JP4950426B2 - 神経細胞の培養方法、神経細胞培養基材および神経細胞システムの製造方法 - Google Patents

神経細胞の培養方法、神経細胞培養基材および神経細胞システムの製造方法 Download PDF

Info

Publication number
JP4950426B2
JP4950426B2 JP2005041381A JP2005041381A JP4950426B2 JP 4950426 B2 JP4950426 B2 JP 4950426B2 JP 2005041381 A JP2005041381 A JP 2005041381A JP 2005041381 A JP2005041381 A JP 2005041381A JP 4950426 B2 JP4950426 B2 JP 4950426B2
Authority
JP
Japan
Prior art keywords
nerve cell
nerve
diameter
culture substrate
region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005041381A
Other languages
English (en)
Other versions
JP2006223197A (ja
Inventor
孝介 桑原
昭浩 宮内
政嗣 下村
賢 田中
浩 藪
章典 鶴間
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hokkaido University NUC
Hitachi Ltd
Original Assignee
Hokkaido University NUC
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hokkaido University NUC, Hitachi Ltd filed Critical Hokkaido University NUC
Priority to JP2005041381A priority Critical patent/JP4950426B2/ja
Priority to US11/354,874 priority patent/US20060183222A1/en
Priority to GB0603265A priority patent/GB2423774B/en
Publication of JP2006223197A publication Critical patent/JP2006223197A/ja
Application granted granted Critical
Publication of JP4950426B2 publication Critical patent/JP4950426B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/0618Cells of the nervous system
    • C12N5/0619Neurons
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M3/00Tissue, human, animal or plant cell, or virus culture apparatus
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M25/00Means for supporting, enclosing or fixing the microorganisms, e.g. immunocoatings
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M3/00Tissue, human, animal or plant cell, or virus culture apparatus
    • C12M3/04Tissue, human, animal or plant cell, or virus culture apparatus with means providing thin layers
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M35/00Means for application of stress for stimulating the growth of microorganisms or the generation of fermentation or metabolic products; Means for electroporation or cell fusion
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2533/00Supports or coatings for cell culture, characterised by material
    • C12N2533/30Synthetic polymers

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biomedical Technology (AREA)
  • Chemical & Material Sciences (AREA)
  • Zoology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Organic Chemistry (AREA)
  • Wood Science & Technology (AREA)
  • Biotechnology (AREA)
  • Genetics & Genomics (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Microbiology (AREA)
  • Cell Biology (AREA)
  • Sustainable Development (AREA)
  • Neurology (AREA)
  • Virology (AREA)
  • Neurosurgery (AREA)
  • Immunology (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Immobilizing And Processing Of Enzymes And Microorganisms (AREA)

Description

本発明は、神経細胞の培養方法、この培養方法に用いる神経細胞培養基材、この培養方法により培養された神経細胞等に関する。より詳しくは、神経細胞の成長形態を制御しながら培養する神経細胞の培養方法、この培養方法に用いる神経細胞培養基材およびこの培養方法により培養された神経細胞等に関する。
近年、再生医療や移植医療等、医療分野において、細胞培養の技術が適用される機会が増加している。例えば、現在、細胞培養の技術は皮膚の移植の際に適用されている。さらに、技術の進歩にともなって、その適用範囲は、角膜、歯、骨、さらには臓器等複雑な器官へと広がりつつある。
特に、神経細胞に対しては、欠損した神経の治療や神経の自己組織性を利用した神経回路の形成等を目的として広く研究が進められている。このような神経回路の再生はパーキンソン病、アルツハイマー病の治療に有効とされている。
神経細胞は、複数の細胞が軸索を伸長してネットワークを形成することで様々な機能を発現する。
しかしながら、通常、神経細胞の培養に用いられるガラス製や樹脂製のペトリシャーレ等の培養容器は、神経細胞の成長形態を制御することを目的としておらず、これらの容器を用いた培養方法では、神経細胞の成長形態の制御を行うことができない。また、細胞の培養時に、サイトカイン等の誘導因子や抑制因子を添加することによって細胞の成長形態を制御することは、細胞に対し副次的な効果をもたらすおそれがあり、用途によっては、好ましい制御方法とは言えない場合がある。
従って、誘導物質や抑制物質を特に添加することなしに、神経細胞の成長形態を制御できる培養方法の必要性が高まっている。
かかる要望のもと、例えば、特許文献1には、培養基板上に細胞の接着を阻害するシリコーン等の材料を光リソグラフィ技術でパターニングして成型した基板を用いて、神経細胞の外形を制御する手法が提案されている。光リソグラフィ技術に基づいた修飾法を用いることにより、高い解像度でパターニングを行うことができる。特許文献1に開示された方法によれば、培養基板の細胞非接着性材料の吸着していない領域においてのみ神経細胞を培養することで、細胞ネットワーク形状を制御することができる。
また、例えば、特許文献2には、培養基板の表面に微細な周期の溝構造を形成し、その上で神経細胞を培養することによって、神経細胞から伸長する軸索の方向を制御する手法が提案されている。特許文献2に開示された方法によれば、培養基板表面にあらかじめ用意した型を用いた成型法で溝を形成するため、製造工程数を減らすことができるとされている。
特許第3038365号公報(段落0022〜0027) 特表平10−500031号公報(第6頁〜第12頁)
しかしながら、特許文献1に開示された方法では、光リソグラフィ技術により培養基板を製造するために、製造工程数が増加し、製造コストが上昇するという課題があった。
また、特許文献2に開示された方法では、溝によって期待できる効果は軸索等の伸長方向の制御のみであって、他の成長形態の制御には効果的ではなく、適切にネットワーク形成を制御するには不十分であるという課題があった。また、所望する溝以外の領域に細胞が接着、伸長することを防止するためには、溝以外の領域を溝領域とは異なる方法で表面処理等を施す必要が生じ、結局のところ、製造工程数が増加してしまい、製造コストが上昇するという課題があった。
さらに、前記2つのいずれの方法においても、神経細胞の軸索等の形状を制御する効果はあるが、細胞体形状の制御には直接寄与しないという課題があった。
本発明は前記課題に鑑みてなされたものであり、誘導物質や抑制物質を特に添加することなく神経細胞の成長形態を制御する方法を提供し、また、この方法を適用するのに必要な神経細胞培養基材を提供し、また、この神経細胞培養基材と神経細胞培養基材上に形成された神経細胞ネットワークとから構成される神経細胞システムの製造方法を提供することを目的とする。
前記課題を解決するために、本発明は、神経細胞培養基材上に培養用培地と神経細胞とを配して、前記神経細胞を対応する培養条件下で培養する神経細胞の培養方法であって、前記神経細胞培養基材は、神経細胞を配する面内に複数の凸部が形成されており、
(a) 前記凸部の相当直径および凸部間の間隔が、培養する神経細胞の直径、および前記神経細胞から伸長する神経突起の直径よりも小さい複数の凸部により形成された少なくとも1つの領域、
(b) 前記凸部の相当直径および前記凸部間の間隔が培養する神経細胞の直径よりも小さく、かつ、前記凸部間の間隔が前記神経細胞から伸長する神経突起の直径よりも大きい複数の凸部により形成された少なくとも1つの領域、
(c) 前記培養制御領域における凸部の相当直径が前記神経細胞の直径よりも小さく、前記凸部間の間隔が前記神経細胞の直径の0.4倍から2倍までの範囲である複数の凸部により形成された少なくとも1つの領域
より成る群から選択された少なくとも2つの領域を含む培養制御領域を有しており、
前記領域(a)〜(c)の配置によって前記神経細胞の成長形態を制御することを特徴とする神経細胞の培養方法である。
より詳細には、凸部の形状と間隔に対応する神経細胞の成長形態の関係は、以下のように示すことができる。
第一に、神経細胞培養基材上の凸部の相当直径と凸部間の間隔が、培養する神経細胞の直径、および神経細胞から伸長する神経突起の直径よりも小さい場合は、神経細胞と凸部との密着を強めることができる。このため、通常の平面基板上において培養した神経細胞の成長形態と比較して、細胞体形状は扁平になり、神経突起の数は増加し、神経突起の太さが大きくなると言う効果が得られる。
第二に、神経細胞培養基材上の凸部の相当直径と凸部間の間隔が、培養する神経細胞の直径よりも小さく、かつ、凸部間の間隔が当該神経細胞から伸長する神経突起の直径よりも大きい場合は、神経細胞から伸長する神経突起に易伸長方向を与え、より長い神経突起に成長させることができる。このため、通常の平面基板上において培養した神経細胞と形状を比較すると、神経突起の伸長方向に配向性があり、また、神経突起が長くなると言う効果が得られる。
第三に、神経細胞培養基材上の凸部の相当直径が培養する神経細胞の直径よりも小さく、凸部間の間隔が、培養する神経細胞の直径の0.4倍から2倍、より好ましくは、0.6倍から2倍までである場合には、神経細胞から神経突起が伸長するのを抑制し、細胞が萎縮すると言う効果を得ることができる。このため、通常の平面基板上において培養した神経細胞の成長形態と比較して、細胞の直径は小さく、神経突起が非常に短くなる。
本発明によれば、誘導物質や抑制物質等を特に添加することなく、神経細胞の成長形態を制御する方法を提供することができる。また、凸部の形状や配置を規定することにより神経細胞の成長形態を制御することができるため、神経細胞培養基材の表面等に特に加工を施す必要がない。従って、神経細胞の成長形態を制御するための神経細胞培養基材を簡易かつ安価に製造することができる。また、この神経細胞培養基材と神経細胞培養基材上に形成された神経細胞ネットワークとから構成される神経細胞システムの製造方法を提供することができる。
以下、本発明を実施するための最良の形態(以下「実施形態」と言う)について、適宜図面を参照しながら詳細に説明する。説明において、同一の構成要素には同一番号を付し、重複する説明は省略する。なお、参照する図面において、同一の機能を有する部材に対しては同一の符号を付すことによって説明をしているが、形状、大きさ等においては必ずしも同一であるとは限らない。
<神経細胞の培養方法>
本発明は、神経細胞培養基材上に培養用培地と神経細胞とを配して、前記神経細胞を対応する培養条件下で培養するに当たって、前記神経細胞培養基材の培養表面に、所定の形状と間隔を有する複数の凸部が設けられた神経細胞培養基材を用いると、神経細胞の成長形態を制御して培養を行うことができるという知見に基づいて創作されたものである。
ここで、「神経細胞の成長形態」とは、神経細胞培養基材上で神経細胞を培養するに当たって、前記神経細胞が成長する種々の形態を意味するものであり、例えば、限定されるものではないが、神経細胞と神経細胞培養基材との密着性、細胞体の大きさ、形状(扁平、球状、紡錘状等)、神経突起の太さ、長さ、枝分かれ様式(枝分かれ数、枝分かれ位置)、伸長方向、神経細胞成長の促進、神経細胞成長の抑制(特に、成長停止)を包含する。
なお、本実施形態において、「神経突起」は、樹状突起および軸索を含む。
本実施形態において、適用される神経細胞は、基材表面上で培養できるものであれば特に限定されるものではなく、従来公知の神経細胞から適宜選択できる。例えば、ヒトを対象とした医療分野に適用する場合には、主にヒト由来の神経細胞が培養対象であって、被移植者の患部に適応する組織由来の神経細胞が選択される。一方、ニューロデバイス等の神経細胞システムの構築を目的とするものに代表されるヒトを対象としない用途に用いる場合には、必ずしもヒト由来の神経細胞である必要はなく、様々な動物種および組織由来の神経細胞から選択することができる。また、神経細胞は、例えば、生体組織から単離したものであっても、幹細胞から神経細胞に分化誘導したものであっても、さらには、これらを継代培養後に使用するものであってもよい。また、神経細胞の分裂能の有無は問わず、例えば、胎児由来であっても、成人由来であってもよい。換言すると、入手可能な神経細胞から目的に応じて好適なものを適宜選択して、本実施形態に適用可能である。
本実施形態の神経細胞の培養条件については、選択された神経細胞に対応する従来公知の培養条件の中から、適宜適切な条件を適用することができる。この選択された神経細胞に対応する培養条件は、当業者であれば、容易に選択し、選択した培養条件に基づいて培養を実施することができる。
ここで、一般的な神経細胞の培養条件を説明する。
使用する培地は、神経細胞の培養に適切とされる従来公知の組成のものでよく、例えば、製造メーカにより提供される神経細胞培養用の培地を使用することができる。このとき、培地には、神経細胞の神経細胞培養基材への定着補助を目的として、10%程度のウシ胎児血清等の血清を添加してもよい。また、別途誘導物質や抑制物質等を添加してもよい。
ただし、本実施形態においては、本実施形態に係る神経細胞の培養方法による神経細胞の成長形態の制御効果を明確に説明する必要性に鑑み、定着を除く培養中の培地には神経細胞の成長形態を誘導・抑制する物質を特に含有していない培地で培養を行うことを前提として説明する。
細胞の培養に使用するインキュベータは、一般的な細胞の培養に使用するものと同様のCO2インキュベータを使用することができる。通常、CO2インキュベータは、CO2濃度5%、温度37℃、相対湿度80%に設定されている。
ここで、神経細胞の培養手順を図1を参照しながら説明する。
まず、神経細胞20を、培地8とともに神経細胞培養基材1上に播種する。
そして、培地8および神経細胞20が播種された神経細胞培養基材1をCO2インキュベータ内で所定期間静置する。
この過程で、神経細胞20は、神経細胞培養基材1上に定着し、培養されるが、定着後には、所定の間隔毎に培地8を交換してもよい。培養に使用する培地8は、血清培地、無血清培地、サプリメントやサイトカイン添加培地でもよく、例えば、無血清培地の場合、1日または2日毎に培地8を交換することが好適である。
そして、前記所定期間経過後、神経細胞20の観察や使用を行う。この所定期間は、特に限定されるものではなく、所望する神経細胞20の成長形態に対応して延長または短縮して調節することができる。本実施形態においては、例えば、播種7日後に神経細胞20の成長形態の検証等を行っている。
<神経細胞培養基材>
本実施形態では、このような神経細胞20の培養を神経細胞の成長形態を制御しながら行うが、その際、図2に示す培養表面に複数の凸部4を有する神経細胞培養基材1上で培養を行う。
このような本実施形態に適用可能な培養表面に複数の凸部4を有する培養基材の代表例として、例えば、本願出願人が先に出願した特開2004−170935号公報に記載の機能性基板が挙げられる。すなわち、特開2004−170935号公報に記載の機能性基板は、有機ポリマー製の第1の基体と、該基体から伸びた有機ポリマー製の柱状微小突起群を有し、該柱状微小突起群の相当直径が10nmから500μm、高さが50nmから5000μmであって、該柱状微小突起群の高さ(H)に対する相当直径(D)の比(H/D)が4以上であることを特徴とする柱状微小突起群を備えた機能性基板である。
本実施形態においては、このような培養表面に複数の凸部4を有する培養基材のうち、神経細胞20の成長を制御する目的で、所望する成長の形態に応じて凸部4の形状および凸部4間の間隔を規定する。
図2は、本実施形態に係る神経細胞培養基材の斜視図である。図2に示すように、神経細胞培養基材1は、基材ベース2と、この基材ベース2の上面に形成された樹脂層3と、この樹脂層3の上部に樹脂層3と一体的に形成される複数の凸部4等を含んで構成される。
そして、図1に示すように、神経細胞培養基材1は、培養容器7の底部上面7Aに配設され、培養容器7に培地8を分注した際には、神経細胞培養基材1の培養表面が培地8により浸漬される。このとき、神経細胞培養基材1は、培養容器7の底部上面7Aに対して着脱自在であってもよく、また、着脱不能であってもよい。また、神経細胞培養基材1は、平板状のものに限定されず、例えば、可撓性のあるシート状としたり、曲面を有する形状としたり、球形、柱形等の立体的な形状としたりすることができる。
さらには、神経細胞培養基材1自身に培地8を分注可能な窪みを備えた形状としてもよい。例えば、シャーレ状、フラスコ状、等の容器形状にすることによって神経細胞培養基材1に培地8を配しやすくなる。この場合には、培養の際に、特に培養容器7を使用する必要はない。
これらの神経細胞培養基材1の形状は、培養後の神経細胞20の用途に応じて適宜選択される。
[基材ベース2]
本実施形態の神経細胞培養基材1における基材ベース2は、通常の神経細胞培養基材1のベースとして使用でき、かつ、適度な強度を備えた材料から構成されていれば、特に限定されるものではない。さらには、基材ベース2は、直接的または間接的に、神経細胞20や培地8に接触する可能性を考慮し、細胞毒性が低く、生体適合性が高い材質であることが好ましい。
例えば、基材ベース2は、ポリエチレン、ポリプロピレン、ポリビニルアルコール、ポリ塩化ビニリデン、ポリエチレンテレフタレート、ポリ塩化ビニール、ポリウレタン、ポリスチレン、ABS樹脂、AS樹脂、アクリル樹脂、ポリアミド、ポリアセタール、ポリブチレンテレフタレート、ガラス強化ポリエチレンテレフタレート、ポリカーボネート、変性ポリフェニレンエーテル、ポリフェニレンスルフィド、ポリエーテルエーテルケトン、液晶性ポリマー、フッ素樹脂、ポリアレート、ポリスルホン、ポリエーテルスルホン、ポリアミドイミド、ポリエーテルイミド、熱可塑性ポリイミド等の熱可塑性樹脂や、フェノール樹脂、メラミン樹脂、ユリア樹脂、エポキシ樹脂、不飽和ポリエステル樹脂、アルキド樹脂、シリコーン樹脂、ジアリルフタレート樹脂、ポリアミドビスマレイミド、ポリビスアミドトリアゾール等の熱硬化性樹脂、さらには、これらを2種以上ブレンドした材料を用いることができる。
また、前記した樹脂組成物だけでなく、石英、ガラス類、アルミナ、ジルコニア、チタニアに代表されるセラミックス等の無機物によって基材ベース2を構成してもよい。
さらに、本実施形態に係る神経細胞培養方法を医療分野に適用する場合には、基材ベース2を、例えば、ポリ乳酸やポリカプロラクトンを始めとする脂肪族ポリエステルやポリ酸無水物、合成ポリペプチド等の合成系の他に、キトサンやセルロースなどの天然物系も含めた生分解性樹脂、および、これらの2種類以上のブレンドによって構成することが好適である。このような構成とすることによって、例えば、神経細胞20を生体に移植する場合には、培養した神経細胞20を神経細胞培養基材1から分離して使用するだけでなく、培養した神経細胞20を神経細胞培養基材1と一体に使用することが可能となる。
[樹脂層3]
図3は、図2で示した神経細胞培養基材1における領域Aの部分拡大斜視図である。
本実施形態における樹脂層3は、基材ベース上面2Aに配設される。樹脂層3の材質は、例えば、所望する加工精度、表面特性、光学特性、強度等に応じて適宜選択されるものであって、特に限定されるものではない。例えば、樹脂層3の材質は、前記した基材ベース2の構成材料として例示した樹脂組成物や無機物や生分解性樹脂等から適宜選択することができる。
[凸部4]
図3に示すように、本実施形態の神経細胞培養基材1における凸部4は、樹脂層3の上面3Aに、樹脂層3と一体的に複数形成されて、後記する制御領域(例えば、実施形態例1〜3を参照)を構成する。
そして、凸部4は、その最上面4Aにおいて所定の相当直径rを有し、所定の間隔gで配列している。
凸部4の配列の様式は、所定の間隔gを満たす範囲において、様々に規定することができる。例えば、複数の凸部2の配列の様式は、同一の制御領域における効果の均一性を保持するために、2次元正方格子状や千鳥格子状であることが好ましい。
凸部4の最上面4Aの形状は、必ずしも円形である必要はない。従って、本実施形態においては、最上面4Aの大きさを規定する場合に、円形のみを想定した「直径」等の表現は用いず、「相当直径」として記載する。
ここで、「相当直径」とは、凸部4の最上面4Aの直径または直径に相当する長さであって、最上面4Aの形状が円形の場合にはその直径、矩形である場合にはその一辺の長さ、また、そのいずれにも該当しない場合には、例えば、円相当径を用いることができる。円相当径は、必ずしも円形ではない最上面4Aの形状を、円形とみなしてその直径を規定するものである。例えば、円相当径として、最上面4Aの面積と同じ面積を持つ円の直径とみなす面積円相当径、最上面4Aの周長と同じ長さの円の直径とみなす周長円相当径、最上面4Aの形状に外接する円の直径とみなす外接円相当径、最上面4Aの形状に内接する円の直径とみなす内接円相当径等が挙げられ、最上面4Aの形状に応じて適宜選択することができる。
凸部4の相当直径rは、神経細胞20との接触面積を減らすために神経細胞20の直径よりも小さくすることが好ましい。このような構成とすることにより、神経細胞20が凸部4の最上面4A上に戴置される場合には、神経細胞20の底面と培地8との接触面積が増加し、神経細胞20と培地8間の栄養物質や老廃物との交換を促進することができるため、神経細胞20の成長形態の制御に所定の効果を奏する。
本実施形態において、凸部4間の間隔gは、凸部4の最上面外周から当該凸部4に隣接する凸部4の最上面外周までの最短距離として規定する。
例えば、図2および図3に示すように、凸部4の配列の様式が2次元正方格子状の場合には、凸部4間の間隔は図3に示したgの長さである。
凸部4の高さは、凸部4の下方、すなわち、樹脂層上面3Aに細胞体20aや神経突起20bが入り込み可能に設定することが好ましい。例えば、凸部4の高さは、通常の神経細胞20に対しては、0.1μm程度あれば充分にその効果を得ることは可能であるが、0.1μm以上の高さに形成することによって、凸部4の効果をより明確にすることができる。
なお、凸部の高さ方向の形状は、特に限定されるものではなく、例えば、柱状、錐状、逆錐状等であってもよく、また、その外周部の形状や修飾等は、特に限定されるものではない。
凸部4の材質は、所望する加工精度、表面特性、光学特性、強度等に応じて選択されるものであって、特に限定されるものではない。例えば、凸部4の材質は、前記した基材ベース2の構成材料として例示した樹脂組成物や無機物等や生分解性樹脂等から適宜選択することができる。
なお、前記したように、凸部4と樹脂層3は一体的に形成されるものであるため、凸部4と樹脂層3は同一の材料により構成される。
凸部4および樹脂層3の表面(すなわち、神経細胞培養基材1の表面)には、目的に応じて、様々な処理を施すことができる。
例えば、神経細胞20の接着性の制御や表面保護のためのタンパク質等の生体高分子、金属薄膜等による表面被覆、プラズマ処理やUV照射、撥水処理剤、加熱等による親水・撥水化や、ヒドロキシル基、アミノ基、スルホン基、チオール基、カルボキシル基等特定の官能基付加、酸化剤等による表面粗化等から1種類以上の表面処理を施すことができる。特に凸部4への神経細胞20の吸着促進にはポリリジン、アルブミン、コラーゲン、フィブロネクチン、フィブリノーゲン、ビトロネクチン、ラミニン等のタンパク被覆が効果的である。
また、これらの表面修飾は、凸部4および樹脂層3の表面全体に渡って施してもよいし、限定した領域であってもよい。例えば、一部の凸部4と、その他の凸部4とに対し、異なる表面修飾を施してもよいし、凸部4と、樹脂層3とに対し、異なる表面修飾を施してもよい。また、凸部4の最上面4Aと、当該凸部4の外周面とに対し、異なる表面修飾を施してもよい。
なお、本実施形態において、凸部4と樹脂層3とは一体的に形成されるものであるが、さらに、基材ベース2も含めて、一体的に形成してもよい。このように構成することより、神経細胞培養基材1の強度を高めることができる。一方、凸部4や樹脂層3に対して、異なる特性を備えた基材ベース2を所望する場合には、お互いを異なる材質で構成することができる。
また、凸部4は、必ずしも基材ベース2の片面にのみ形成されるものではない。
例えば、神経細胞20の培養形態に応じて基材ベース2の両面に凸部4を形成してもよく、また、立体的に形成された基材ベース2の各面にそれぞれ凸部4を形成してもよい。
[神経細胞培養基材1の製造方法]
次に、神経細胞培養基材1の製造方法を図面を参照して説明する。
図4は、神経細胞培養基材1の製造方法の一例であるナノインプリント法による製造過程を説明するための図である。
図4(a)に示すように、基材ベース2の上面に、樹脂層3を配設する。このとき、樹脂層3が粘着性であれば特に接着処理をせずとも基材ベース2と樹脂層3とは接着する。さらに接着性を高めたい場合、あるいは、樹脂層3が粘着性でない場合には、基材ベース2の上面に所定の表面処理をすることによって、樹脂層3との接着性を高めることができる。例えば、シランカップリング等の特定の官能基による被覆処理、プラズマ処理や高分子グラフト重合、粘着性高分子のコーティング処理、が好適である。
次に、図4(b)に示すように、基材ベース2の上に配された樹脂層3を軟化し、金型凹部6が形成された金型5を押し付けることによって、金型凹部6の形状を樹脂層3に転写する。
そして、図4(c)に示すように、金型5を引き剥がすことによって、樹脂層3と一体的に凸部4が形成された神経細胞培養基材1を得ることができる。
ここで、金型5の材質は、金属、カーボンやシリコン等の無機物、および樹脂組成物等から、基材ベース2、凸部4の材質や加工精度に応じて適切に選択される。
また、金型5表面への金型凹部6の形成法は、切削加工、光リソグラフィ法、電子線直接描画法、粒子線ビーム加工法、走査プローブ加工法等の微細加工法や微粒子の自己組織化、またはこれらの手法によって形成されたマスタからのナノインプリント法、キャスト法、射出成型法に代表される成型加工法、めっき法等から適切に選択される。
また、神経細胞培養基材1の製造方法はナノインプリント法に限定されず、例えば、切削加工法や印刷法、イオンビーム加工法、電子ビーム加工法、レーザ加工法、光リソグラフィ法、キャスト法、射出成型法による加工法等から、基材ベース2や樹脂層3の材質や加工精度に応じて適切に選択される。また、キャスト法や射出成型法で製造する場合には、前記した形成法により形成した金型5を用いることができる。
なお、製造方法によっては、神経細胞培養基材1に必ずしも樹脂層3を形成する必要はなく、基材ベース上面2Aに直接凸部4を配設する構成としてもよい。
そして、形成された凸部4および樹脂層3の表面に対し、必要に応じて、浸漬法、スピンコート法、蒸着法、プラズマ重合法、インクジェット法、スクリーン印刷法のように新たに層を付加する手法や、加熱、光照射、電子線照射、プラズマ処理、浸漬処理等によって、表面修飾を施すこともできる。
なお、この表面修飾処理は、凸部4の形成後に限らず、例えば、形成前の樹脂層3または金型凹部6の表面にあらかじめ表面処理を施し、凸部4の形成と同時に凸部4および樹脂層3の表面に修飾処理を施すこととしてもよい。
以上、本実施形態に係る神経細胞の培養方法に使用する神経細胞培養基材1を説明したが、本実施形態においては、この神経細胞培養基材1に形成される凸部4の相当直径rおよび間隔gを様々に規定することにより、神経細胞の成長形態を多様に制御することができる。
ここで、凸部4の相当直径rおよび間隔gを規定した3種類の神経細胞培養基材1を使用して、神経細胞を3通りに制御した場合の3つの実施形態例を、図面を参照して詳細に説明する。
[実施形態例1]
図5は、実施形態例1の神経細胞の培養方法を説明するための図である。
なお、図5において、培養容器7と培地8は省略している。
図5に示すように、実施形態例1で用いる神経細胞培養基材1は、表面に形成された凸部4の相当直径rおよび凸部4間の間隔gが、培養する神経細胞20の直径、および神経細胞20から伸長する神経突起20bの直径よりも小さく形成されている。
このように構成された神経細胞培養基材1を用いて培養することにより、神経細胞20の細胞体20aは、平坦な基板上における培養時に比べて平坦化し、直径が大きくなる。また、神経細胞20から伸長する神経突起20bは、凸部4の頂点に沿って伸長し、直径が大きく、分岐数が多くなる。
ここで、実施形態例1で用いる神経細胞培養基材1の表面における所定の凸部4から構成される制御領域を、領域1と記載する。すなわち、図5に示す領域1で神経細胞20を培養することによって、神経細胞20と凸部4との密着を強め、神経細胞20の神経突起20bの太さを太く、かつ、前記神経突起20bの分岐数を多くする制御を行いつつ、神経細胞20を培養することができる。
[実施形態例2]
図6は、実施形態例1の神経細胞の培養方法を説明するための図である。
なお、図6において、容器7と培地8は省略している。
図6に示すように、実施形態例2で用いる神経細胞培養基材1は、表面に形成された凸部4の相当直径rおよび凸部4間の間隔gが培養する神経細胞20の直径よりも小さく、かつ、凸部4間の間隔gが神経細胞20から伸長する神経突起20bの直径よりも大きく形成されている。
このように構成された神経細胞培養基材1を用いて培養することにより、神経細胞20から伸長する神経突起20bは、凸部4の間隔に沿って、凸部4の配列している方向に沿って伸長し、平坦な基板上での培養に比べると長くなる。
ここで、実施形態例2で用いる神経細胞培養基材1の表面における所定の凸部4から構成される制御領域を、領域2と記載する。すなわち、図6に示す領域2で神経細胞20を培養することによって、神経細胞20を萎縮させ、神経細胞20から伸長する神経突起20bの伸長方向を制御しつつ、神経細胞20を培養することが可能となる。
[実施形態例3]
図7は、実施形態例3の神経細胞の培養方法を説明するための図である。
なお、図7において、容器7と培地8は省略している。
図7に示すように、実施形態例3で用いる神経細胞培養基材1は、表面に形成された凸部4の相当直径rが神経細胞20の直径よりも小さく、凸部4間の間隔gが神経細胞20の直径の0.4倍から2倍、より好ましくは、0.6倍から2倍までになるように形成されている。
このように構成された神経細胞培養基材1を用いて培養することにより、神経細胞9からの神経突起20bの伸長が阻害され、細胞体20aは萎縮する。
ここで、実施形態例3で用いる神経細胞培養基材1の表面における所定の凸部4から構成される制御領域を、領域3と記載する。すなわち、図7に示す領域3で神経細胞20を培養することによって、神経細胞20の成長を抑制しつつ、神経細胞20を培養することが可能となる。
具体的には、図7に示す領域3を神経細胞培養基材1(図2参照)に持たせることによって、この領域において、神経細胞の成長を抑制(または停止)する制御を行うことが可能となる。
以上、本実施形態によれば、培養基材上の凸部の形状や配置を規定することで、神経細胞の成長形態を制御することができる。
従来、このように神経細胞の成長形態を変化させるには特定のサイトカイン等の試薬添加が必要であったが、本実施形態においてはこのような試薬添加が不要であり、試薬の副次的な効果を考慮に入れる必要がない。また、本実施形態を適用することにより、神経細胞培養基材上に局所的に異なる効果を有する処理を実現できるために、神経細胞の成長形態の複雑かつ高次な制御に適用することができる。
以上、本発明を実施形態を用いて説明したが本発明はこれらの実施形態に限定されることなく幅広く適用されるものである。
例えば、前記した実施形態例1〜実施形態例3で示した神経細胞の培養方法は、それぞれ適用する培養条件は同じであって、用いる神経細胞培養基材1のみが異なるため、それぞれの神経細胞培養基材1を一つの培養容器7に配設することによって、同時に適用することができる。すなわち、本実施形態とは別の実施形態において、2以上の制御領域を有する神経培養基材1を用いて、神経細胞20を培養する神経細胞20の培養方法および神経細胞培養基材1が提供される。
ここで、図8〜図10は、領域1〜領域3と、任意の領域である領域4とを組み合わせて形成した神経細胞培養基材1の上面図である。
具体的には、図8に示すように、領域1を領域3で囲んだ神経細胞培養基材1を形成することができる。図8の神経細胞培養基材1を用いる神経細胞20の培養方法によれば、神経細胞培養基材1中央部に限定して、太い神経突起20bと大きい細胞体20aを有する神経細胞20を培養することができる。
また、図9に示すように、領域2を領域3で囲んだ神経細胞培養基材1を形成することができる。図9の神経細胞培養基材1を用いる神経細胞20の培養方法によれば、中央に限定して格子状の神経ネットワークを形成することができる。
また、図10に示すように、領域3で分離された2つの部位を持つ神経細胞培養基材1を形成することができる。図10において、任意の領域である領域4は、領域1、領域2のいずれの領域であってもよく、また、凸部4が形成されない平坦な領域であってもよい。さらには、領域4は、例えば、特許文献2に記載の溝からなる構造であってもよい。図10の神経細胞培養基材1を用いる神経細胞20の培養方法によれば、領域3は外部から伸長してくる神経突起20bは妨げないために、分離された2つの領域(領域4と領域4)に位置する神経細胞20同士を、それぞれの神経細胞20から伸長した神経突起20bのみで繋ぐことができる。
なお、神経細胞培養基材1上への領域1、領域2、領域3の配し方は以上の例に限定されず、必要な神経細胞20の性状に応じた組み合わせを適宜選択することができる。さらに、各領域に対し明確な境界を設けず、凸部4を複雑に配置した構成としてもよい。
このように、同一の神経細胞培養基材1上に複数の制御領域(1つの制御領域1〜3と1以上の任意の領域(領域4)を有する場合を含む)を持たせることによって、神経細胞20の成長形態を各領域で制御しつつ、神経細胞20を培養することが可能となる。
また、本発明には、神経細胞20の成長抑制領域(例えば、領域3)、神経細胞20を配する位置からみてその外側の領域、または神経細胞培養基材1の裏面に切り込み等を設ける構成も含まれる。このように構成することによって、例えば本発明の神経細胞培養基材1とその上で抑制しながら培養された神経細胞20とから構成された神経細胞システムの所望の部分を用意に取り出すことが可能となる。
さらに、発明の神経細胞培養基材1とその上で抑制しながら培養された神経細胞20とから構成された神経細胞システムおよびその製造方法も本発明の範囲内である。すなわち、神経細胞移植片、神経細胞ネットワーク等の神経細胞20の培養形態が所望の状態に制御されたシステムを提供することも可能となり得る。
以下、実施例により本発明をさらに詳細に説明するが、本発明はこれらの実施例に限定されない。
<実施例1>
実施例1では、神経細胞培養基材1の製造を行った。
図11は、実施例1で作成した神経細胞培養基材1の上面図である。
基材ベース2には、25mm角、厚み0.7mmの無アルカリガラス(日本電気硝子株式会社製 OA−10)を使用した。
樹脂層3の材質は、分子量3,000から600万のポリスチレン(シグマ・アルドリッチ・ジャパン製)である。
基材ベース2の上にポリスチレンを1μmの厚みにスピンコートし、90℃で5分間加熱することによって溶剤を蒸発させた。このポリスチレン薄膜からなる樹脂層3を基材ベース2とともに150℃に加熱して軟化し、図11に示す基材表面(凸部4)に対応する金型凹部6が表面に形成された結晶方位(100)、20mm角、厚み0.7mmの単結晶シリコン製の金型5を、10MPaの圧力で180秒間押し付けた。このプレス工程によって、金型凹部6に樹脂3を充填した。その後、70℃まで冷却し、金型5を離すことによって、図11に示す基材表面(凸部4)を形成した神経細胞培養基材1を得ることができた。
引き続いて、神経細胞培養基材1をエタノール中に浸漬して乾燥し、3時間のUV滅菌を施した後にポリリジン溶液(50mg/0.1M ホウ酸水溶液、pH=8.3)に1時間浸漬後に純水で洗浄することによってポリリジンを凸部4上へ被覆した。
また、凸部成形に用いた金型5の材質は、結晶方位(100)、20mm角の単結晶シリコンであって、金型凹部6は、光リソグラフィ法によって形成されたものである。
図11に示すように、この神経細胞培養基材1には、所定の凸部から構成される16箇所の制御領域が形成されている。各領域の大きさは3mm角である。各領域内において凸部4は、2次元正方格子状に配列している。
凸部4の高さは全て1μmであるが、凸部4の直径rは0.25μmから25.0μmに、凸部4間の間隔gは直径rと同じ値の領域と2倍の値とした領域とを形成した。
ここで、本実施例で形成した神経細胞培養基材1上に形成した凸部4の相当直径rと凸部4間の間隔gの一覧を表1に示す。
Figure 0004950426
<実施例2>
実施例2では、実施例1で作製した神経細胞培養基材1を用いて神経細胞を培養し、神経細胞の成長形態の評価を行った。
まず、実施例2において使用した神経細胞20の調製手順を以下に示す。
妊娠14日目のマウスから胎児を取り出し脳を摘出した。さらに,大脳半球から大脳皮質のみを分離して、その組織片を培地(Opti−MEM(Invitrogen Corporation)、 2−Mercaptoethanol(Invitrogen Corporation))が入っている15mlチューブに集め、先をバーナーの火で丸めたパスツールピペットを使いピペッティングによって細胞を分散させた。その後、血球計算盤を使用して細胞数を計測し、トリパンブルー(Invitrogen Corporation)染色によって適正なViabilityを有していることを確認した。
実施例1で得られたポリリジンコート済みの神経細胞培養基材1を細胞培養用シャーレなどの容器7内に配置し、この上に胎生14日目のマウス大脳皮質組織から採取した神経細胞20を2.0×104/cm2の密度に播種した。培地8は培養1日目のみ血清培地(Opti−MEM、 10%FBS(Invitrogen Corporation)、 55μM 2−Mercaptoethanol)を使用し、細胞が定着した培養2日目以降は無血清培地(Opti−MEM、 B27supplement(Invitrogen Corporation)、 55mM 2−Mercaptoethanol)を用いた。培養はCO2インキュベータ内(CO2濃度5%、温度37℃、相対湿度80%)で行った。7日間培養後に、培養した神経細胞20の形状を倒立顕微鏡および走査電子顕微鏡観察によって評価した。
本実施例の領域a〜pに関し、それぞれ、細胞体20aの形状(表2では細胞体形状と記載)、1細胞あたりの神経突起20bの数(総数)、1細胞あたりの神経突起20bの分岐数(分岐数)、神経突起20bの長さ平均値(長さ)、神経突起20bの太さ平均値(太さ)、神経突起20bの伸長方向の配向率(配向率)、を評価した。
なお、伸長方向の配向率は、全ての神経突起数に対し、直進的に延伸する神経突起数の割合とした。
比較例として、平坦なポリスチレン基板上に神経細胞20を播種し、同じ条件で培養したものを評価した。
各評価結果を表2に示す。
Figure 0004950426
表2に示すように、領域a、領域b、領域iでは、細胞体20aが扁平状となった。神経突起20bは凸部4の上を伝って多数分岐しながら伸長し、その太さは平坦な基材上での培養時に比べると大きい値を示した。通常のマウス神経細胞においては細胞体20aの直径は2〜20μmであり、その神経突起20bの直径は0.3〜2.0μmである。これらの領域では凸部4の直径r、および凸部4間の間隙gが細胞の直径、神経突起20bの直径よりも小さい値となっている。このように凸部4を形成することよって、実施形態例1で示したように神経細胞20の成長形態を制御できることが示された。
表2に示すように、領域c、領域d、領域e、領域k、領域lでは、細胞体20aが扁平状となった。しかし、神経突起20bの分岐数は平坦な基材上での培養時に比べると少なく、神経突起20bは分岐を抑えて成長方向を凸部4の間を、凸部4の配列方向に合わせて直線状に長く伸長した。前記したように通常のマウス神経細胞においては細胞体20aの直径は2〜20μmであり、その神経突起20bの直径は0.3〜2.0μmである。これらの領域では凸部4の直径rおよび間隙gが細胞の直径よりも小さく、かつ、間隙gが伸長する神経突起20bの直径よりも大きい値となっている。このように凸部4を形成することよって、実施形態例2で示したように神経細胞20の成長形態を制御できることが示された。
表2に示すように、領域f、領域g、領域m、領域nでは、細胞体20aが萎縮して通常時よりも小さい球形となった。神経突起20bは成長が抑制され、分岐数と長さは平坦な基材上での培養時に比べると小さい値となった。前記したように通常のマウス神経細胞においては細胞体20aの直径は2〜20μmであり、その神経突起20bの直径は0.3〜2.0μmである。これらの領域では凸部4の直径rが細胞の直径よりも小さく、間隙gが細胞の直径の0.4倍から2.0倍までの値となっている。このように凸部4を形成することよって、実施形態例3で示したように神経細胞20の成長形態を制御できることが示された。
また、表2に示すように、領域h、領域l、領域oでは、神経細胞20の形状に、平坦な基材における細胞形状との有意な差が見出せなかった。このことは、これらの領域では凸部4の直径r、間隙gが細胞の直径よりも十分に大きく、各細胞にとっては平坦部と実質的に同じ培養環境であったことを意味している。
以上のように、本実施例によれば、温度、培養時間、培地などの培養環境が共通であっても神経細胞培養基材1上の凸部4の形状を規定することで、培養する神経細胞20の成長形態を制御できることを示した。すなわち、本実施例によれば、それぞれの特性を示す凸部4を神経細胞培養基材1上に所望の形状にパターニングして成型した基材を用いることによって、あらゆる形状に神経細胞ネットワークを形成することができることを示した。
本発明による神経細胞の培養方法の一例を説明するための縦断面図である。 本実施形態に係る神経細胞培養基材の斜視図である。 図2で示した神経細胞培養基材における領域Aの部分拡大斜視図である 神経細胞培養基材1の製造方法の一例であるナノインプリント法による製造過程を説明するための図である。 実施形態例1の神経細胞の培養方法を説明するための図である。 実施形態例2の神経細胞の培養方法を説明するための図である。 実施形態例3の神経細胞の培養方法を説明するための図である。 神経細胞培養基材の一例を示す上面図である。 神経細胞培養基材の別の一例を示す上面図である。 神経細胞培養基材のさらに別の一例を示す上面図である。 実施例1で作成した神経細胞培養基材1の上面図である。
符号の説明
1 神経細胞培養基材
2 基材ベース
2A 基材ベース上面
3 樹脂層
3A 樹脂層表面
4 凸部
4A 最上面
5 金型
6 金型凹部
7 培養容器
7A 底部上面
8 培地
20 神経細胞
20a 細胞体
20b 神経突起

Claims (12)

  1. 神経細胞培養基材上に培養用培地と神経細胞とを配して、前記神経細胞を対応する培養条件下で培養する神経細胞の培養方法であって、
    前記神経細胞培養基材は、神経細胞を配する面内に複数の凸部が形成されており、
    (a) 前記凸部の相当直径および凸部間の間隔が、培養する神経細胞の直径、および前記神経細胞から伸長する神経突起の直径よりも小さい複数の凸部により形成された少なくとも1つの領域、
    (b) 前記凸部の相当直径および前記凸部間の間隔が培養する神経細胞の直径よりも小さく、かつ、前記凸部間の間隔が前記神経細胞から伸長する神経突起の直径よりも大きい複数の凸部により形成された少なくとも1つの領域、
    (c) 前記培養制御領域における凸部の相当直径が前記神経細胞の直径よりも小さく、前記凸部間の間隔が前記神経細胞の直径の0.4倍から2倍までの範囲である複数の凸部により形成された少なくとも1つの領域
    より成る群から選択された少なくとも2つの領域を含む培養制御領域を有しており、
    前記領域(a)〜(c)の配置によって前記神経細胞の成長形態を制御することを特徴とする神経細胞の培養方法。
  2. 前記神経細胞の成長形態の制御が、神経細胞と神経細胞培養基材の密着性、神経細胞の細胞体形状、前記神経細胞から伸長する神経突起の太さ、長さ、枝分れ数、伸長方向、成長抑制の少なくとも1つであることを特徴とする請求項1に記載の神経細胞の培養方法。
  3. 領域(a)によって、前記神経細胞の神経突起の太さを太く、かつ、前記神経突起の分岐数を多くする制御を行うことを特徴とする請求項1または請求項2に記載の神経細胞の培養方法。
  4. 領域(b)によって、前記神経細胞から伸長する神経突起の伸長方向を制御することを特徴とする請求項1から請求項のいずれか1項に記載の神経細胞の培養方法。
  5. 領域(c)によって、前記神経細胞の成長を抑制制御することを特徴とする請求項1から請求項のいずれか1項に記載の神経細胞の培養方法。
  6. 神経細胞培養基材上に培養用培地と神経細胞とを配して、前記神経細胞を対応する培養条件下で培養する神経細胞の培養方法であって、
    前記神経細胞培養基材は、神経細胞を配する面内に複数の凸部が形成されており、
    前記複数の凸部の相当直径およびこれらの凸部間の間隔を、培養する神経細胞の直径、および前記神経細胞から伸長する神経突起の直径よりも小さく規定することによって、前記神経細胞の神経突起の太さを太く、かつ、前記神経突起の分岐数を多くする制御を行うことを特徴とする神経細胞の培養方法。
  7. 神経細胞を培養する神経細胞培養基材であって、
    前記神経細胞培養基材は、前記神経細胞培養基材の神経細胞を配する面内に複数の凸部が形成されてなる神経細胞の成長形態を制御する培養制御領域を有しており、
    前記培養制御領域は、
    (a) 前記凸部の相当直径および凸部間の間隔が、培養する神経細胞の直径、および前記神経細胞から伸長する神経突起の直径よりも小さい複数の凸部により形成された少なくとも1つの領域、
    (b) 前記凸部の相当直径および前記凸部間の間隔が培養する神経細胞の直径よりも小さく、かつ、前記凸部間の間隔が前記神経細胞から伸長する神経突起の直径よりも大きい複数の凸部により形成された少なくとも1つの領域、
    (c) 前記培養制御領域における凸部の相当直径が前記神経細胞の直径よりも小さく、前記凸部間の間隔が前記神経細胞の直径の0.4倍から2倍までの範囲である複数の凸部により形成された少なくとも1つの領域
    より成る群から選択された少なくとも2つ以上の領域を含むであることを特徴とする神経細胞培養基材。
  8. さらに、前記神経細胞培養基材は、(d)前記神経細胞培養基材の神経細胞を配する面内に複数の凸部が形成されていない培養領域を有していることを特徴とする請求項7に記載の神経細胞培養基材。
  9. 前記培養制御領域または培養領域は、前記培養制御領域における凸部の相当直径が前記神経細胞の直径よりも小さく、前記凸部間の間隔が前記神経細胞の直径の0.4倍から2倍までの範囲である複数の凸部により形成された少なくとも1つの領域により分離された、1以上の領域を含むことを特徴とする請求項7または請求項に記載の神経細胞培養基材。
  10. 前記神経細胞培養基材の神経細胞を配する面が神経細胞の付着を促進する表面処理が為されていることを特徴とする請求項7から請求項のいずれか1項に記載の神経細胞培養基材。
  11. 前記神経細胞培養基材の裏面または前記神経細胞培養基材における前記培養制御領域における凸部の相当直径が前記神経細胞の直径よりも小さく、前記凸部間の間隔が前記神経細胞の直径の0.4倍から2倍までの範囲である複数の凸部により形成された領域、あるいは前記神経細胞を配した側からみてその領域の外側領域には前記培養基板をカットするための切り込みを有していることを特徴とする請求項7から請求項10のいずれか1項に記載の神経細胞培養基材。
  12. 神経細胞培養基材と前記神経細胞培養基材上に形成された神経細胞ネットワークとから構成される神経細胞システムの製造方法であって、
    前記神経細胞培養基材は、神経細胞を配する面内に複数の凸部が形成されており、
    (a) 前記凸部の相当直径および凸部間の間隔が、培養する神経細胞の直径、および前記神経細胞から伸長する神経突起の直径よりも小さい複数の凸部により形成された少なくとも1つの領域、
    (b) 前記凸部の相当直径および前記凸部間の間隔が培養する神経細胞の直径よりも小さく、かつ、前記凸部間の間隔が前記神経細胞から伸長する神経突起の直径よりも大きい複数の凸部により形成された少なくとも1つの領域、
    (c) 前記培養制御領域における凸部の相当直径が前記神経細胞の直径よりも小さく、前記凸部間の間隔が前記神経細胞の直径の0.4倍から2倍までの範囲である複数の凸部により形成された少なくとも1つの領域
    より成る群から選択された少なくとも2つの領域を含む培養制御領域を有しており、
    前記神経細胞培養基材の培養表面に神経細胞を定着させ、定着した前記神経細胞を前記神経細胞に対応する培養条件下で培養して、前記領域(a)〜(c)の配置によって前記神経細胞の成長を制御しながら、前記神経細胞培養基材上に前記神経細胞を形成することを特徴とする神経細胞システムの製造方法。
JP2005041381A 2005-02-17 2005-02-17 神経細胞の培養方法、神経細胞培養基材および神経細胞システムの製造方法 Expired - Fee Related JP4950426B2 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2005041381A JP4950426B2 (ja) 2005-02-17 2005-02-17 神経細胞の培養方法、神経細胞培養基材および神経細胞システムの製造方法
US11/354,874 US20060183222A1 (en) 2005-02-17 2006-02-16 Method for culturing neurons, neuron culture substrate, neurons, neuron system, and method for manufacturing neuron system
GB0603265A GB2423774B (en) 2005-02-17 2006-02-17 Method of culturing neurons, neuron culture substrate, neurons, neuron system, and method for manufacturing neuron system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005041381A JP4950426B2 (ja) 2005-02-17 2005-02-17 神経細胞の培養方法、神経細胞培養基材および神経細胞システムの製造方法

Publications (2)

Publication Number Publication Date
JP2006223197A JP2006223197A (ja) 2006-08-31
JP4950426B2 true JP4950426B2 (ja) 2012-06-13

Family

ID=36142061

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005041381A Expired - Fee Related JP4950426B2 (ja) 2005-02-17 2005-02-17 神経細胞の培養方法、神経細胞培養基材および神経細胞システムの製造方法

Country Status (3)

Country Link
US (1) US20060183222A1 (ja)
JP (1) JP4950426B2 (ja)
GB (1) GB2423774B (ja)

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4918755B2 (ja) * 2005-05-30 2012-04-18 株式会社日立製作所 細胞培養容器,細胞培養容器の製造方法、及び培養細胞
JP4895345B2 (ja) * 2005-10-25 2012-03-14 セイコーインスツル株式会社 生細胞観察用セル
JP5032778B2 (ja) * 2006-03-03 2012-09-26 株式会社日立製作所 生体組織再生用材料
US8652833B2 (en) 2006-04-28 2014-02-18 Kuraray Co., Ltd. Cell culture container and method of producing the same
JP2008194029A (ja) * 2007-01-19 2008-08-28 Tosoh Corp 細胞融合装置及びそれを用いた細胞融合方法
JP5162784B2 (ja) * 2007-07-11 2013-03-13 日東電工株式会社 細胞培養基材及びその製造方法並びに細胞培養方法
JP2009022247A (ja) * 2007-07-23 2009-02-05 Toshiba Corp 培養容器及び培養組織回収方法
EP2291510A2 (en) * 2008-05-27 2011-03-09 Aarhus Universitet Biocompatible materials for mammalian stem cell growth and differentiation
WO2010059583A1 (en) * 2008-11-21 2010-05-27 Corning Incorporated Spaced projection substrates and devices for cell culture
US8530237B2 (en) 2009-01-08 2013-09-10 Hitachi, Ltd. Method for culturing animal hepatocyte
JP2011024465A (ja) * 2009-07-23 2011-02-10 Univ Of Tokyo 細胞の分化誘導装置、細胞の分化誘導方法、及び未分化細胞からの分化細胞の産生方法
EP2284252A1 (en) * 2009-08-13 2011-02-16 Sony DADC Austria AG Surface-structured device for life-science applications
FR2978455B1 (fr) * 2011-07-29 2015-06-05 Centre Nat Rech Scient Dispositif de culture de cellules neuronales et utilisations
CN103156600A (zh) * 2011-12-16 2013-06-19 马劼 脑片实验仪
KR101471928B1 (ko) * 2012-04-06 2014-12-12 포항공과대학교 산학협력단 세포 배양용 용기
EP2899262B1 (en) * 2012-09-19 2017-08-09 Japan Science and Technology Agency Formation and use of neuronal network, and neuron seeding device
US20140141503A1 (en) * 2012-11-20 2014-05-22 Corning Incorporated Cell culture substrate having uniform surface coating
JP2014138605A (ja) * 2014-03-05 2014-07-31 Aarhus Universitet 哺乳類の幹細胞の成長および分化のための生体適合性材料
JP5909543B2 (ja) * 2014-12-26 2016-04-26 株式会社日立製作所 培養器材
JP6597118B2 (ja) * 2015-09-25 2019-10-30 大日本印刷株式会社 細胞挙動評価用基板、細胞挙動評価用容器及び細胞挙動評価方法
JP2017075261A (ja) * 2015-10-15 2017-04-20 株式会社クレハ 構造体、成形体、成形体の製造方法および構造体の製造方法
JP6901252B2 (ja) * 2015-10-21 2021-07-14 株式会社日本触媒 接着性細胞培養用基材、ならびにこれを利用した細胞培養容器および細胞培養方法
TW201730330A (zh) * 2016-01-20 2017-09-01 Soken Chemical & Engineering Co Ltd 細胞培養基板及其製造方法
JP6995476B2 (ja) * 2016-12-28 2022-01-14 デクセリアルズ株式会社 培養容器カバー、培養容器カバーの製造方法、及びカバー付き培養容器
WO2020158482A1 (ja) * 2019-01-28 2020-08-06 王子ホールディングス株式会社 細胞シート形成部材、細胞シート形成部材の製造方法、および、細胞シートの製造方法
EP3805373A1 (en) 2019-10-10 2021-04-14 Fundación Imdea Nanociencia Substrates for culturing and stimulating cells

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02265477A (ja) * 1989-04-04 1990-10-30 Hitachi Chem Co Ltd 神経線維の成長方向を制御する素子及びその製造法
JPH03198771A (ja) * 1989-12-27 1991-08-29 Sanyo Electric Co Ltd 神経細胞のパターン化方法
JPH0670755A (ja) * 1992-08-28 1994-03-15 Mitsubishi Electric Corp 培養神経細胞による神経回路及びその形成方法
JP3038365B2 (ja) * 1997-11-20 2000-05-08 工業技術院長 細胞をパターン状に接着するための基板作製法
AU2001257095A1 (en) * 2000-04-19 2001-11-07 Iowa State University Research Foundation Inc. Patterned substrates and methods for nerve regeneration
US7282362B2 (en) * 2001-06-14 2007-10-16 Millipore Corporation Tray with protrusions
GB2381535A (en) * 2001-10-30 2003-05-07 Qinetiq Ltd Device for forming a cellular network
JP2004049176A (ja) * 2002-07-24 2004-02-19 Tetsuya Haruyama 生体細胞の培養基板、生体細胞の培養方法、生体細胞の死誘導部材、生体細胞の死誘導方法
JP4897192B2 (ja) * 2002-10-30 2012-03-14 株式会社日立製作所 柱状微小突起群を備えた機能性基板とその製造方法
JP4507845B2 (ja) * 2003-11-17 2010-07-21 株式会社日立製作所 細胞培養容器、及び培養細胞
JP4699361B2 (ja) * 2004-04-26 2011-06-08 大日本印刷株式会社 細胞培養用パターニング基板およびその製造方法
JP4507686B2 (ja) * 2004-04-28 2010-07-21 株式会社日立製作所 観察用容器及び培養用容器,培養細胞

Also Published As

Publication number Publication date
GB2423774A (en) 2006-09-06
JP2006223197A (ja) 2006-08-31
US20060183222A1 (en) 2006-08-17
GB2423774B (en) 2007-03-14
GB0603265D0 (en) 2006-03-29

Similar Documents

Publication Publication Date Title
JP4950426B2 (ja) 神経細胞の培養方法、神経細胞培養基材および神経細胞システムの製造方法
JP5013584B2 (ja) 軟骨細胞の培養方法および軟骨細胞
JP4507845B2 (ja) 細胞培養容器、及び培養細胞
US10258456B2 (en) Cell-containing sheet
Hsu et al. Oriented Schwann cell growth on microgrooved surfaces
JP5134511B2 (ja) 人工細胞組織の作成方法、及びそのための基材
JP4918755B2 (ja) 細胞培養容器,細胞培養容器の製造方法、及び培養細胞
Steedman et al. Enhanced differentiation of retinal progenitor cells using microfabricated topographical cues
US8500822B2 (en) Artificial tissue construct and method for producing the same
US20100129908A1 (en) Spaced projection substrates and devices for cell culture
US7655457B2 (en) Cell culture vessel and cultured cell
JP5032778B2 (ja) 生体組織再生用材料
Lin et al. Investigation of the interfacial effects of small chemical-modified TiO2 nanotubes on 3T3 fibroblast responses
JP4949831B2 (ja) 人工血管およびその製造方法
WO2005085413A1 (ja) 血管細胞培養用パターニング基板
WO2005085414A1 (ja) 血管細胞培養用パターニング基板
Kopeć et al. System for Patterning Polydopamine and VAPG Peptide on Polytetrafluoroethylene and Biodegradable Polyesters for Patterned Growth of Smooth Muscle Cells In Vitro
Xiang et al. Direct laser writing of nanorough cell microbarriers on anatase/Si and graphite/Si
KR100905137B1 (ko) 인공 혈관 및 그의 제조 방법
WO2005099784A1 (ja) 人工組織およびその製造方法
Khan Investigation of directed growth of CNS tissue on engineered and active surfaces for neural device application
Ereifej Studying the glial cell response to biomaterials and surface topography for improving the neural electrode interface
Lee The control of normal and tumor cell behavior using novel materials

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080213

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110208

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110829

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120306

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120309

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150316

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees