be reduced by providing the in-plane uneven pattern which consists of the uneven shape of an in-plane direction in the joint of the adjacent resin layer, Completed.
  • the pitch of the in-plane uneven pattern is 10 nm to 1 mm, or the pitch ratio value calculated by (pitch of the in-plane uneven pattern / pitch of the out-of-plane uneven pattern) is 10,000 or less.
  • the out-of-plane concavo-convex pattern is a pattern composed of lines and spaces.
  • the first and second resin layers are connected in a direction in which the line and space extends.
  • the in-plane uneven pattern has a saw shape, a wave shape, or a rectangular shape.
  • the in-plane uneven pattern has an aspect ratio value of 1 or more calculated by (width of the in-plane uneven pattern / pitch of the in-plane uneven pattern).
  • the first and second resin layers are connected so as to overlap each other, and at the joint, an end portion of the second resin layer is disposed on the upper side of the first resin layer, and the in-plane uneven pattern has a second shape.
  • the in-plane uneven pattern is provided on both the end of the second resin layer and the end of the first resin layer.
  • the first and second resin layers are connected so as not to overlap each other.
  • a method for producing the structure described above wherein the out-of-plane concavo-convex pattern is reversed on a transferred resin layer obtained by applying a photocurable resin composition on a substrate.
  • the light shielding pattern is provided on the mold.
  • FIG. 1 It is a perspective view of structure 1 of one embodiment of the present invention.
  • (A) is a plan view of the structure 1, and (b) is a cross-sectional view taken along the line AA in (a).
  • (A) is a plan view of a modification in which the in-plane uneven pattern 4a is a wavy pattern
  • (b) is a plan view of a modification in which the in-plane uneven pattern 4a is a rectangular pattern
  • (c) is an out-of-plane uneven pattern 3a.
  • 5a is a plan view of a modified example in which the pillar-shaped pattern is used.
  • FIG. (B) is a top view of the modification in which the in-plane uneven
  • (a) is a plane which shows the state remove
  • FIG. (A) is a plan view of a modification in which the first and second resin layers 3 and 5 do not overlap, and (b) is a cross-sectional view taken along line BB in (a).
  • FIG. 5B shows a state before imprinting
  • FIG. 5C shows a state during imprinting
  • (A) is a plan view of a state in which a mold 13 for forming an out-of-plane concavo-convex pattern 5a of the second resin layer 5 is superimposed on the substrate 7, and (b) to (c) are DD cross-sections in (a).
  • FIG. 5B shows a state before imprinting
  • FIG. 5C shows a state during imprinting.
  • A is a top view which shows the light-shielding pattern 15 in which the in-plane uneven
  • (b) is the base material 7 at the process of manufacturing the structure 1 of FIG. It is a top view which shows the state after forming the 1st resin layer 3 on it.
  • the structure 1 includes first and second resin layers 3 and 5 having out-of-plane concavo-convex patterns 3a and 5a having concavo-convex shapes in the out-of-plane direction.
  • an in-plane uneven pattern 4a having an uneven shape in the in-plane direction is provided at the joint 4 between the first and second resin layers 3 and 5.
  • the first and second resin layers 3 and 5 are provided on the base material 7.
  • the base material 7 may be any material as long as it can hold the first and second resin layers 3 and 5, is preferably a base material formed of a transparent material, and particularly preferably has flexibility.
  • the material of the base material include resin, quartz, silicon, and the like, but it is preferable to use a resin from the viewpoint of forming a resin mold having flexibility, material cost, and flexibility.
  • the resin substrate is, for example, from one or a mixture of two or more selected from the group consisting of polyethylene terephthalate, polycarbonate, polyester, polyolefin, polyimide, polysulfone, polyethersulfone, cyclic polyolefin, and polyethylene naphthalate. It will be.
  • the first and second resin layers 3 and 5 can be formed by curing a photocurable resin composition.
  • the thickness of the first and second resin layers 3 and 5 is usually 50 nm to 1 mm, preferably 500 nm to 500 ⁇ m. With such a thickness, imprinting is easy to perform.
  • the first and second resin layers 3 and 5 are formed with out-of-plane concavo-convex patterns 3a and 5a having concavo-convex shapes in the out-of-plane direction.
  • the shape of the out-of-plane concavo-convex patterns 3a and 5a is not particularly limited, and is a line-and-space pattern as shown in FIGS. 1 to 2 and 3A to 3B or as shown in FIG.
  • the pitch OP of the out-of-plane concavo-convex patterns 3a and 5a is, for example, 10 nm to 1 ⁇ m, preferably 20 to 500 nm, more preferably 30 to 200 nm, and particularly preferably 40 to 120 nm.
  • the depth of the out-of-plane uneven patterns 3a, 5a is, for example, 10 nm to 500 ⁇ m, and preferably 50 nm to 1 ⁇ m.
  • the out-of-plane uneven patterns 3a and 5a may be regular or irregular.
  • the distance between the tips of a large number of convex portions provided in the region adjacent to the joint 4 (or the center when the tips of the convex portions are flat) is The average value is set as the pitch of the out-of-plane uneven patterns 3a and 5a.
  • the shape, pitch, and depth of the out-of-plane uneven patterns 3a and 5a may be the same or different from each other.
  • the joint 4 between the first and second resin layers 3 and 5 is provided with an in-plane uneven pattern 4a having an uneven shape in the in-plane direction.
  • the in-plane uneven pattern 4a By providing the in-plane uneven pattern 4a, the visibility of the joint 4 is reduced. Such an effect is achieved regardless of the shape of the out-of-plane uneven pattern 3a, 5a, but the joint 4 is particularly noticeable when the out-of-plane uneven pattern 3a, 5a is a line and space pattern, Moreover, since the visibility of the joint 4 is greatly reduced by providing the in-plane uneven pattern 4a, the out-of-plane uneven patterns 3a and 5a are preferably line and space patterns.
  • the joint 4 is particularly conspicuous, and the in-plane uneven pattern 4a is formed. Since the visibility of the joint 4 is significantly reduced by providing, it is preferable that the first and second resin layers 3 and 5 are connected in the direction in which the line and space extends.
  • the example which connects two resin layers is shown in this embodiment, you may connect a more resin layer in the arrow X or Y direction of Fig.2 (a).
  • the joint where the resin layers are connected in the direction of the arrow Y is relatively inconspicuous, and thus the in-plane concavo-convex pattern is not necessarily required for this joint.
  • the shape of the in-plane uneven pattern 4a is not particularly limited, and is a sawtooth pattern as shown in FIGS. 1 and 2, a wavy pattern as shown in FIG. 3 (a), or a rectangular shape as shown in FIG. 3 (b). Examples include patterns.
  • the pitch IP of the in-plane uneven pattern 4a is not particularly limited, but is preferably 10 nm to 1 mm. This is because the visibility reduction of the joint 4 becomes more remarkable as the pitch IP is smaller.
  • the pitch IP is, for example, 0.01, 0.05, 0.1, 0.5, 1, 5, 10, 50, 100, 500, 1000 ⁇ m, and any of the numerical values exemplified here It may be within a range between the two.
  • the in-plane uneven pattern 4a may be regular or irregular. When the in-plane uneven pattern 4a is irregularly formed, the average value of the pitches of the many protrusions is set as the pitch of the in-plane uneven pattern 4a.
  • the value of the pitch ratio calculated by (pitch IP of in-plane uneven pattern 4a / pitch OP of out-of-plane uneven pattern 3a, 5a) is 10,000 or less. This is because, as the pitch IP of the in-plane uneven pattern 4a is closer to the pitch OP of the out-of-plane uneven patterns 3a and 5a, the visibility reduction of the joint 4 becomes more remarkable.
  • the lower limit of the pitch ratio value is not particularly specified, but is 0.1, for example.
  • the value of the pitch ratio is preferably 0.5 to 1000, particularly preferably 1 to 100.
  • the value of the pitch ratio is, for example, 0.1, 0.5, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 50, 100, 500, 1000, 5000, 10,000, and may be within a range between any two of the numerical values exemplified here.
  • the aspect ratio value calculated by (the width W of the in-plane uneven pattern 4a / the pitch IP of the in-plane uneven pattern 4a) is 1 or more. This is because as the value increases, the degree of unevenness of the in-plane uneven pattern 4a becomes finer and more remarkable, and the visibility reduction of the joint 4 becomes more remarkable.
  • the aspect ratio value is preferably 1.5 or more, and more preferably 2 or more.
  • the upper limit of the aspect ratio value is not particularly defined, but is 10 for example. This is because if the aspect ratio value is too large, the in-plane uneven pattern 4a tends to collapse.
  • the first and second resin layers 3 and 5 are connected so as to overlap each other, and the end portion 5b of the second resin layer 5 is connected to the joint 4.
  • the in-plane uneven pattern 4 a is disposed on the upper side of the first resin layer 3, and is provided on the end 5 b of the second resin layer 5.
  • the end surface 3b of the first resin layer 3 is not provided with an in-plane uneven pattern, and the end portion 3b is linear. Since the end portion 3b is covered with the second resin layer 5, the end portion 3b is linear and the joint 4 is not conspicuous, but as shown in FIGS.
  • the in-plane uneven patterns 4a and 4b may have the same shape, pitch, aspect ratio, or the like.
  • first and second resin layers 3 and 5 may be connected so as not to overlap each other as shown in FIG. In this case, the entire first and second resin layers 3 and 5 exist on the same plane. In such a form, since there is no level
  • a photocurable resin composition is applied on the substrate 7 to form a transferred resin layer 12.
  • the photocurable resin composition contains a monomer and a photoinitiator and has a property of being cured by irradiation with active energy rays.
  • Active energy rays is a general term for energy rays that can cure a photocurable resin composition, such as UV light, visible light, and electron beams.
  • Monomers include photopolymerizable monomers for forming (meth) acrylic resins, styrene resins, olefin resins, polycarbonate resins, polyester resins, epoxy resins, silicone resins, etc., and photopolymerizable (meth) acrylic.
  • System monomers are preferred.
  • (meth) acryl means methacryl and / or acryl
  • (meth) acrylate means methacrylate and / or acrylate.
  • the photoinitiator is a component added to promote the polymerization of the monomer, and is preferably contained in an amount of 0.1 part by mass or more with respect to 100 parts by mass of the monomer.
  • the upper limit of content of a photoinitiator is not prescribed
  • active energy rays are applied to the transferred resin layer 12 in a state where the mold 11 having the reverse pattern 11b of the out-of-plane uneven pattern 3a is pressed against the transferred resin layer 12. 14 is irradiated to form the first resin layer 3 having the out-of-plane uneven pattern 3a.
  • the mold 11 is provided with a light shielding pattern 11a so as to surround the reversal pattern 11b, and the irradiation of the active energy ray 14 is performed using the light shielding pattern 11a as a mask.
  • the light shielding pattern 11a has an annular shape having a rectangular opening, and the side 11c corresponding to the end 3b of the first resin layer 3 is linear.
  • the edge part 3b becomes linear form.
  • the formation method and material of the light shielding pattern 11a are not particularly limited as long as the object of shielding the active energy ray is achieved.
  • the light shielding pattern 11a can be formed by depositing a metal material such as Cr on the mold 11 by sputtering.
  • the light shielding pattern 11a may be formed of an organic material such as acrylic, urethane, or polycarbonate, or an inorganic material such as carbon. These materials may contain other materials such as pigments.
  • the pressure for pressing the mold 11 against the transferred resin layer 12 may be any pressure that can transfer the shape of the reversal pattern 11 b to the transferred resin layer 12.
  • the active energy ray 14 irradiated to the transferred resin layer 12 may be irradiated with an integrated light amount sufficient to sufficiently cure the transferred resin layer 12, and the integrated light amount is, for example, 100 to 10,000 mJ / cm 2 .
  • the transferred resin layer 12 is cured by irradiation with the active energy ray 14.
  • the light shielding pattern 11 a is provided on the mold 11 and the active energy ray 14 is irradiated from the mold 11 side.
  • the light shielding pattern 11 a is provided on the base material 7 or disposed below the base material 7. Another member may be provided with the light shielding pattern 11a and irradiated with the active energy ray 14 from the substrate 7 side.
  • a photocurable resin composition is applied to a region on the base material 7 where the second resin layer 5 is to be formed, thereby forming a transferred resin layer 15.
  • the description of the photocurable resin composition is as described above.
  • active energy rays are applied to the transferred resin layer 15 in a state where the mold 13 having the reverse pattern 13 b of the out-of-plane uneven pattern 5 a is pressed against the transferred resin layer 15. 14 is irradiated and the 2nd resin layer 5 which has the out-of-plane uneven
  • the mold 13 is provided with a light shielding pattern 13a so as to surround the reversal pattern 13b, and the irradiation of the active energy ray 14 is performed using the light shielding pattern 13a as a mask.
  • the light shielding pattern 13a has an annular shape, and an inversion pattern 13c of the in-plane uneven pattern 4a is provided on one side.
  • the in-plane uneven pattern 4 a is formed on the end portion 5 b of the second resin layer 5 by irradiating the active energy ray 14 using the light shielding pattern 13 a as a mask.
  • the other description of the light shielding pattern 13a is the same as that of the light shielding pattern 11a.
  • the manufacturing of the structure 1 shown in FIG. 1 is completed through the above steps.
  • the in-plane uneven pattern 4a is formed in the second resin layer 5 using the light shielding pattern 13a having the reverse pattern 13c, it is possible to form the fine in-plane uneven pattern 4a with high accuracy. It is.
  • the mold 13 can be used when the first resin layer 3 is formed. In this case, there is an advantage that the number of molds 13 to be used can be reduced.
  • corrugated pattern is formed in the edge part 3b of the 1st resin layer 3 by forming the reverse pattern of the in-plane uneven
  • the structure 1 shown in FIG. 4 can be manufactured by forming 4b. Further, the structure shown in FIG. 4 is formed using one mold by using a mold in which an inverted pattern of the in-plane uneven pattern 4b is formed on one of the opposing sides and an inverted pattern of the in-plane uneven pattern 4a is formed on the other side.
  • the body 1 can be manufactured.
  • the structure 1 arranged so that the first and second resin layers 3 and 5 do not overlap each other is in-plane with one of the opposing sides as shown in FIG. 8A, for example.
  • the light-shielding pattern 16 in which the uneven pattern 16a is formed and the out-of-plane uneven pattern 16b that is the reverse pattern is formed on the other side can be used as a mask.
  • the in-plane uneven pattern 4b which is a reverse pattern of the in-plane uneven pattern 16a, is formed on the end 3b of the first resin layer 3 using the light shielding pattern 16 as a mask. 5 is formed, and the second resin layer 5 is then formed by moving the light shielding pattern 16 so that the positions of the in-plane uneven pattern 4b and the in-plane uneven pattern 16b coincide with each other.
  • the structure 1 shown in FIG. 8B the in-plane uneven pattern 4b, which is a reverse pattern of the in-plane uneven pattern 16a, is formed on the end 3b of the first resin layer 3 using the light shielding pattern 16 as a mask. 5 is formed, and the second resin layer 5 is then formed by moving the light shielding pattern 16 so that the positions of the in-plane uneven pattern 4b and the in-plane uneven pattern 16b coincide with each other.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Shaping Of Tube Ends By Bending Or Straightening (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Abstract

凹凸パターンを有する樹脂層同士のつなぎ目の視認性を低減させることができる構造体を提供する。 本発明によれば、面外方向の凹凸形状からなる面外凹凸パターンを有する第1及び第2樹脂層が連結された構造体であって、第1及び第2樹脂層のつなぎ目に、面内方向の凹凸形状からなる面内凹凸パターンが設けられる、構造体が提供される。

Description

構造体及びその製造方法
 本発明は、凹凸パターンを有する構造体及びその製造方法に関する。
 インプリント技術とは、凹凸パターンを有するモールドを、基板上の液状樹脂等の転写材料へ押し付け、これによりモールドのパターンを転写材料に転写する微細加工技術である。微細な凹凸パターンとしては、10nmレベルのナノスケールのものから、100μm程度のものまで存在し、半導体材料、光学材料、記憶メディア、マイクロマシン、バイオ、環境等、様々な分野で用いられている。
 ところで、ナノオーダーの微細な凹凸パターンを表面に有するモールドは、パターンの形成に時間がかかるため非常に高価である。そのため、ナノオーダーの微細な凹凸パターンを表面に有するモールドの大型化(大面積化)は困難である。
 そこで、特許文献1では、小さいモールドを用いたインプリントを、加工領域が重ならないようにモールドの位置をずらしながら繰り返す行うことによって大面積のインプリントを可能にしている(ステップアンドリピート)。
特許第4262271号
 特許文献1の方法では、モールドの凹凸パターンを転写材料に押し付けた状態で転写材料を露光して硬化させることによって凹凸パターンを有する硬化樹脂層を形成し、その後、モールドを硬化樹脂層から取り外すという工程が繰り返される。本発明者がこの方法について詳細な検討を行ったところ、凹凸パターンを有する樹脂層同士のつなぎ目が目立ってしまう場合があることに気がついた。
 本発明は、このような実情に鑑みてなされたものであり、凹凸パターンを有する樹脂層同士のつなぎ目の視認性を低減させることができる構造体を提供するものである。
 本発明によれば、面外方向の凹凸形状からなる面外凹凸パターンを有する第1及び第2樹脂層が連結された構造体であって、第1及び第2樹脂層のつなぎ目に、面内方向の凹凸形状からなる面内凹凸パターンが設けられる、構造体が提供される。
 本発明者はつなぎ目が目立ってしまう原因について調査を行ったところ、特許文献1では、隣接する樹脂層間のつなぎ目が直線状になっているために、特定の方向からつなぎ目を見た時に入射光が特定の方向に正反射されてしまい、つなぎ目が目立ってしまうことが分かった。そして、このような知見に基づき、隣接する樹脂層のつなぎ目に、面内方向の凹凸形状からなる面内凹凸パターンを設けることによって、つなぎ目の視認性を低減させることができることを見出し、本発明の完成に到った。
 以下、本発明の種々の実施形態を例示する。以下に示す実施形態は、互いに組み合わせ可能である。
 好ましくは、前記面内凹凸パターンのピッチが10nm~1mmであるか、又は(前記面内凹凸パターンのピッチ/前記面外凹凸パターンのピッチ)で算出されるピッチ比の値が10000以下である。
 好ましくは、前記面外凹凸パターンは、ラインアンドスペースからなるパターンである。
 好ましくは、第1及び第2樹脂層は、前記ラインアンドスペースが延びる方向に連結される。
 好ましくは、前記面内凹凸パターンは、鋸状、波状、又は矩形状である。
 好ましくは、前記面内凹凸パターンは、(前記面内凹凸パターンの幅/前記面内凹凸パターンのピッチ)で算出されるアスペクト比の値が1以上である。
 好ましくは、第1及び第2樹脂層は、互いに重なるように連結され、前記つなぎ目において、第2樹脂層の端部が第1樹脂層の上側に配置され、前記面内凹凸パターンは、第2樹脂層の端部に設けられる。
 好ましくは、前記面内凹凸パターンは、第2樹脂層の端部と第1樹脂層の端部の両方に設けられる。
 好ましくは、第1及び第2樹脂層は、互いに重ならないように連結される。
 本発明の別の観点によれば、上記記載の構造体の製造方法であって、基材上に光硬化性樹脂組成物を塗布して得られる被転写樹脂層に前記面外凹凸パターンの反転パターンを有するモールドを押し付けた状態で前記被転写樹脂層に活性エネルギー線を照射して前記面外凹凸パターンを有する樹脂層を形成する工程を備え、前記活性エネルギー線は、前記面内凹凸パターンの反転パターンを有する遮光パターンをマスクとして用いて行う、構造体の製造方法が提供される。
 好ましくは、前記遮光パターンは、前記モールドに設けられる。
本発明の一実施形態の構造体1の斜視図である。 (a)は構造体1の平面図、(b)は(a)中のA-A断面図である。 (a)は面内凹凸パターン4aが波状パターンである変形例の平面図、(b)は面内凹凸パターン4aが矩形状パターンである変形例の平面図、(c)は面外凹凸パターン3a,5aがピラー形状パターンである変形例の平面図である。 (b)は第1樹脂層3の端部3bに面内凹凸パターン4bが形成されている変形例の平面図、(a)は(b)から第2樹脂層5を除いた状態を示す平面図である。 (a)は第1及び第2樹脂層3,5に重なりがない変形例の平面図、(b)は(a)中のB-B断面図である。 (a)は基材7に第1樹脂層3の面外凹凸パターン3a形成用のモールド11を重ねあわせた状態の平面図、(b)~(c)は(a)中のC-C断面図であり、(b)はインプリント前、(c)はインプリント中の状態を示す。 (a)は基材7に第2樹脂層5の面外凹凸パターン5a形成用のモールド13を重ねあわせた状態の平面図、(b)~(c)は(a)中のD-D断面図であり、(b)はインプリント前、(c)はインプリント中の状態を示す。 (a)は対応する辺の両方に面内凹凸パターン15a,15bが設けられている遮光パターン15を示す平面図であり、(b)は図5の構造体1を製造する工程で基材7上に第1樹脂層3を形成した後の状態を示す平面図である。
 以下、図面を用いて本発明の実施形態について説明する。以下に示す実施形態中で示した各種特徴事項は、互いに組み合わせ可能である。また、各特徴事項について独立して発明が成立する。
 図1~図5に示すように、本発明の一実施形態の構造体1は、面外方向の凹凸形状からなる面外凹凸パターン3a,5aを有する第1及び第2樹脂層3,5が連結された構造体であって、第1及び第2樹脂層3,5のつなぎ目4に、面内方向の凹凸形状からなる面内凹凸パターン4aが設けられる。第1及び第2樹脂層3,5は、基材7上に設けられる。
 基材7は、第1及び第2樹脂層3,5を保持可能なものであればよく、透明材料で形成される基材であることが好ましく、可撓性を有するものがとりわけ好ましい。基材の材質としては、樹脂、石英、シリコンなどが挙げられるが、可撓性、材料コストおよび柔軟性を有する樹脂モールドの形成できる観点から樹脂を用いることが好ましい。樹脂基材は、具体的には例えば、ポリエチレンテレフタレート、ポリカーボネート、ポリエステル、ポリオレフィン、ポリイミド、ポリサルフォン、ポリエーテルサルフォン、環状ポリオレフィンおよびポリエチレンナフタレートからなる群から選ばれる1種または2種以上の混合物からなるものである。
 第1及び第2樹脂層3,5は、光硬化性樹脂組成物を硬化させて形成することができる。第1及び第2樹脂層3,5の厚さは、通常50nm~1mm、好ましくは、500nm~500μmである。このような厚さとすれば、インプリント加工が行い易い。第1及び第2樹脂層3,5には面外方向の凹凸形状からなる面外凹凸パターン3a,5aが形成されている。面外凹凸パターン3a,5aの形状は、特に限定されず、図1~図2及び図3(a)~(b)に示すようなラインアンドスペースからなるパターンや図3(c)に示すように多数のピラーが配置されたパターンなどが例示される。図2(a)に示すように、面外凹凸パターン3a,5aのピッチOPは、例えば10nm~1μmであり、20~500nmが好ましく、30~200nmがさらに好ましく、40~120nmがとりわけ好ましい。面外凹凸パターン3a,5aの深さは、例えば10nm~500μmであり、好ましくは50nm~1μmである。面外凹凸パターン3a,5aは規則的であっても不規則であってもよい。面外凹凸パターン3a,5aが不規則に形成されている場合、つなぎ目4に隣接した領域に設けられた多数の凸部の先端(凸部の先端が平坦な場合はその中央)間の距離の平均値を面外凹凸パターン3a,5aのピッチとする。面外凹凸パターン3a,5aの形状、ピッチ、深さは、同一であっても互いに異なっていてもよい。
 第1及び第2樹脂層3,5のつなぎ目4には、面内方向の凹凸形状からなる面内凹凸パターン4aが設けられる。面内凹凸パターン4aを設けることによってつなぎ目4の視認性が低減される。このような効果は、面外凹凸パターン3a,5aの形状によらずに奏されるものであるが、面外凹凸パターン3a,5aがラインアンドスペースパターンである場合につなぎ目4が特に目立ちやすく、且つ面内凹凸パターン4aを設けることによってつなぎ目4の視認性が大幅に低減されるので、面外凹凸パターン3a,5aはラインアンドスペースパターンであることが好ましい。さらに、ラインアンドスペースが延びる方向(図2(a)の矢印X方向)に第1及び第2樹脂層3,5が連結される場合につなぎ目4が特に目立ちやすく、且つ面内凹凸パターン4aを設けることによってつなぎ目4の視認性が大幅に低減されるので、ラインアンドスペースが延びる方向に第1及び第2樹脂層3,5が連結されることが好ましい。なお、本実施形態では、2枚の樹脂層を連結する例を示しているが、さらに多くの樹脂層を図2(a)の矢印X又はY方向に連結してもよい。面外凹凸パターン3a,5aがラインアンドスペースパターンである場合に、矢印Y方向に樹脂層同士を連結したつなぎ目は比較的目立ちにくいので、このつなぎ目には面内凹凸パターンは必ずしも必要ない。
 面内凹凸パターン4aの形状は、特に限定されず、図1~図2に示すような鋸状パターン、図3(a)に示すような波状パターン、図3(b)に示すような矩形状パターンなどが例示される。図2(a)に示すように、面内凹凸パターン4aのピッチIPは、特に限定されないが、10nm~1mmであることが好ましい。ピッチIPが小さいほどつなぎ目4の視認性低減がより顕著になるからである。ピッチIPは、具体的には例えば、0.01、0.05、0.1、0.5、1、5、10、50、100、500、1000μmであり、ここで例示した数値の何れか2つの間の範囲内であってもよい。面内凹凸パターン4aは規則的であっても不規則であってもよい。面内凹凸パターン4aが不規則に形成されている場合、多数の凸部のピッチの平均値を面内凹凸パターン4aのピッチとする。
 また、別の観点では、(面内凹凸パターン4aのピッチIP/面外凹凸パターン3a,5aのピッチOP)で算出されるピッチ比の値が10000以下であることが好ましい。面内凹凸パターン4aのピッチIPが面外凹凸パターン3a,5aのピッチOPに近いほど、つなぎ目4の視認性低減がより顕著になるからである。ピッチ比の値の下限は、特に規定されないが、例えば、0.1である。ピッチ比の値は、0.5~1000が好ましく、1~100が特に好ましい。ピッチ比の値は、具体的には例えば、0.1、0.5、1、2、3、4、5、6、7、8、9、10、50、100、500、1000、5000、10000であり、ここで例示した数値の何れか2つの間の範囲内であってもよい。
 さらに図2(a)に示すように、(面内凹凸パターン4aの幅W/面内凹凸パターン4aのピッチIP)で算出されるアスペクト比の値が1以上であることが好ましい。この値が大きくなるほど、面内凹凸パターン4aの凹凸の程度が微細かつ顕著になり、つなぎ目4の視認性低減がより顕著になるからである。上記アスペクト比の値は、1.5以上が好ましく、2以上がさらに好ましい。アスペクト比の値の上限は、特に規定されないが、例えば、10である。アスペクト比の値が大きすぎると面内凹凸パターン4aが倒壊しやすくなるからである。
 本実施形態では、図1~図2に示すように、第1及び第2樹脂層3,5は、互いに重なるように連結されており、つなぎ目4において、第2樹脂層5の端部5bが第1樹脂層3の上側に配置されており、面内凹凸パターン4aは、第2樹脂層5の端部5bに設けられている。一方、第1樹脂層3の端部3bには面内凹凸パターンが設けられておらず、端部3bは直線状になっている。端部3bは第2樹脂層5で被覆されるので、端部3bが直線状になっていてもつなぎ目4は顕著には目立たないが、図4(a)~(b)に示すように、端部3bに面内凹凸パターン4bを形成することによって、つなぎ目4の視認性をより一層低減させることが可能である。なお、面内凹凸パターン4a,4bの形状、ピッチ、アスペクト比などは、同一であっても互いに異なっていてもよい。
 また、第1及び第2樹脂層3,5は、図5に示すように、互いに重ならないように連結してもよい。この場合、第1及び第2樹脂層3,5の全体が同一平面上に存在する。このような形態では、第1及び第2樹脂層3,5の間に段差がないので、つなぎ目4の視認性を一層低減することができる。
 次に、図1に示す構造体1の製造方法について説明する。
 まず、図6(b)に示すように、基材7上に光硬化性樹脂組成物を塗布して被転写樹脂層12を形成する。
 光硬化性樹脂組成物は、モノマーと、光開始剤を含有し、活性エネルギー線の照射によって硬化する性質を有する。「活性エネルギー線」は、UV光、可視光、電子線などの、光硬化性樹脂組成物を硬化可能なエネルギー線の総称である。
 モノマーとしては、(メタ)アクリル樹脂、スチレン樹脂、オレフィン樹脂、ポリカーボネート樹脂、ポリエステル樹脂、エポキシ樹脂、シリコーン樹脂等を形成するための光重合性のモノマーが挙げられ、光重合性の(メタ)アクリル系モノマーが好ましい。なお、本明細書において、(メタ)アクリルとは、メタクリルおよび/またはアクリルを意味し、(メタ)アクリレートはメタクリレートおよび/またはアクリレートを意味する。
 光開始剤は、モノマーの重合を促進するために添加される成分であり、前記モノマー100質量部に対して0.1質量部以上含有されることが好ましい。光開始剤の含有量の上限は、特に規定されないが、例えば前記モノマー100質量部に対して20質量部である。
 次に、図6(b)~(c)に示すように、面外凹凸パターン3aの反転パターン11bを有するモールド11を被転写樹脂層12に押し付けた状態で被転写樹脂層12に活性エネルギー線14を照射して面外凹凸パターン3aを有する第1樹脂層3を形成する。モールド11には、反転パターン11bを取り囲むように遮光パターン11aが設けられており、活性エネルギー線14の照射は、遮光パターン11aをマスクとして用いて行われる。遮光パターン11aは、長方形状の開口部を有する環状形状となっており、第1樹脂層3の端部3bに対応する辺11cは、直線状になっている。このため、端部3bは、直線状となる。遮光パターン11aの形成方法や材料は、活性エネルギー線を遮光するという目的を達成するものであれば特に限定されない。遮光パターン11aは、一例では、Crなどの金属材料をスパッタリングでモールド11上に付着させることによって形成することができる。遮光パターン11aは、アクリル系、ウレタン系、ポリカーボネート系などの有機材料や、カーボン系などの無機材料で形成してもよい。これらの材料には、色素など他の材料を含有させてもよい。
 モールド11を被転写樹脂層12に押し付ける圧力は、反転パターン11bの形状を被転写樹脂層12に転写可能な圧力であればよい。被転写樹脂層12へ照射する活性エネルギー線14は、被転写樹脂層12が十分に硬化する程度の積算光量で照射すればよく、積算光量は、例えば100~10000mJ/cmである。活性エネルギー線14の照射によって、被転写樹脂層12が硬化される。本実施形態では、モールド11に遮光パターン11aを設け、モールド11側から活性エネルギー線14の照射を行っているが、基材7に遮光パターン11aを設けるか、又は基材7の下側に配置した別の部材に遮光パターン11aを設けて、基材7側から活性エネルギー線14の照射を行ってもよい。
 次に、図7(b)に示すように、基材7上の、第2樹脂層5を形成する領域に、光硬化性樹脂組成物を塗布して被転写樹脂層15を形成する。光硬化性樹脂組成物の説明は上述の通りである。
 次に、図7(b)~(c)に示すように、面外凹凸パターン5aの反転パターン13bを有するモールド13を被転写樹脂層15に押し付けた状態で被転写樹脂層15に活性エネルギー線14を照射して面外凹凸パターン5aを有する第2樹脂層5を形成する。モールド13には、反転パターン13bを取り囲むように遮光パターン13aが設けられており、活性エネルギー線14の照射は、遮光パターン13aをマスクとして用いて行われる。遮光パターン13aは、環状形状であり、一辺には面内凹凸パターン4aの反転パターン13cが設けられている。このため、遮光パターン13aをマスクとして用いて活性エネルギー線14の照射を行うことによって、第2樹脂層5の端部5bに面内凹凸パターン4aが形成される。遮光パターン13aのその他の説明は、遮光パターン11aの説明と同様である。
 以上の工程により、図1に示す構造体1の製造が完了する。本実施形態では、反転パターン13cを有する遮光パターン13aを用いて第2樹脂層5に面内凹凸パターン4aを形成しているので、微細な面内凹凸パターン4aを高精度に形成することが可能である。
 上記実施形態では、遮光パターンが異なる2種類のモールド11,13を用いたが、第1樹脂層3の形成時にモールド13を用いることも可能である。この場合、使用するモールド13の数を減らすことができるという利点がある。
 また、上記実施形態では、モールド11の辺11cを直線状にしたが、辺11cに面内凹凸パターン4bの反転パターンを形成することによって、第1樹脂層3の端部3bに面内凹凸パターン4bを形成して図4に示す構造体1を製造することができる。また、対向する辺の一方に面内凹凸パターン4bの反転パターンを形成し且つ他方に面内凹凸パターン4aの反転パターンを形成したモールドを用いることによって、1つのモールドを用いて図4に示す構造体1を製造することが可能である。
 また、図5に示すように第1及び第2樹脂層3,5が互いに重ならないように配置された構造体1は、例えば図8(a)に示すように対向する辺の一方に面内凹凸パターン16aを形成し且つ他方にその反転パターンである面外凹凸パターン16bを形成した遮光パターン16をマスクとして用いて形成することができる。
 具体的には、まず、図8(b)に示すように、遮光パターン16をマスクとして用いて第1樹脂層3の端部3bに面内凹凸パターン16aの反転パターンである面内凹凸パターン4bが形成された構造を形成し、次に、面内凹凸パターン4bと面内凹凸パターン16bの位置が一致するように遮光パターン16を移動させて第2樹脂層5を形成することによって、図5に示す構造体1を製造することができる。
1:構造体、3:第1樹脂層、3a:面外凹凸パターン、4:つなぎ目、4a:面内凹凸パターン、5:第2樹脂層、5a:面外凹凸パターン、7:基材、11,13:モールド、11a,13a:遮光パターン、14:活性エネルギー線、16:遮光パターン

Claims (11)

  1. 面外方向の凹凸形状からなる面外凹凸パターンを有する第1及び第2樹脂層が連結された構造体であって、
    第1及び第2樹脂層のつなぎ目に、面内方向の凹凸形状からなる面内凹凸パターンが設けられる、構造体。
  2. 前記面内凹凸パターンのピッチが10nm~1mmであるか、又は(前記面内凹凸パターンのピッチ/前記面外凹凸パターンのピッチ)で算出されるピッチ比の値が10000以下である、請求項1に記載の構造体。
  3. 前記面外凹凸パターンは、ラインアンドスペースからなるパターンである、請求項1又は請求項2に記載の構造体。
  4. 第1及び第2樹脂層は、前記ラインアンドスペースが延びる方向に連結される、請求項3に記載の構造体。
  5. 前記面内凹凸パターンは、鋸状、波状、又は矩形状である、請求項1~請求項4の何れか1つに記載の構造体。
  6. 前記面内凹凸パターンは、(前記面内凹凸パターンの幅/前記面内凹凸パターンのピッチ)で算出されるアスペクト比の値が1以上である、請求項1~請求項5の何れか1つに記載の構造体。
  7. 第1及び第2樹脂層は、互いに重なるように連結され、
    前記つなぎ目において、第2樹脂層の端部が第1樹脂層の上側に配置され、
    前記面内凹凸パターンは、第2樹脂層の端部に設けられる、請求項1~請求項6の何れか1つに記載の構造体。
  8. 前記面内凹凸パターンは、第2樹脂層の端部と第1樹脂層の端部の両方に設けられる、請求項7に記載の構造体。
  9. 第1及び第2樹脂層は、互いに重ならないように連結される、請求項1~請求項6の何れか1つに記載の構造体。
  10. 請求項1~請求項9の何れか1つに記載の構造体の製造方法であって、
    基材上に光硬化性樹脂組成物を塗布して得られる被転写樹脂層に前記面外凹凸パターンの反転パターンを有するモールドを押し付けた状態で前記被転写樹脂層に活性エネルギー線を照射して前記面外凹凸パターンを有する樹脂層を形成する工程を備え、
    前記活性エネルギー線は、前記面内凹凸パターンの反転パターンを有する遮光パターンをマスクとして用いて行う、構造体の製造方法。
  11. 前記遮光パターンは、前記モールドに設けられる請求項10に記載の構造体の製造方法。
PCT/JP2016/066551 2015-06-05 2016-06-03 構造体及びその製造方法 WO2016195064A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-114850 2015-06-05
JP2015114850A JP2018125318A (ja) 2015-06-05 2015-06-05 構造体及びその製造方法

Publications (1)

Publication Number Publication Date
WO2016195064A1 true WO2016195064A1 (ja) 2016-12-08

Family

ID=57441322

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/066551 WO2016195064A1 (ja) 2015-06-05 2016-06-03 構造体及びその製造方法

Country Status (3)

Country Link
JP (1) JP2018125318A (ja)
TW (1) TW201704145A (ja)
WO (1) WO2016195064A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020036173A1 (ja) * 2018-08-14 2020-02-20 Scivax株式会社 微細構造体製造方法
JP7147447B2 (ja) * 2018-10-09 2022-10-05 大日本印刷株式会社 樹脂製モールド、及び光学素子の製造方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6014734A (ja) * 1983-07-06 1985-01-25 Hitachi Denshi Ltd 撮像管用フオトマスクの製造方法
JPH04140750A (ja) * 1990-10-02 1992-05-14 Dainippon Printing Co Ltd エンボス版の製造方法
JPH07156266A (ja) * 1993-12-03 1995-06-20 Toppan Printing Co Ltd レリーフパターンの多面付け複製方法
JPH0890895A (ja) * 1994-09-29 1996-04-09 Toppan Printing Co Ltd スクリーン印刷版用大判ポジフィルムの作製方法
JP2007268825A (ja) * 2006-03-31 2007-10-18 Mutoh Holdings Co Ltd 印字装置及び印字方法
JP2009182075A (ja) * 2008-01-30 2009-08-13 Canon Inc インプリントによる構造体の製造方法
JP2011186845A (ja) * 2010-03-09 2011-09-22 Calsonic Kansei Corp 表面加工データの作成方法および装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6014734A (ja) * 1983-07-06 1985-01-25 Hitachi Denshi Ltd 撮像管用フオトマスクの製造方法
JPH04140750A (ja) * 1990-10-02 1992-05-14 Dainippon Printing Co Ltd エンボス版の製造方法
JPH07156266A (ja) * 1993-12-03 1995-06-20 Toppan Printing Co Ltd レリーフパターンの多面付け複製方法
JPH0890895A (ja) * 1994-09-29 1996-04-09 Toppan Printing Co Ltd スクリーン印刷版用大判ポジフィルムの作製方法
JP2007268825A (ja) * 2006-03-31 2007-10-18 Mutoh Holdings Co Ltd 印字装置及び印字方法
JP2009182075A (ja) * 2008-01-30 2009-08-13 Canon Inc インプリントによる構造体の製造方法
JP2011186845A (ja) * 2010-03-09 2011-09-22 Calsonic Kansei Corp 表面加工データの作成方法および装置

Also Published As

Publication number Publication date
JP2018125318A (ja) 2018-08-09
TW201704145A (zh) 2017-02-01

Similar Documents

Publication Publication Date Title
JP6173354B2 (ja) 光透過型インプリント用モールド、大面積モールドの製造方法
WO2016006592A1 (ja) ステップアンドリピート用インプリント用モールド及びその製造方法
JP4382791B2 (ja) 光線方向制御素子の製造方法
JP6603218B2 (ja) 微細構造体の製造方法
US9360751B2 (en) Imprinting stamp and nano-imprinting method using the same
US20100096770A1 (en) Method for fabrication of mold for nano imprinting and method for production of photonic crystal using the same
WO2016195064A1 (ja) 構造体及びその製造方法
JP2007240854A (ja) 反射防止構造体
WO2016060170A1 (ja) 偏光板及びその製造方法、媒体
TWI430879B (zh) 導光板及其製作方法
US9536819B2 (en) Transparent substrate having nano pattern and method of manufacturing the same
WO2017126589A1 (ja) 細胞培養基板及びその製造方法
WO2017078019A1 (ja) 微細構造体の製造方法
WO2017047549A1 (ja) 微細構造体の製造方法
JP7147447B2 (ja) 樹脂製モールド、及び光学素子の製造方法
JP2018163942A (ja) インプリントモールド及びインプリントモールドの製造方法
JP6660039B2 (ja) 微細構造体製造用金型、細構造体製造用金型の製造方法、微細構造体及び微細構造体の製造方法
WO2016043244A1 (ja) 微細パターン付き繊維体
JP2005249947A (ja) マスクの形成方法、グレーティング、マスク、パターン形成方法、光学素子、及び半導体デバイス
JP6753197B2 (ja) インプリントモールド
JP2006095836A (ja) 表面に凹凸形状を有するハードコート層の形成方法
JP2016096274A (ja) インプリント用モールド及びインプリント方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16803495

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16803495

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP