WO2016013655A1 - 微細構造体の製造方法 - Google Patents

微細構造体の製造方法 Download PDF

Info

Publication number
WO2016013655A1
WO2016013655A1 PCT/JP2015/071102 JP2015071102W WO2016013655A1 WO 2016013655 A1 WO2016013655 A1 WO 2016013655A1 JP 2015071102 W JP2015071102 W JP 2015071102W WO 2016013655 A1 WO2016013655 A1 WO 2016013655A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin layer
pattern
transferred
mold
manufacturing
Prior art date
Application number
PCT/JP2015/071102
Other languages
English (en)
French (fr)
Inventor
幸大 宮澤
Original Assignee
綜研化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 綜研化学株式会社 filed Critical 綜研化学株式会社
Priority to CN201580040832.9A priority Critical patent/CN106575605B/zh
Priority to KR1020177001685A priority patent/KR20170034890A/ko
Priority to EP15823946.7A priority patent/EP3196924B1/en
Priority to DK15823946.7T priority patent/DK3196924T3/en
Priority to US15/328,635 priority patent/US20170203330A1/en
Priority to JP2016535992A priority patent/JP6603218B2/ja
Publication of WO2016013655A1 publication Critical patent/WO2016013655A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D3/00Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials
    • B05D3/12Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials by mechanical means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D3/00Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials
    • B05D3/06Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials by exposure to radiation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C59/00Surface shaping of articles, e.g. embossing; Apparatus therefor
    • B29C59/02Surface shaping of articles, e.g. embossing; Apparatus therefor by mechanical means, e.g. pressing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41FPRINTING MACHINES OR PRESSES
    • B41F15/00Screen printers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/0002Lithographic processes using patterning methods other than those involving the exposure to radiation, e.g. by stamping
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/027Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34

Definitions

  • the present invention relates to a method for manufacturing a microstructure using an imprint technique.
  • the imprint technique is a fine processing technique that obtains a fine structure by pressing a mold having a fine pattern against a resin layer such as a liquid resin on a transparent substrate, thereby transferring the mold pattern to the resin layer.
  • the fine pattern exists from a nanoscale pattern of 10 nm level to a pattern of about 100 ⁇ m.
  • the obtained microstructures are used in various fields such as semiconductor materials, optical materials, storage media, micromachines, biotechnology, and the environment.
  • a fine pattern formed in a fine structure there are a composite pattern and a pattern in which a fine shape is nested.
  • the primary pattern is produced by drawing / etching / cleaning, and then the secondary pattern is drawn / etched on the primary pattern.
  • -A process of forming by cleaning is conceivable. However, the process is very long and complicated, and it is very difficult to determine the conditions for producing a high-quality mold.
  • Patent Document 1 a single-particle film etching mask is formed on a primary pattern, and the primary pattern is etched using the mask to form a secondary pattern on the surface of the primary pattern.
  • Patent Document 1 it is difficult to optimize the application conditions and etching conditions of the single particle film.
  • the present invention has been made in view of such circumstances, and provides a method for manufacturing a fine structure that can easily produce a composite pattern or a nested structure.
  • the second transferred resin layer is irradiated with active energy rays using the light shielding pattern as a mask in a state where the second pattern of the second mold is pressed against the second transferred resin layer obtained by applying 2 comprising a step of forming a second cured resin layer having a step shape including a low step portion and a high step portion by curing a partial region of the transferred resin layer, wherein at least one of the first and second patterns One has a fine shape To method for manufacturing a microstructure is provided.
  • the method of the present invention is based on the imprint method and does not require a drawing / etching step in the step of forming a fine shape, a composite pattern or a nested structure can be easily produced.
  • both the first and second patterns have a fine shape
  • the low step portion includes a fine shape to which the first pattern is transferred
  • the high step portion has the second pattern transferred thereto. Includes fine shapes.
  • the transparent substrate has flexibility.
  • the light shielding pattern and the low step region are substantially the same.
  • the first and second cured resin layers are formed without using etching.
  • the light shielding pattern is formed on a surface of the transparent substrate on which the first photocurable resin composition is applied.
  • the light shielding pattern is formed to be flush with the transparent substrate.
  • the microstructure is an imprint mold, a microcontact print stamper, an optical sheet, a water repellent sheet, a hydrophilic sheet, or a cell culture sheet.
  • FIG. 1 shows a transparent substrate 1 used in a first embodiment of the present invention, in which (a) is a plan view and (b) is a cross-sectional view along AA. (C) to (e) show other examples of the method of forming the light shielding pattern 3. It is sectional drawing corresponding to FIG.1 (b) which shows the 1st cured resin layer formation process of 1st Embodiment of this invention. It is sectional drawing corresponding to FIG.1 (b) which shows the 2nd cured resin layer formation process of 1st Embodiment of this invention. It is sectional drawing corresponding to FIG.1 (b) which shows the 1st cured resin layer formation process of 2nd Embodiment of this invention.
  • FIG.1 (b) shows the 2nd cured resin layer formation process of 2nd Embodiment of this invention. It is sectional drawing corresponding to FIG.1 (b) which shows the 2nd cured resin layer formation process of 3rd Embodiment of this invention. It is sectional drawing corresponding to FIG.1 (b) which shows the 2nd cured resin layer formation process of 4th Embodiment of this invention.
  • first photocuring is performed on the transparent substrate 1 having the light shielding pattern 3.
  • the first transfer resin layer 5 is formed by applying a conductive resin composition.
  • the transparent substrate 1 is formed of a transparent material such as a resin substrate or a quartz substrate, and the material is not particularly limited, but is preferably a resin substrate. This is because by using the resin base material, a fine structure having a desired size (a large area is possible) can be obtained by the method of the present invention.
  • the resin constituting the resin base material include one selected from the group consisting of polyethylene terephthalate, polycarbonate, polyester, polyolefin, polyimide, polysulfone, polyethersulfone, cyclic polyolefin, and polyethylene naphthalate.
  • the transparent base material 1 has flexibility. When using a resin base material, the same kind or different kinds of base materials are laminated, or the resin composition is laminated on the resin base material in a film shape. Also good.
  • the thickness of the resin base material is preferably in the range of 25 to 500 ⁇ m.
  • the light shielding pattern 3 provided on the transparent substrate 1 is a pattern used as a mask in the second cured resin layer forming step.
  • the second cured resin layer 29 includes A step shape 31 corresponding to the light shielding pattern 3 is formed.
  • the step shape 31 includes a low step portion 31l and a high step portion 31u, and a region where the active energy line 27 is blocked by the light shielding pattern 3 in the active energy ray irradiation step shown in FIG. 31l.
  • “Active energy rays” is a general term for energy rays that can cure a photocurable resin composition, such as UV light, visible light, and electron beams.
  • the shape of the light shielding pattern 3 is not particularly limited, and examples thereof include a dot pattern and a stripe pattern as shown in FIG. 1A.
  • the period is preferably 10 nm to 2 mm, more preferably 10 nm to 20 ⁇ m.
  • the light shielding pattern 3 is patterned after a light shielding material (for example, a metal material such as Cr) is deposited on the transparent substrate 1 by sputtering, or a pattern of the light shielding material is printed by a method such as ink jet printing or screen printing. Can be formed.
  • a light shielding material for example, a metal material such as Cr
  • the light-shielding pattern 3 may be formed on the surface 1a of the transparent substrate 1 on which the first photocurable resin composition is applied, as shown in FIG.
  • the transparent substrate 1 may be formed on the back surface 1b.
  • the light shielding pattern 3 may be formed so as to be flush with the transparent base material 1 as shown in FIG. 1B, and the flat surface of the transparent base material 1 as shown in FIG. It may be formed on top and may be embedded in the transparent substrate 1 as shown in FIG.
  • the 1st photocurable resin composition which comprises the 1st to-be-transferred resin layer 5 contains a monomer and a photoinitiator, and has the property to harden
  • Monomers include photopolymerizable monomers for forming (meth) acrylic resins, styrene resins, olefin resins, polycarbonate resins, polyester resins, epoxy resins, silicone resins, etc., and photopolymerizable (meth) acrylic.
  • System monomers are preferred.
  • (meth) acryl means methacryl and / or acryl
  • (meth) acrylate means methacrylate and / or acrylate.
  • the photoinitiator is a component added to promote the polymerization of the monomer, and is preferably contained in an amount of 0.1 part by mass or more with respect to 100 parts by mass of the monomer.
  • the upper limit of content of a photoinitiator is not prescribed
  • the first photocurable resin composition of the present invention comprises components such as a solvent, a polymerization inhibitor, a chain transfer agent, an antioxidant, a photosensitizer, a filler, a leveling agent, etc. of the first photocurable resin composition. You may include in the range which does not affect a property.
  • 1st photocurable resin composition can be manufactured by mixing the said component by a well-known method.
  • the first photocurable resin composition is applied onto the transparent substrate 1 by a method such as spin coating, spray coating, bar coating, dip coating, die coating, and slit coating to form the first transferred resin layer 5. Is possible.
  • the first transferred resin layer 5 is usually a transparent resin layer, and the thickness is usually 50 nm to 1 mm, preferably 500 nm to 500 ⁇ m. With such a thickness, imprinting is easy to perform.
  • the first mold 7 has a first pattern 9.
  • the first pattern 9 is a concavo-convex fine pattern that repeats at a constant cycle, with a cycle of 10 nm to 2 mm, a depth of 10 nm to 500 ⁇ m, and a transfer surface of 1.0 to 1.0 ⁇ 10 6 mm 2. And those having a period of 20 nm to 20 ⁇ m, a depth of 50 nm to 1 ⁇ m, and a transfer surface of 1.0 to 0.25 ⁇ 10 6 mm 2 are more preferable. With this setting, a sufficiently fine shape can be transferred to the first resin layer 5 to be transferred.
  • the period of the first pattern 9 is preferably smaller than the period of the light shielding pattern 3, more preferably 0.01 to 0.5 times the period of the light shielding pattern 3, and further 0.01 to 0.3 times.
  • the first pattern 9 may be a finely shaped pattern with irregularities randomly, or a finely shaped pattern with a plurality of irregularities.
  • the first mold 7 is formed of a transparent material such as a resin base material, a quartz base material, or a silicone base material, and can be formed of the same material as the transparent base material 1.
  • the pressure for pressing the first mold 7 against the first transferred resin layer 5 may be any pressure that can transfer the shape of the first pattern 9 to the first transferred resin layer 5.
  • the active energy ray 11 irradiated to the first transferred resin layer 5 may be irradiated with an integrated light amount sufficient to sufficiently cure the first transferred resin layer 5, and the integrated light amount is, for example, 100 to 10,000 mJ / cm 2 . is there.
  • the first cured resin layer 5 is cured by the irradiation of the active energy ray 11, and the first cured pattern 9r in which the first pattern 9 is reversed is formed as shown in FIG. 2C.
  • a resin layer 15 is formed.
  • a second photocurable resin is formed on the first cured resin layer 15.
  • the composition is applied to form a second transferred resin layer 25.
  • the description of the first photocurable resin composition described above applies to the second photocurable resin composition unless it is contrary to the gist.
  • the kind of 2nd photocurable resin composition may be the same as that of a 1st photocurable resin composition, or may differ.
  • the second photo-curable resin composition has an appropriate viscosity enough to form the second transferred resin layer 25 having a certain thickness on the first reverse pattern 9r while filling the gaps of the first reverse pattern 9r. Those having the following are preferred.
  • the second transferred resin layer 25 obtained by applying the second photocurable resin composition is usually a transparent resin layer, and the thickness on the first reverse pattern 9r is usually 50 nm to 1 mm, preferably Is from 500 nm to 500 ⁇ m. With such a thickness, imprinting is easy to perform.
  • first mold 7 also applies to the second mold 21 unless it is contrary to its purpose.
  • the first and second molds 7 and 21 may be the same mold or may be molds having different materials or patterns.
  • the second mold 21 Since the second mold 21 does not need to transmit the active energy ray 27, the second mold 21 can be formed of a metal material.
  • the pressure for pressing the second mold 21 against the second transferred resin layer 25 may be any pressure that can transfer the shape of the second pattern 23 to the second transferred resin layer 25.
  • the active energy rays 27 irradiated to the second transferred resin layer 25 may be irradiated with an integrated light amount sufficient to sufficiently cure the second transferred resin layer 25.
  • the integrated light amount is, for example, 100 to 10,000 mJ / cm 2 . is there.
  • the second photocurable resin composition buried in the gap of the first reversal pattern 9r is cured, and the second pattern 23 is transferred.
  • the second transferred resin layer 25 thus cured is cured to form a second cured resin layer 29.
  • a high step portion 31u having a step shape 31 shown in FIG. 3D is formed in the region where the second photocurable resin composition is cured in this step.
  • a second inversion pattern 23r obtained by inverting the second pattern 23 is formed in the high step portion 31u.
  • the active energy ray 27 is blocked by the light shielding pattern 3 and the low step portion 31l is formed in the region where the second photocurable resin composition is not cured.
  • the first inversion pattern 9r remains as it is in the low step portion 31l.
  • the second mold 21 is removed, and the uncured second photocurable resin composition 31 remaining in the low step portion 31l is removed with a solvent.
  • the structure shown in FIG. 3D is obtained, and the manufacture of the fine structure is completed.
  • the produced microstructure is an imprint mold, a microcontact print stamper, an optical sheet (antireflection sheet, hologram sheet, lens sheet, polarization separation sheet), water repellent sheet, hydrophilic sheet cell culture sheet, injection molding gold. It can be used for molds, microchips, hologram sheets and the like.
  • the first mold 7 is not provided with a light shielding pattern, but a light shielding pattern having a different pattern from the light shielding pattern 3 is provided in the first mold 7, and the first transferred resin layer is passed through the first mold 7. 5 may be irradiated with the active energy ray 11. In this case, it becomes possible to produce fine structures having more various shapes.
  • a photocurable resin composition is applied onto the second cured resin layer 29 to form a transferred resin layer, another pattern is transferred to the transferred resin layer, and a partial region of the transferred resin layer It is possible to form a third cured resin layer by curing. By such a method, it is possible to produce microstructures having various shapes.
  • Second Embodiment A second embodiment of the present invention will be described with reference to FIGS. This embodiment is similar to the first embodiment, and is mainly different in that the first pattern 9 of the first mold 7 is not a fine shape pattern but a flat pattern (that is, a flat surface). Hereinafter, the difference will be mainly described.
  • the first transferred resin through the first mold 7 while pressing the first pattern 9 of the first mold 7 against the first transferred resin layer 5.
  • the first cured resin layer 15 having the first inversion pattern 9r in which the first pattern 9 is inverted is formed. Since the first pattern 9 is a flat pattern, the first reverse pattern 9r is also a flat pattern, and the surface of the first cured resin layer 15 is a flat surface.
  • the second pattern 23 of the second mold 21 is pressed against the second transferred resin layer 25 on the first cured resin layer 15. Then, the second transfer resin layer 25 is irradiated with an active energy ray 27 using the light shielding pattern 3 as a mask, and the second transfer resin layer 25 is cured in the non-light-shielding region, thereby causing the second curing having the step shape 31. A resin layer 29 is formed. Since the second pattern 23 is a fine shape pattern, a fine shape pattern obtained by inverting the second pattern 23 is formed in the high step portion 31u. On the other hand, the low step portion 31l remains a flat pattern.
  • a first cured resin layer 15 having a first inverted pattern 9r having a fine shape is formed by the same method as in the first embodiment.
  • the second pattern 23 of the second mold 21 is pressed against the second transferred resin layer 25 on the first cured resin layer 15. Then, the second transfer resin layer 25 is irradiated with an active energy ray 27 using the light shielding pattern 3 as a mask, and the second transfer resin layer 25 is cured in the non-light-shielding region, thereby causing the second curing having the step shape 31. A resin layer 29 is formed. Since the 2nd pattern 23 is a flat pattern, a flat pattern is formed in the high step part 31u. On the other hand, the low step portion 31l is still formed with the fine pattern.
  • a first cured resin layer 15 having a first inverted pattern 9r having a fine shape is formed by the same method as in the first embodiment.
  • the first reverse pattern 9r is a linear pattern.
  • the second pattern 23 of the second mold 21 is pressed against the second transferred resin layer 25 on the first cured resin layer 15. Then, the second transfer resin layer 25 is irradiated with an active energy ray 27 using the light shielding pattern 3 as a mask, and the second transfer resin layer 25 is cured in the non-light-shielding region, thereby causing the second curing having the step shape 31. A resin layer 29 is formed. Since the first and second patterns 9 and 23 are reversal patterns of the linear pattern and the moth-eye pattern, respectively, the moth-eye pattern is formed in the high step portion 31u, and the linear pattern is formed in the low step portion 31l. It has been done.
  • the present embodiment it is possible to manufacture a fine structure in which patterns having different periods and shapes are formed on the low step portion 31l and the high step portion 31u. Further, the fine structure obtained in the first to fourth embodiments can be used as the first mold 7 and the second mold 21, and in particular, the fine structure obtained in the second and fourth embodiments. Is used, a fine structure in which three types of patterns are formed can be obtained.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Plasma & Fusion (AREA)
  • Shaping Of Tube Ends By Bending Or Straightening (AREA)
  • Micromachines (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Abstract

 複合パターンや入れ子構造を簡便に作製することが出来る、微細構造体の製造方法を提供する。 本発明によれば、遮光パターンを有する透明基材上に第1光硬化性樹脂組成物を塗布して得られる第1被転写樹脂層に対して第1モールドの第1パターンを押し付けた状態で第1モールドを通じて第1被転写樹脂層に活性エネルギー線を照射することによって第1パターンが転写された第1硬化樹脂層を形成し、第1硬化樹脂層上に第2光硬化性樹脂組成物を塗布して得られる第2被転写樹脂層に対して第2モールドの第2パターンを押し付けた状態で前記遮光パターンをマスクとして用いて第2被転写樹脂層に活性エネルギー線を照射して第2被転写樹脂層の一部の領域を硬化させることによって、低段部と高段部とを含む段差形状を有する第2硬化樹脂層を形成する工程を備え、第1及び第2パターンの少なくとも一方が、微細形状を有する、微細構造体の製造方法が提供される。

Description

微細構造体の製造方法
 本発明は、インプリント技術を用いた微細構造体の製造方法に関する。
 インプリント技術とは、微細パターンを有するモールドを、透明基材上の液状樹脂等の樹脂層へ押し付け、これによりモールドのパターンを樹脂層に転写して微細構造体を得る微細加工技術である。微細パターンとしては、10nmレベルのナノスケールのものから、100μm程度のものまで存在する。得られた微細構造体は、半導体材料、光学材料、記憶メディア、マイクロマシン、バイオ、環境等、様々な分野で用いられている。
 ところで、微細構造体に形成される微細パターンとしては、複合パターンや、微細形状が入れ子になっているパターンがある。このようなパターンをフォトリソグラフィ・電子線リソグラフィ等の従来技術を用いて作製する場合、1次パターンを描画・エッチング・洗浄にて作製し、その後、1次パターン上に2次パターンを描画・エッチング・洗浄にて形成する工程が考えられる。しかし、工程が非常に長く煩雑であり、高品質なモールドを作製するには条件出しが非常に大変である。
 特許文献1では、1次パターン上に単粒子膜のエッチングマスクを形成し、このマスクを用いて1次パターンをエッチングすることによって1次パターン表面に2次パターンを形成している。
特開2009-162831号公報
 しかし、特許文献1の製造方法も、単粒子膜の付与条件やエッチング条件を最適化することは大変である。
 本発明はこのような事情に鑑みてなされたものであり、複合パターンや入れ子構造を簡便に作製することが出来る、微細構造体の製造方法を提供するものである。
 本発明によれば、遮光パターンを有する透明基材上に第1光硬化性樹脂組成物を塗布して得られる第1被転写樹脂層に対して第1モールドの第1パターンを押し付けた状態で第1モールドを通じて第1被転写樹脂層に活性エネルギー線を照射することによって第1パターンが転写された第1硬化樹脂層を形成し、第1硬化樹脂層上に第2光硬化性樹脂組成物を塗布して得られる第2被転写樹脂層に対して第2モールドの第2パターンを押し付けた状態で前記遮光パターンをマスクとして用いて第2被転写樹脂層に活性エネルギー線を照射して第2被転写樹脂層の一部の領域を硬化させることによって、低段部と高段部とを含む段差形状を有する第2硬化樹脂層を形成する工程を備え、第1及び第2パターンの少なくとも一方が、微細形状を有する、微細構造体の製造方法が提供される。
 本発明の方法は、インプリント法をベースしており、微細形状を形成する工程において描画・エッチング工程が不要であるので、複合パターンや入れ子構造を簡便に作製することが出来る。
 以下、本発明の種々の実施形態を例示する。以下に示す実施形態は、互いに組み合わせ可能である。
 好ましくは、第1及び第2パターンの両方が、微細形状を有し、前記低段部は、第1パターンが転写された微細形状を含み、前記高段部は、第2パターンが転写された微細形状を含む。
 好ましくは、前記透明基材が可撓性を有する。
 好ましくは、前記遮光パターンと前記低段部の領域が実質的に同一である。
 好ましくは、第1及び第2硬化樹脂層は、エッチングを用いることなく形成される。
 好ましくは、前記遮光パターンは、前記透明基材の、第1光硬化性樹脂組成物を塗布する面に形成される。
 好ましくは、前記遮光パターンは、前記透明基材と面一になるように形成される。
 好ましくは、前記微細構造体は、インプリント用モールド、マイクロコンタクトプリント用スタンパ、光学シート、撥水シート、親水シート又は細胞培養シートである。
本発明の第1実施形態で使用する透明基材1を示し、(a)は平面図、(b)はA-A断面図である。(c)~(e)は、遮光パターン3の形成方法の別例を示す。 本発明の第1実施形態の第1硬化樹脂層形成工程を示す図1(b)に対応する断面図である。 本発明の第1実施形態の第2硬化樹脂層形成工程を示す図1(b)に対応する断面図である。 本発明の第2実施形態の第1硬化樹脂層形成工程を示す図1(b)に対応する断面図である。 本発明の第2実施形態の第2硬化樹脂層形成工程を示す図1(b)に対応する断面図である。 本発明の第3実施形態の第2硬化樹脂層形成工程を示す図1(b)に対応する断面図である。 本発明の第4実施形態の第2硬化樹脂層形成工程を示す図1(b)に対応する断面図である。
 以下、図面を参照しながら本発明の好ましい実施の形態について具体的に説明する。
1.第1実施形態
 本発明の第1実施形態の微細構造体の製造方法は、第1硬化樹脂層形成工程、第2硬化樹脂層形成工程を備える。以下、各工程について詳細に説明する。
(1)第1硬化樹脂層形成工程
(1-1)第1被転写樹脂層形成工程
 まず、図1(a)に示すように、遮光パターン3を有する透明基材1上に第1光硬化性樹脂組成物を塗布して第1被転写樹脂層5を形成する。
<透明基材>
 透明基材1は、樹脂基材、石英基材などの透明材料で形成され、その材質は、特に限定されないが、樹脂基材であることが好ましい。樹脂基材を用いることによって、本発明の方法によって所望するサイズの(大面積も可能な)微細構造体が得られるからである。樹脂基材を構成する樹脂としては、例えば、ポリエチレンテレフタレート、ポリカーボネート、ポリエステル、ポリオレフィン、ポリイミド、ポリサルフォン、ポリエーテルサルフォン、環状ポリオレフィンおよびポリエチレンナフタレートからなる群から選ばれる1種からなるものである。また、透明基材1は可撓性を有することが好ましく、樹脂基材を用いる場合には、同種または異種の基材を積層したり、樹脂基材に樹脂組成物を膜状に積層させてもよい。樹脂基材の厚さは25~500μmの範囲であることが好ましい。
 透明基材1に設けられる遮光パターン3は、第2硬化樹脂層形成工程においてマスクとして利用するパターンであり、図3(b)~(d)に示すように、第2硬化樹脂層29には、遮光パターン3に対応する段差形状31が形成される。段差形状31は、低段部31lと高段部31uとを備え、図3(b)に示す活性エネルギー線照射工程において、遮光パターン3によって活性エネルギー線27が遮られている領域が低段部31lとなる。「活性エネルギー線」は、UV光、可視光、電子線などの、光硬化性樹脂組成物を硬化可能なエネルギー線の総称である。遮光パターン3の形状は、特に限定されず、図1(a)に示すようなドットパターンや、ストライプパターンなどが挙げられ、周期10nm~2mmが好ましく、10nm~20μmがより好ましい。
 遮光パターン3は、遮光材料(例えば、Crなどの金属材料)をスパッタリングによって透明基材1上に付着させた後にパターニングしたり、インクジェット印刷又はスクリーン印刷などの方法で遮光材料のパターンを印刷したりすることによって形成することができる。遮光パターン3は、図1(b)~(c)に示すように、透明基材1の、第1光硬化性樹脂組成物を塗布する面1aに形成してもよく、図1(d)に示すように、透明基材1の背面1b上に形成してもよい。また、遮光パターン3は、図1(b)に示すように、透明基材1と面一になるように形成してもよく、図1(c)に示すように透明基材1の平坦面上に形成してもよく、図1(e)に示すように透明基材1の内部に埋設されてもよい。
<第1光硬化性樹脂組成物>
 第1被転写樹脂層5を構成する第1光硬化性樹脂組成物は、モノマーと、光開始剤を含有し、活性エネルギー線の照射によって硬化する性質を有する。
 モノマーとしては、(メタ)アクリル樹脂、スチレン樹脂、オレフィン樹脂、ポリカーボネート樹脂、ポリエステル樹脂、エポキシ樹脂、シリコーン樹脂等を形成するための光重合性のモノマーが挙げられ、光重合性の(メタ)アクリル系モノマーが好ましい。なお、本明細書において、(メタ)アクリルとは、メタクリルおよび/またはアクリルを意味し、(メタ)アクリレートはメタクリレートおよび/またはアクリレートを意味する。
 光開始剤は、モノマーの重合を促進するために添加される成分であり、前記モノマー100質量部に対して0.1質量部以上含有されることが好ましい。光開始剤の含有量の上限は、特に規定されないが、例えば前記モノマー100質量部に対して20質量部である。
 本発明の第1光硬化性樹脂組成物は、溶剤、重合禁止剤、連鎖移動剤、酸化防止剤、光増感剤、充填剤、レベリング剤等の成分を第1光硬化性樹脂組成物の性質に影響を与えない範囲で含んでいてもよい。
 第1光硬化性樹脂組成物は、上記成分を公知の方法で混合することにより製造することができる。第1光硬化性樹脂組成物は、スピンコート、スプレーコート、バーコート、ディップコート、ダイコートおよびスリットコート等の方法で透明基材1上に塗布して第1被転写樹脂層5を形成することが可能である。
 第1被転写樹脂層5は、通常は、透明樹脂層であり、その厚さは、通常50nm~1mm、好ましくは、500nm~500μmである。このような厚さとすれば、インプリント加工が行い易い。
(1-2)転写及び硬化工程
 次に、図2(a)~(c)に示すように、第1モールド7の第1パターン9を第1被転写樹脂層5に対して押し付けた状態で第1モールド7を通じて第1被転写樹脂層5に活性エネルギー線を照射することによって第1パターン9が転写された第1硬化樹脂層15を形成する。
 第1モールド7は、第1パターン9を有する。本実施形態では、第1パターン9は、一定の周期で繰り返す凹凸状の微細形状パターンであり、周期10nm~2mm、深さ10nm~500μm、転写面1.0~1.0×10mmのものが好ましく、周期20nm~20μm、深さ50nm~1μm、転写面1.0~0.25×10mmのものがより好ましい。このように設定すれば、第1被転写樹脂層5に充分な微細形状を転写することができる。凹凸の具体的な形状としては、モスアイ、線、円柱、モノリス、円錐、多角錐、マイクロレンズが挙げられる。また、第1パターン9の周期は、遮光パターン3の周期よりも小さいことが好ましく、遮光パターン3の周期の0.01~0.5倍がさらに好ましく、0.01~0.3倍がさらに好ましい。また、第1パターン9は、ランダムに凹凸する微細形状パターンであってもよいし、複数の凹凸を有する微細形状パターンであってもよい。
 第1モールド7は、樹脂基材、石英基材、シリコーン基材などの透明材料で形成され、透明基材1と同様の材質で形成可能である。
 第1モールド7を第1被転写樹脂層5に押し付ける圧力は、第1パターン9の形状を第1被転写樹脂層5に転写可能な圧力であればよい。
 第1被転写樹脂層5へ照射する活性エネルギー線11は、第1被転写樹脂層5が十分に硬化する程度の積算光量で照射すればよく、積算光量は、例えば100~10000mJ/cmである。活性エネルギー線11の照射によって、第1被転写樹脂層5が硬化されて、図2(c)に示すように、第1パターン9が反転された第1反転パターン9rが形成された第1硬化樹脂層15が形成される。
(2)第2硬化樹脂層形成工程
(2-1)第2被転写樹脂層形成工程
 次に、図3(a)に示すように、第1硬化樹脂層15上に第2光硬化性樹脂組成物を塗布して第2被転写樹脂層25を形成する。
 上述した第1光硬化性樹脂組成物の説明は、その趣旨に反しない限り、第2光硬化性樹脂組成物に当てはまる。第2光硬化性樹脂組成物の種類は、第1光硬化性樹脂組成物と同じであっても異なっていてもよい。第2光硬化性樹脂組成物は、第1反転パターン9rの隙間を埋めつつ、第1反転パターン9r上にある程度の厚さを有する第2被転写樹脂層25を形成可能な程度の適度な粘性を有するものが好ましい。第2光硬化性樹脂組成物を塗布して得られる第2被転写樹脂層25は、通常は、透明樹脂層であり、その第1反転パターン9r上の厚さは、通常50nm~1mm、好ましくは、500nm~500μmである。このような厚さとすれば、インプリント加工が行い易い。
(2-2)転写及び硬化工程
 次に、図3(a)~(d)に示すように、第2モールド21の第2パターン23を第2被転写樹脂層25に押し付けた状態で遮光パターン3をマスクとして用いて第2被転写樹脂層25に活性エネルギー線を照射して第2被転写樹脂層25の一部の領域を硬化させることによって、低段部31lと高段部31uとを含む段差形状31を有する第2硬化樹脂層29を形成する。
 上述した第1モールド7の説明は、その趣旨に反しない限り、第2モールド21にも当てはまる。第1及び第2モールド7,21は、同一のモールドであっても、材質又はパターンが互いに異なるモールドであってもよい。
 第2モールド21は、活性エネルギー線27を透過させる必要がないので、第2モールド21は、金属材料で形成することも可能である。
 第2モールド21を第2被転写樹脂層25に押し付ける圧力は、第2パターン23の形状を第2被転写樹脂層25に転写可能な圧力であればよい。
 第2被転写樹脂層25へ照射する活性エネルギー線27は、第2被転写樹脂層25が十分に硬化する程度の積算光量で照射すればよく、積算光量は、例えば100~10000mJ/cmである。活性エネルギー線27の照射によって、遮光パターン3によって遮られていない領域では、第1反転パターン9rの隙間に埋められた第2光硬化性樹脂組成物が硬化されると共に、第2パターン23が転写された第2被転写樹脂層25が硬化されて第2硬化樹脂層29が形成される。この工程で第2光硬化性樹脂組成物が硬化された領域に、図3(d)に示す段差形状31の高段部31uが形成される。高段部31uには第2パターン23が反転された第2反転パターン23rが形成される。一方、遮光パターン3によって活性エネルギー線27が遮られて第2光硬化性樹脂組成物が硬化されなかった領域に低段部31lが形成される。低段部31lには第1反転パターン9rがそのまま残る。
 次に、図3(c)~(d)に示すように、第2モールド21を取り外し、低段部31lに残っている未硬化の第2光硬化性樹脂組成物31を溶剤で除去して、図3(d)に示す構造を得て、微細構造体の製造が完了する。
 作製した微細構造体は、インプリント用モールド、マイクロコンタクトプリント用スタンパ、光学シート(反射防止シート、ホログラムシート、レンズシート、偏光分離シート)、撥水シート、親水シート細胞培養シート、射出成型用金型、マイクロチップ、ホログラムシートなどに利用可能である。
 本実施形態は、以下の態様でも実施可能である。
・上記実施形態では、第1モールド7には遮光パターンを設けていないが、遮光パターン3とは異なるパターンの遮光パターンを第1モールド7に設け、この第1モールド7を通じて第1被転写樹脂層5に活性エネルギー線11を照射してもよい。この場合、より多様な形状の微細構造体の作製が可能になる。
・第2硬化樹脂層29上に光硬化性樹脂組成物を塗布して被転写樹脂層を形成し、この被転写樹脂層に別のパターンを転写させ、この被転写樹脂層の一部の領域を硬化させることによって、3層目の硬化樹脂層を形成することが可能である。このような方法によって、さらに多様な形状の微細構造体の作製が可能になる。
2.第2実施形態
 図4~図5を用いて、本発明の第2実施形態について説明する。本実施形態は、第1実施形態に類似しており、第1モールド7の第1パターン9が微細形状パターンではなく、フラットパターン(つまり平坦面)である点が主な相違点である。以下、相違点を中心に説明する。
 まず、図4(a)~(c)に示すように、第1被転写樹脂層5に対して、第1モールド7の第1パターン9を押し付けながら、第1モールド7を通じて第1被転写樹脂層5に活性エネルギー線11を照射することによって、図4(c)に示すように、第1パターン9が反転された第1反転パターン9rを有する第1硬化樹脂層15を形成する。第1パターン9はフラットパターンなので、第1反転パターン9rもフラットパターンとなり、第1硬化樹脂層15表面は、平坦面となる。
 次に、図5(a)~(d)に示すように、第1硬化樹脂層15上の第2被転写樹脂層25に対して、第2モールド21の第2パターン23を押し付けた状態で、遮光パターン3をマスクとして第2被転写樹脂層25に対して活性エネルギー線27を照射させて、非遮光領域において第2被転写樹脂層25を硬化させることによって段差形状31を有する第2硬化樹脂層29を形成する。第2パターン23は、微細形状パターンであるので、高段部31uには第2パターン23が反転された微細形状パターンが形成される。一方、低段部31lはフラットパターンのままである。
 以上のように、本実施形態によれば、高段部31uにのみ微細形状パターンが形成された微細構造体を作製することができる。
3.第3実施形態
 図6を用いて、本発明の第3実施形態について説明する。本実施形態は、第1実施形態に類似しており、第2モールド21の第2パターン23が微細形状パターンではなく、フラットパターン(つまり平坦面)である点が主な相違点である。以下、相違点を中心に説明する。
 まず、図2(a)~(c)に示すように、第1実施形態と同様の方法で微細形状の第1反転パターン9rを有する第1硬化樹脂層15を形成する。
 次に、図6(a)~(d)に示すように、第1硬化樹脂層15上の第2被転写樹脂層25に対して、第2モールド21の第2パターン23を押し付けた状態で、遮光パターン3をマスクとして第2被転写樹脂層25に対して活性エネルギー線27を照射させて、非遮光領域において第2被転写樹脂層25を硬化させることによって段差形状31を有する第2硬化樹脂層29を形成する。第2パターン23は、フラットパターンであるので、高段部31uにはフラットパターンが形成される。一方、低段部31lは微細形状パターンが形成されたままである。
 以上のように、本実施形態によれば、低段部31lにのみ微細形状パターンが形成された微細構造体を作製することができる。
4.第4実施形態
 図7を用いて、本発明の第4実施形態について説明する。本実施形態は、第1実施形態に類似しており、第2モールド21の第2パターン23が、第1モールド7の第1パターン9とは異なる微細形状パターンである点が主な相違点である。以下、相違点を中心に説明する。
 まず、図2(a)~(c)に示すように、第1実施形態と同様の方法で微細形状の第1反転パターン9rを有する第1硬化樹脂層15を形成する。第1反転パターン9rは線状パターンである。
 次に、図7(a)~(d)に示すように、第1硬化樹脂層15上の第2被転写樹脂層25に対して、第2モールド21の第2パターン23を押し付けた状態で、遮光パターン3をマスクとして第2被転写樹脂層25に対して活性エネルギー線27を照射させて、非遮光領域において第2被転写樹脂層25を硬化させることによって段差形状31を有する第2硬化樹脂層29を形成する。第1及び第2パターン9,23は、それぞれ、線状パターン及びモスアイパターンの反転パターンとなっているので、高段部31uにはモスアイパターンが形成され、低段部31lは線状パターンが形成されたままである。
 以上のように、本実施形態によれば、低段部31lと高段部31uに周期や形状が異なるパターンが形成された微細構造体を作製することができる。
 また、上記の第1~第4実施形態で得られた微細構造体を第1モールド7や第2モールド21として使用することができ、特に第2、第4実施形態で得られた微細構造体を用いれば、3種のパターンが形成された微細構造体が得られる。
1:透明基材、3:遮光パターン、5:第1被転写樹脂層、7:第1モールド、11,27:活性エネルギー線、15:第1硬化樹脂層、21:第2モールド、25:第2被転写樹脂層、29:第2硬化樹脂層

Claims (8)

  1. 遮光パターンを有する透明基材上に第1光硬化性樹脂組成物を塗布して得られる第1被転写樹脂層に対して第1モールドの第1パターンを押し付けた状態で第1モールドを通じて第1被転写樹脂層に活性エネルギー線を照射することによって第1パターンが転写された第1硬化樹脂層を形成し、
    第1硬化樹脂層上に第2光硬化性樹脂組成物を塗布して得られる第2被転写樹脂層に対して第2モールドの第2パターンを押し付けた状態で前記遮光パターンをマスクとして用いて第2被転写樹脂層に活性エネルギー線を照射して第2被転写樹脂層の一部の領域を硬化させることによって、低段部と高段部とを含む段差形状を有する第2硬化樹脂層を形成する工程を備え、
    第1及び第2パターンの少なくとも一方が、微細形状を有する、微細構造体の製造方法。
  2. 第1及び第2パターンの両方が、微細形状を有し、
    前記低段部は、第1パターンが転写された微細形状を含み、
    前記高段部は、第2パターンが転写された微細形状を含む、請求項1に記載の微細構造体の製造方法。
  3. 前記透明基材が可撓性を有する、請求項1又は請求項2に記載の微細構造体の製造方法。
  4. 前記遮光パターンと前記低段部の領域が実質的に同一である、請求項1~請求項3の何れか1つに記載の微細構造体の製造方法。
  5. 第1及び第2硬化樹脂層は、エッチングを用いることなく形成される、請求項1~請求項4の何れか1つに記載の微細構造体の製造方法。
  6. 前記遮光パターンは、前記透明基材の、第1光硬化性樹脂組成物を塗布する面に形成される、請求項1~請求項5の何れか1つに記載の微細構造体の製造方法。
  7. 前記遮光パターンは、前記透明基材と面一になるように形成される、請求項6に記載の微細構造体の製造方法。
  8. 前記微細構造体は、インプリント用モールド、マイクロコンタクトプリント用スタンパ、光学シート、撥水シート、親水シート又は細胞培養シートである、請求項1~請求項7の何れか1つに記載の微細構造体の製造方法。
PCT/JP2015/071102 2014-07-25 2015-07-24 微細構造体の製造方法 WO2016013655A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
CN201580040832.9A CN106575605B (zh) 2014-07-25 2015-07-24 微细结构体的制造方法
KR1020177001685A KR20170034890A (ko) 2014-07-25 2015-07-24 미세구조체의 제조방법
EP15823946.7A EP3196924B1 (en) 2014-07-25 2015-07-24 Method for manufacturing microscopic structural body
DK15823946.7T DK3196924T3 (en) 2014-07-25 2015-07-24 Process for making bodies with microstructure
US15/328,635 US20170203330A1 (en) 2014-07-25 2015-07-24 Method for manufacturing microscopic structural body
JP2016535992A JP6603218B2 (ja) 2014-07-25 2015-07-24 微細構造体の製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-152190 2014-07-25
JP2014152190 2014-07-25

Publications (1)

Publication Number Publication Date
WO2016013655A1 true WO2016013655A1 (ja) 2016-01-28

Family

ID=55163177

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/071102 WO2016013655A1 (ja) 2014-07-25 2015-07-24 微細構造体の製造方法

Country Status (8)

Country Link
US (1) US20170203330A1 (ja)
EP (1) EP3196924B1 (ja)
JP (1) JP6603218B2 (ja)
KR (1) KR20170034890A (ja)
CN (1) CN106575605B (ja)
DK (1) DK3196924T3 (ja)
TW (1) TWI663472B (ja)
WO (1) WO2016013655A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017126589A1 (ja) * 2016-01-20 2017-07-27 綜研化学株式会社 細胞培養基板及びその製造方法
JP2018085491A (ja) * 2016-11-25 2018-05-31 東芝メモリ株式会社 パターン形成方法およびインプリント装置

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108351605B (zh) * 2016-01-27 2020-12-15 株式会社Lg化学 膜掩模、其制备方法、使用膜掩模的图案形成方法和由膜掩模形成的图案
JPWO2021090706A1 (ja) * 2019-11-08 2021-05-14
TWI743680B (zh) 2020-02-13 2021-10-21 友達光電股份有限公司 偏光基板及其製造方法
KR102637392B1 (ko) * 2020-10-01 2024-02-15 신에츠 엔지니어링 가부시키가이샤 미소 구조물 제조 장치 및 미소 구조물 제조 방법

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003249444A (ja) * 2002-01-23 2003-09-05 Hewlett Packard Co <Hp> ミクロンおよびサブミクロン構造を有する半導体および他のマイクロ装置およびナノ装置の製造中の光学−機械式構造作製方法
JP2008213273A (ja) * 2007-03-02 2008-09-18 Sekisui Chem Co Ltd 微細構造金型の製造方法
US20080305410A1 (en) * 2007-06-05 2008-12-11 Samsung Electronics Co., Ltd Imprinting device, method of fabricating the same. and method of patterning thin film using the same
JP2010074162A (ja) * 2008-09-19 2010-04-02 Samsung Electronics Co Ltd ナノインプリントを用いたパターン成形方法とパターン成形のためのモールド製作方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1033345C (zh) * 1989-03-02 1996-11-20 东芝株式会社 荫罩的图形印相版
JP4281773B2 (ja) * 2006-09-25 2009-06-17 ヤマハ株式会社 微細成形モールド及び微細成形モールドの再生方法
JP5157435B2 (ja) 2007-12-28 2013-03-06 王子ホールディングス株式会社 凹凸パターンシートの製造方法、及び光学シートの製造方法
KR100965904B1 (ko) * 2009-09-02 2010-06-24 한국기계연구원 나노임프린트를 이용한 금속 산화박막 패턴 형성방법 및 led 소자의 제조방법
WO2011089836A1 (ja) * 2010-01-19 2011-07-28 株式会社日立産機システム パターン転写装置及びパターン転写方法
KR100995897B1 (ko) * 2010-02-03 2010-11-22 한국기계연구원 나노구조물의 갭필방법 및 이를 이용한 유기발광소자의 제조방법
EP2752867B1 (en) * 2011-08-31 2019-01-02 Soken Chemical & Engineering Co., Ltd. Adhesive sheet for immobilizing imprint mold, imprint device, and imprint method
JPWO2013154077A1 (ja) * 2012-04-09 2015-12-17 旭硝子株式会社 微細パターンを表面に有する物品およびその製造方法、ならびに光学物品、その製造方法および複製モールドの製造方法
KR101370426B1 (ko) * 2012-06-21 2014-03-06 주식회사 미뉴타텍 3차원 복잡 다층 구조물 및 그 제조방법
WO2013191412A1 (ko) * 2012-06-21 2013-12-27 주식회사 미뉴타텍 3차원 복잡 다층 구조물 및 그 제조방법

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003249444A (ja) * 2002-01-23 2003-09-05 Hewlett Packard Co <Hp> ミクロンおよびサブミクロン構造を有する半導体および他のマイクロ装置およびナノ装置の製造中の光学−機械式構造作製方法
JP2008213273A (ja) * 2007-03-02 2008-09-18 Sekisui Chem Co Ltd 微細構造金型の製造方法
US20080305410A1 (en) * 2007-06-05 2008-12-11 Samsung Electronics Co., Ltd Imprinting device, method of fabricating the same. and method of patterning thin film using the same
JP2010074162A (ja) * 2008-09-19 2010-04-02 Samsung Electronics Co Ltd ナノインプリントを用いたパターン成形方法とパターン成形のためのモールド製作方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017126589A1 (ja) * 2016-01-20 2017-07-27 綜研化学株式会社 細胞培養基板及びその製造方法
JP2018085491A (ja) * 2016-11-25 2018-05-31 東芝メモリ株式会社 パターン形成方法およびインプリント装置

Also Published As

Publication number Publication date
US20170203330A1 (en) 2017-07-20
CN106575605B (zh) 2019-06-28
TWI663472B (zh) 2019-06-21
KR20170034890A (ko) 2017-03-29
JPWO2016013655A1 (ja) 2017-04-27
EP3196924A4 (en) 2018-01-10
DK3196924T3 (en) 2019-03-11
EP3196924B1 (en) 2018-11-28
EP3196924A1 (en) 2017-07-26
JP6603218B2 (ja) 2019-11-06
CN106575605A (zh) 2017-04-19
TW201610573A (zh) 2016-03-16

Similar Documents

Publication Publication Date Title
JP6603218B2 (ja) 微細構造体の製造方法
JP6173354B2 (ja) 光透過型インプリント用モールド、大面積モールドの製造方法
CN101097400B (zh) 软模具及其制造方法
WO2016006592A1 (ja) ステップアンドリピート用インプリント用モールド及びその製造方法
JP5480530B2 (ja) 微細構造転写方法及び微細構造転写装置
US20130147096A1 (en) Imprinting Stamp And Nano-Imprinting Method Using The Same
US20100096770A1 (en) Method for fabrication of mold for nano imprinting and method for production of photonic crystal using the same
JP6801349B2 (ja) パターン構造体の製造方法およびインプリント用モールドの製造方法
WO2016060170A1 (ja) 偏光板及びその製造方法、媒体
WO2016195064A1 (ja) 構造体及びその製造方法
WO2017078019A1 (ja) 微細構造体の製造方法
WO2017126589A1 (ja) 細胞培養基板及びその製造方法
WO2017047549A1 (ja) 微細構造体の製造方法
JP2013193454A (ja) マスターモールドの製造方法およびモールドの製造方法並びにそれらに使用される表面加工方法
KR100795236B1 (ko) 사다리꼴 구조의 몰드를 이용한 패턴 형성 방법
WO2016043244A1 (ja) 微細パターン付き繊維体
JP2019171812A (ja) フィルム版、およびこれを用いた液滴輸送構造部の製造方法
JP7147045B2 (ja) 凹凸構造体の製造方法
KR20110105807A (ko) 구조체의 형성방법 및 액체토출 헤드의 제조 방법
JP7098864B2 (ja) モスアイパターン付き物品の製造方法、及びモスアイパターン付き反転型の製造方法
WO2015151323A1 (ja) インプリント用モールドおよびインプリント方法
JP2005271410A (ja) 反射防止構造形成用型の製造方法、反射防止構造、及び光学素子
CN112060568A (zh) 光固化增材制造方法
JP2015167203A (ja) パターン形成方法およびパターン化基板製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15823946

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016535992

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20177001685

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15328635

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2015823946

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015823946

Country of ref document: EP