WO2016060170A1 - 偏光板及びその製造方法、媒体 - Google Patents

偏光板及びその製造方法、媒体 Download PDF

Info

Publication number
WO2016060170A1
WO2016060170A1 PCT/JP2015/079067 JP2015079067W WO2016060170A1 WO 2016060170 A1 WO2016060170 A1 WO 2016060170A1 JP 2015079067 W JP2015079067 W JP 2015079067W WO 2016060170 A1 WO2016060170 A1 WO 2016060170A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin layer
polarizing plate
pattern
mold
uneven
Prior art date
Application number
PCT/JP2015/079067
Other languages
English (en)
French (fr)
Inventor
須藤 康夫
Original Assignee
綜研化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 綜研化学株式会社 filed Critical 綜研化学株式会社
Priority to JP2016554105A priority Critical patent/JPWO2016060170A1/ja
Priority to KR1020177006113A priority patent/KR20170069196A/ko
Priority to US15/517,601 priority patent/US20170315281A1/en
Priority to EP15850915.8A priority patent/EP3208641A4/en
Priority to CN201580054850.2A priority patent/CN106796320A/zh
Publication of WO2016060170A1 publication Critical patent/WO2016060170A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/32Holograms used as optical elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3025Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state
    • G02B5/3058Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state comprising electrically conductive elements, e.g. wire grids, conductive particles
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H1/00Holographic processes or apparatus using light, infrared or ultraviolet waves for obtaining holograms or for obtaining an image from them; Details peculiar thereto
    • G03H1/02Details of features involved during the holographic process; Replication of holograms without interference recording

Definitions

  • the present invention relates to a polarizing plate, a manufacturing method thereof, and a medium having a hologram function using the polarizing plate.
  • Patent Document 1 discloses a technique for manufacturing a wire grid polarizing plate by forming a concave / convex pattern having a very short period on a resin film on a resin base material and depositing a metal film thereon.
  • Patent Document 1 since the concavo-convex pattern is formed so as to extend in a certain direction within the same plane, the polarization component transmitted through the polarizing plate of Patent Document 1 is the same over the entire surface of the polarizing plate. . However, if different polarization components can be transmitted for each region provided in the plane of the polarizing plate, the polarizing plate can be used for a wider range of applications than in the past.
  • the present invention has been made in view of such circumstances, and provides a polarizing plate capable of transmitting different polarization components for each region provided in the plane of the polarizing plate.
  • a polarizing plate having a plurality of uneven regions extending in different directions.
  • the polarizing plate of the present invention has a plurality of concave and convex regions in which the direction of the concave and convex pattern extends, it is possible to transmit different polarization components for each region provided in the plane of the polarizing plate.
  • the plurality of uneven regions are provided at different height positions.
  • the concavo-convex pattern has a line and space shape.
  • the polarizing layer is made of a conductive metal or metal oxide.
  • the transparent resin layer is formed by curing a photocurable resin composition.
  • a medium having a hologram function using the polarizing plate described above is provided.
  • a photocurable resin composition is applied on a transparent substrate to form a transferred resin layer, and the transferred resin layer is transferred to the transferred resin layer.
  • the transferred resin layer is irradiated with active energy rays to cure the transferred resin layer to form a transparent resin layer, and the conductive resin is formed on the transparent resin layer.
  • a method for producing a polarizing plate comprising a step of forming a polarizing layer made of a conductive metal or metal oxide, wherein the mold has a plurality of reversal pattern regions in which the reversal patterns extend in different directions.
  • the plurality of reverse pattern regions are provided at different height positions.
  • the mold is a resin mold.
  • FIG. 1 It is a perspective view of the polarizing plate 1 of one Embodiment of this invention.
  • (A) to (c) are drawings corresponding to the II cross section in FIG. 1, showing a state in which the polarizing layer 9 is formed on the transparent resin layer 7.
  • FIGS. 2A to 2C are cross-sectional views corresponding to the II-II cross section in FIG. However, for convenience of illustration, the shapes of the concave / convex pattern 5 and the reverse pattern 15 are schematically shown. The same applies to FIGS.
  • FIG. 4 is a cross-sectional view illustrating a manufacturing process of the polarizing plate 1 continued from FIG. 3.
  • 5 is a cross-sectional view showing a manufacturing process of a mold 13 used for manufacturing the polarizing plate 1.
  • Polarizing plate A polarizing plate 1 includes a transparent substrate 3, a transparent resin layer 7 formed thereon and having an uneven pattern 5, and a polarizing layer 9 formed on the transparent resin layer 7.
  • the transparent resin layer 7 has a plurality of concavo-convex regions 11a, 11b, and 11c in which the concavo-convex pattern 5 extends in different directions.
  • the transparent substrate 3 is formed of a transparent material such as a resin substrate or a quartz substrate, and the material is not particularly limited, but is preferably a resin substrate.
  • the resin constituting the resin base material include one selected from the group consisting of polyethylene terephthalate, polycarbonate, polyester, polyolefin, polyimide, polysulfone, polyethersulfone, cyclic polyolefin, and polyethylene naphthalate.
  • the transparent substrate 3 is preferably in the form of a flexible film, and the thickness is preferably in the range of 25 to 500 ⁇ m.
  • the concavo-convex pattern 5 is an elongated concavo-convex pattern, and the extending directions of the concavo-convex pattern 5 are different from each other in the first to third concavo-convex areas 11a to 11c.
  • the uneven pattern 5 extends in the direction of arrow A in the first uneven area 11a
  • the uneven pattern 5 extends in the direction of arrow B in the second uneven area 11b
  • the uneven pattern in the third uneven area 11c The pattern 5 extends in the direction of arrow C.
  • the arrow B direction is a direction orthogonal to the arrow A direction
  • the arrow C direction is a direction shifted by 45 degrees with respect to the arrow A direction.
  • the shape and pitch of the uneven pattern 5 in the first to third uneven regions 11a to 11c may be the same or different.
  • the period of the uneven pattern 5 is, for example, 10 nm to 1 ⁇ m, preferably 30 to 500 nm, and more preferably 50 to 200 nm.
  • the concavo-convex pattern 5 is preferably in a line and space shape.
  • the value of (space width) / (line width) is not particularly limited, but is, for example, 0.2 to 5, preferably 0.5 to 4, and more preferably 1 to 3. If it is too small, the line width is wide, and if it is too large, the space width is widened. Therefore, the polarization component perpendicular to and parallel to the extending direction of the line and space is reflected by the interaction of the electric field with free electrons in the metal. Thus, it does not function as a polarizing layer.
  • the first to third uneven regions 11a to 11c may be formed so that the height positions are the same, but it is preferable that the height positions are different from each other as shown in FIG. In this case, there is an advantage that the boundary between adjacent uneven regions becomes clear.
  • the transparent resin layer 7 can be formed by curing a photocurable resin composition. Details of the process will be described later.
  • the polarizing layer 9 is formed on the transparent resin layer 7 as shown in FIG.
  • the polarizing layer 9 may be formed so as to have a function of polarizing incident light, and the material, thickness, shape, and the like are not limited.
  • the polarizing layer 9 can be formed of, for example, a conductive metal (Ni, Al, etc.) or a metal oxide (ITO, etc.).
  • the polarizing layer 9 may be formed along the shape of the concavo-convex pattern 5 as shown in FIG. 2 (a), and as shown in FIG. It may be formed only on the side surface of the convex portion 7a of the concave-convex pattern 5 as shown in FIG. That is, the polarizing layer 9 may be formed in a film shape as shown in FIG. 2A, or may be formed in a thin line shape as shown in FIGS. 2B to 2C.
  • the polarizing plate 1 is a wire grid polarizing plate and has a property of transmitting a polarization component having a vibration surface (surface formed by a vibrating electric field) perpendicular to the extending direction of the uneven pattern 5. Therefore, when non-polarized incident light L is incident on the polarizing plate 1, a polarized component having a vibration plane perpendicular to the arrow A is transmitted through the first uneven region 11a, and perpendicular to the arrow B in the second uneven region 11b. A polarized light component having a vibration plane perpendicular to the arrow C is transmitted through the third uneven region 11c. For this reason, when the non-polarized incident light L is incident on the polarizing plate 1, a plurality of types (three types in the present embodiment) of polarization components can be extracted at a time.
  • the polarized light P having a vibration plane perpendicular to the arrow A is incident on the polarizing plate 1, almost all of the polarized light P is transmitted through the first uneven area 11a, and a part of the third uneven area 11c (indicated by the arrow C). Only the polarization component having a vertical vibration surface is transmitted, and almost all of the second uneven region 11b is blocked.
  • the polarizing plate 1 is rotated 45 degrees without changing the direction of the vibration plane of the polarized light P, almost all of the polarized light P is transmitted in the third uneven area 11c, and partially in the first and second uneven areas 11a and 11b. Only becomes transparent.
  • the transmission state of the polarized light P for each region can be changed only by rotating the polarizing plate 1.
  • the polarizing plate 1 of the present embodiment can be efficiently manufactured by a nanoimprint method, and functions other than the polarizing function (depending on the structural color) can be formed when forming an uneven pattern for providing the polarizing function. It is possible to simultaneously form a concave / convex pattern for providing a decorative property. It is also possible to form a medium having a hologram function by forming an uneven pattern for imparting a hologram function to the polarizing plate 1 of the present embodiment.
  • the manufacturing method of the polarizing plate 1 of this embodiment includes a transferred resin layer forming step, a transfer and curing step, and a polarizing layer forming step.
  • a transferred resin layer forming step includes a transfer and curing step, and a polarizing layer forming step.
  • each step will be described in detail with reference to FIGS.
  • a photocurable resin composition is applied on the transparent substrate 3 to form a transferred resin layer 19.
  • the photocurable resin composition constituting the transferred resin layer 19 contains a monomer and a photoinitiator and has a property of being cured by irradiation with active energy rays.
  • Active energy rays is a general term for energy rays that can cure a photocurable resin composition, such as UV light, visible light, and electron beams.
  • Monomers include photopolymerizable monomers for forming (meth) acrylic resins, styrene resins, olefin resins, polycarbonate resins, polyester resins, epoxy resins, silicone resins, etc., and photopolymerizable (meth) acrylic.
  • System monomers are preferred.
  • (meth) acryl means methacryl and / or acryl
  • (meth) acrylate means methacrylate and / or acrylate.
  • the photoinitiator is a component added to promote the polymerization of the monomer, and is preferably contained in an amount of 0.1 part by mass or more with respect to 100 parts by mass of the monomer.
  • the upper limit of content of a photoinitiator is not prescribed
  • the photocurable resin composition is a range in which components such as a solvent, a polymerization inhibitor, a chain transfer agent, an antioxidant, a photosensitizer, a filler, and a leveling agent do not affect the properties of the photocurable resin composition. May be included.
  • the photocurable resin composition can be produced by mixing the above components by a known method.
  • the photocurable resin composition can be applied onto the transparent substrate 3 by a method such as spin coating, spray coating, bar coating, dip coating, die coating, and slit coating to form the transferred resin layer 19. .
  • the transferred resin layer 19 has an inverted pattern 15 of the concavo-convex pattern 5 transferred to the transferred resin layer 19.
  • the transferred resin layer 19 is irradiated with active energy rays 21 to cure the transferred resin layer 19 to form a transparent resin layer.
  • the mold 13 has the reversal pattern 15 on the resin layer 31 on the transparent substrate 23.
  • the transparent base material 23 consists of a resin base material, a quartz base material, a silicone base material, etc., and a resin base material is preferable.
  • the mold 13 is preferably a resin mold. Details of the method of manufacturing the mold 13 will be described later.
  • the reverse pattern 15 has a shape obtained by inverting the concave / convex pattern 5 shown in FIG. 1, a plurality of directions in which the reverse pattern 15 extends are different from each other so as to correspond to the first to third concave / convex regions 11a to 11c.
  • Inverted pattern areas (first to third inverted pattern areas) 17a to 17c are provided.
  • the first to third inversion pattern regions 17a to 17c are provided at different height positions, like the first to third uneven regions 11a to 11c.
  • the pressure for pressing the mold 13 against the transferred resin layer 19 may be any pressure that can transfer the shape of the reversal pattern 15 to the transferred resin layer 19.
  • the active energy ray 21 irradiated to the transferred resin layer 19 may be irradiated with an integrated light amount sufficient to sufficiently cure the transferred resin layer 19, and the integrated light amount is, for example, 100 to 10,000 mJ / cm 2 .
  • the transferred resin layer 19 is cured by irradiation with the active energy ray 21.
  • the active energy ray 21 since the light shielding pattern 25 is formed on the transparent base material 23 of the mold 13, the active energy ray 21 is irradiated from the transparent base material 3 side. When using a mold having no pattern, the active energy ray 21 may be irradiated from the mold side.
  • the mold 13 is removed, and the uncured photocurable resin composition is washed away with a solvent, whereby the transparent resin layer 7 having the uneven pattern 5 on the transparent substrate 3 is formed as shown in FIG. A formed structure is obtained.
  • the polarizing layer 9 is formed on the transparent resin layer 7 to complete the manufacture of the polarizing plate 1.
  • the polarizing layer 9 can be formed, for example, by depositing a conductive metal or metal oxide as a material on the transparent resin layer 7 by sputtering.
  • Method for Manufacturing Mold A method for manufacturing the mold 13 that is preferably used for manufacturing the polarizing plate 1 of the present embodiment will be described.
  • the mold 13 can be formed by repeating the formation of the resin layer to be transferred and the pattern transfer and curing process a plurality of times.
  • the description of the formation of the resin layer to be transferred, the transfer of the pattern and the curing step is the same as that described above for the “manufacturing method of the polarizing plate”, and the description thereof will be omitted as appropriate.
  • a photocurable resin composition is applied on a transparent substrate 23 on which a light shielding pattern 25 is formed to form a transferred resin layer 27.
  • the transfer resin layer 27 is irradiated with the active energy rays 21 in a state where the mold 29 having the concave and convex pattern 5c is pressed against the transfer resin layer 27.
  • the transfer resin layer 27 is cured to form a transparent resin layer 31a having a reversal pattern 15c.
  • the active energy ray 21 is irradiated from the mold 29 side to cure the entire surface of the transferred resin layer 27.
  • the concave / convex pattern 5c has the same shape as the concave / convex pattern 5 formed in the third concave / convex region 11c, and the reverse pattern 15c has the same shape as the reverse pattern 15 formed in the third reverse pattern region 17c.
  • a photocurable resin composition is applied on the transparent resin layer 31 a to form a transferred resin layer 33.
  • the active resin 21 is irradiated with the active energy ray 21 in a state where the mold 35 having the uneven pattern 5b is pressed against the transferred resin layer 33.
  • the transfer resin layer 33 is cured to form a transparent resin layer 31b having the inversion patterns 15b and 15c as shown in FIG. 6C.
  • the concave / convex pattern 5b has the same shape as the concave / convex pattern 5 formed in the second concave / convex region 11b, and the reverse pattern 15b has the same shape as the reverse pattern 15 formed in the second reverse pattern region 17b.
  • the active energy ray 21 is irradiated from the transparent base material 23 side to the transferred resin layer 33 through the light shielding pattern 25, only the region of the transferred resin layer 33 that is not covered with the light shielding pattern 25 is cured. Since the light shielding pattern 25 has the same shape as the third inversion pattern region 17c, as shown in FIG. 6C, the inversion pattern 15c remains as it is in the third inversion pattern region 17c.
  • the transparent resin layer 31b in which the reverse pattern 15b is formed at a position higher than the three reverse pattern region 17c is formed.
  • the active energy ray 21 is irradiated through the light shielding pattern 25 in a state where another transparent substrate having the light shielding pattern 25 is superimposed on the transparent substrate 23. May be.
  • the mold 13 without the light shielding pattern 25 can be formed.
  • a photocurable resin composition is applied on the transparent resin layer 31 b to form a transferred resin layer 37.
  • the transfer resin layer 37 is irradiated with the active energy rays 21 in a state where the mold 39 having the concave / convex pattern 5a is pressed against the transfer resin layer 37.
  • the transfer resin layer 37 is cured to form the transparent resin layer 31 having the inversion patterns 15a, 15b, and 15c as shown in FIG.
  • the concave / convex pattern 5a has the same shape as the concave / convex pattern 5 formed in the first concave / convex region 11a, and the reverse pattern 15a has the same shape as the reverse pattern 15 formed in the first reverse pattern region 17a.
  • the active energy ray 21 is irradiated to the transferred resin layer 33 from the transparent substrate 41 side through the light shielding patterns 43 and 25 in a state where another transparent substrate 41 having the light shielding pattern 43 is superimposed on the transparent substrate 23. Therefore, only the region of the transferred resin layer 33 that is not covered with the light shielding patterns 43 and 25 is cured. Since the light shielding pattern 43 has the same shape as the second inversion pattern region 17b, the inversion patterns 15b and 15c are left as they are in the second and third inversion pattern regions 17b and 17c, as shown in FIG. 7C. In the remaining areas, the transparent resin layer 31 in which the reverse pattern 15a is formed at a position higher than the second reverse pattern area 17b is formed. A region where the reverse pattern 15a is formed becomes the first reverse pattern region 17a.
  • the manufacture of the mold 13 is completed through the above steps.
  • the concave and convex shapes of the reverse patterns 15a to 15c may be the same or different.
  • the concavo-convex shapes of the reversal patterns 15a to 15c are the same, they can be used as the molds 29, 35, and 39 by rotating one mold.
  • the method for manufacturing the mold 13 having the reversal pattern 15 having the three-stage configuration has been described.
  • What is necessary is just to repeat the process of forming a resin layer, transferring a desired reverse pattern, and curing only a desired region.
  • a mold 13 was produced by the method described in “3. Production method of mold”. In the first to third inversion pattern regions 17a to 17c, the inversion patterns 15 having the same line and space shape are formed so as to be shifted from each other by 45 degrees.
  • a transfer product was produced by UV nanoimprinting using the produced mold 13 by the method described in “2. Production method of polarizing plate”. SEM images of the obtained transfer product are shown in FIGS. As shown in FIGS. 8A and 8B, proper transfer in a line and space shape was confirmed. In the cross-sectional view of FIG. 8A, the period, line width, and shape height of the line and space shape were measured, and were 117.0 nm, 33.5 nm, and 142.9 nm, respectively.
  • a nickel thin film (20 nm) was formed on the pattern surface of the obtained transfer product using a sputtering apparatus.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Nonlinear Science (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Polarising Elements (AREA)
  • Holo Graphy (AREA)

Abstract

 偏光板の面内に設けられた領域毎に異なる偏光成分を透過させることができる偏光板を提供する。 本発明によれば、透明基材と、その上に形成され且つ凹凸パターンを有する透明樹脂層と、前記透明樹脂層上に形成された偏光層を備え、前記透明樹脂層は、前記凹凸パターンが延びる方向が互いに異なる複数の凹凸領域を有する、偏光板が提供される。

Description

偏光板及びその製造方法、媒体
 本発明は、偏光板及びその製造方法、及び偏光板を用いたホログラム機能を有する媒体に関する。
 特許文献1には、樹脂基材上の樹脂皮膜に非常に周期が短い凹凸パターンを形成し、その上に金属膜を蒸着することによってワイヤグリッド偏光板を製造する技術が開示されている。
特許第4824068号公報
 特許文献1では、凹凸パターンは、同一面内で一定の方向に延びるように形成されているために、特許文献1の偏光板を透過する偏光成分は、偏光板の全面において同じになってしまう。しかし、偏光板の面内に設けられた領域毎に異なる偏光成分を透過させることができれば、偏光板が従来よりも幅広い用途に利用可能となる。
 本発明はこのような事情に鑑みてなされたものであり、偏光板の面内に設けられた領域毎に異なる偏光成分を透過させることができる偏光板を提供するものである。
 本発明によれば、透明基材と、その上に形成され且つ凹凸パターンを有する透明樹脂層と、前記透明樹脂層上に形成された偏光層を備え、前記透明樹脂層は、前記凹凸パターンが延びる方向が互いに異なる複数の凹凸領域を有する、偏光板が提供される。
 本発明の偏光板は、凹凸パターンが延びる方向が互いに異なる複数の凹凸領域を有するので、偏光板の面内に設けられた領域毎に異なる偏光成分を透過させることができる。
 以下、本発明の種々の実施形態を例示する。以下に示す実施形態は、互いに組み合わせ可能である。
 好ましくは、前記複数の凹凸領域は、互いに異なる高さ位置に設けられる。
 好ましくは、前記凹凸パターンは、ラインアンドスペース形状である。
 好ましくは、前記偏光層は、導電性の金属又は金属酸化物からなる。
 好ましくは、前記透明樹脂層は、光硬化性樹脂組成物を硬化させて形成される。
 本発明の別の観点によれば、上記記載の偏光板を用いたホログラム機能を有する媒体が提供される。
 本発明のさらに別の観点によれば、透明基材上に光硬化性樹脂組成物を塗布して被転写樹脂層を形成し、前記被転写樹脂層に対して、前記被転写樹脂層に転写する凹凸パターンの反転パターンを有するモールドを押し付けた状態で前記被転写樹脂層に活性エネルギー線を照射して前記被転写樹脂層を硬化させて透明樹脂層を形成し、前記透明樹脂層上に導電性の金属又は金属酸化物からなる偏光層を形成する工程を備え、前記モールドは、前記反転パターンが延びる方向が互いに異なる複数の反転パターン領域を有する、偏光板の製造方法が提供される。
 好ましくは、前記複数の反転パターン領域は、互いに異なる高さ位置に設けられる。
 好ましくは、前記モールドは、樹脂製モールドである。
本発明の一実施形態の偏光板1の斜視図である。 (a)~(c)は、図1中のI-I断面に対応する図面であり、透明樹脂層7上に偏光層9が形成されている状態を示す。 (a)~(c)は、偏光板1の製造工程を示す,図1中のII-II断面に対応する断面図である。但し、図示の便宜上、凹凸パターン5及び反転パターン15の形状は、模式的に表示している。図4~図7も同様。 図3から続く、偏光板1の製造工程を示す断面図である。 偏光板1の製造に用いるモールド13の製造工程を示す断面図である。 図5から続く、偏光板1の製造に用いるモールド13の製造工程を示す断面図である。 図6から続く、偏光板1の製造に用いるモールド13の製造工程を示す断面図である。 実施例で作製した転写体のSEM像であり、(a)は断面図、(b)は平面図である。
 以下、図面を参照しながら本発明の好ましい実施の形態について具体的に説明する。
1.偏光板
 本発明の一実施形態の偏光板1は、透明基材3と、その上に形成され且つ凹凸パターン5を有する透明樹脂層7と、透明樹脂層7に形成された偏光層9を備え、透明樹脂層7は、凹凸パターン5が延びる方向が互いに異なる複数の凹凸領域11a,11b,11cを有する。
<透明基材>
 透明基材3は、樹脂基材、石英基材などの透明材料で形成され、その材質は、特に限定されないが、樹脂基材であることが好ましい。樹脂基材を構成する樹脂としては、例えば、ポリエチレンテレフタレート、ポリカーボネート、ポリエステル、ポリオレフィン、ポリイミド、ポリサルフォン、ポリエーテルサルフォン、環状ポリオレフィンおよびポリエチレンナフタレートからなる群から選ばれる1種からなるものである。また、透明基材3は可撓性を有するフィルム状であることが好ましく、その厚さは25~500μmの範囲であることが好ましい。
<透明樹脂層、凹凸パターン、凹凸領域>
 図1に示すように、透明樹脂層7には凹凸パターン5が形成されている。凹凸パターン5は、細長い形状の凹凸パターンであり、第1~第3凹凸領域11a~11cでは、凹凸パターン5が延びる方向が互いに異なっている。具体的には、第1凹凸領域11aでは凹凸パターン5は、矢印A方向に延びており、第2凹凸領域11bでは凹凸パターン5は、矢印B方向に延びており、第3凹凸領域11cでは凹凸パターン5は、矢印C方向に延びている。矢印B方向は、矢印A方向に直交する方向であり、矢印C方向は、矢印A方向に対して45度ずれた方向である。第1~第3凹凸領域11a~11cでの凹凸パターン5の形状やピッチは、同一であってもよく、異なっていてもよい。
 凹凸パターン5の周期は、例えば10nm~1μmであり、30~500nmが好ましく、50~200nmがさらに好ましい。凹凸パターン5は、好ましくは、ラインアンドスペース形状である。(スペースの幅)/(ラインの幅)の値は、特に限定されないが、例えば0.2~5であり、0.5~4が好ましく、1~3がさらに好ましい。小さすぎるとライン幅が広く、大きすぎるとスペース幅が広くなるために、ラインアンドスペースの延びる方向に垂直、平行な偏光成分いずれもがその電場が金属内自由電子と相互作用することで、反射して偏光層として機能しなくなる。
 第1~第3凹凸領域11a~11cは、高さ位置が同じになるように形成してもよいが、図1に示すように、高さ位置が互いに異なるように形成することが好ましい。この場合、隣接する凹凸領域の境界が明瞭になるという利点が得られる。
 透明樹脂層7は、光硬化性樹脂組成物を硬化させて形成することができる。その工程の詳細は、後述する。
<偏光層>
 偏光層9は図2に示すように、透明樹脂層7上に形成される。偏光層9は、入射光を偏光させる機能を有するように形成すればよく、その材料、厚さ、形状などは限定されない。偏光層9は、例えば、導電性の金属(Ni,Alなど)又は金属酸化物(ITOなど)で形成することができる。偏光層9は、図2(a)に示すように、凹凸パターン5の形状に沿うように形成してもよく、図2(b)に示すように、凹凸パターン5の凸部7aの上部にのみ形成してもよく、図2(c)に示すように、凹凸パターン5の凸部7aの側面にのみ形成してもよい。つまり、偏光層9は、図2(a)に示すように、膜状に形成してもよく、図2(b)~(c)に示すように細線状に形成してもよい。
<本実施形態の偏光板の作用・用途>
 偏光板1は、ワイヤグリッド偏光板であり、凹凸パターン5の延びる方向に垂直な振動面(振動する電場によって形成される面)を有する偏光成分を透過する性質を有する。従って、偏光板1に対して、無偏光の入射光Lが入射すると、第1凹凸領域11aでは矢印Aに垂直な振動面を有する偏光成分が透過し、第2凹凸領域11bでは矢印Bに垂直な振動面を有する偏光成分が透過し、第3凹凸領域11cでは矢印Cに垂直な振動面を有する偏光成分が透過する。このため、無偏光の入射光Lを偏光板1に入射させると、一度に、複数種類(本実施形態では3種類)の偏光成分を取り出すことが可能になる。
 また、矢印Aに垂直な振動面を有する偏光Pを偏光板1に入射させると、偏光Pは、第1凹凸領域11aではほぼ全てが透過され、第3凹凸領域11cでは一部(矢印Cに垂直な振動面を有する偏光成分)のみが透過され、第2凹凸領域11bでは、ほぼ全てが遮断される。偏光Pの振動面の方向を変えずに偏光板1を45度回転させると、偏光Pは、第3凹凸領域11cではほぼ全てが透過され、第1及び第2凹凸領域11a,11bでは一部のみが透過されるようになる。偏光Pの振動面の方向を変えずに偏光板1をさらに45度回転させると、偏光Pは、第2凹凸領域11bではほぼ全てが透過され、第3凹凸領域11cでは一部のみが透過され、第1凹凸領域11aでは、ほぼ全てが遮断されるようになる。このように、本実施形態によれば、偏光板1を回転させるだけで、領域毎の偏光Pの透過状態を変化させることができる。
 本実施形態の偏光板1は、後述するようにナノインプリント法によって、効率的に製造することができ、偏光機能を持たせるための凹凸パターンを形成する際に、偏光機能以外の機能(構造色による加飾性など)を持たせるための凹凸パターンを同時に形成することが可能である。また、本実施形態の偏光板1にホログラム機能を付与するための凹凸パターンを形成することによって、ホログラム機能を有する媒体を形成することも可能である。
2.偏光板の製造方法
 次に、偏光板1の製造方法について説明する。本実施形態の偏光板1の製造方法は、被転写樹脂層形成工程、転写及び硬化工程、及び偏光層形成工程を備える。
 以下、図3~図4を用いて、各工程について詳細に説明する。
(1)被転写樹脂層形成工程
 まず、図3(a)に示すように、透明基材3上に光硬化性樹脂組成物を塗布して被転写樹脂層19を形成する。
 被転写樹脂層19を構成する光硬化性樹脂組成物は、モノマーと、光開始剤を含有し、活性エネルギー線の照射によって硬化する性質を有する。「活性エネルギー線」は、UV光、可視光、電子線などの、光硬化性樹脂組成物を硬化可能なエネルギー線の総称である。
 モノマーとしては、(メタ)アクリル樹脂、スチレン樹脂、オレフィン樹脂、ポリカーボネート樹脂、ポリエステル樹脂、エポキシ樹脂、シリコーン樹脂等を形成するための光重合性のモノマーが挙げられ、光重合性の(メタ)アクリル系モノマーが好ましい。なお、本明細書において、(メタ)アクリルとは、メタクリルおよび/またはアクリルを意味し、(メタ)アクリレートはメタクリレートおよび/またはアクリレートを意味する。
 光開始剤は、モノマーの重合を促進するために添加される成分であり、前記モノマー100質量部に対して0.1質量部以上含有されることが好ましい。光開始剤の含有量の上限は、特に規定されないが、例えば前記モノマー100質量部に対して20質量部である。
 光硬化性樹脂組成物は、溶剤、重合禁止剤、連鎖移動剤、酸化防止剤、光増感剤、充填剤、レベリング剤等の成分を光硬化性樹脂組成物の性質に影響を与えない範囲で含んでいてもよい。
 光硬化性樹脂組成物は、上記成分を公知の方法で混合することにより製造することができる。光硬化性樹脂組成物は、スピンコート、スプレーコート、バーコート、ディップコート、ダイコートおよびスリットコート等の方法で透明基材3上に塗布して被転写樹脂層19を形成することが可能である。
(2)転写及び硬化工程
 次に、図3(a)~(b)に示すように、被転写樹脂層19に対して、被転写樹脂層19に転写する凹凸パターン5の反転パターン15を有するモールド13を押し付けた状態で被転写樹脂層19に活性エネルギー線21を照射して被転写樹脂層19を硬化させて透明樹脂層を形成する。
 モールド13は、透明基材23上の樹脂層31に反転パターン15を有する。透明基材23は、樹脂基材、石英基材、シリコーン基材などからなり、樹脂基材が好ましい。モールド13は、樹脂製モールドであることが好ましい。モールド13の製造方法の詳細は、後述する。
 反転パターン15は、図1に示す凹凸パターン5が反転した形状を有しているので、第1~第3凹凸領域11a~11cに対応するように、反転パターン15が延びる方向が互いに異なる複数の反転パターン領域(第1~第3反転パターン領域)17a~17cを有する。第1~第3反転パターン領域17a~17cは、第1~第3凹凸領域11a~11cと同様に、互いに異なる高さ位置に設けられる。モールド13を被転写樹脂層19に押し付ける圧力は、反転パターン15の形状を被転写樹脂層19に転写可能な圧力であればよい。
 被転写樹脂層19へ照射する活性エネルギー線21は、被転写樹脂層19が十分に硬化する程度の積算光量で照射すればよく、積算光量は、例えば100~10000mJ/cmである。活性エネルギー線21の照射によって、被転写樹脂層19が硬化される。本実施形態では、モールド13の透明基材23に遮光パターン25が形成されているので、透明基材3側から活性エネルギー線21の照射を行っているが、凹凸パターン5を形成する領域に遮光パターンを有さないモールドを用いる場合には、モールド側から活性エネルギー線21の照射を行ってもよい。
 次に、モールド13を取り外し、未硬化の光硬化性樹脂組成物を溶剤で洗い流すことによって、図3(c)に示すように、透明基材3上に凹凸パターン5を有する透明樹脂層7が形成された構造が得られる。
 次に、図4に示すように、透明樹脂層7上に偏光層9を形成して、偏光板1の製造が完了する。偏光層9は、例えば、材料となる導電性の金属又は金属酸化物をスパッタリングによって透明樹脂層7上に付着させることによって形成することができる。
3.モールドの製造方法
 本実施形態の偏光板1の製造に好適に用いられるモールド13の製造方法について説明する。モールド13は、被転写樹脂層の形成とパターンの転写及び硬化工程を複数回繰り返すことによって形成することができる。被転写樹脂層の形成とパターンの転写及び硬化工程の説明は、「偏光板の製造方法」について上述したものと同様であり、説明は、適宜省略する。
<1層目>
 まず、図5(a)に示すように、遮光パターン25が形成された透明基材23上に光硬化性樹脂組成物を塗布して被転写樹脂層27を形成する。
 次に、図5(a)~(b)に示すように、凹凸パターン5cを有するモールド29を被転写樹脂層27に押し付けた状態で被転写樹脂層27に活性エネルギー線21を照射して被転写樹脂層27を硬化させて、図5(c)に示すように、反転パターン15cを有する透明樹脂層31aを形成する。活性エネルギー線21は、モールド29側から照射して、被転写樹脂層27の全面を硬化させる。
 凹凸パターン5cは、第3凹凸領域11cに形成されている凹凸パターン5と同じ形状を有し、反転パターン15cは、第3反転パターン領域17cに形成されている反転パターン15と同じ形状を有する。
<2層目>
 次に、図6(a)に示すように、透明樹脂層31a上に光硬化性樹脂組成物を塗布して被転写樹脂層33を形成する。
 次に、図6(a)~(b)に示すように、凹凸パターン5bを有するモールド35を被転写樹脂層33に押し付けた状態で被転写樹脂層33に活性エネルギー線21を照射して被転写樹脂層33を硬化させて、図6(c)に示すように、反転パターン15b,15cを有する透明樹脂層31bを形成する。
 凹凸パターン5bは、第2凹凸領域11bに形成されている凹凸パターン5と同じ形状を有し、反転パターン15bは、第2反転パターン領域17bに形成されている反転パターン15と同じ形状を有する。
 活性エネルギー線21は、透明基材23側から遮光パターン25を通じて被転写樹脂層33に照射されるので、被転写樹脂層33のうち、遮光パターン25で覆われていない領域のみが硬化される。遮光パターン25は、第3反転パターン領域17cと同じ形状を有しているので、図6(c)に示すように、第3反転パターン領域17cでは反転パターン15cがそのまま残り、その他の領域では第3反転パターン領域17cよりも高い位置に反転パターン15bが形成された透明樹脂層31bが形成される。
 なお、遮光パターン25を有する透明基材23を用いる代わりに、遮光パターン25を有する別の透明基材を、透明基材23に重ねた状態で、遮光パターン25を通じて活性エネルギー線21の照射を行ってもよい。この場合、遮光パターン25を有さないモールド13を形成することができる。
<3層目>
 次に、図7(a)に示すように、透明樹脂層31b上に光硬化性樹脂組成物を塗布して被転写樹脂層37を形成する。
 次に、図7(a)~(b)に示すように、凹凸パターン5aを有するモールド39を被転写樹脂層37に押し付けた状態で被転写樹脂層37に活性エネルギー線21を照射して被転写樹脂層37を硬化させて、図7(c)に示すように、反転パターン15a,15b,15cを有する透明樹脂層31を形成する。
 凹凸パターン5aは、第1凹凸領域11aに形成されている凹凸パターン5と同じ形状を有し、反転パターン15aは、第1反転パターン領域17aに形成されている反転パターン15と同じ形状を有する。
 活性エネルギー線21は、遮光パターン43を有する別の透明基材41を、透明基材23に重ねた状態で、透明基材41側から遮光パターン43,25を通じて被転写樹脂層33に照射されるので、被転写樹脂層33のうち、遮光パターン43,25で覆われていない領域のみが硬化される。遮光パターン43は、第2反転パターン領域17bと同じ形状を有しているので、図7(c)に示すように、第2及び第3反転パターン領域17b,17cでは反転パターン15b,15cがそのまま残り、その他の領域では第2反転パターン領域17bよりも高い位置に反転パターン15aが形成された透明樹脂層31が形成される。反転パターン15aが形成された領域が第1反転パターン領域17aとなる。
 以上の工程によって、モールド13の製造が完了する。なお、反転パターン15a~15cの凹凸形状は同一であっても異なっていてもよい。反転パターン15a~15cの凹凸形状が同一である場合は、1つのモールドを回転させることによって、モールド29,35,39として利用することができる。
 上記実施形態では、三段構成の反転パターン15を有するモールド13の製造方法について説明を行ったが、反転パターン15の段数をさらに増やしたい場合には、上記の3層目と同様に、被転写樹脂層を形成し、所望の反転パターンを転写し、所望領域のみを硬化させるという工程を繰り返せばよい。
1.偏光板の製造
 「3.モールドの製造方法」で説明した方法でモールド13を作製した。第1~第3反転パターン領域17a~17cには、同一のラインアンドスペース形状からなる反転パターン15を互いに45度ずつずらして形成した。
 作製したモールド13を用いて「2.偏光板の製造方法」で説明した方法で、UVナノインプリントにより転写品を作製した。得られた転写品のSEM像を図8(a)~(b)に示す。図8(a)~(b)に示すように、ラインアンドスペース形状の適切な転写が確認された。図8(a)の断面図において、ラインアンドスペース形状の周期、ライン幅、及び形状高さを測定したところ、それぞれ、117.0nm、33.5nm、142.9nmであった。
 次に、得られた転写品のパターン表面にスパッタリング装置を用いてニッケルの薄膜(20nm)を製膜した。
2.偏光板の機能の観察
 直線偏光された偏光を発する偏光光源として、液晶ディスプレイを用意した。偏光光源が無い場合とある場合での面内で回転したときの外観像を観察した。なお、偏光を偏光板1の裏面(凹凸パターン5がない面)から照射した。偏光板1を面内で回転させると、第1~第3凹凸領域11a~11cの外観の変化が観察された。これは、偏光板1の回転により各凹凸領域でのワイヤグリッドパターンの向きの変化に応じて、各凹凸領域での偏光の透過性が変わったためであると考えられる。この結果により、同一面内の任意の位置と向きで偏光子を配置したナノインプリント用モールドとその転写品から作製した偏光板の開発に成功したと考える。
1:偏光板、3,23,41:透明基材、5:凹凸パターン、7:透明樹脂層、9:偏光層、11a~11c:第1~第3凹凸領域、13、29,35,39:モールド、15:反転パターン、17a~17c:第1~第3反転パターン領域、19、27,33,37:被転写樹脂層、21:活性エネルギー線、25,43:遮光パターン、31:透明樹脂層

Claims (9)

  1. 透明基材と、その上に形成され且つ凹凸パターンを有する透明樹脂層と、前記透明樹脂層上に形成された偏光層を備え、
    前記透明樹脂層は、前記凹凸パターンが延びる方向が互いに異なる複数の凹凸領域を有する、偏光板。
  2. 前記複数の凹凸領域は、互いに異なる高さ位置に設けられる、請求項1に記載の偏光板。
  3. 前記凹凸パターンは、ラインアンドスペース形状である、請求項1又は請求項2に記載の偏光板。
  4. 前記偏光層は、導電性の金属又は金属酸化物からなる、請求項1~請求項3の何れか1つに記載の偏光板。
  5. 前記透明樹脂層は、光硬化性樹脂組成物を硬化させて形成される、請求項1~請求項4の何れか1つに記載の偏光板。
  6. 請求項1~請求項5の何れか1つに記載の偏光板を用いたホログラム機能を有する媒体。
  7. 透明基材上に光硬化性樹脂組成物を塗布して被転写樹脂層を形成し、
    前記被転写樹脂層に対して、前記被転写樹脂層に転写する凹凸パターンの反転パターンを有するモールドを押し付けた状態で前記被転写樹脂層に活性エネルギー線を照射して前記被転写樹脂層を硬化させて透明樹脂層を形成し、
    前記透明樹脂層上に導電性の金属又は金属酸化物からなる偏光層を形成する工程を備え、
    前記モールドは、前記反転パターンが延びる方向が互いに異なる複数の反転パターン領域を有する、偏光板の製造方法。
  8. 前記複数の反転パターン領域は、互いに異なる高さ位置に設けられる、請求項7に記載の偏光板の製造方法。
  9. 前記モールドは、樹脂製モールドである、請求項7又は請求項8に記載の偏光板の製造方法。
PCT/JP2015/079067 2014-10-15 2015-10-14 偏光板及びその製造方法、媒体 WO2016060170A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2016554105A JPWO2016060170A1 (ja) 2014-10-15 2015-10-14 偏光板及びその製造方法、媒体
KR1020177006113A KR20170069196A (ko) 2014-10-15 2015-10-14 편광판 및 그 제조 방법, 매체
US15/517,601 US20170315281A1 (en) 2014-10-15 2015-10-14 Polarizing plate, method for manufacturing same, and medium
EP15850915.8A EP3208641A4 (en) 2014-10-15 2015-10-14 Polarizing plate, method for manufacturing same, and medium
CN201580054850.2A CN106796320A (zh) 2014-10-15 2015-10-14 偏振片及其制造方法、介质

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-210665 2014-10-15
JP2014210665 2014-10-15

Publications (1)

Publication Number Publication Date
WO2016060170A1 true WO2016060170A1 (ja) 2016-04-21

Family

ID=55746712

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/079067 WO2016060170A1 (ja) 2014-10-15 2015-10-14 偏光板及びその製造方法、媒体

Country Status (7)

Country Link
US (1) US20170315281A1 (ja)
EP (1) EP3208641A4 (ja)
JP (1) JPWO2016060170A1 (ja)
KR (1) KR20170069196A (ja)
CN (1) CN106796320A (ja)
TW (1) TW201621362A (ja)
WO (1) WO2016060170A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI702424B (zh) * 2017-10-24 2020-08-21 日商旭化成股份有限公司 影像顯示裝置、線柵偏光板及其製造方法、線柵偏光板之觀測方法、及、線柵偏光板之偏光軸方向之推定方法
US11079528B2 (en) 2018-04-12 2021-08-03 Moxtek, Inc. Polarizer nanoimprint lithography
KR102292282B1 (ko) * 2021-01-13 2021-08-20 성균관대학교산학협력단 비등방성 기계적 팽창 기판 및 이를 이용한 크랙 기반 압력 센서

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007219340A (ja) * 2006-02-20 2007-08-30 Epson Toyocom Corp 複合ワイヤーグリッド偏光子、複合光学素子及び偏光光源
JP2009015305A (ja) * 2007-06-07 2009-01-22 Seiko Epson Corp 光学素子及び投写型表示装置
JP2009288659A (ja) * 2008-05-30 2009-12-10 Sony Corp ホログラム記録再生媒体
JP2010117634A (ja) * 2008-11-14 2010-05-27 Sony Corp ワイヤグリッド偏光子及びその製造方法
JP2012113280A (ja) * 2010-11-05 2012-06-14 Asahi Kasei E-Materials Corp ワイヤグリッド偏光子および光センサー
JP2012118520A (ja) * 2010-11-09 2012-06-21 Asahi Kasei E-Materials Corp 微細凹凸パタン基材

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1882209A2 (en) * 2005-05-18 2008-01-30 Douglas S. Hobbs Microstructured optical device for polarization and wavelength filtering
US20080037101A1 (en) * 2006-08-11 2008-02-14 Eastman Kodak Company Wire grid polarizer
US7722194B2 (en) * 2007-06-07 2010-05-25 Seiko Epson Corporation Optical element having a reflected light diffusing function and a polarization separation function and a projection display device
EP2194075B1 (en) * 2007-09-28 2013-01-09 Asahi Glass Company, Limited Photocurable composition, method for producing fine patterned body, and optical device
JP5052534B2 (ja) * 2009-01-08 2012-10-17 株式会社ブリヂストン 光硬化性転写シート、及びこれを用いた凹凸パターンの形成方法
JP5273248B2 (ja) * 2009-07-01 2013-08-28 旭硝子株式会社 微細凹凸構造を表面に有する物品の製造方法およびワイヤグリッド型偏光子の製造方法
JP5682437B2 (ja) * 2010-09-07 2015-03-11 ソニー株式会社 固体撮像素子、固体撮像装置、撮像機器、及び、偏光素子の製造方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007219340A (ja) * 2006-02-20 2007-08-30 Epson Toyocom Corp 複合ワイヤーグリッド偏光子、複合光学素子及び偏光光源
JP2009015305A (ja) * 2007-06-07 2009-01-22 Seiko Epson Corp 光学素子及び投写型表示装置
JP2009288659A (ja) * 2008-05-30 2009-12-10 Sony Corp ホログラム記録再生媒体
JP2010117634A (ja) * 2008-11-14 2010-05-27 Sony Corp ワイヤグリッド偏光子及びその製造方法
JP2012113280A (ja) * 2010-11-05 2012-06-14 Asahi Kasei E-Materials Corp ワイヤグリッド偏光子および光センサー
JP2012118520A (ja) * 2010-11-09 2012-06-21 Asahi Kasei E-Materials Corp 微細凹凸パタン基材

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3208641A4 *

Also Published As

Publication number Publication date
CN106796320A (zh) 2017-05-31
KR20170069196A (ko) 2017-06-20
TW201621362A (zh) 2016-06-16
JPWO2016060170A1 (ja) 2017-07-27
US20170315281A1 (en) 2017-11-02
EP3208641A4 (en) 2017-12-06
EP3208641A1 (en) 2017-08-23

Similar Documents

Publication Publication Date Title
JP4382791B2 (ja) 光線方向制御素子の製造方法
JP6173354B2 (ja) 光透過型インプリント用モールド、大面積モールドの製造方法
KR102353349B1 (ko) 마스크 제조 방법 및 이를 이용하여 제조된 증착용 마스크
KR20060129970A (ko) 전도성층의 패턴화 방법, 이를 이용한 편광소자의 제조방법 및 이 방법에 의하여 제조된 편광소자
JP6603218B2 (ja) 微細構造体の製造方法
WO2016006592A1 (ja) ステップアンドリピート用インプリント用モールド及びその製造方法
JP2013205512A (ja) 光拡散フィルム、偏光板、画像形成装置および表示装置
WO2016060170A1 (ja) 偏光板及びその製造方法、媒体
CN109283730B (zh) 光重导向膜及其制造方法
JP7059431B2 (ja) 回転表面に基づく光学的セキュリティデバイス
JP5942527B2 (ja) 光拡散フィルムの設計方法、光拡散フィルムの製造方法、および、光拡散フィルムの拡散特性の評価方法
WO2016195064A1 (ja) 構造体及びその製造方法
WO2017073370A1 (ja) フィルムモールド及びインプリント方法
US9536819B2 (en) Transparent substrate having nano pattern and method of manufacturing the same
TWI430879B (zh) 導光板及其製作方法
WO2016021475A1 (ja) インプリント用モールドとインプリント方法およびワイヤーグリッド偏光子とその製造方法
JP2017156703A (ja) 表示体、および、表示体の観察方法
WO2016163390A1 (ja) 光学素子及び偏光板
TW200905333A (en) Manufacturing method of photo alignment film and alignment solution
JP6413369B2 (ja) 回折格子、撮像装置、表示装置、回折格子の製造方法
WO2017078019A1 (ja) 微細構造体の製造方法
JP6476780B2 (ja) インプリント用モールド及びインプリント方法
JP2006058720A (ja) マイクロレンズおよびその製造方法
WO2016043244A1 (ja) 微細パターン付き繊維体
TWI500979B (zh) 奈米模基底及使用其之奈米模的製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15850915

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016554105

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20177006113

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15517601

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2015850915

Country of ref document: EP