WO2020036173A1 - 微細構造体製造方法 - Google Patents

微細構造体製造方法 Download PDF

Info

Publication number
WO2020036173A1
WO2020036173A1 PCT/JP2019/031824 JP2019031824W WO2020036173A1 WO 2020036173 A1 WO2020036173 A1 WO 2020036173A1 JP 2019031824 W JP2019031824 W JP 2019031824W WO 2020036173 A1 WO2020036173 A1 WO 2020036173A1
Authority
WO
WIPO (PCT)
Prior art keywords
microstructure
resin
mold
unit
manufacturing
Prior art date
Application number
PCT/JP2019/031824
Other languages
English (en)
French (fr)
Inventor
谷口豊
田中覚
Original Assignee
Scivax株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Scivax株式会社 filed Critical Scivax株式会社
Publication of WO2020036173A1 publication Critical patent/WO2020036173A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C59/00Surface shaping of articles, e.g. embossing; Apparatus therefor
    • B29C59/02Surface shaping of articles, e.g. embossing; Apparatus therefor by mechanical means, e.g. pressing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/027Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34

Definitions

  • the present invention relates to a method for producing a microstructure.
  • Optical members having a fine uneven structure on the surface are used for controlling optical characteristics, such as a lens for condensing light, a moth-eye for preventing reflection, and a wire grid for adjusting polarization.
  • a mold (die) having an inverted structure of the uneven structure formed on the surface is used, and the mold is pressed against a molding object, and heat and light are used. Attention has been paid to nanoimprinting, which transfers the pattern onto the surface of a molding object. (For example, see Patent Document 1).
  • a master mold is first created by laser processing, and then a mold is created by directly imprinting the resin from the master mold.
  • a mold is manufactured by electroforming from a master mold, and the mold is manufactured by imprinting the resin from the electroformed mold.
  • an object of the present invention is to provide a method for manufacturing a fine structure capable of producing a fine structure which can be used as a large-area mold or a fine structure for forming a large-area mold at low cost and with high accuracy.
  • a method of manufacturing a microstructure according to the present invention is directed to a method of arranging a plurality of unit microstructures each having a concavo-convex pattern adjacent to the surface of a base material, wherein A mold having an inverted concavo-convex pattern obtained by inverting the concavo-convex pattern on the stamp base on which is formed, an application step of applying the resin on the surface of the mold, and pressing the mold against the base material, After the resin is cured, it is released, and has a unit microstructure forming step of forming the unit microstructure on the surface of the base material.
  • the coating step and the unit microstructure forming step are performed in this order. It is characterized in that the unit microstructures are arranged adjacent to each other at an interval of 1 ⁇ m or less by repeating at least twice.
  • the thickness of the resin in the concave portion of the unit microstructure is 100 nm or less.
  • the stamp base may be formed so that the end side is higher than the center part, and conversely, the end side is formed lower than the center part. May be. Further, the stamp base may have a planar shape formed in the same shape as the mold.
  • the resin is a photo-curable resin, and the resin in the unit microstructure forming step may be cured by irradiating the photo-curable resin with light.
  • the method may include an etching step of performing etching using the unit fine structure as a mask to form a fine structure on the base material.
  • the defect can be prevented.
  • the method of manufacturing a microstructure according to the present invention can reduce the thickness of the resin in the concave portions of the unit microstructure as much as possible, so that unnecessary irregularities generated between the unit microstructures can be reduced.
  • the structure can be manufactured accurately at low cost.
  • FIG. 3 is a schematic cross-sectional view for explaining the method for manufacturing a fine structure of the present invention.
  • FIG. 2 is a schematic sectional view showing a unit microstructure according to the present invention.
  • FIG. 4 is a schematic cross-sectional view for explaining a unit microstructure forming step according to the present invention.
  • FIG. 3 is a schematic cross-sectional view for explaining an etching step according to the present invention.
  • FIG. 9 is a schematic cross-sectional view for explaining an etching step of a comparative example.
  • the method for manufacturing a microstructure according to the present invention includes arranging a plurality of unit microstructures 2 each having a concavo-convex pattern 21 on the surface of the base material 1.
  • the formation process is repeated twice or more in this order, and the unit fine structures are arranged adjacent to each other at an interval of 1 ⁇ m or less. Thereby, a large-area fine uneven structure in which a plurality of unit microstructures 2 are arranged can be formed.
  • a film 30 made of resin is formed on the stamp table 3 as shown in FIG.
  • a mold 4 having an inverted concavo-convex pattern 41 obtained by inverting the concavo-convex pattern 21 is brought into contact with the film 30 on the stamp base 3.
  • the mold 4 is separated from the stamp base 3 and a resin is applied to the surface of the mold 4.
  • the film thickness A shown in FIG. 1A is large, as shown in FIG. 2, the film 30 of the stamp base 3 has a thickness B of the resin (remaining film) in the concave portion 21a of the formed unit microstructure 2 as shown in FIG. Undesirably increases.
  • the film 30 of the stamp base 3 preferably has a thickness A of 200 nm or less, preferably 100 nm or less, and more preferably 50 nm or less.
  • the film 30 formed on the stamp base 3 may be formed in any manner as long as the film thickness can be set to 200 nm or less, and is conventionally known, for example, a spin coating method, a spray coating method, a slit coating method, or the like. A method may be used.
  • the mold 4 is made of, for example, “metal such as nickel”, “ceramics”, “carbon material such as glassy carbon”, “silicon”, etc., as shown in FIG.
  • One having a predetermined inverted concavo-convex pattern 41 on one end surface (molding surface).
  • the inverted concavo-convex pattern 41 can be formed by performing precision machining on the molding surface.
  • a silicon substrate or the like is formed by a semiconductor fine processing technique such as etching, or a surface of the silicon substrate or the like is subjected to metal plating by an electroforming (electroforming) method, for example, a nickel plating method, and the metal plating layer is peeled off. It can also be formed.
  • the mold 4 may be formed in a film shape that is flexible with respect to the molding surface of the molding object.
  • the material and the manufacturing method thereof are not particularly limited.
  • the inverted concavo-convex pattern 41 formed on the mold 4 transfers not only a geometric shape having a fine structure of concavities and convexities but also a predetermined surface state such as a mirror-like state having a predetermined surface roughness.
  • the inverted concavo-convex pattern 41 is formed in various sizes such as a minimum dimension of a width of a convex portion or a width of a concave portion in a planar direction of 1 ⁇ m or less, 100 nm or less, 10 nm or less.
  • dimensions in the depth direction are formed in various sizes such as 10 nm or more, 100 nm or more, 200 nm or more, 500 nm or more, and 1 ⁇ m or more.
  • the resin may be any resin as long as it can be bonded to the base material 1 and can form the unit microstructure 2.
  • a photo-curable resin or a thermo-curable resin may be used. Can be.
  • the photocurable resin or the thermosetting resin examples include unsaturated hydrocarbons such as vinyl groups and allyl groups such as epoxide-containing compounds, (meth) acrylate compounds, vinyl ether compounds, and bisallylnadiimide compounds. Group-containing compounds and the like can be used. In this case, it is also possible to use the polymerization reactive group-containing compounds alone for thermally polymerizing, or to add and use a thermoreactive initiator to improve thermosetting properties. Is also possible. Further, a photo-reactive initiator may be added, and the polymerization reaction may proceed by light irradiation to form a molding pattern.
  • Organic peroxides and azo compounds can be suitably used as the heat-reactive radical initiator, and acetophenone derivatives, benzophenone derivatives, benzoin ether derivatives, xanthone derivatives and the like can be suitably used as the photoreactive radical initiator.
  • the reactive monomer may be used without a solvent, or may be used by dissolving it in a solvent and removing the solvent after coating.
  • thermoplastic resin heated to a glass transition temperature or higher can be used.
  • thermoplastic resin cyclic olefin-based resins such as cyclic olefin ring-opening polymerization / hydrogenated product (COP) and cyclic olefin copolymer (COC), acrylic resin, polycarbonate, vinyl ether resin, perfluoroalkoxy alkane ( Fluororesins such as PFA) and polytetrafluoroethylene (PTFE), polystyrene, polyimide resins, polyester resins, and the like can be used.
  • cyclic olefin-based resins such as cyclic olefin ring-opening polymerization / hydrogenated product (COP) and cyclic olefin copolymer (COC)
  • acrylic resin polycarbonate
  • vinyl ether resin perfluoroalkoxy alkane
  • Fluororesins such as PFA
  • PTFE polytetrafluoroethylene
  • the resin may be applied in a large amount or may be applied in a small amount.
  • the stamp base 3 is formed sufficiently larger than the mold 4.
  • the planar shape of the stamp base 3 is formed in the same shape as the mold 4. You may.
  • the mold 4 is pressed against the substrate 1, the resin is cured, and then the mold is released. This forms the structure 2.
  • the substrate 1 is a flat plate having a sufficient width on which a plurality of unit microstructures 2 can be arranged, and is made of, for example, a resin, an inorganic compound, or a metal.
  • the press of the mold 4 against the substrate 1 may be any method as long as the resin applied to the surface of the mold 4 can be brought into contact with the substrate 1 and fixed.
  • the pressure for pressing the mold 4 against the substrate 1 may be any pressure as long as the unit microstructure 2 can be fixed to the substrate 1 at the time of release. For example, if the mold 4 is pressed to the substrate 1 at 0.5 to 2 MPa. good.
  • the resin is a photocurable resin
  • the resin is cured by irradiating the resin with light having a predetermined wavelength capable of curing the resin, for example, ultraviolet rays, as shown in FIG. Just do it.
  • light is emitted from the mold 4 side.
  • the substrate 1 is made of a material that can transmit the light, the light is emitted from the substrate 1 side. good.
  • the resin when the resin is a thermosetting resin, the resin may be cured by heating. When a thermoplastic resin is used, the resin may be cured by cooling the resin to a temperature equal to or lower than the glass transition temperature.
  • the mold 4 is released from the substrate 1 to form the unit microstructure 2 on the surface of the substrate 1 as shown in FIG.
  • the resin is extruded at the end of the unit microstructure 2, and a convex defective portion 28 is generated.
  • the defective portion 28 becomes larger as the thickness of the resin applied from the stamp base to the mold 4 becomes larger.
  • the depth of the joint between the unit microstructures 2 also increases as the thickness of the resin increases.
  • the thickness of such a resin increases as the thickness of the film 30 of the stamp base 3 increases. Therefore, as described above, it is preferable that the film 30 of the stamp table 3 be thin.
  • the coating step and the unit fine structure forming step are repeated twice or more in this order to form a fine structure (see FIGS. 1 (h) and 1 (i)).
  • the unit microstructures 2 can be arranged so that the seamless microstructures are not noticeable. Can be formed.
  • a conventionally known alignment device may be used.
  • the microstructure manufactured in this way can be used, for example, for a mold used for nanoimprint.
  • the above-described microstructure may have an etching step of performing etching using the unit microstructure 2 as a mask to form a second microstructure on the base material 1. Thereby, a large-area fine structure having a fine structure formed on the surface of the substrate 1 can be formed.
  • FIG. 5 shows a comparative example in which the resin thickness B2 (remaining film) in the concave portion of the unit microstructure 2 is large.
  • the thickness B1 (remaining film) of the resin in the concave portion 21a of the unit microstructure 2 is preferably 100 nm or less, preferably 50 nm or less, and more preferably 10 nm or less. Thereby, the depth C1 of the joint 19 of the second microstructure 11 can be reduced.
  • the film 30 of the stamp base 3 has a thickness A of 200 nm or less, preferably 100 nm or less, and more preferably 50 nm or less.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Micromachines (AREA)
  • Shaping Of Tube Ends By Bending Or Straightening (AREA)

Abstract

大面積のモールドとして使用できる微細構造体又は大面積のモールドを形成するための微細構造体を低価格で精度良く作製することができる微細構造体製造方法を提供することを目的とする。 凹凸パターン21からなる単位微細構造2を基材1の表面に複数隣接して配置する微細構造体製造方法において、膜厚が200nm以下の樹脂からなる膜30が形成されたスタンプ台3に凹凸パターン21を反転させた反転凹凸パターン41を有する型4を接触させて、当該型4の表面に樹脂を塗布する塗布工程と、基材1に型4を押圧し、樹脂を硬化させた後に離型して、基材1の表面に単位微細構造2を形成する単位微細構造形成工程と、を有し、塗布工程と、単位微細構造形成工程をこの順番で2回以上繰り返して、単位微細構造2同士を1μm以下の間隔で隣接して配置する。

Description

微細構造体製造方法
 本発明は、微細構造体製造方法に関する。
 集光のためのレンズや反射防止のためのモスアイ、偏光を調節するためのワイヤーグリッド等、光学特性の制御を目的として、微細な凹凸構造を表面にもつ光学部材が利用されている。この微細な凹凸構造を形成する方法としては、その凹凸構造の反転構造が表面に形成されたモールド(金型)を用い、当該モールドを被成形物に対し加圧し、熱や光を利用して当該パターンを被成形物の表面に転写するナノインプリントが注目されている。(例えば、特許文献1参照)。
 ここで、ナノインプリントに用いるモールドは、まずレーザ加工によってマスターモールドを作成し、次に、当該マスターモールドから樹脂に直接インプリントしてモールドを作製している。また、マスターモールドから電鋳によりモールドを作製し、当該電鋳モールドから樹脂にインプリントしてモールドを作製している。
国際公開番号WO2004/062886
 ところで近年、当該光学部材やその他のインプリント製品に関して、大面積化の要望があり、それに用いるモールドも大型化が必要となっている。しかしながら、当該モールドを作製するためのマスターモールドを大型にすると、その作製に多くの時間とコストが掛かるという問題がある。また、加工する面積が大きくなるにつれて欠陥等の発生確率が高くなり、精度が低下するという問題もある。
 そこで本発明では、大面積のモールドとして使用できる微細構造体又は大面積のモールドを形成するための微細構造体を低価格で精度良く作製することができる微細構造体製造方法を提供することを目的とする。
 上記目的を達成するために、本発明の微細構造体製造方法は、凹凸パターンからなる単位微細構造を基材の表面に複数隣接して配置するものにおいて、膜厚が200nm以下の樹脂からなる膜が形成されたスタンプ台に前記凹凸パターンを反転させた反転凹凸パターンを有する型を接触させて、当該型の表面に前記樹脂を塗布する塗布工程と、前記基材に前記型を押圧し、前記樹脂を硬化させた後に離型して、前記基材の表面に前記単位微細構造を形成する単位微細構造形成工程と、を有し、前記塗布工程と、前記単位微細構造形成工程をこの順番で2回以上繰り返して、単位微細構造同士を1μm以下の間隔で隣接して配置することを特徴とする。
 この場合、前記単位微細構造の凹部における樹脂の厚みは100nm以下である方が好ましい。
 また、前記型に塗布される樹脂の膜厚を調節するために、前記スタンプ台は、端部側が中心部より高く形成されていても良いし、逆に、端部側が中心部より低く形成されていても良い。また、前記スタンプ台は、平面形状が前記型と同形に形成されるものであっても良い。
 また、前記樹脂は光硬化性樹脂であり、前記単位微細構造形成工程における樹脂の硬化は、前記光硬化性樹脂に光を照射して硬化させるものとすることができる。
 また、前記単位微細構造をマスクとしてエッチングを行い、前記基材に微細構造体を形成するエッチング工程を有しても良い。この場合、前記型の前記反転凹凸パターンの端部が凸部であるときに、その不良を防止することができる。
 本発明の微細構造体製造方法は、単位微細構造の凹部における樹脂の厚みを極力小さくすることができるので、単位微細構造同士の間に生じる不要な凹凸を小さくすることができ、大面積の微細構造体を低価格で精度良く作製することができる。
本発明の微細構造体製造方法を説明するための概略断面図である。 本発明に係る単位微細構造を示す概略断面図である。 本発明に係る単位微細構造体形成工程を説明するための概略断面図である。 本発明に係るエッチング工程を説明するための概略断面図である。 比較例のエッチング工程を説明するための概略断面図である。
 本発明の微細構造体製造方法は、図1に示すように、凹凸パターン21を有する単位微細構造2を基材1の表面に複数隣接して配置するものであって、塗布工程と単位微細構造形成工程をこの順番で2回以上繰り返して、単位微細構造同士を1μm以下の間隔で隣接して配置するものである。これにより、単位微細構造2を複数配置した大面積の微細凹凸構造体を形成することができる。
 塗布工程は、まず、図1(a)に示すように、スタンプ台3の上に樹脂からなる膜30を形成しておく。次に、図1(b)、(c)に示すように、スタンプ台3上の膜30に凹凸パターン21を反転させた反転凹凸パターン41を有する型4を接触させる。最後に、図1(d)に示すように、型4をスタンプ台3から離して、当該型4の表面に樹脂を塗布する。なお、スタンプ台3の膜30は、図1(a)に示す膜厚Aが大きいと、図2に示すように、形成された単位微細構造2の凹部21aにおける樹脂(残膜)の厚みBが大きくなるため好ましくない。したがって、スタンプ台3の膜30は、膜厚Aが200nm以下、好ましくは100nm以下、更に好ましくは50nm以下である方が良い。スタンプ台3に形成する膜30は、膜厚を200nm以下とすることができればどのように形成しても良く、例えば、スピンコート法やスプレーコート法、スリットコート法等、従来から知られている方法を用いれば良い。
 ここで型4とは、図1(b)に示すように、例えば「ニッケル等の金属」、「セラミックス」、「ガラス状カーボン等の炭素素材」、「シリコン」などから形成されており、その一端面(成形面)に所定の反転凹凸パターン41を有するものを指す。この反転凹凸パターン41は、その成形面に精密機械加工を施すことで形成することができる。また、シリコン基板等にエッチング等の半導体微細加工技術によって形成したり、このシリコン基板等の表面に電気鋳造(エレクトロフォーミング)法、例えばニッケルメッキ法によって金属メッキを施し、この金属メッキ層を剥離して形成したりすることもできる。また、インプリント技術を用いて作製した樹脂製の型を用いることも可能である。この場合、型4は、被成形物の被成形面に対して可撓性のあるフィルム状に形成しても良い。もちろん型4は、反転凹凸パターン41を転写できるものであれば材料やその製造方法が特に限定されるものではない。
 また、型4に形成される反転凹凸パターン41は、凹凸の微細構造からなる幾何学的な形状のみならず、例えば所定の表面粗さを有する鏡面状態の転写のように所定の表面状態を転写するためのものも含む。また、反転凹凸パターン41は、平面方向の凸部の幅や凹部の幅の最小寸法が1μm以下、100nm以下、10nm以下等種々の大きさに形成される。また、深さ方向の寸法も、10nm以上、100nm以上、200nm以上、500nm以上、1μm以上等種々の大きさに形成される。
 また、樹脂とは、基材1上に接合可能であると共に、単位微細構造2を形成可能なものであればどのようなものでも良く、例えば、光硬化性樹脂、熱硬化性樹脂を用いることができる。
 光硬化性樹脂又は熱硬化性樹脂としては、エポキシド含有化合物類、(メタ)アクリル酸エステル化合物類、ビニルエーテル化合物類、ビスアリルナジイミド化合物類のようにビニル基・アリル基等の不飽和炭化水素基含有化合物類等を用いることができる。この場合、熱的に重合するために重合反応性基含有化合物類を単独で使用することも可能であるし、熱硬化性を向上させるために熱反応性の開始剤を添加して使用することも可能である。更に光反応性の開始剤を添加して光照射により重合反応を進行させて成型パターンを形成できるものでもよい。熱反応性のラジカル開始剤としては有機過酸化物、アゾ化合物が好適に使用でき、光反応性のラジカル開始剤としてはアセトフェノン誘導体、ベンゾフェノン誘導体、ベンゾインエーテル誘導体、キサントン誘導体等が好適に使用できる。また、反応性モノマーは無溶剤で使用しても良いし、溶媒に溶解して塗布後に脱溶媒して使用しても良い。
 また、ガラス転移温度以上に加熱した熱可塑性樹脂を用いることもできる。この場合、熱可塑性樹脂としては、環状オレフィン開環重合/水素添加体(COP)や環状オレフィン共重合体(COC)等の環状オレフィン系樹脂、アクリル樹脂、ポリカーボネート、ビニルエーテル樹脂、パーフルオロアルコキシアルカン(PFA)やポリテトラフルオロエチレン(PTFE)等のフッ素樹脂、ポリスチレン、ポリイミド系樹脂、ポリエステル系樹脂等を用いることができる。
 ここで、図1(c)に示すように、スタンプ台3と型4を接触させた後、図1(d)に示すように、スタンプ台3と型4を離すと、型4の端部の樹脂は、樹脂の粘度等の条件によっては、樹脂が多く塗布されたり、逆に少なく塗布されたりする場合がある。このような場合には、スタンプ台3の端部側を中心部より高く形成したり、逆に低く形成したりして、型4に塗布される樹脂の膜厚を調節する方が好ましい。また通常は、スタンプ台3は型4よりも十分に大きく形成されるが、型4に塗布される樹脂の膜厚を調節するためには、スタンプ台3の平面形状を型4と同形に形成しても良い。
 単位微細構造形成工程は、図1(e)~(g)に示すように、基材1に型4を押圧し、樹脂を硬化させた後に離型して、基材1の表面に単位微細構造2を形成するものである。
 基材1とは、図1(e)に示すように、単位微細構造2を複数配置できる十分な広さを有する平板状のもので、例えば、樹脂、無機化合物又は金属等で構成される。
 基材1への型4の押圧は、型4の表面に塗布された樹脂を基材1に接触させて固着できれば良い。基材1に型4を押圧する圧力は、離型時に単位微細構造2を基材1に固着させることができれば良く、例えば、基材1に型4を0.5~2MPaで加圧すれば良い。
 樹脂の硬化は、当該樹脂が光硬化性樹脂の場合には、図1(f)に示すように、当該樹脂を硬化させることができる所定波長の光、例えば紫外線を当該樹脂に照射することにより行えば良い。なお、図1(f)では、光を型4側から照射しているが、基材1が前記光を透過可能な材料である場合には、当該光を基材1側から照射しても良い。
 なお、図示しないが、樹脂が熱硬化性樹脂の場合には、当該樹脂を加熱することにより硬化させれば良い。また、熱可塑性樹脂を用いる場合には、当該樹脂をガラス転移温度以下に冷却することにより硬化させれば良い。
 樹脂が十分に硬化したら、図1(g)に示すように、基材1から型4を離型して、基材1の表面に単位微細構造2を形成する。ここで、図3に示すように、単位微細構造2は、基材1に型4を押圧する際に、端部に樹脂が押し出されて凸状の不良部28が生じる。当該不良部28は、スタンプ台から型4に塗布された樹脂の厚みが大きい程大きくなる。また、単位微細構造2同士の継ぎ目の深さも樹脂の厚みが大きい程大きくなる。このような樹脂の厚みは、スタンプ台3の膜30の厚みが大きい程大きくなる。したがって、上述したように、スタンプ台3の膜30は、薄い方が好ましい。
 この塗布工程と、単位微細構造形成工程をこの順番で2回以上繰り返して微細構造体を形成する(図1(h)、(i)参照)。この際、図2に示すように、単位微細構造2同士の間隔Dを1μm以下、好ましくは500nm以下、更に好ましくは100nm以下の間隔で隣接して配置することにより、継ぎ目の目立たない微細構造体を形成できる。当該配置には、従来から知られているアライメント装置を用いれば良い。
 このように製造された微細構造体は、例えば、ナノインプリントに用いるモールドに利用することができる。
 また、上述した微細構造体は、図4のように、単位微細構造2をマスクとしてエッチングを行い、基材1に第2の微細構造体を形成するエッチング工程を有していても良い。これにより、基材1の表面に微細構造が形成された大面積の微細構造体を形成することができる。
 ここで、図5に単位微細構造2の凹部における樹脂の厚みB2(残膜)が大きい場合の比較例を示す。図5に示すように単位微細構造2の凹部29における樹脂の厚みB2(残膜)が大きい程、第2の微細構造11の継ぎ目19の深さC2も大きくなる。したがって、単位微細構造2の凹部21aにおける樹脂の厚みB1(残膜)は100nm以下、好ましくは50nm以下、更に好ましくは10nm以下であることが好ましい。これにより、第2の微細構造11の継ぎ目19の深さC1を小さくすることができる。
 また、型4の反転凹凸パターン41の端部が凸部である場合、単位微細構造2の端部は凹部となる。この単位微細構造2の端部の凹部にある不良部28が大きいとエッチング後の基板に形成される不良部18も大きくなる。したがって、不良部28を小さくするためには、スタンプ台3の膜30は、薄い方が好ましい。具体的には、上述したように、スタンプ台3の膜30は、膜厚Aが200nm以下、好ましくは100nm以下、更に好ましくは50nm以下である方が良い。
1 基材
2 単位微細構造
3 スタンプ台
4 型
11 微細構造
18 不良部
19 継ぎ目
21 凹凸パターン
21a 凹部
28 不良部
30 膜
41 反転凹凸パターン

Claims (8)

  1.  凹凸パターンからなる単位微細構造を基材の表面に複数隣接して配置する微細構造体製造方法において、
     膜厚が200nm以下の樹脂からなる膜が形成されたスタンプ台に前記凹凸パターンを反転させた反転凹凸パターンを有する型を接触させて、当該型の表面に前記樹脂を塗布する塗布工程と、
     前記基材に前記型を押圧し、前記樹脂を硬化させた後に離型して、前記基材の表面に前記単位微細構造を形成する単位微細構造形成工程と、
    を有し、
     前記塗布工程と、前記単位微細構造形成工程をこの順番で2回以上繰り返して、単位微細構造同士を1μm以下の間隔で隣接して配置することを特徴とする微細構造体製造方法。
  2.  前記単位微細構造の凹部における樹脂の厚みは100nm以下であることを特徴とする請求項1記載の微細構造体製造方法。
  3.  前記スタンプ台は、端部側が中心部より高く形成されていることを特徴とする請求項1又は2記載の微細構造体製造方法。
  4.  前記スタンプ台は、端部側が中心部より低く形成されていることを特徴とする請求項1又は2記載の微細構造体製造方法。
  5.  前記スタンプ台は、平面形状が前記型と同形に形成されることを特徴とする請求項1ないし4のいずれかに記載の微細構造体製造方法。
  6.  前記樹脂は光硬化性樹脂であり、
     前記単位微細構造形成工程における樹脂の硬化は、前記光硬化性樹脂に光を照射して硬化させることを特徴とする請求項1ないし5のいずれかに記載の微細構造体製造方法。
  7.  前記単位微細構造をマスクとしてエッチングを行い、前記基材に第2の微細構造を形成するエッチング工程を有することを特徴とする請求項1ないし6のいずれかに記載の微細構造体製造方法。
  8.  前記型の前記反転凹凸パターンの端部は、凸部であることを特徴とする請求項7記載の微細構造体製造方法。
PCT/JP2019/031824 2018-08-14 2019-08-13 微細構造体製造方法 WO2020036173A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-152587 2018-08-14
JP2018152587 2018-08-14

Publications (1)

Publication Number Publication Date
WO2020036173A1 true WO2020036173A1 (ja) 2020-02-20

Family

ID=69525370

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/031824 WO2020036173A1 (ja) 2018-08-14 2019-08-13 微細構造体製造方法

Country Status (1)

Country Link
WO (1) WO2020036173A1 (ja)

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6027595A (en) * 1998-07-02 2000-02-22 Samsung Electronics Co., Ltd. Method of making optical replicas by stamping in photoresist and replicas formed thereby
JP2005539396A (ja) * 2002-09-17 2005-12-22 ザ ボード オブ トラスティーズ オブ ザ リーランド スタンフォード ジュニア ユニバーシティ マイクロ構造及びナノ構造の複製及び転写
JP2007173806A (ja) * 2005-12-21 2007-07-05 Asml Netherlands Bv インプリントリソグラフィ
JP2008200997A (ja) * 2007-02-20 2008-09-04 Hitachi Cable Ltd ナノインプリント用金型の製造方法
JP2008546715A (ja) * 2005-06-17 2008-12-25 ザ ユニバーシティ オブ ノース カロライナ アット チャペル ヒル ナノ粒子の製造方法、システム、及び材料
JP2009523635A (ja) * 2006-01-24 2009-06-25 マイクロラボ ピーティーワイ エルティーディー スタンピング方法及び装置
JP2010076300A (ja) * 2008-09-26 2010-04-08 Canon Inc 加工装置
JP2010080670A (ja) * 2008-09-26 2010-04-08 Hitachi Industrial Equipment Systems Co Ltd 微細構造体及びその製造方法
JP2010525961A (ja) * 2007-03-22 2010-07-29 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー スタンプの表面を処理することにより、基板上に機能材料のパターンを形成する方法
WO2010150740A1 (ja) * 2009-06-24 2010-12-29 東京エレクトロン株式会社 テンプレート処理装置、インプリントシステム、テンプレート処理方法及びコンピュータ記憶媒体
JP2013161997A (ja) * 2012-02-07 2013-08-19 Panasonic Corp 微細構造パターン集合体の製造方法およびその製造装置
JP2018125318A (ja) * 2015-06-05 2018-08-09 綜研化学株式会社 構造体及びその製造方法

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6027595A (en) * 1998-07-02 2000-02-22 Samsung Electronics Co., Ltd. Method of making optical replicas by stamping in photoresist and replicas formed thereby
JP2005539396A (ja) * 2002-09-17 2005-12-22 ザ ボード オブ トラスティーズ オブ ザ リーランド スタンフォード ジュニア ユニバーシティ マイクロ構造及びナノ構造の複製及び転写
JP2008546715A (ja) * 2005-06-17 2008-12-25 ザ ユニバーシティ オブ ノース カロライナ アット チャペル ヒル ナノ粒子の製造方法、システム、及び材料
JP2007173806A (ja) * 2005-12-21 2007-07-05 Asml Netherlands Bv インプリントリソグラフィ
JP2009523635A (ja) * 2006-01-24 2009-06-25 マイクロラボ ピーティーワイ エルティーディー スタンピング方法及び装置
JP2008200997A (ja) * 2007-02-20 2008-09-04 Hitachi Cable Ltd ナノインプリント用金型の製造方法
JP2010525961A (ja) * 2007-03-22 2010-07-29 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー スタンプの表面を処理することにより、基板上に機能材料のパターンを形成する方法
JP2010076300A (ja) * 2008-09-26 2010-04-08 Canon Inc 加工装置
JP2010080670A (ja) * 2008-09-26 2010-04-08 Hitachi Industrial Equipment Systems Co Ltd 微細構造体及びその製造方法
WO2010150740A1 (ja) * 2009-06-24 2010-12-29 東京エレクトロン株式会社 テンプレート処理装置、インプリントシステム、テンプレート処理方法及びコンピュータ記憶媒体
JP2013161997A (ja) * 2012-02-07 2013-08-19 Panasonic Corp 微細構造パターン集合体の製造方法およびその製造装置
JP2018125318A (ja) * 2015-06-05 2018-08-09 綜研化学株式会社 構造体及びその製造方法

Similar Documents

Publication Publication Date Title
JP5411557B2 (ja) 微細構造転写装置
JP6173354B2 (ja) 光透過型インプリント用モールド、大面積モールドの製造方法
JP4448868B2 (ja) インプリント用スタンパとその製造方法
JP5456465B2 (ja) 微細加工品およびその製造方法
JP5499668B2 (ja) インプリント用モールドおよび該モールドを用いたパターン形成方法
US20110277922A1 (en) Base material manufacturing method, nanoimprint lithography method and mold duplicating method
WO2016051928A1 (ja) インプリント用テンプレート及びその製造方法
DK3196924T3 (en) Process for making bodies with microstructure
KR20100033560A (ko) 나노 임프린트용 몰드 제작방법과 나노 임프린트용 몰드를 이용한 패턴 성형방법
US20100096770A1 (en) Method for fabrication of mold for nano imprinting and method for production of photonic crystal using the same
TW201806724A (zh) 具厚度變化之可撓式模仁
JP2005122047A (ja) パターン形成方法および光学素子
WO2020036173A1 (ja) 微細構造体製造方法
WO2017073370A1 (ja) フィルムモールド及びインプリント方法
KR100934239B1 (ko) 임프린트용 대면적 스탬프 제작방법
JP2009066827A (ja) 光学素子の成形方法
JP5499553B2 (ja) ナノインプリントパターン形成方法およびそれに用いられる基材
JP6753129B2 (ja) インプリント用モールド及びその製造方法、並びにこのインプリント用モールドを用いた構造体の製造方法
JP6036865B2 (ja) インプリント用モールド
JP7378824B2 (ja) 微細パターン成形方法、インプリント用モールド製造方法およびインプリント用モールド並びに光学デバイス
KR101799560B1 (ko) 마이크로 표면 주름 제조용 스탬프의 제조 방법
WO2019160058A1 (ja) モールド形成方法およびモールド
KR101298410B1 (ko) 고속 롤-투-롤 핫 엠보싱 장치 및 이를 이용한 공정
JP2017174960A (ja) インプリント方法、型の製造方法、光学部品の製造方法およびインプリント装置
KR20220159023A (ko) 이광자 중합반응 및 나노임프린트를 이용한 소자의 제조방법 및 그 방법에 의해 제조된 기능성 표면소자

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19849160

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19849160

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP