WO2017126589A1 - 細胞培養基板及びその製造方法 - Google Patents
細胞培養基板及びその製造方法 Download PDFInfo
- Publication number
- WO2017126589A1 WO2017126589A1 PCT/JP2017/001689 JP2017001689W WO2017126589A1 WO 2017126589 A1 WO2017126589 A1 WO 2017126589A1 JP 2017001689 W JP2017001689 W JP 2017001689W WO 2017126589 A1 WO2017126589 A1 WO 2017126589A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- adhesive
- cell culture
- culture substrate
- resin layer
- site
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C33/00—Moulds or cores; Details thereof or accessories therefor
- B29C33/38—Moulds or cores; Details thereof or accessories therefor characterised by the material or the manufacturing process
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12M—APPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
- C12M23/00—Constructional details, e.g. recesses, hinges
- C12M23/20—Material Coatings
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C45/00—Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
- B29C45/0053—Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor combined with a final operation, e.g. shaping
- B29C45/0055—Shaping
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12M—APPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
- C12M23/00—Constructional details, e.g. recesses, hinges
- C12M23/02—Form or structure of the vessel
- C12M23/12—Well or multiwell plates
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12M—APPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
- C12M23/00—Constructional details, e.g. recesses, hinges
- C12M23/34—Internal compartments or partitions
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/0002—Lithographic processes using patterning methods other than those involving the exposure to radiation, e.g. by stamping
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C35/00—Heating, cooling or curing, e.g. crosslinking or vulcanising; Apparatus therefor
- B29C35/02—Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould
- B29C35/08—Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation
- B29C35/0805—Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation using electromagnetic radiation
- B29C2035/0827—Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation using electromagnetic radiation using UV radiation
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C45/00—Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
- B29C45/0053—Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor combined with a final operation, e.g. shaping
- B29C2045/0075—Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor combined with a final operation, e.g. shaping curing or polymerising by irradiation
Definitions
- the present invention relates to a cell culture substrate and a method for producing the same.
- a screening test in which a drug is administered to a cell mass (spheroid) cultured in a three-dimensional shape and the metabolic ability of the drug is measured.
- a cell mass spheroid
- it has been required to culture uniform spheroids with a high survival rate using a culture vessel that can be easily prepared.
- a substrate having an adhesion region and an inhibition region for cells is used as a culture substrate.
- Patent Document 1 a resin having a property that can be used in an adhesion region or an inhibition region is special and limited. It is difficult to synthesize such a special resin, which requires a long time and a high cost.
- Some aspects of the present invention have been made in view of such circumstances, and can be easily produced using readily available materials, and a cell culture substrate capable of culturing uniform spheroids with high survival rate Is to provide.
- a cell culture substrate having an adhesive site and a non-adhesive site, wherein the adhesive site and the non-adhesive site have an uneven shape
- a cell culture substrate is provided in which the contact angle of the adhesive site with respect to pure water is greater than that of the adhesive site.
- the present inventor provides a cell culture substrate comprising an adhesive part having a concavo-convex shape and a highly water-repellent non-adhesive part having a concavo-convex shape different from the adhesive part even when an easily available material is used. When used, it was found that uniform spheroids can be cultured with high survival rate, and the present invention has been completed.
- the uneven pitch P 1 of the adhesive part is larger than the uneven pitch P 2 of the non-adhesive part.
- the ratio P 1 / P 2 of the pitch P 1 between the pitch P 2 is 2 or more.
- at least a part of the adhesive part is partitioned by a partition part, and the non-adhesive part is formed on the partition part.
- the non-adhesive part has a plurality of columnar protrusions, the pitch at which the columnar convex parts of the non-adhesive part are formed is 50 to 2000 nm, and the columnar convex parts of the non-adhesive part are , the area of the upper surface is 1600 nm 2 ⁇ 4 [mu] m 2, the gap G 2 between the two columnar protrusions adjacent is in the range of 10 ⁇ 1960nm.
- the adhesive part and the non-adhesive part are made of the same material.
- a method for producing the cell culture substrate wherein the photocurable resin composition coated on a substrate is cured by irradiation with active energy rays, and the adhesive site
- a method for producing a cell culture substrate comprising the step of forming a concavo-convex shape of the non-adhesive site.
- the uneven shape of the adhesive part and the non-adhesive part is formed by a nanoimprint method using a mold.
- FIG. 1 shows a cell culture substrate 1 according to an embodiment of the present invention, in which (a) is a plan view, (b) is a cross-sectional view taken along the line AA, and (c) is a case where the uneven shape of another embodiment is (b). It is sectional drawing which shows the reversed pattern.
- FIG. 2 is an enlarged view of a region X in FIG. 1B showing an adhesive portion 3 according to an embodiment of the present invention, where FIG. 1A is a plan view and FIG. FIGS. 1A and 1B are enlarged views of a region Y in FIG. 1B showing a non-adhesive portion 5 of an embodiment of the present invention, wherein FIG. 1A is a plan view and FIG.
- 1B is a CC cross-sectional view. It is sectional drawing of the cell culture substrate 1 of one Embodiment of this invention, (a) has the partition part 19, (b) shows the example in the case of not having a partition part.
- the transparent base material 23 provided with the light-shielding part 21 is shown, (a) is a plan view and (b) is a DD cross-sectional view.
- (C) to (e) show other examples of the method of forming the light shielding pattern 3. It is sectional drawing which shows the 1st to-be-transferred resin layer formation process of this invention. It is sectional drawing which shows the adhesive part resin layer formation process of this invention. It is sectional drawing which shows the composite resin layer formation process of this invention. 4 is SEM images (a) to (d) of samples 1 to 4.
- the cell culture substrate 1 of one embodiment of the present invention includes a base material 7 and a resin layer 9 on at least one surface of the base material 7. , Having an adhesive part 3 and a non-adhesive part 5.
- the uneven shape of the adhesive part 3 and the non-adhesive part 5 shown in FIG. 1B may be a shape in which the uneven part of either the adhesive part 3 or the non-adhesive part 5 is inverted, and any uneven part is provided.
- the shape as shown in FIG. 1C may be reversed.
- a non-adhesive part 5 is arranged so as to surround the adhesive part 3 and is divided into an adhesive part 3 area and a non-adhesive part 5 area.
- a part may be interrupted.
- the shape of the region of the adhesive part 3 is not particularly limited, and examples thereof include a circle and a polygon.
- examples thereof include a circle and a polygon.
- the cell culture substrate 1 may have a partition part 19 that partitions at least a part of the adhesive part. Moreover, as shown in FIG.4 (b), it does not need to have. In order to prevent the cells from being detached from the base material at the time of medium exchange or the like, it is preferable to have the partition part 19.
- the material of the base material 7 is not specifically limited, It is preferable that they are transparent base materials, such as a resin base material and a quartz base material, and it is more preferable that it is a resin base material from a flexible viewpoint.
- the resin constituting the resin base material include one selected from the group consisting of polyethylene terephthalate, polycarbonate, polyester, polyolefin, polyimide, polysulfone, polyethersulfone, cyclic polyolefin, and polyethylene naphthalate.
- the substrate 7 is preferably in the form of a flexible film, and the thickness is preferably in the range of 25 to 500 ⁇ m.
- the resin constituting the resin layer 9 is not particularly limited.
- an acrylic resin, a methacrylic resin, a styrene resin, an olefin resin, a polycarbonate resin, a polyester resin, an epoxy resin, a silicone resin, and the like are relatively easy to obtain and synthesize and are inexpensive. It is preferable to consist of resin.
- the types of the resin material of the adhesive part 3 and the non-adhesive part 5 may be different. However, when they are the same, it is more preferable because the production is easier and efficient.
- the adhesive portion 3 has a concavo-convex shape with a plurality of adhesive convex portions 11 and adhesive concave portions 13.
- the shape which the convex part and the recessed part reversed may be sufficient.
- the shape of the adhesive convex portion 11 is not particularly limited, and examples thereof include a columnar shape (columnar shape, polygonal columnar shape, etc.), a frustum, a microlens, and the like.
- the shape of the adhesive recess 13 is not particularly limited, and examples thereof include a columnar shape (columnar shape, polygonal columnar shape, etc.), a frustum, a hole hollowed into a shape such as a microlens, and the like.
- the pitch P 1 at which the adhesive convex portion 11 or the adhesive concave portion 13 is formed may be within a range having adhesiveness to the target cell, and is, for example, 2 to 50 ⁇ m, preferably 5 to 20 ⁇ m. More preferably, it is 7 to 15 ⁇ m. If the pitch P 1 is too small, the cell is less likely to adhere. Further, the pitch P 1 is too large, cells are difficult to form spheroids. Specifically, the pitch P 1 is, for example, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13 , 14 , 15, 16, 17, 18, 19, 20, 25. , 30, 35, 40, 45, 50 ⁇ m, and may be within a range between any two of the numerical values exemplified here.
- the uneven corrugated shape by the adhesive convex part 11 and the adhesive recessed part 13 may be regular or irregular, it is preferable that it is regular from a viewpoint of work efficiency.
- the distance between the tips of the many convex portions or concave portions constituting the uneven shape is “pitch”, and when the uneven shape is irregularly formed, the uneven shape
- the average value of the distances between the tips of a large number of convex portions or concave portions constituting the “pitch” is defined as “pitch”.
- the height H 1 of the adhesive protrusion 11 is not particularly limited, but is, for example, 1 to 20 ⁇ m, preferably 1 to 10 ⁇ m, and more preferably 1 to 5 ⁇ m. If it is too low, it is difficult for cells to form spheroids. Moreover, it is because the adhesive convex part 11 will fall easily when too high.
- a typical example of the adhesive part has a plurality of columnar protrusions.
- the area of the upper surface of the columnar convex portion of the adhesive part may be within the range having adhesiveness to the target cells, and is, for example, 1 to 2400 ⁇ m 2 , preferably 16 to 360 ⁇ m 2 , more preferably. Is 36 to 196 ⁇ m 2 .
- Gap G 1 between the two columnar protrusions adjacent may be within a range having adhesion to cells of interest, e.g., a 1 ⁇ 49 .mu.m, preferably from 4 ⁇ 19 .mu.m, more preferably 6-14 ⁇ m.
- the adhesive portion 3 has a concavo-convex shape with a plurality of non-adhesive convex portions 15 and non-adhesive concave portions 17.
- the shape which the convex part and the recessed part reversed may be sufficient.
- the contact angle of the non-adhesive part 5 with respect to pure water is not particularly limited, but is larger than the adhesive part 3. If it is larger than the adhesive part 3, it is difficult for cells to adhere to the non-adhesive part 5, and spheroids are easily formed.
- the contact angle of the non-adhesive portion 5 with respect to pure water is, for example, 90 to 180 °, preferably 105 to 180 °, more preferably 110 to 180 °, and still more preferably 115 to 180 °. .
- Non-adhesive convex part 15 and Non-adhesive concave part 17 The shape of the non-adhesive convex portion 15 is not particularly limited, and examples thereof include a columnar shape (columnar shape, polygonal columnar shape, etc.), a frustum shape, a microlens shape, and the like.
- the shape of the non-adhesive recess 17 is not particularly limited, and examples thereof include a hole hollowed into a columnar shape (such as a columnar shape or a polygonal columnar shape), a frustum shape, or a microlens shape.
- Pitch P 2 of non-adhesive protrusions 15 or a non-adhesive recess 17 is formed is 50 ⁇ 2000 nm, preferably 100 ⁇ 1000 nm, more preferably 0.99 ⁇ 800 nm. If the pitch P 2 is too small, the cells can not recognize the unevenness disappears identification of adhesion and non-adhesive. Further, the pitch P 2 is too large, cells are easily adhered. Specifically, the pitch P 2 is, for example, 50, 60, 70, 80, 90, 100, 150, 200 , 250, 300, 350, 400, 450, 500, 550, 600, 650, 700, 750, 800.
- corrugated shape by the non-adhesive convex part 15 and the non-adhesive recessed part 17 may be regular or irregular, it is preferable that it is regular from a viewpoint of work efficiency.
- the distance between the tips of the many convex portions or concave portions constituting the uneven shape is “pitch”, and when the uneven shape is irregularly formed, the uneven shape
- the average value of the distances between the tips of a large number of convex portions or concave portions constituting the “pitch” is defined as “pitch”.
- the pitch P 1 of the uneven shape of the adhesive portion 3 is larger than the pitch P 2 of the uneven shape of the non-adhesive portion 5.
- the larger the pitch the smaller the water contact angle and the higher the adhesion to cells, while the smaller the pitch, the larger the water contact angle and the lower the cell adhesion. Therefore, it becomes easy to create a spheroid by surrounding the uneven portion having a large pitch with the uneven portion having a small pitch.
- the ratio P 1 / P 2 of the pitch P 1 and the pitch P 2 is 2 or more, more preferably 5 or more, and further preferably 10 or more.
- P 1 / P 2 is large, the difference in adhesion tends to increase, and the spheroids can be cultured more efficiently as cells easily gather.
- the upper limit of P 1 / P 2 is not particularly defined, but is 200, for example.
- Height H 2 of the non-adhesive protrusions 15 is not particularly limited, for example, 50 ⁇ 2000 nm.
- the height H 2 is preferably 100 to 1000 nm, more preferably 150 to 800 nm. If it is too low, the cells tend to adhere. Moreover, it is because the non-adhesive convex part 15 will fall easily when too high.
- a typical example of the non-adhesive portion has a plurality of columnar protrusions, more specifically, a plurality of columnar protrusions.
- the area of the upper surface of the columnar convex portion of the non-adhesive site may be in the range where the adhesiveness to the target cell is low, for example, 1600 nm 2 to 4 ⁇ m 2 . This area is preferably 810 nm 2 to 1 ⁇ m 2 , more preferably 0.02 to 0.6 ⁇ m 2 .
- Gap G 2 between the two columnar protrusions adjacent may be within a range less adhesion to cells of interest, for example, 10 ⁇ 1960nm. Preferably, it is 60 to 960 nm. More preferably, it is 110 to 760 nm.
- a fluorine atom-containing layer may be provided so as to cover the non-adhesive convex portion 15 and the non-adhesive concave portion 17.
- the fluorine atom containing layer should just contain the fluorine atom, and the thickness and structure are not limited. Providing the fluorine atom-containing layer makes it difficult for cells to adhere.
- the fluorine atom-containing layer preferably contains a fluorine-containing group.
- the fluorine-containing group is a perfluoroalkyl group, and more specifically, a perfluoroalkylsilane group.
- the carbon number of the perfluoroalkyl group is, for example, 1 to 10, specifically, for example, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, and the numerical values exemplified here are It may be within a range between any two.
- the fluorine-containing group is preferably chemically bonded to the non-adhesive convex portion 15 and the non-adhesive concave portion 17 or the inorganic film.
- the inorganic film has high adhesion to the resin layer 9, and the fluorine-containing group tends to form a strong chemical bond to the inorganic film, so that the non-adhesive convex portion 15 and the non-adhesive concave portion 17 and the fluorine atom
- the fluorine atom-containing layer is firmly held on the non-adhesive convex portion 15 and the non-adhesive concave portion 17.
- the inorganic film include an inorganic oxide film, an inorganic nitride film, and an inorganic oxynitride film.
- the inorganic element constituting the inorganic film include silicon and aluminum.
- the inorganic film is, for example, a silicon dioxide film or an aluminum oxide film.
- the thickness of the inorganic film is not particularly limited, but is, for example, 1 to 20 nm.
- the fluorine atom-containing layer can be formed by forming an inorganic film on the non-adhesive convex portion 15 and the non-adhesive concave portion 17 and reacting the inorganic film with a fluorine-containing silane coupling agent.
- the fluorine-containing silane coupling agent is, for example, perfluoroalkyltrialkoxy (methoxy, ethoxy, etc.) silane. Even if a fluorine-containing silane coupling agent is allowed to act on the non-adhesive convex portion 15 and the non-adhesive concave portion 17 without forming an inorganic film, it is difficult to form a strong chemical bond. It is preferable to form an inorganic film on the adhesive recess 17.
- the fluorine-containing silane coupling agent include OPTOOL DSX (manufactured by Daikin Industries).
- the area of the adhesive site 3 may be appropriately adjusted depending on the type of cells to be cultured and the intended use of the spheroid, and is not particularly limited, but is, for example, 25 to 1000000 ⁇ m 2 and preferably 100 to 250,000 ⁇ m. 2 , more preferably 2500 to 40000 ⁇ m 2 .
- the shape of the region of the adhesive part 3 is a square, the length of one side is 5 to 1000 ⁇ m, preferably 10 to 500 ⁇ m, more preferably 50 to 200 ⁇ m.
- the ratio of the region of the non-adhesive site 5 to the total area of the region of the adhesive site 3 and the region of the non-adhesive site 5 is, for example, preferably 80% or less, more preferably 50% or less, and 25% or less. Is more preferable.
- Partition 19 As shown in FIG. 4 (a), when having a partition part 19 that partitions at least a part of the adhesive part 3, the partition part 19 is preferably arranged so as to surround the adhesive part 3.
- the region of the adhesive part 3 is formed. However, it is not always necessary to enclose without a break, and a part may be interrupted.
- the shape of the region of the adhesive part 3 is not particularly limited, and examples thereof include a polygon such as a circle or a rectangle.
- the non-adhesive part 5 is formed on the partition part.
- the non-adhesive part 5 should just be formed in a part of partition part, Preferably, it forms so that at least most of the upper surfaces of the partition part 19 may be covered. Note that the non-adhesive portion 5 may cover the entire surface of the partition portion 19.
- the height H 3 of the partition part 19 is not particularly limited, but is, for example, 5 to 100 ⁇ m, preferably 10 to 50 ⁇ m, and more preferably 15 to 25 ⁇ m. If the height H 3 is too low, easily removed by the cell and the water flow. Further, the height H 3 is too high, the oxygen supply reduces the viability of the well can not cells.
- the height H 3 is, as shown in FIG. 4 (a), from the top of the adhesive protrusions 11, the height up to the upper end of the partition portion including a non-adhesive portion.
- the manufacturing method of the cell culture substrate which has a partition part of one Embodiment of this invention is equipped with the non-adhesive site
- each step will be described in more detail.
- Non-adhesive site transfer resin layer forming step (1-1) First transferred resin layer forming step First, a transparent substrate 23 having a light shielding portion 21 as shown in FIG. As shown to 6 (a), the 1st photocurable resin composition is apply
- the transparent base material 23 is formed of a transparent material such as a resin base material, a quartz base material, or a silicone base material, and the material is not particularly limited, but is preferably a resin base material. This is because by using the resin base material, a cell culture substrate having a desired size (also capable of a large area) can be obtained by the method of the present invention.
- the resin constituting the resin base material include one selected from the group consisting of polyethylene terephthalate, polycarbonate, polyester, polyolefin, polyimide, polysulfone, polyethersulfone, cyclic polyolefin, and polyethylene naphthalate.
- the transparent base material 23 is preferably flexible, and when a resin base material is used, the same or different base materials are laminated, or the resin composition is laminated on the resin base material in a film form. May be.
- the thickness of the resin base material is preferably in the range of 25 to 500 ⁇ m.
- the light shielding portion 21 provided on the transparent base material 23 is a pattern used as a mask in the composite shape forming step.
- the composite resin layer 45 has the light shielding portion 21 on the light shielding portion 21.
- Corresponding adhesive part 3, partition part 19, and non-adhesive part 5 on the partition part are formed.
- the region where the active energy ray 29 is blocked by the light shielding portion 21 becomes the adhesive portion 3.
- “Active energy rays” is a general term for energy rays that can cure a photocurable resin composition, such as UV light, visible light, and electron beams.
- the shape of the light shielding portion 21 is not particularly limited, and a polygon such as a pentagon or a hexagon, a circle, or the like can be used in addition to the square as shown in FIG. To correspond to.
- the light shielding portion 21 is patterned after a light shielding material (for example, a metal material such as chrome) is deposited on the transparent substrate 23 by sputtering, or a pattern of the light shielding material is printed by a method such as ink jet printing or screen printing. Can be formed.
- a light shielding material for example, a metal material such as chrome
- the light-shielding portion 21 may be formed on the surface 23a of the transparent substrate 23 on which the first photocurable resin composition is applied, as shown in FIG.
- the transparent base material 23 may be formed on the back surface 23b.
- the light shielding portion 21 may be formed so as to be flush with the transparent base material 23 as shown in FIG. 5 (b), and the flat surface of the transparent base material 23 as shown in FIG. 5 (c). It may be formed on top, and may be embedded in the transparent substrate 23 as shown in FIG.
- the 1st photocurable resin composition which comprises the 1st to-be-transferred resin layer 25 contains a monomer and a photoinitiator, and has the property to harden
- monomers examples include photopolymerizable monomers for forming acrylic resins, methacrylic resins, styrene resins, olefin resins, polycarbonate resins, polyester resins, epoxy resins, silicone resins, and the like. Photopolymerizable acrylic monomers and A methacrylic monomer is preferred.
- the photoinitiator is a component added to promote the polymerization of the monomer, and is preferably contained in an amount of 0.1 part by mass or more with respect to 100 parts by mass of the monomer.
- the upper limit of content of a photoinitiator is not prescribed
- the first photocurable resin composition of the present invention comprises components such as a solvent, a polymerization inhibitor, a chain transfer agent, an antioxidant, a photosensitizer, a filler, a leveling agent, etc. of the first photocurable resin composition. You may include in the range which does not affect a property.
- 1st photocurable resin composition can be manufactured by mixing the said component by a well-known method.
- the first photocurable resin composition is applied onto the transparent substrate 23 by a method such as spin coating, spray coating, bar coating, dip coating, die coating, or slit coating to form the first transferred resin layer 25. Is possible.
- the first transferred resin layer 25 is usually a transparent resin layer, and its thickness is 100 nm to 1 mm, preferably 5 to 500 ⁇ m. With such a thickness, imprinting can be easily performed, and a reverse pattern of a non-adhesive portion can be formed.
- the first mold 27 has a first pattern 28.
- the first pattern 28 is a pattern of a desired non-adhesive portion 5.
- the first mold 27 is formed of a transparent material such as a resin base material, a quartz base material, or a silicone base material, and can be formed of the same material as the transparent base material 23.
- the pressure for pressing the first mold 27 against the first transferred resin layer 25 may be any pressure that can transfer the shape of the first pattern 28 to the first transferred resin layer 25.
- the active energy ray 29 irradiated to the first transferred resin layer 25 may be irradiated with an integrated light amount sufficient to sufficiently cure the first transferred resin layer 25.
- the integrated light amount is, for example, 100 to 10,000 mJ / cm 2 . is there.
- the first transferred resin layer 25 is cured by irradiation with the active energy ray 29, and as shown in FIG. 6C, the first reverse pattern 32 in which the first pattern 28 is reversed, that is, desired non-adhesiveness.
- a non-adhesive site transfer resin layer 31 in which a reverse pattern of the site 5 is formed is formed.
- Adhesive site resin layer forming step (2-1) Second transferred resin layer forming step First, as shown in FIG. 7 (a), a second photocurable resin composition is applied on a substrate 7. The second transferred resin layer 33 is formed by coating.
- the description of the first photocurable resin composition described above applies to the second photocurable resin composition unless it is contrary to the gist.
- the kind of 2nd photocurable resin composition may be the same as that of a 1st photocurable resin composition, or may differ.
- the second transferred resin layer 33 obtained by applying the second photocurable resin composition is usually a transparent resin layer, and its thickness is usually 1 ⁇ m to 1 mm, preferably 50 ⁇ m to 500 ⁇ m. . With such a thickness, imprinting can be easily performed, and an adhesive part can be formed.
- the second mold 35 has a second pattern 36.
- the second pattern 36 is a reverse pattern of the desired adhesive part 3.
- the active energy ray 29 may be irradiated from the substrate side, and the second mold 35 is made of a transparent material such as a resin substrate, a quartz substrate, or a silicone substrate, or a metal material. It is also possible to form.
- the pressure for pressing the second mold 35 against the second transferred resin layer 33 may be any pressure that can transfer the shape of the second pattern 36 to the second transferred resin layer 33.
- the active energy ray 29 irradiated to the second transferred resin layer 33 may be irradiated with an integrated light amount sufficient to sufficiently cure the second transferred resin layer 33.
- the integrated light amount is, for example, 100 to 10,000 mJ / cm 2 . is there.
- the second transferred resin layer 33 is cured by irradiation with the active energy rays 29, and as shown in FIG. 7D, the second inverted pattern 40 in which the second pattern 36 is inverted, that is, desired non-adhesiveness.
- the adhesive part resin layer 39 in which the part 5 is formed is formed.
- Composite resin layer forming step (3-1) Third transferred resin layer forming step First, as shown in FIG. 8 (a), a third photocurable resin composition is formed on the adhesive portion resin layer 39. Is applied to form the third transferred resin layer 41.
- the description of the first photocurable resin composition described above applies to the second photocurable resin composition unless it is contrary to the gist.
- the type of the third photocurable resin composition may be the same as or different from the first photocurable resin composition, and may be the same as or different from the second photocurable resin composition.
- the third transferred resin layer 41 obtained by applying the third photocurable resin composition is usually a transparent resin layer, and its thickness is 10 ⁇ m to 1 mm, preferably 50 ⁇ m to 500 ⁇ m. With such a thickness, imprinting can be easily performed, and a partition part and a non-adhesive part can be formed.
- the pressure for pressing the non-adhesive site transfer resin layer 31 against the third transferred resin layer 41 may be any pressure that can transfer the shape of the non-adhesive site transfer resin layer 31 to the third transferred resin layer 41. .
- the irradiation of the active energy ray 29 to the third transferred resin layer 41 is performed from the non-adhesive site transfer resin layer 31.
- the active energy ray 29 irradiated to the third transferred resin layer 41 may be irradiated with an integrated light amount sufficient to cure the third transferred resin layer 41.
- the integrated light amount is, for example, 100 to 10,000 mJ / cm 2 . is there.
- the third photocurable resin composition buried in the gap of the adhesive portion resin layer 39 is cured, and the non-adhesive portion transfer is performed.
- the third transferred resin layer 41 to which the reverse pattern of the resin layer 31 is transferred is cured to form a composite resin layer 45.
- the partition portion 19 shown in FIG. 8E and the non-adhesive site 5 on the partition portion 19 are formed.
- the active energy ray 29 is blocked by the light shielding portion 21 and the adhesive part 3 remains in the region where the third photocurable resin composition is not cured.
- the non-adhesive site transfer resin layer 31 is removed, and the uncured third photocurable resin composition 42 remaining on the adhesive site 3 is removed. Is removed with a solvent to obtain the structure shown in FIG. 8E, and the production of the cell culture substrate is completed.
- a mold having a reversal pattern of the composite resin layer 45 can be produced, and if this is used, a cell culture substrate having the same pattern as the composite resin layer 45 can be produced at a time. .
- manufacture of a cell culture substrate as shown in FIG.4 (b) is possible by using the mold which has the inversion pattern of the adhesive part 3 and the non-adhesive part 5.
- FIG.4 (b) is a mold which has the inversion pattern of the adhesive part 3 and the non-adhesive part 5.
- Photopolymerizable monomer Trimethylolpropane ethylene oxide-modified triacrylate (manufactured by Osaka Organic Chemical Industry Co., Ltd., product name: Biscoat # 360) 50 parts by mass Bisphenol A ethylene oxide-modified diacrylate (manufactured by Osaka Organic Chemical Industry Co., Ltd., product name: Biscoat # 700HV) 20 parts by mass Tripropylene glycol diacrylate (manufactured by Osaka Organic Chemical Industry Co., Ltd., product name: Biscoat # 310HP) 30 parts by mass Photoinitiator 1-hydroxycyclohexyl phenyl ketone (manufactured by BASF Japan, product name: Irgacure 184) 5 parts by mass
- Example 1 (Example 1) (Formation of non-adhesive part transfer resin layer)
- the photocurable resin composition prepared as described above was applied with a bar coater so as to have a thickness of 10 ⁇ m.
- a columnar nanopillar (pitch: 150 nm, height: 250 nm, diameter: 100 nm) mold was laminated from above with a roller so that the coated resin surface was pressed against the mold. Thereafter, UV irradiation was performed from the mold side with an integrated light amount of 500 mJ / cm 2 to cure the photocurable resin composition.
- the mold and the resin-cured PET base material were peeled off to produce a nanohole transfer resin layer having the inverted shape of the mold.
- the photocurable resin composition prepared above was applied to a PET substrate with a bar coater to a thickness of 10 ⁇ m, and hexagonal columnar (honeycomb) nanoholes (pitch: 12 ⁇ m, depth: 5 ⁇ m, parallel) (Width of two sides: 17 ⁇ m) Lamination was performed with a roller from above so that the coated resin surface was pressed against the mold. Thereafter, UV irradiation was performed from the PET substrate side with an integrated light amount of 500 mJ / cm 2 to cure the photocurable resin composition. The mold and the resin-cured PET base material were peeled off to produce a nanopillar transfer resin layer having the inverted shape of the mold.
- the photocurable resin composition prepared above was applied with a bar coater so as to have a thickness of 10 ⁇ m, and the nanohole transfer resin layer was used as a mold. Lamination was performed from above with a roller so that the coated resin surface was pressed against the nanohole transfer resin layer. Thereafter, UV irradiation was performed from the nanohole transfer resin layer with an integrated light amount of 500 mJ / cm 2 to cure the photocurable resin composition. The nanohole transfer resin layer and the nanopillar transfer resin layer were peeled off, and the uncured photocurable resin composition remaining on the nanopillar transfer resin layer was removed with isopropyl alcohol to prepare a cell culture substrate.
- Example 2 (Comparative Example 1)
- cell culture is performed in the same manner except that a mold having not the nanohole transfer resin layer but the same lattice-shaped light-shielding portion 21 but having a concave and convex shape is used.
- a substrate was produced.
- Example 3 (Comparative Example 2) A cell culture substrate was prepared only by the adhesive part resin layer forming step of sample 1.
- Example 4 (Comparative Example 3)
- the above-prepared photo-curable resin composition was applied to a PET substrate with a bar coater so as to have a thickness of 10 ⁇ m, and UV irradiation was performed from the PET substrate side with an integrated light amount of 500 mJ / cm 2 , thereby photocuring.
- the functional resin composition was cured.
- ⁇ Water contact angle measurement> About the obtained sample 1, 0.5 microliters of ion-exchange water is dripped at the surface of the adhesion part of the said sample 1, and the non-adhesion part under 25 degreeC using a contact angle measuring apparatus (made by dataphysics), and it contacts water. The angle (water contact angle) was measured and found to be 100 ° and 115 °, respectively.
- ⁇ Cell culture method The cell culture substrate was placed on the bottom of a 6-well plate (Thermo Fisher Scientific) and immersed in 70% ethanol for 1 hour. Then, it was washed 3 times with PBS having a pH of 7.4 (hereinafter the same) and dried. Next, rat hepatocytes were suspended in DMEM (Thermo Fisher Scientific) medium, seeded on a well plate at 1 ⁇ 10 5 cells / well, and then cultured at 37 ° C. under 5% CO 2 for 14 days. . The medium was changed on the next day of the culture, and thereafter every other day.
- DMEM Thermo Fisher Scientific
- FIGS. 9A to 9D show SEM images when samples 1 to 4 are used.
- Sample 1 aggregates in a spherical shape in the lattice, the size of each aggregate is close, and uniform spheroids are formed.
- Sample 2 is agglomerated to some extent, but it straddles the lattice and cannot be said to be spherical, and it cannot be said that the size is uniform. Unlike sample 1, it is presumed that it is caused by having no non-adhesive site on the lattice.
- Sample 3 is agglomerated but only slightly rounded, and the sizes are also greatly different. It is presumed that this is because they are not surrounded by non-adhesive sites and there are no partitions.
- Sample 4 is only thinly spread.
- Drug metabolism was evaluated 1, 7, and 14 days after sowing. After 1, 7, 14 days, the medium is replaced with induction medium (3-MC 0.333 mM) and incubated for 24 hours. Then, it was replaced with a reaction medium (PBS 50 ml, Dicarol 25 ⁇ M, Probenecid 2 mM, ethoxyresorufin 20 ⁇ M) warmed to 37 ° C., incubated for 60 minutes, and then adjusted to pH 7.4 with HCl. 200 ⁇ l of supernatant and 200 ⁇ l of blank (unreacted reaction medium) were placed in a 96-well plate, and the amount of fluorescence [530/590] was measured with a fluorescence plate reader.
- induction medium 3-MC 0.333 mM
- a reaction medium PBS 50 ml, Dicarol 25 ⁇ M, Probenecid 2 mM, ethoxyresorufin 20 ⁇ M
- Table 3 shows the drug metabolism evaluation of samples 1 to 4.
- sample 1 it is presumed that the amount of drug metabolism is large, spheroids are formed, and oxygen is sufficiently supplied.
- Sample 2 had a relatively high amount of drug metabolism but was inferior to sample 1.
- the amount of drug metabolism was about 30 to 40% less than in sample 1.
- sample 4 the amount of drug metabolism was greatly reduced.
Landscapes
- Health & Medical Sciences (AREA)
- Engineering & Computer Science (AREA)
- Wood Science & Technology (AREA)
- Organic Chemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Chemical & Material Sciences (AREA)
- Zoology (AREA)
- Biochemistry (AREA)
- Microbiology (AREA)
- Biotechnology (AREA)
- Biomedical Technology (AREA)
- General Engineering & Computer Science (AREA)
- General Health & Medical Sciences (AREA)
- Genetics & Genomics (AREA)
- Clinical Laboratory Science (AREA)
- Sustainable Development (AREA)
- Immunology (AREA)
- Mechanical Engineering (AREA)
- Manufacturing & Machinery (AREA)
- General Physics & Mathematics (AREA)
- Physics & Mathematics (AREA)
- Apparatus Associated With Microorganisms And Enzymes (AREA)
- Shaping Of Tube Ends By Bending Or Straightening (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
Abstract
Description
好ましくは、前記接着性部位の凹凸形状のピッチP1は、前記非接着性部位の凹凸形状のピッチP2より大きい。
好ましくは、前記ピッチP1と前記ピッチP2の比P1/P2は、2以上である。
好ましくは、前記接着性部位の少なくとも一部分は、仕切り部により仕切られ、前記非接着性部位は、前記仕切り部上に形成されている。
好ましくは、前記非接着性部位は、複数の柱状凸部を有し、前記非接着性部位の柱状凸部が形成されるピッチが50~2000nmであり、前記非接着性部位の柱状凸部は、上面の面積が1600nm2~4μm2であり、隣接した2つの柱状凸部の間の隙間G2が10~1960nmの範囲内である。
好ましくは、前記接着性部位および前記非接着性部位は、同一の材料で構成されている。
好ましくは、前記接着性部位および前記非接着性部位の凹凸形状は、モールドを用いてナノインプリント法によって形成される。
図1(b)に示すように、本発明の一実施形態の細胞培養基板1は、基材7と、基材7の少なくとも一方の面に樹脂層9を備え、樹脂層9は、接着性部位3と非接着性部位5を有する。図1(b)に示す接着性部位3と非接着性部位5の凹凸形状は、接着性部位3および非接着性部位5のいずれかのみの凹凸が反転した形状でもよく、さらにいずれもの凹凸が反転した図1(c)に示すような形状であってもよい。
基材7の材質は、特に限定されないが、樹脂基材、石英基材などの透明基材であることが好ましく、可撓性の観点から樹脂基材であることがさらに好ましい。樹脂基材を構成する樹脂としては、例えば、ポリエチレンテレフタレート、ポリカーボネート、ポリエステル、ポリオレフィン、ポリイミド、ポリサルフォン、ポリエーテルサルフォン、環状ポリオレフィンおよびポリエチレンナフタレートからなる群から選ばれる1種からなるものである。また、基材7は可撓性を有するフィルム状であることが好ましく、その厚さは25~500μmの範囲であることが好ましい。
樹脂層9を構成する樹脂は特に限定されないが、例えば、アクリル樹脂、メタクリル樹脂、スチレン樹脂、オレフィン樹脂、ポリカーボネート樹脂、ポリエステル樹脂、エポキシ樹脂、シリコーン樹脂などの比較的入手・合成が容易で安価な樹脂からなることが好ましい。接着性部位3と非接着性部位5の樹脂材料の種類は異なっていてもよいが、同一のである場合には作製がより容易であり、効率的であるためより好ましい。
図2に示すように、接着性部位3は、複数の接着性凸部11および接着性凹部13による凹凸形状を有する。なお、凸部と凹部とが反転した形状でも良い。
接着性凸部11の形状は特に制限されないが、柱状(円柱状、多角柱状など)、錐台、マイクロレンズなどが挙げられる。接着性凹部13の形状についても特に制限されないが、柱状(円柱状、多角柱状など)、錐台、マイクロレンズなどの形状にくり抜いたホールなどが挙げられる。
図3に示すように、接着性部位3は、複数の非接着性凸部15および非接着性凹部17による凹凸形状を有する。なお、凸部と凹部とが反転した形状でもよい。
非接着性凸部15の形状は特に制限されないが、柱状(円柱状、多角柱状など)、錐台状、マイクロレンズ状などが挙げられる。非接着性凹部17の形状についても特に制限されないが、柱状(円柱状、多角柱状など)、錐台状、マイクロレンズ状などの形状にくり抜いたホールなどが挙げられる。
接着性部位3の領域の面積は、培養する細胞の種類およびスフェロイドの使用目的により適宜調整すればよく、特に制限されるものではないが、例えば、25~1000000μm2であり、好ましくは100~250000μm2であり、より好ましくは2500~40000μm2である。接着性部位3の領域の形状が、正方形である場合には、一辺の長さが、5~1000μmであり、好ましくは10~500μmであり、より好ましくは50~200μmである。
非接着性部位5の領域が接着性部位の領域に対して大きすぎると、細胞が接着性部位3の領域へ移動するのが困難であるためスフェロイドを形成しにくい。よって、接着性部位3の領域と非接着性部位5の領域の面積の合計に対する非接着性部位5の領域の比率は、例えば、80%以下が好ましく、50%以下がより好ましく、25%以下がさらに好ましい。
図4(a)に示すように、接着性部位3の少なくとも一部を仕切る、仕切り部19を有している場合、好ましくは、仕切り部19は、接着性部位3を囲むように配置され、接着性部位3の領域を形成する。ただし、必ずしも切れ目なく囲む必要はなく、一部が途切れていてもよい。なお、接着性部位3の領域の形状は、特に制限されないが円形または四角形などの多角形などが挙げられる。好ましくは、非接着性部位5は仕切り部上に形成される。非接着性部位5は、仕切り部の一部に形成されていればよく、好ましくは、少なくとも仕切り部19の上面の大部分を覆うように形成される。なお、非接着性部位5は、仕切り部19の全面を覆っていてもよい。
次に、図5~図8を用いて、細胞培養基板の製造方法について説明する。
以下、各工程についてさらに詳細に説明する。
(1-1)第1被転写樹脂層形成工程
まず、図5(a)に示すような遮光部21を有する透明基材23上に、図6(a)に示すように、第1光硬化性樹脂組成物を塗布して第1被転写樹脂層25を形成する。
透明基材23は、樹脂基材、石英基材、シリコーン基材などの透明材料で形成され、その材質は、特に限定されないが、樹脂基材であることが好ましい。樹脂基材を用いることによって、本発明の方法によって所望するサイズの(大面積も可能な)細胞培養基板が得られるからである。樹脂基材を構成する樹脂としては、例えば、ポリエチレンテレフタレート、ポリカーボネート、ポリエステル、ポリオレフィン、ポリイミド、ポリサルフォン、ポリエーテルサルフォン、環状ポリオレフィンおよびポリエチレンナフタレートからなる群から選ばれる1種からなるものである。また、透明基材23は可撓性を有することが好ましく、樹脂基材を用いる場合には、同種または異種の基材を積層したり、樹脂基材に樹脂組成物を膜状に積層させたりしてもよい。樹脂基材の厚さは25~500μmの範囲であることが好ましい。
第1被転写樹脂層25を構成する第1光硬化性樹脂組成物は、モノマーと、光開始剤を含有し、活性エネルギー線の照射によって硬化する性質を有する。
次に、図6(a)~(c)に示すように、第1モールド27の第1パターン28を第1被転写樹脂層25に対して押し付けた状態で第1モールド27を通じて第1被転写樹脂層25に活性エネルギー線29を照射することによって第1パターン28が転写された非接着性部位転写用樹脂層31を形成する。
(2-1)第2被転写樹脂層形成工程
まず、図7(a)に示すように、基材7上に、第2光硬化性樹脂組成物を塗布して第2被転写樹脂層33を形成する。
次に、図7(b)~(d)に示すように、第2モールド35の第2パターン36を第2被転写樹脂層33に押し付けた状態で第2被転写樹脂層33に活性エネルギー線を照射して第2被転写樹脂層33を硬化させることによって接着性部位樹脂層39を形成する。
(3-1)第3被転写樹脂層形成工程
まず、図8(a)に示すように、接着性部位樹脂層39上に、第3光硬化性樹脂組成物を塗布して第3被転写樹脂層41を形成する。
次に、図8(b)~(e)に示すように、非接着性部位転写用樹脂層31をモールドとして第3被転写樹脂層41に押し付けた状態で第3被転写樹脂層41に活性エネルギー線を照射して第3被転写樹脂層41を硬化させることによって複合樹脂層45を形成する。
以下、細胞培養および薬物代謝評価に用いた細胞培養基板サンプルの作製について説明する。
まず、光重合性モノマー及び光開始剤を以下に示す割合で配合して光硬化性樹脂組成物を調製した。
光重合性モノマー
トリメチロールプロパンエチレンオキサイド変性トリアクリレート(大阪有機化学工業社製、品名:ビスコート#360)50質量部
ビスフェノールAエチレンオキサイド変性ジアクリレート (大阪有機化学工業社製、品名:ビスコート#700HV) 20質量部
トリプロピレングリコールジアクリレート (大阪有機化学工業社製、品名:ビスコート#310HP) 30質量部
光開始剤
1-ヒドロキシシクロヘキシルフェニルケトン(BASFジャパン社製、品名:イルガキュア184) 5質量部
(非接着性部位転写用樹脂層形成)
図5に示すような遮光部21が複数の正方形として設けられたPET基材47に対して、上記調製の光硬化性樹脂組成物を10μm厚になるようにバーコーターで塗工をし、円柱状のナノピラー(ピッチ:150nm、高さ:250nm、直径:100nm)モールドに対して、塗工した樹脂面をモールドに押し当てるように上からローラーでラミネートを行った。その後、モールド側から積算光量500mJ/cm2でUV照射を行い、光硬化性樹脂組成物を硬化させた。モールドと樹脂硬化させたPET基材を剥離し、上記モールドの反転形状であるナノホール転写樹脂層を作製した。
PET基材に対して、上記調製の光硬化性樹脂組成物を10μm厚になるようにバーコーターで塗工をし、六角柱状(ハニカム)のナノホール(ピッチ:12μm、深さ:5μm、平行する二辺の幅:17μm)モールドに対して、塗工した樹脂面をモールドに押し当てるように上からローラーでラミネートを行った。その後、PET基材側から積算光量500mJ/cm2でUV照射を行い、光硬化性樹脂組成物を硬化させた。モールドと樹脂硬化させたPET基材を剥離し、上記モールドの反転形状であるナノピラー転写樹脂層を作製した。
ナノピラー転写樹脂層に対して、上記調製の光硬化性樹脂組成物を10μm厚になるようにバーコーターで塗工をし、モールドとしてナノホール転写樹脂層を用いて、ナノホール転写樹脂層に対して、塗工した樹脂面をナノホール転写樹脂層に押し当てるように上からローラーでラミネートを行った。その後、ナノホール転写樹脂層から積算光量500mJ/cm2でUV照射を行い、光硬化性樹脂組成物を硬化させた。ナノホール転写樹脂層とナノピラー転写樹脂層を剥離し、ナノピラー転写樹脂層上に残っている未硬化の光硬化性樹脂組成物をイソプロピルアルコールで除去し、細胞培養基板を作製した。
サンプル1の複合樹脂層形成工程において、モールドとしてナノホール転写樹脂層ではなく、同じの格子状の遮光部21を有するが、凹凸形状を有しない平面のものを用いた以外は同様にして、細胞培養基板を作製した。
サンプル1の接着性部位樹脂層形成工程のみにより、細胞培養基板を作成した。
PET基材に対して、上記調製の光硬化性樹脂組成物を10μm厚になるようにバーコーターで塗工をし、PET基材側から積算光量500mJ/cm2でUV照射を行い、光硬化性樹脂組成物を硬化させた。
サンプル1の一部を切除して、走査型電子顕微鏡(日本電子社製、型式:JSM-7800F)を用いて形状を観察し、同顕微鏡に付属するソフトウェア(PC-SUM)を用いて各部を測定した。接着性部位および非接着性部位についての結果を表1に示し、仕切り部についての結果を表2に示す。なお、サンプル1においては仕切り部の上面の面積と、非接着部位の領域の面積とはほぼ等しい。
得られたサンプル1について、接触角測定装置(dataphysics社製)を用いて、25℃下において、当該サンプル1の接着部および非接着部の表面にイオン交換水0.5μl滴下し、水の接する角度(水接触角)を測定したところ、それぞれ、100°、115°であった。
本発明の細胞培養基板を用いる、細胞培養および薬物代謝の結果について説明する。
細胞培養基板を6ウェルプレート(サーモフィッシャーサイエンティフィック社製)の底面に配置して70%エタノールへ1時間浸漬した。その後、pHが7.4のPBS(以下同じ)で3回洗浄し乾燥した。
次に、ラット肝細胞をDMEM(サーモフィッシャーサイエンティフィック社製)培地に懸濁し、1×105cells/wellで、ウェルプレートに播種した後、37℃,5%CO2条件下で14日間培養した。培地交換は培養翌日に行い、その後は1日置きに行った。
スフェロイドの形成について調べるため、播種後14日後の凝集形状をSEMを用いて観察した。サンプル1~4を用いた場合のSEM画像を図9(a)~(d)に示す。
薬物代謝評価は、播種後1、7、14日後に行った。1、7、14日後に培地を誘導培地(3-MC 0.333mM)に置換し、24時間インキュベーションする。その後、37℃に加温した反応培地(PBS 50ml、Dicumarol 25μM、Probenecid 2mM、エトキシレゾルフィン 20μM))に置換し、60分間インキュベーションした後、HClでpHを7.4に調節した。96穴のプレートに上清200μl、ブランク(未反応の反応培地)200μlを入れ、蛍光プレートリーダで蛍光量 [530/590]を測定した。
Claims (8)
- 接着性部位と、非接着性部位とを有する細胞培養基板であって、
前記接着性部位および前記非接着性部位は、凹凸形状を有し、
前記非接着性部位の純水に対する接触角は、前記接着性部位より大きい、細胞培養基板。 - 前記接着性部位の凹凸形状のピッチP1は、前記非接着性部位の凹凸形状のピッチP2より大きい、請求項1に記載の細胞培養基板。
- 前記ピッチP1と前記ピッチP2の比P1/P2は、2以上である、請求項2に記載の細胞培養基板。
- 前記接着性部位の少なくとも一部分は、仕切り部により仕切られ、
前記非接着性部位は、前記仕切り部上に形成されている、請求項1~3の何れか1つに記載の細胞培養基板。 - 前記非接着性部位は、複数の柱状凸部を有し、
前記非接着性部位の柱状凸部が形成されるピッチが50~2000nmであり、
前記非接着性部位の柱状凸部は、上面の面積が1600nm2~4μm2であり、
隣接した2つの柱状凸部の間の隙間G2が10~1960nmの範囲内である、請求項2~4の何れか1つに記載の細胞培養基板。 - 前記接着性部位および前記非接着性部位は、同一の材料で構成されている、請求項1~5の何れか1つに記載の細胞培養基板。
- 請求項1~6の何れか1つに記載の細胞培養基板の製造方法であって、
基材上に塗布した光硬化性樹脂組成物に対して活性エネルギー線を照射して硬化し、前記接着性部位および前記非接着性部位の凹凸形状を形成する工程を備える、細胞培養基板の製造方法。 - 前記接着性部位および前記非接着性部位の凹凸形状は、モールドを用いてナノインプリント法によって形成される、請求項7に記載の細胞培養基板の製造方法。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017562874A JPWO2017126589A1 (ja) | 2016-01-20 | 2017-01-19 | 細胞培養基板及びその製造方法 |
EP17741466.1A EP3406700A4 (en) | 2016-01-20 | 2017-01-19 | CELL CULTURE SUBSTRATE AND METHOD FOR THE PRODUCTION THEREOF |
CN201780007100.9A CN108473929A (zh) | 2016-01-20 | 2017-01-19 | 细胞培养基板及其制造方法 |
US16/071,165 US20210189312A1 (en) | 2016-01-20 | 2017-01-19 | Cell culture substrate and manufacturing method thereof |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016-008809 | 2016-01-20 | ||
JP2016008809 | 2016-01-20 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2017126589A1 true WO2017126589A1 (ja) | 2017-07-27 |
Family
ID=59361719
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2017/001689 WO2017126589A1 (ja) | 2016-01-20 | 2017-01-19 | 細胞培養基板及びその製造方法 |
Country Status (6)
Country | Link |
---|---|
US (1) | US20210189312A1 (ja) |
EP (1) | EP3406700A4 (ja) |
JP (1) | JPWO2017126589A1 (ja) |
CN (1) | CN108473929A (ja) |
TW (1) | TW201730330A (ja) |
WO (1) | WO2017126589A1 (ja) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109810895A (zh) * | 2019-02-27 | 2019-05-28 | 西北工业大学 | 基于等高微柱的开放式三维细胞培养芯片及其制备技术 |
WO2021024943A1 (ja) * | 2019-08-02 | 2021-02-11 | 積水化学工業株式会社 | 細胞培養用足場材及び細胞培養用容器 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2007097121A1 (ja) * | 2006-02-21 | 2007-08-30 | Scivax Corporation | スフェロイドおよびスフェロイド群並びにこれらの製造方法 |
JP2009213421A (ja) * | 2008-03-11 | 2009-09-24 | Fujifilm Corp | 細胞培養方法及び細胞培養装置 |
WO2012086028A1 (ja) * | 2010-12-22 | 2012-06-28 | 株式会社日立製作所 | 培養器材、及び培養シート |
JP2012249547A (ja) * | 2011-05-31 | 2012-12-20 | Oji Holdings Corp | 細胞培養用基材及びその製造方法 |
WO2016013655A1 (ja) * | 2014-07-25 | 2016-01-28 | 綜研化学株式会社 | 微細構造体の製造方法 |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4950426B2 (ja) * | 2005-02-17 | 2012-06-13 | 株式会社日立製作所 | 神経細胞の培養方法、神経細胞培養基材および神経細胞システムの製造方法 |
JPWO2006112062A1 (ja) * | 2005-03-30 | 2008-11-27 | 日本ゼオン株式会社 | 樹脂型及びそれを用いた成形体の製造方法 |
US20140093953A1 (en) * | 2012-10-01 | 2014-04-03 | The Regents Of The University Of Michigan | Non-adherent cell support and manufacturing method |
CN103122311B (zh) * | 2013-01-15 | 2015-05-27 | 西北工业大学 | 一种柔性三维单细胞定位培养芯片及其可控制备方法 |
CN104745445B (zh) * | 2013-12-30 | 2018-04-27 | 中国科学院深圳先进技术研究院 | 一种构建细胞网络的三维微流控芯片及其制备方法 |
CN204608029U (zh) * | 2015-04-24 | 2015-09-02 | 何向锋 | 一种陷孔式单细胞克隆分离培养板 |
-
2017
- 2017-01-16 TW TW106101400A patent/TW201730330A/zh unknown
- 2017-01-19 EP EP17741466.1A patent/EP3406700A4/en not_active Withdrawn
- 2017-01-19 WO PCT/JP2017/001689 patent/WO2017126589A1/ja active Application Filing
- 2017-01-19 CN CN201780007100.9A patent/CN108473929A/zh active Pending
- 2017-01-19 US US16/071,165 patent/US20210189312A1/en not_active Abandoned
- 2017-01-19 JP JP2017562874A patent/JPWO2017126589A1/ja active Pending
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2007097121A1 (ja) * | 2006-02-21 | 2007-08-30 | Scivax Corporation | スフェロイドおよびスフェロイド群並びにこれらの製造方法 |
JP2009213421A (ja) * | 2008-03-11 | 2009-09-24 | Fujifilm Corp | 細胞培養方法及び細胞培養装置 |
WO2012086028A1 (ja) * | 2010-12-22 | 2012-06-28 | 株式会社日立製作所 | 培養器材、及び培養シート |
JP2012249547A (ja) * | 2011-05-31 | 2012-12-20 | Oji Holdings Corp | 細胞培養用基材及びその製造方法 |
WO2016013655A1 (ja) * | 2014-07-25 | 2016-01-28 | 綜研化学株式会社 | 微細構造体の製造方法 |
Non-Patent Citations (1)
Title |
---|
See also references of EP3406700A4 * |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109810895A (zh) * | 2019-02-27 | 2019-05-28 | 西北工业大学 | 基于等高微柱的开放式三维细胞培养芯片及其制备技术 |
CN109810895B (zh) * | 2019-02-27 | 2021-12-03 | 西北工业大学 | 基于等高微柱的开放式三维细胞培养芯片及其制备技术 |
WO2021024943A1 (ja) * | 2019-08-02 | 2021-02-11 | 積水化学工業株式会社 | 細胞培養用足場材及び細胞培養用容器 |
CN113924356A (zh) * | 2019-08-02 | 2022-01-11 | 积水化学工业株式会社 | 细胞培养用支架材料及细胞培养用容器 |
JP7563980B2 (ja) | 2019-08-02 | 2024-10-08 | 積水化学工業株式会社 | 細胞培養用足場材及び細胞培養用容器 |
Also Published As
Publication number | Publication date |
---|---|
CN108473929A (zh) | 2018-08-31 |
TW201730330A (zh) | 2017-09-01 |
EP3406700A1 (en) | 2018-11-28 |
JPWO2017126589A1 (ja) | 2018-11-15 |
US20210189312A1 (en) | 2021-06-24 |
EP3406700A4 (en) | 2019-01-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN102791452B (zh) | 树脂模具 | |
CN106104841B (zh) | 用于白光成色oled装置的纳米结构 | |
EP2463073B1 (en) | Resin mold for imprinting and method for producing same | |
JP6100651B2 (ja) | 樹脂製モールドおよび樹脂製モールドをインプリントして得られる光学素子の製造方法 | |
JP6173354B2 (ja) | 光透過型インプリント用モールド、大面積モールドの製造方法 | |
JP7532260B2 (ja) | サブミクロン特徴部を有する大面積金型マスタを形成するためのウエハのタイリング方法 | |
JP6603218B2 (ja) | 微細構造体の製造方法 | |
JP5868393B2 (ja) | ナノインプリント用モールドおよび曲面体の製造方法 | |
CN102046357A (zh) | 纳米压印用模具、其制造方法及表面具有微细凹凸结构的树脂成形体以及线栅型偏振器的制造方法 | |
CN105706242A (zh) | 用于oled装置的纳米结构 | |
US9360751B2 (en) | Imprinting stamp and nano-imprinting method using the same | |
WO2017057220A1 (ja) | 撥水性部材及びその製造方法 | |
CN103909757A (zh) | 柔性印刷板及其制造方法以及液晶面板用基板的制造方法 | |
WO2017126589A1 (ja) | 細胞培養基板及びその製造方法 | |
TW201427823A (zh) | 柔性印刷板及其製造方法以及液晶面板用基板的製造方法 | |
WO2006082777A1 (ja) | 弾性樹脂版 | |
JP6046733B2 (ja) | 反射防止フィルム及びその製造方法、並びに、表示装置 | |
CN108473826A (zh) | 光学粘合剂 | |
TWI331961B (ja) | ||
KR101449633B1 (ko) | 고휘도 모아레 프리 마이크로 렌즈 필름 및 이의 제조 방법과 마이크로 렌즈 필름을 포함한 백라이트 유닛과 마이크로 렌즈 어레이 장치 | |
WO2016195064A1 (ja) | 構造体及びその製造方法 | |
WO2017073501A1 (ja) | 撥水性部材及びその製造方法 | |
WO2017078019A1 (ja) | 微細構造体の製造方法 | |
JP2013218045A (ja) | 光透過材 | |
JP2022015322A (ja) | 画像表示器、車両及び遊技機 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17741466 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2017562874 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2017741466 Country of ref document: EP |
|
ENP | Entry into the national phase |
Ref document number: 2017741466 Country of ref document: EP Effective date: 20180820 |