WO2016185856A1 - ポリアリーレンスルフィド分散体及び微粒子、並びにそれらの製造方法 - Google Patents

ポリアリーレンスルフィド分散体及び微粒子、並びにそれらの製造方法 Download PDF

Info

Publication number
WO2016185856A1
WO2016185856A1 PCT/JP2016/062352 JP2016062352W WO2016185856A1 WO 2016185856 A1 WO2016185856 A1 WO 2016185856A1 JP 2016062352 W JP2016062352 W JP 2016062352W WO 2016185856 A1 WO2016185856 A1 WO 2016185856A1
Authority
WO
WIPO (PCT)
Prior art keywords
polyarylene sulfide
organic polymer
cationic group
containing organic
dispersion
Prior art date
Application number
PCT/JP2016/062352
Other languages
English (en)
French (fr)
Inventor
勇也 榎本
高橋 誠治
早織 奈良
太田 克己
高光 中村
Original Assignee
Dic株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dic株式会社 filed Critical Dic株式会社
Priority to EP16796250.5A priority Critical patent/EP3296346A4/en
Priority to KR1020177029512A priority patent/KR20180006890A/ko
Priority to JP2017519082A priority patent/JP6274548B2/ja
Priority to US15/574,241 priority patent/US20180134852A1/en
Priority to CN201680028322.4A priority patent/CN107531913A/zh
Publication of WO2016185856A1 publication Critical patent/WO2016185856A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/02Emulsion paints including aerosols
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G75/00Macromolecular compounds obtained by reactions forming a linkage containing sulfur with or without nitrogen, oxygen, or carbon in the main chain of the macromolecule
    • C08G75/02Polythioethers
    • C08G75/0204Polyarylenethioethers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/02Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/02Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques
    • C08J3/03Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques in aqueous media
    • C08J3/07Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques in aqueous media from polymer solutions
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/12Powdering or granulating
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/12Powdering or granulating
    • C08J3/126Polymer particles coated by polymer, e.g. core shell structures
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/12Powdering or granulating
    • C08J3/14Powdering or granulating by precipitation from solutions
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/12Powdering or granulating
    • C08J3/16Powdering or granulating by coagulating dispersions
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • C08L101/02Compositions of unspecified macromolecular compounds characterised by the presence of specified groups, e.g. terminal or pendant functional groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L81/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing sulfur with or without nitrogen, oxygen or carbon only; Compositions of polysulfones; Compositions of derivatives of such polymers
    • C08L81/02Polythioethers; Polythioether-ethers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D181/00Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing sulfur, with or without nitrogen, oxygen, or carbon only; Coating compositions based on polysulfones; Coating compositions based on derivatives of such polymers
    • C09D181/02Polythioethers; Polythioether-ethers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D181/00Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing sulfur, with or without nitrogen, oxygen, or carbon only; Coating compositions based on polysulfones; Coating compositions based on derivatives of such polymers
    • C09D181/04Polysulfides
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/44Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes for electrophoretic applications
    • C09D5/4419Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes for electrophoretic applications with polymers obtained otherwise than by polymerisation reactions only involving carbon-to-carbon unsaturated bonds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2381/00Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing sulfur with or without nitrogen, oxygen, or carbon only; Polysulfones; Derivatives of such polymers
    • C08J2381/02Polythioethers; Polythioether-ethers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2433/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers
    • C08J2433/04Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers esters
    • C08J2433/14Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers esters of esters containing halogen, nitrogen, sulfur, or oxygen atoms in addition to the carboxy oxygen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2201/00Properties
    • C08L2201/54Aqueous solutions or dispersions

Definitions

  • the present invention relates to polyarylene sulfide powder particles (fine particles) coated with a cationic group-containing organic polymer compound, a polyarylene sulfide dispersion comprising the particles, and a method for producing them.
  • Polyarylene sulfide (hereinafter sometimes abbreviated as PAS) resin is excellent in mechanical strength, heat resistance, chemical resistance, molding processability, and dimensional stability. Used as part material.
  • polyarylene sulfide resin has an aspect that its application expansion does not proceed because it is inferior in adhesion and adhesion to different materials. Therefore, in the paint field, adhesive material field, coating field, polymer compound field, etc., demand for adhesion and adhesiveness is expected, although demand is expected if polyarylene sulfide can be made into fine particles and dispersed into liquid. It was difficult to obtain fine particles and dispersion liquid that satisfy the characteristics.
  • Patent Document 1 and Patent Document 3 a polyarylene sulfide resin is heated and dissolved in an organic solvent in the presence of an inorganic salt, and then cooled to precipitate polyarylene sulfide coarse particles to form a suspension.
  • a method for producing a fine particle dispersion by adding and grinding is proposed.
  • Patent Document 2 proposes a polyarylene sulfide resin fine particle dispersion comprising a polymer surfactant, polyarylene sulfide resin fine particles, and an alcohol solvent.
  • the problem to be solved by the present invention is that even if the polyarylene sulfide resin concentration is high, the dispersion stability is high, and it has a cationic group containing excellent adhesion and adhesion to any substrate such as plastic, metal, glass, etc.
  • An object of the present invention is to provide polyarylene sulfide powder particles (fine particles) coated with an organic polymer compound and a dispersion comprising the particles.
  • the present inventors have coated polyarylene sulfide particles with a cationic group-containing organic polymer compound by a base precipitation method, so that the high-concentration and high-stability particles can be used.
  • the polyarylene sulfide dispersion was obtained, and it was found that the above problems could be solved, and the present invention was completed.
  • the present invention “(1) In a polyarylene sulfide dispersion comprising polyarylene sulfide particles, a cationic group-containing organic polymer compound, an acid, and an aqueous medium, the polyarylene sulfide particle is a cationic group-containing organic polymer compound.
  • the main skeleton of the cationic group-containing organic polymer compound is (meth) acrylate resin, (meth) acrylate ester-styrene resin, (meth) acrylate ester-epoxy resin, vinyl resin, urethane resin.
  • the main skeleton of the cationic group-containing organic polymer compound is selected from the group consisting of (meth) acrylic acid ester resins, (meth) acrylic acid ester-styrene resins, and (meth) acrylic acid ester-epoxy resins.
  • the acid used to neutralize the cationic group is at least one acid selected from the group consisting of inorganic acids, sulfonic acids, carboxylic acids, and vinylic carboxylic acids.
  • Step (A) [heating dissolution step] in which polyarylene sulfide is heated in an organic solvent to form a solution;
  • a step of precipitating sulfide particles (C) [base precipitation step];
  • the polyarylene sulfide particles coated with the cationic group-containing organic polymer obtained in the step (C) are filtered and washed to obtain a polyarylene sulfide particle wet cake coated with the water-containing cationic group-containing organic polymer.
  • Step (D) [wet cake making step], From the polyarylene sulfide particles coated with the cationic group-containing organic polymer compound by reacting the wet cake with the acid and the polyarylene sulfide particles coated with the water-containing cationic group-containing organic polymer obtained in the step (D) And (E) [dispersion producing step] to obtain a dispersion comprising: a method for producing a polyarylene sulfide dispersion.
  • the organic solvent used in the step (A) is at least one organic solvent selected from N-methyl-2-pyrrolidone, 1-chloronaphthalene, and 1,3-dimethyl-2-imidazolidinone.
  • Step (A) [heating dissolution step] in which polyarylene sulfide is heated in an organic solvent to form a solution;
  • a step of precipitating sulfide particles (C) [base precipitation step];
  • the polyarylene sulfide particles coated with the cationic group-containing organic polymer obtained in the step (C) are filtered and washed to obtain a polyarylene sulfide particle wet cake coated with the water-containing cationic group-containing organic polymer.
  • Step (D) [wet cake making step], Drying the polyarylene sulfide particle wet cake coated with the water-containing cationic group-containing organic polymer obtained in the step (D) to obtain polyarylene sulfide powder particles coated with the cationic group-containing organic polymer (F1) [Powder preparation step] and a method for producing polyarylene sulfide powder particles.
  • a polyarylene sulfide coated with a cationic group-containing organic polymer by reacting the polyarylene sulfide fine particles obtained in the step (B) with a base to deposit a cationic group-containing organic polymer compound on the surface of the polyarylene sulfide fine particles.
  • a step of precipitating sulfide particles (C) [base precipitation step];
  • the polyarylene sulfide particles coated with the cationic group-containing organic polymer obtained in the step (C) are filtered and washed to obtain a polyarylene sulfide particle wet cake coated with the water-containing cationic group-containing organic polymer.
  • Step (D) [wet cake making step], From the polyarylene sulfide particles coated with the cationic group-containing organic polymer compound by reacting the wet cake with the acid and the polyarylene sulfide particles coated with the water-containing cationic group-containing organic polymer obtained in the step (D) (E) [dispersion production step] to obtain a dispersion
  • the dispersion comprising the polyarylene sulfide particles coated with the cationic group-containing organic polymer compound obtained in the step (E) is dried to obtain polyarylene sulfide powder particles coated with the cationic group-containing organic polymer.
  • (F2) [powder preparation step].
  • the organic solvent used in the step (A) is at least one organic solvent selected from N-methyl-2-pyrrolidone, 1-chloronaphthalene, and 1,3-dimethyl-2-imidazolidinone.
  • step (B) [crystallization step] with respect to the dispersion of polyarylene sulfide fine particles obtained in the step (B) (also expressed as a crystallization solution in the present specification), mechanically The method for producing a polyarylene sulfide dispersion as described in (8) above, wherein the dispersion is performed [dispersing step].
  • step (B) [crystallization step] the dispersion of the polyarylene sulfide fine particles obtained in the step (B) is mechanically pulverized [dispersion step].
  • the polyarylene sulfide resin is coated with a cationic group-containing organic polymer compound that is stable even at a high concentration and has excellent adhesion and adhesion to various substrates such as plastic, metal, and glass.
  • a cationic group-containing organic polymer compound that is stable even at a high concentration and has excellent adhesion and adhesion to various substrates such as plastic, metal, and glass.
  • Polyarylene sulfide powder particles (fine particles) and a dispersion composed of the particles can be provided.
  • the electrodeposition liquid and coating material which use the dispersion obtained by this invention can also be provided.
  • the polyarylene sulfide particles contained in the polyarylene sulfide fine particle dispersion are obtained by dispersing a polyarylene sulfide resin as fine particles in an aqueous medium using a cationic group-containing organic polymer compound. Details of the method for dispersing the polyarylene sulfide fine particles will be described later.
  • the aqueous medium may be water alone or a mixed solvent composed of water and a water-soluble solvent.
  • polyarylene sulfide resin used in the present invention has a resin structure having a repeating unit of a structure in which an aromatic ring and a sulfur atom are bonded.
  • the polyarylene sulfide resin has the following formula (1)
  • R 1 and R 2 each independently represents a hydrogen atom, an alkyl group having 1 to 4 carbon atoms, a nitro group, an amino group, a phenyl group, a methoxy group, or an ethoxy group). It is a resin having a structural site as a repeating unit.
  • R 1 and R 2 in the formula are preferably hydrogen atoms from the viewpoint of the mechanical strength of the polyarylene sulfide resin.
  • a compound bonded at the para position represented by the following formula (2) is preferable.
  • the bond of the sulfur atom to the aromatic ring in the repeating unit is a structure bonded at the para position represented by the structural formula (2). In terms of surface. It is also possible to use a mixture of a structure bonded at the para position and a structure bonded at the meta position, and a structure bonded at the para position and a structure bonded at the ortho position. In the present invention, a para-meta PPS copolymer and the like produced in Examples described later can also be used.
  • polyarylene sulfide resin is not limited to the structural part represented by the formula (1), but the following structural formulas (3) to (6)
  • the structural site represented by the formula (1) may be included at 30 mol% or less of the total with the structural site represented by the formula (1).
  • the structural portion represented by the above formulas (3) to (6) is preferably 10 mol% or less from the viewpoint of heat resistance and mechanical strength of the polyarylene sulfide resin.
  • the bonding mode thereof may be either a random copolymer or a block copolymer. .
  • polyarylene sulfide resin has the following formula (7) in its molecular structure.
  • the method for producing the polyarylene sulfide resin is not particularly limited.
  • Examples include self-condensation of p-chlorothiophenol and, if necessary, other copolymerization components.
  • the method 2) is versatile and preferable.
  • an alkali metal salt of carboxylic acid or sulfonic acid or an alkali hydroxide may be added to adjust the degree of polymerization.
  • a water-containing sulfiding agent is introduced into a mixture containing a heated organic polar solvent, a dihalogenoaromatic compound, and a polyhalogenoaromatic compound at a rate at which water can be removed from the reaction mixture.
  • a dihalogenoaromatic compound, a polyhalogenoaromatic compound and a sulfidizing agent are reacted, and the water content in the reaction system is in the range of 0.02 to 0.5 mol per mol of the organic polar solvent.
  • a process for producing a polyarylene sulfide resin by controlling (see JP 07-228699 A), a dihalogenoaromatic compound and a polyhalogenoaromatic compound in the presence of a solid alkali metal sulfide and an aprotic polar organic solvent.
  • Group compound, alkali metal hydrosulfide and organic acid alkali metal salt are added in an amount of 0.01 to 0.9 per mol of sulfur source. It is obtained by a method in which the reaction is carried out while controlling the amount of water in the organic acid alkali metal salt and the amount of water in the reaction system within a range of 0.02 mol relative to 1 mol of the aprotic polar organic solvent (see the pamphlet of WO2010 / 058713).
  • dihalogenoaromatic compound examples include p-dihalobenzene, m-dihalobenzene, o-dihalobenzene, 2,5-dihalotoluene, 1,4-dihalonaphthalene, 1-methoxy-2,5-dihalobenzene, 4 , 4′-dihalobiphenyl, 3,5-dihalobenzoic acid, 2,4-dihalobenzoic acid, 2,5-dihalonitrobenzene, 2,4-dihalonitrobenzene, 2,4-dihaloanisole, p, p′-dihalodiphenyl ether, 4,4′-dihalobenzophenone, 4,4′-dihalodiphenyl sulfone, 4,4′-dihalodiphenyl sulfoxide, 4,4′-dihalodiphenyl sulfide, and each of the above Examples of the
  • the post-treatment method of the reaction mixture containing the polyarylene sulfide resin obtained by the polymerization step is not particularly limited.
  • the reaction mixture is left as it is, or an acid or a base is used.
  • the solvent is distilled off under reduced pressure or normal pressure, and then the solid after the solvent is distilled off is water, a reaction solvent (or an organic solvent having an equivalent solubility in a low molecular weight polymer), acetone, methyl ethyl ketone.
  • the polyarylene sulfide resin may be dried in a vacuum or in an inert gas atmosphere such as air or nitrogen. May be.
  • the polyarylene sulfide resin can be oxidized and crosslinked by heat treatment in an oxidizing atmosphere having an oxygen concentration in the range of 5 to 30% by volume or under reduced pressure.
  • the physical properties of the polyarylene sulfide resin are not particularly limited as long as the effects of the present invention are not impaired, but are as follows.
  • the polyarylene sulfide resin used in the present invention preferably has a melt viscosity (V6) measured at 300 ° C. in the range of 0.1 to 1000 [Pa ⁇ s], and has a good balance between fluidity and mechanical strength. Therefore, the range of 0.1 to 100 [Pa ⁇ s] is more preferable, and the range of 0.1 to 50 [Pa ⁇ s] is particularly preferable.
  • the non-Newtonian index of the polyarylene sulfide resin used in the present invention is not particularly limited as long as the effect of the present invention is not impaired, but it is preferably in the range of 0.90 to 2.00.
  • the non-Newtonian index is preferably in the range of 0.90 to 1.50, and more preferably in the range of 0.95 to 1.20.
  • Such a polyarylene sulfide resin is excellent in mechanical properties, fluidity, and abrasion resistance.
  • SR shear rate (second ⁇ 1 )
  • SS shear stress (dyne / cm 2 )
  • K represents a constant. The closer the N value is to 1, the closer the PAS is to a linear structure, and the higher the N value is, the more branched the structure is.
  • PAS resin that can be used in the present invention
  • a polyphenylene sulfide resin is cited in the production examples described later.
  • the PAS dispersion in the present invention includes a step (A) (heat dissolution step) of heating the PAS resin together with a solvent, a cationic group-containing organic polymer compound aqueous solution and a PAS resin solution prepared in advance.
  • Step (B) for forming PAS fine particles (crystallization step), step (C) for depositing and coating cationic group-containing organic polymer compound on the surface of PAS fine particles with a base (base precipitation step), and cationic group containing
  • the organic polymer compound-coated PAS particles are filtered, washed with water to obtain a wet cationic group-containing organic polymer compound-coated PAS particle wet cake (D) (wet cake preparation step), and the resulting wet cake is acidified
  • Step A In order to obtain a PAS dispersion, first, the PAS resin is dissolved in a solvent. Although an inorganic salt may be added to this process, it may not be added in particular.
  • the form of the PAS resin that can be used in the present invention is not particularly limited, and specific examples include powders, granules, pellets, fibers, films, molded products, etc., but operability and time required for dissolution From the viewpoint of shortening, powders, granules and pellets are desirable. Of these, powdered PAS resin is particularly preferably used. Usually, the PAS resin and the solvent are put into the container and then dissolved, but the order of putting them into the container is not limited.
  • the container Since the container is used at a high temperature, it is preferable to use a pressure-resistant container.
  • the atmosphere in the container may be either an air atmosphere or an inert gas atmosphere, but an atmosphere that reacts with the PAS resin or degrades the PAS resin itself should be avoided. preferable.
  • the inert gas includes nitrogen gas, carbon dioxide, helium gas, argon gas, neon gas, krypton gas, xenon gas, etc.
  • Nitrogen gas, argon gas in consideration of economy and availability Carbon dioxide gas is desirable, and nitrogen gas or argon gas is more preferably used.
  • chlorides, bromides, carbonates, sulfates, etc. such as an alkali metal, alkaline earth metal, and ammonia are used.
  • chlorides such as sodium chloride, lithium chloride, potassium chloride, calcium chloride, magnesium chloride, ammonium chloride, sodium bromide, lithium bromide, potassium bromide, calcium bromide, magnesium bromide, ammonium bromide
  • bromide such as sodium carbonate, potassium carbonate, lithium carbonate, calcium carbonate, magnesium carbonate, ammonium carbonate
  • sulfate such as calcium sulfate, sodium sulfate, potassium sulfate, lithium sulfate, magnesium sulfate, ammonium sulfate, etc.
  • the weight ratio of the inorganic salt to the PAS resin is in the range of 0.1 to 10 parts by mass, preferably in the range of 0.5 to 5 parts by mass with respect to 1 part by mass of PAS.
  • the solvent is not particularly limited as long as it can dissolve the PAS resin.
  • -2-At least one solvent selected from imidazolidinone at least one solvent selected from imidazolidinone.
  • N-methyl-2-pyrrolidone, 1-chloronaphthalene, and 1,3-dimethyl-2-imidazolidinone are preferably used in consideration of workability and water solubility.
  • the weight ratio of the PAS resin to the solvent is not particularly limited as long as PAS is dissolved in the solvent, but can be exemplified by a range of 0.1 to 20 parts by mass with respect to 100 parts by mass of the solvent.
  • the amount is 1 to 10 parts by mass, and more preferably 0.1 to 5 parts by mass.
  • the mixed reaction liquid is raised to a temperature necessary for the PAS resin to dissolve.
  • the temperature required for dissolution varies depending on the solvent, but is preferably 150 ° C. or higher, more preferably 200 ° C. or higher, and more preferably 250 ° C. or higher.
  • the upper limit is the temperature at which the PAS resin does not decompose, and is preferably 400 ° C. or lower.
  • the dissolution is performed under pressure as necessary.
  • the PAS resin By adjusting to the above temperature, the PAS resin can be uniformly dissolved, and PAS coarse particles can be stably produced.
  • reaction solution may or may not be stirred, but it is preferable that the reaction solution is stirred, thereby shortening the time required for dissolution.
  • the maintaining time is in the range of 10 minutes to 10 hours, preferably in the range of 10 minutes to 6 hours, and more preferably in the range of 20 minutes to 2 hours.
  • the PAS resin can be more sufficiently dissolved.
  • Step B First, a cationic group-containing organic polymer compound aqueous solution is prepared in advance.
  • the main skeleton of the cationic group-containing organic polymer compound is (meth) acrylic ester resin, (meth) acrylic ester-styrene resin, (meth) acrylic ester-epoxy resin, vinyl resin, urethane resin, polyamideimide Resins can be mentioned.
  • the cationic group-containing organic polymer compound used in the present invention may be a single substance or a mixture of one or more of the cationic group-containing organic polymer compounds, and if dissolved in an acidic state, It can be used for PAS dispersions and PAS powder particles.
  • the cationic group-containing organic polymer compound is completely dissolved in an acidic aqueous solution.
  • acids used here include inorganic acidic substances such as hydrochloric acid, sulfuric acid, nitric acid and phosphoric acid, sulfonic acids such as methanesulfonic acid, ethanesulfonic acid and p-toluenesulfonic acid, acetic acid, formic acid, oxalic acid and acrylic acid.
  • Organic acid substances such as carboxylic acids such as methacrylic acid, ascorbic acid, and Meldrum's acid are preferred. These can be used alone or in combination of two or more.
  • the acid amount for dissolving the cationic group-containing organic polymer compound is more preferably 70 to 300% with respect to the amine value of the cationic group-containing organic polymer compound in order to completely dissolve the resin.
  • Such a cationic group-containing organic polymer compound may be synthesized and used by the method described in the production examples described later, or a commercially available product may be used. Specific examples of commercially available products include ACRICID WPL-430 (manufactured by DIC Corporation).
  • the PAS particles are partially or entirely covered with the cationic group-containing organic polymer compound, an effect on dispersion stability can be obtained. Therefore, it is preferable to use 1 part by mass to 200 parts by mass with respect to 100 parts by mass of PAS. Of these, the use of 5 parts by mass to 150 parts by mass is preferable because the dispersion stability is the highest.
  • a PAS dispersion can be obtained by pouring the PAS solution adjusted as described above into the adjusted cationic group-containing organic polymer compound aqueous solution.
  • the prepared cationic group-containing organic polymer compound aqueous solution produces a water stream stirred at high speed with a stirrer such as a stirring blade.
  • a stirrer such as a stirring blade.
  • a turbulent flow or a laminar flow may be used, but a higher peripheral speed is preferable because the crystallized particle size can be reduced.
  • a water injection method there is a method in which water is directly injected into a solution obtained by strongly stirring the prepared cationic group-containing organic polymer compound solution.
  • the stirring of the cationic group-containing organic polymer compound solution is preferably strong stirring in order to form fine PAS particles.
  • it can also pass through the process [dispersion process] to disperse
  • examples of the mechanical pulverization include a method using the apparatus described in the item of the mechanical pulverization apparatus described later.
  • the PAS particle state in this crystallization step is not a state in which the cationic group-containing organic polymer compound is present on the surface layer of the PAS resin particles and is still firmly fixed. This is because the basic group at the terminal of the cationic group-containing organic polymer compound is in an ion-bonded state with the paired acidic substance, so that it is presumed to be flexibly present on the surface layer of the PAS particle.
  • a salt exchange reaction of the functional group of the cationic group-containing organic polymer compound occurs by the base in the base sieving step in the subsequent step, and is fixed to the PAS surface.
  • the PAS resin particles in which the water-soluble resin is present on the surface layer are base precipitated with a base, and a slurry in which PAS resin particles coated with a cationic group-containing organic polymer compound are precipitated is prepared.
  • This step can also be performed by adding an inorganic salt.
  • an inorganic salt the kind thereof is not particularly limited, but chlorides such as alkali metals, alkaline earth metals, ammonia, bromides, carbonates, sulfates and the like are usually used.
  • chlorides such as sodium chloride, lithium chloride, potassium chloride, calcium chloride, magnesium chloride, ammonium chloride, sodium bromide, lithium bromide, potassium bromide, calcium bromide, magnesium bromide, ammonium bromide
  • bromide such as sodium carbonate, potassium carbonate, lithium carbonate, calcium carbonate, magnesium carbonate, ammonium carbonate
  • sulfate such as calcium sulfate, sodium sulfate, potassium sulfate, lithium sulfate, magnesium sulfate, ammonium sulfate, etc.
  • chlorides such as sodium chloride, lithium chloride, potassium chloride, calcium chloride, magnesium chloride, and ammonium chloride are preferable. These can be used alone or in combination of two or more.
  • the weight ratio of the inorganic salt to the PAS resin can be, for example, in the range of 1 to 5 parts by mass with respect to 1 part by mass of PAS.
  • Examples of the base used for base precipitation include potassium hydroxide, sodium hydroxide, lithium hydroxide and the like, and potassium hydroxide is particularly preferable.
  • the base concentration depends on the various cationic group-containing organic polymer compounds and various PAS resins to be used, but must be set according to the number of terminal substituents of the cationic group-containing organic polymer compound. Adjust to 13
  • the PAS resin particles coated with the cationic group-containing organic polymer compound are separated from the slurry obtained by precipitating the PAS resin particles coated with the cationic group-containing organic polymer compound obtained in the basification step.
  • This is a process of filtering and making a wet cake.
  • any method may be used as long as particles and liquid can be separated, such as filtration and centrifugation.
  • the moisture content in the filtered wet cake is preferably in the range of 15 to 55%. If the moisture content is too low, it becomes difficult to be loosened by redispersion in the subsequent process, and the redispersibility becomes poor. 20-45%.
  • the wet cake is washed with ion-exchanged water, distilled water, pure water, tap water or the like in order to wash the remaining organic solvent and undeposited resin.
  • the wet cake may be filtered and washed with a washing solvent, or the wet cake may be washed again by peptizing with a washing solvent.
  • Step E The wet cake obtained in the above wet cake production process is re-peptized with water using a bead mill or an ultrasonic disperser, and the pH is adjusted to 3 to 6 with the above-mentioned inorganic acidic substance or organic acidic substance.
  • a PAS dispersion can be obtained.
  • the non-volatile content in the dispersion obtained here is 15 to 40%, and the conventional PAS dispersion is about 5 to 10%. Therefore, a significantly high concentration PAS dispersion can be obtained in the present invention. I understand.
  • the PAS powder particles in the present invention are a cationic group-containing organic polymer compound obtained by removing water from the wet cake obtained in the above step D or the PAS dispersion obtained in step E and then drying. It is a coated PAS powder particle. After drying, it can be pulverized by various pulverizers and adjusted to a desired particle size for use.
  • mechanical grinding is performed until the average particle size is less than 500 nm.
  • the mechanical pulverizer include commercially available mechanical pulverizers.
  • ball mill equipment, bead mill equipment, sand mill equipment, colloid mill equipment, disper dispersion stirring are suitable as mechanical grinding equipment for efficiently dispersing and pulverizing PAS coarse particles to produce a dispersion of PAS fine particles with a small particle size.
  • wet atomizer eg, Sugino Machine optimizer, Hielscher ultrasonic disperser, etc.
  • ball mill apparatus bead mill apparatus
  • sand mill apparatus wet atomizer
  • An apparatus is preferred.
  • the average particle size of the fine particles obtained tends to decrease as the pulverization force during mechanical pulverization generally increases and the pulverization time increases. However, if these are excessive, aggregation tends to occur. Controlled to range.
  • a bead mill can be controlled by selecting the bead diameter and the bead amount and adjusting the peripheral speed.
  • the PAS fine particle dispersion may also contain precipitates depending on the case.
  • the precipitation part and the dispersion part may be used separately.
  • the precipitation part and the dispersion part may be separated.
  • decantation, filtration, or the like may be performed.
  • centrifugation or the like is performed to completely settle the larger particle size, and decantation or filtration is performed to remove the precipitated portion.
  • the fine particles and the cationic group-containing organic polymer compound aqueous solution are not separated even after standing for 24 hours.
  • the PAS fine particle dispersion thus obtained is a useful additive in the fields of paint, adhesion, coating and polymer compound due to its characteristics.
  • the autoclave was sealed and cooled to 180 ° C., and 17.874 kg of paradichlorobenzene (hereinafter abbreviated as “p-DCB”) and 16.0 kg of NMP were charged.
  • the temperature was raised by pressurizing to 0.1 MPa with a gauge pressure using nitrogen gas at a liquid temperature of 150 ° C.
  • the reaction was carried out at 260 ° C. for 2 hours while cooling by sprinkling the upper part of the autoclave.
  • the upper part of the autoclave was kept constant during cooling to prevent the liquid temperature from dropping.
  • the temperature was lowered and cooling of the upper part of the autoclave was stopped.
  • the maximum pressure during the reaction was 0.87 MPa.
  • the reaction mixture was cooled, the bottom valve was opened at 100 ° C., the reaction slurry was transferred to a 150 liter flat plate filter and pressure filtered at 120 ° C.
  • 50 kg of 70 ° C. warm water was added and stirred, followed by filtration. Further, 25 kg of warm water was added and filtered. Next, 25 kg of warm water was added, stirred for 1 hour, filtered, and then the operation of adding 25 kg of warm water and filtering was repeated twice.
  • the obtained cake was dried at 120 ° C. for 15 hours using a hot air circulating dryer to obtain PAS-1.
  • the melt viscosity of the obtained PAS-1 was 10 Pa ⁇ s.
  • the autoclave was sealed and cooled to 180 ° C., and p-DCB 18.366 kg and NMP 16.0 kg were charged.
  • the temperature was raised by pressurizing to 0.1 MPa with a gauge pressure using nitrogen gas at a liquid temperature of 150 ° C.
  • the reaction was carried out at 260 ° C. for 2 hours while cooling by sprinkling the upper part of the autoclave.
  • the upper part of the autoclave was kept constant during cooling to prevent the liquid temperature from dropping.
  • the temperature was lowered and cooling of the upper part of the autoclave was stopped.
  • the maximum pressure during the reaction was 0.87 MPa.
  • the reaction mixture was cooled, the bottom valve was opened at 100 ° C., the reaction slurry was transferred to a 150 liter flat plate filter and pressure filtered at 120 ° C.
  • 50 kg of 70 ° C. warm water was added and stirred, followed by filtration. Further, 25 kg of warm water was added and filtered. Next, 25 kg of warm water was added, stirred for 1 hour, filtered, and then the operation of adding 25 kg of warm water and filtering was repeated twice.
  • the obtained cake was dried at 120 ° C. for 15 hours using a hot air circulating dryer to obtain PAS-2.
  • the obtained PAS-2 had a melt viscosity of 2.5 Pa ⁇ s.
  • the autoclave was sealed and cooled to 180 ° C., and 17.464 kg of p-DCB and 16.0 kg of NMP were charged.
  • the temperature was raised by pressurizing to 0.1 MPa with a gauge pressure using nitrogen gas at a liquid temperature of 150 ° C.
  • the reaction was carried out at 260 ° C. for 2 hours while cooling by sprinkling the upper part of the autoclave.
  • the upper part of the autoclave was kept constant during cooling to prevent the liquid temperature from dropping.
  • the temperature was lowered and cooling of the upper part of the autoclave was stopped.
  • the maximum pressure during the reaction was 0.87 MPa.
  • the reaction mixture was cooled, the bottom valve was opened at 100 ° C., the reaction slurry was transferred to a 150 liter flat plate filter and pressure filtered at 120 ° C.
  • 50 kg of 70 ° C. warm water was added and stirred, followed by filtration. Further, 25 kg of warm water was added and filtered. Next, 25 kg of warm water was added, stirred for 1 hour, filtered, and then the operation of adding 25 kg of warm water and filtering was repeated twice.
  • the obtained cake was dried at 120 ° C. for 15 hours using a hot air circulating dryer to obtain PAS-3.
  • the melt viscosity of the obtained PAS-3 was 52 Pa ⁇ s.
  • Production Example 6 Production of Cationic Group-Containing Organic Polymer Compound (KR-3) Production Example 4 except that 160 parts of styrene, 78.64 parts of methyl methacrylate, 559.68 parts of dimethylaminoethyl methacrylate were used. Similarly, a PGMAc / iBuOH solution of a cationic group-containing organic polymer compound (KR-3) having a nonvolatile content of 50% was obtained (solid content amine value 250 mgKOH / g).
  • p-DCB p-dichlorobenzene
  • m-DCB m-dichlorobenzene
  • refrigerant was passed through a coil wound around the outside of the upper part of the autoclave to cool it. Thereafter, the temperature was raised and the mixture was stirred at a liquid temperature of 260 ° C. for 3 hours, and then the temperature was lowered and cooling of the upper part of the autoclave was stopped. The upper part of the autoclave was kept constant during cooling to prevent the liquid temperature from dropping. The maximum pressure during the reaction was 8.91 kg / cm 2 G.
  • the obtained slurry was repeatedly filtered and washed with water twice by a conventional method to obtain a filter cake containing about 50% by mass of water. Next, 60 kg of water and 100 g of acetic acid were added to the filter cake to re-slurry, stirred at 50 ° C.
  • the obtained filter cake was dried in a hot air circulating dryer at 120 ° C. for 4.5 hours to obtain a white powdery para-meta PPS copolymer.
  • the obtained para-meta PPS copolymer had a melting point of 230 ° C., a linear type, and a V6 melt viscosity of 13 [Pa ⁇ s].
  • the obtained polyarylene sulfide dispersion was defined as a dispersed particle size based on a D50 particle size measured using “MT-3300EXII” (a laser Doppler particle size distribution meter manufactured by Nikkiso Co., Ltd.).
  • Example 1 [Dissolution process]
  • An autoclave (A) having a valve that can be opened and closed at the bottom 10 g of PAS-1 produced in Production Example 1 and 490 g of NMP were put. Nitrogen was bubbled through the system, and the internal temperature was raised to 250 ° C. under pressure while stirring, followed by stirring for 30 minutes.
  • the operation of pouring the NMP solution of PAS into the cationic polymer solution containing the cationic group was repeated four times to remove undissolved residue from 9.64 kg of the crystallization solution obtained using a metal mesh having an opening of 180 ⁇ m (obtained).
  • the pH of the resulting crystallization solution was 3.2).
  • Step (E) [Fine particle dispersion preparation step] Place 110.0 g of the hydrous cationic group-containing organic polymer compound-coated PAS particle wet cake obtained in the step (D), 4.13 g of 10% acetic acid, and 17.9 g of ion-exchanged water into a 300 cc stainless steel cup. Then, an ultrasonic wave was irradiated for 30 minutes with an ultrasonic disperser UP400ST (output 400 W, frequency 24 kHz) manufactured by Hielscher to obtain a polyarylene sulfide fine particle dispersion (D-1). The obtained dispersion had a nonvolatile content of 25% and a dispersed particle size of 294 nm. Moreover, it was "no sedimentation" in the visual check of sedimentation by standing for 24 hours.
  • UP400ST output 400 W, frequency 24 kHz
  • Example 2 The polyarylene sulfide used in Step (A) of Example 1 was replaced with non-volatile material in the same manner as in Steps (A) to (E) of Example 1 except that PAS-2 was used instead of PAS-1.
  • a PAS fine particle dispersion (D-2) having a content of 25% was obtained.
  • the dispersion particle diameter of the obtained dispersion was 280.1 nm. Moreover, it was "no sedimentation" in the visual check of sedimentation by standing for 24 hours.
  • Example 3 The polyarylene sulfide used in Step (A) of Example 1 was replaced with non-volatile material in the same manner as in Steps (A) to (E) of Example 1 except that PAS-3 was used instead of PAS-1. A PAS fine particle dispersion (D-3) having a content of 25% was obtained. The dispersion particle diameter of the obtained dispersion was 300.2 nm. Moreover, it was "no sedimentation" in the visual check of sedimentation by standing for 24 hours.
  • Example 4 The same procedure as in steps (A) to (E) of Example 1 except that NMP used in Step (A) of Example 1 was replaced with 1-chloronaphthalene and the temperature was dissolved at 230 ° C. by heating. As a result, a PAS fine particle dispersion (D-4) having a nonvolatile content of 25% was obtained. The dispersion particle diameter of the obtained dispersion was 320.5 nm. Moreover, it was "no sedimentation" in the visual check of sedimentation by standing for 24 hours.
  • Example 5 The cationic group-containing organic polymer compound used in the step (B) of Example 1 was replaced with KR-2 (1.67 g) instead of KR-1, and the amount of 2% hydrochloric acid was adjusted to 2.45 g. Instead, a PAS fine particle dispersion (D-5) having a nonvolatile content of 25% was obtained in the same manner as in steps (A) to (E) of Example 1 except that an aqueous cationic polymer-containing organic polymer compound solution was prepared. It was. The dispersion particle diameter of the obtained dispersion was 320.9 nm. Moreover, it was "no sedimentation" in the visual check of sedimentation by standing for 24 hours.
  • Example 6 The cationic group-containing organic polymer compound used in the step (B) of Example 1 was replaced with KR-3 (1.67 g) instead of KR-1, and the amount of 2% hydrochloric acid was adjusted to 4.90 g. Instead, a PAS fine particle dispersion (D-6) having a nonvolatile content of 25% was obtained in the same manner as in Steps (A) to (E) of Example 1 except that an aqueous cationic polymer solution containing a cationic group was prepared. It was. The dispersion particle diameter of the obtained dispersion was 250.2 nm. Moreover, it was "no sedimentation" in the visual check of sedimentation by standing for 24 hours.
  • Example 7 100 g of wet cationic group-containing organic polymer compound-coated PAS particle wet cake obtained in the step (D) of Example 1 was dried at 40 ° C. for 12 hours under reduced pressure in a vacuum dryer. Then, cationic group-containing organic polymer compound-coated PAS powder particles were obtained by grinding with a juicer mixer.
  • Example 8 The polyarylene sulfide used in the step (A) is replaced by the para-meta PPS copolymer obtained in Production Example 7 in place of the PAS-1 obtained in Production Example 1, and the steps (A) to In the same manner as in step (D), a polyarylene sulfide fine particle dispersion (D-3) having a nonvolatile content of 25% was obtained.
  • the obtained dispersion had a dispersed particle size of 595 nm. Moreover, it was "no sedimentation" in the visual check of sedimentation by standing for 24 hours.
  • a PAS slurry (D-8) having a nonvolatile content of 25% was obtained in the same manner as in (A) to (E).
  • the resulting slurry had a dispersed particle size of 11.97 ⁇ m. Further, the visual confirmation of sedimentation after standing for 24 hours was “with sedimentation” and solid-liquid separation was confirmed.
  • Electrodeposition coating evaluation The dispersion obtained in the present invention can be used in many applications. In the following, as an example, development into the coating field will be described. As an example in the coating field, electrodeposition coating evaluation was performed. Cationic electrodeposition is a kind of coating method that is excellent in corrosiveness because there is no elution of the object to be coated. When the PAS dispersion is used as an electrodeposition liquid, the non-volatile content can be appropriately adjusted with ion-exchanged water or the like, or various additives can be added as necessary. Electrodeposition coating evaluation was carried out using the PAS fine particle dispersions and PAS slurries obtained in the above examples and comparative examples as samples.
  • Electrodeposition solution was prepared by preparing PAS fine particle dispersions obtained in Examples and Comparative Examples with ion-exchanged water so as to have a nonvolatile content of 10%.
  • Electrodeposition coating evaluation> Both the anode and cathode were immersed in the electrodeposition solution prepared above, and the DC power supply PB80-1B (manufactured by TEXIO) was used to supply current at 36V. Thereafter, the aluminum plate to which the polyarylene sulfide was adhered was observed, and the smoothness was visually determined. A: It adheres uniformly and a granular part is not seen B: A granular part is seen slightly C: Many granular parts are seen.
  • the PAS fine particles obtained according to the present invention are excellent in dispersibility and also have good smoothness of the electrodeposition coating.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Dispersion Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Molecular Biology (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Paints Or Removers (AREA)

Abstract

ポリアリーレンスルフィド樹脂濃度が高くても、分散安定性が高く、プラスチック、金属、ガラス等のあらゆる基材に対する接着性、密着性が優れたカチオン性基含有有機高分子化合物で被覆されたポリアリーレンスルフィド分散体を提供すること。 塩基析法によって、ポリアリーレンスルフィド粒子をカチオン性基含有有機高分子化合物により被覆することで、高濃度であっても安定性の高い該粒子からなるポリアリーレンスルフィド分散体、及びそれから得られる粉体粒子(微粒子)を提供することにより上記課題を解決する。

Description

ポリアリーレンスルフィド分散体及び微粒子、並びにそれらの製造方法
 本発明は、カチオン性基含有有機高分子化合物により被覆されたポリアリーレンスルフィド粉体粒子(微粒子)及び該粒子からなるポリアリーレンスルフィド分散体、並びにそれらの製造方法に関する。
 ポリアリーレンスルフィド(以下PASと略すことがある)樹脂は、機械的強度、耐熱性、耐薬品性、成形加工性、寸法安定性に優れ、これら特性を利用して、電気・電子機器部品、自動車部品材料等として使用されている。
 一方で、ポリアリーレンスルフィド樹脂は、異なる素材との密着性、接着性に劣ることから、用途拡大が進まないといった側面を持っている。そこで、塗料分野、接着材料分野、コーティング分野、ポリマーコンパウンド分野などにおいて、ポリアリーレンスルフィドの微粒子化さらには、分散液化することができれば、需要は高いと予想されるものの、密着性、接着性の要求特性を満たす微粒子、分散液を得る事は困難であった。
 PAS微粒子、分散液を得る手段として、いくつかの手法が提案されている。
 特許文献1、特許文献3では、無機塩の存在下でポリアリーレンスルフィド樹脂を有機溶媒中で加熱溶解し、その後、冷却しポリアリーレンスルフィド粗粒子を析出させ懸濁液としたのち、界面活性剤を添加、磨砕することで微粒子の分散液を得る製造方法が提案されている。
 特許文献2では、高分子界面活性剤、ポリアリーレンスルフィド樹脂微粒子、アルコール系溶媒からなるポリアリーレンスルフィド樹脂微粒子分散液が提案されている。
 しかし、この様な従来技術で得られるPAS微粒子からなる分散液は、有効成分濃度が低く、塗膜形成に十分なポリアリーレンスルフィド濃度の塗料を作製することが困難であり、所望の塗膜を得ることができなかった。
特開2009-173878号公報 特開2011-122108号公報 特開2012-177010号公報
 そこで本発明が解決しようとする課題は、ポリアリーレンスルフィド樹脂濃度が高くても、分散安定性が高く、プラスチック、金属、ガラス等のあらゆる基材に接着性、密着性の優れたカチオン性基含有有機高分子化合物で被覆されたポリアリーレンスルフィド粉体粒子(微粒子)及び該粒子からなる分散液を提供することにある。
 本発明者らは上記課題を解決するために鋭意研究した結果、塩基析法によりポリアリーレンスルフィド粒子をカチオン性基含有有機高分子化合物により被覆することで、高濃度で安定性の高い該粒子からなるポリアリーレンスルフィド分散体が得られ、上記課題を解決できることを見出し、本発明を完成するに至った。
 すなわち、本発明は、
『(1)ポリアリーレンスルフィド粒子と、カチオン性基含有有機高分子化合物と、酸と、水性媒体とを含んでなるポリアリーレンスルフィド分散体において、ポリアリーレンスルフィド粒子がカチオン性基含有有機高分子化合物により被覆されていることを特徴とするポリアリーレンスルフィド分散体。
(2)前記カチオン性基含有有機高分子化合物の主骨格が、(メタ)アクリル酸エステル樹脂、(メタ)アクリル酸エステル-スチレン樹脂、(メタ)アクリル酸エステル-エポキシ樹脂、ビニル樹脂、ウレタン樹脂及びポリアミドイミド樹脂からなる群より選ばれる少なくとも一種であることを特徴とする前記(1)に記載のポリアリーレンスルフィド分散体。
(3)前記カチオン性基含有有機高分子化合物の主骨格が、(メタ)アクリル酸エステル樹脂、(メタ)アクリル酸エステル-スチレン樹脂及び(メタ)アクリル酸エステル-エポキシ樹脂からなる群より選ばれる少なくとも一種であることを特徴とする前記(1)又は(2)に記載のポリアリーレンスルフィド分散体。
(4)前記カチオン性基含有有機高分子化合物のアミン価が40~300mgKOH/gであることを特徴とする前記(1)~(3)いずれか一項に記載のポリアリーレンスルフィド分散体。
(5)前記カチオン性基含有有機高分子化合物において、カチオン性基の中和に用いられる酸が無機酸、スルホン酸、カルボン酸及びビニル性カルボン酸からなる群より選ばれる少なくとも一種の酸であることを特徴とする前記(1)~(4)いずれか一項に記載のポリアリーレンスルフィド分散体。
(6)前記ポリアリーレンスルフィド分散体中のポリアリーレンスルフィド粒子の分散粒径が1μm以下であることを特徴とする前記(1)~(5)いずれか一項に記載のポリアリーレンスルフィド分散体。
(7-1)前記(1)~(6)いずれか一項に記載のポリアリーレンスルフィド分散体を、乾燥させて得られたポリアリーレンスルフィド粉体粒子(微粒子)。
(7-2)前記(1)~(6)いずれか一項に記載のポリアリーレンスルフィド分散体の乾燥物である粉体粒子(微粒子)。
(7-3)カチオン性基含有有機高分子化合物で被覆されたポリアリーレンスルフィド粉体粒子(微粒子)。
(8)ポリアリーレンスルフィドを有機溶媒中で加熱して、溶解液とする工程(A)[加熱溶解工程]と、
水にカチオン性基含有有機高分子化合物を添加し溶解させた樹脂水溶液に、工程(A)で得られたポリアリーレンスルフィド溶解液を加えてポリアリーレンスルフィド微粒子を形成させる工程(B)[晶析工程]と、
工程(B)で得られたポリアリーレンスルフィド微粒子と塩基とを反応させてポリアリーレンスルフィド微粒子表面にカチオン性基含有有機高分子化合物を析出させてカチオン性基含有有機高分子により被覆されたポリアリーレンスルフィド粒子を沈殿させる工程(C)[塩基析工程]と、
工程(C)で得られたカチオン性基含有有機高分子により被覆されたポリアリーレンスルフィド粒子をろ別、洗浄し、含水カチオン性基含有有機高分子により被覆されたポリアリーレンスルフィド粒子ウェットケーキを得る工程(D)[ウェットケーキ作製工程]と、
工程(D)で得られた含水カチオン性基含有有機高分子により被覆されたポリアリーレンスルフィド粒子ウェットケーキと酸とを反応させてカチオン性基含有有機高分子化合物により被覆されたポリアリーレンスルフィド粒子からなる分散体を得る工程(E)[分散体作製工程]と、を含むポリアリーレンスルフィド分散体の製造方法。
(9)前記工程(A)に用いる有機溶媒がN-メチル-2-ピロリドン、1-クロロナフタレン、1,3-ジメチル-2-イミダゾリジノンの中から選択される少なくとも一種の有機溶媒であることを特徴とする前記(8)に記載のポリアリーレンスルフィド分散体の製造方法。
(10)ポリアリーレンスルフィドを有機溶媒中で加熱して、溶解液とする工程(A)[加熱溶解工程]と、
水にカチオン性基含有有機高分子化合物を添加し溶解させた樹脂水溶液に、工程(A)で得られたポリアリーレンスルフィド溶解液を加えてポリアリーレンスルフィド微粒子を形成させる工程(B)[晶析工程]と、
工程(B)で得られたポリアリーレンスルフィド微粒子と塩基とを反応させてポリアリーレンスルフィド微粒子表面にカチオン性基含有有機高分子化合物を析出させてカチオン性基含有有機高分子により被覆されたポリアリーレンスルフィド粒子を沈殿させる工程(C)[塩基析工程]と、
工程(C)で得られたカチオン性基含有有機高分子により被覆されたポリアリーレンスルフィド粒子をろ別、洗浄し、含水カチオン性基含有有機高分子により被覆されたポリアリーレンスルフィド粒子ウェットケーキを得る工程(D)[ウェットケーキ作製工程]と、
工程(D)で得られた含水カチオン性基含有有機高分子により被覆されたポリアリーレンスルフィド粒子ウェットケーキを乾燥してカチオン性基含有有機高分子により被覆されたポリアリーレンスルフィド粉体粒子を得る工程(F1)[粉体作製工程]と、を含むポリアリーレンスルフィド粉体粒子の製造方法。
(11)ポリアリーレンスルフィドを有機溶媒中で加熱して、溶解液とする工程(A)[加熱溶解工程]と、
水にカチオン性基含有有機高分子化合物を添加し溶解させた樹脂水溶液に、工程(A)で得られたポリアリーレンスルフィド溶解液を加えてポリアリーレンスルフィド微粒子を形成させる工程(B)[晶析工程]と、
工程(B)で得られたポリアリーレンスルフィド微粒子と塩基とを反応させてポリアリーレンスルフィド微粒子表面にカチオン性基含有有機高分子化合物を析出させてカチオン性基含有有機高分子により被覆されたポリアリーレンスルフィド粒子を沈殿させる工程(C)[塩基析工程]と、
工程(C)で得られたカチオン性基含有有機高分子により被覆されたポリアリーレンスルフィド粒子をろ別、洗浄し、含水カチオン性基含有有機高分子により被覆されたポリアリーレンスルフィド粒子ウェットケーキを得る工程(D)[ウェットケーキ作製工程]と、
工程(D)で得られた含水カチオン性基含有有機高分子により被覆されたポリアリーレンスルフィド粒子ウェットケーキと酸とを反応させてカチオン性基含有有機高分子化合物により被覆されたポリアリーレンスルフィド粒子からなる分散体を得る工程(E)[分散体作製工程]と、
工程(E)で得られたカチオン性基含有有機高分子化合物により被覆されたポリアリーレンスルフィド粒子からなる分散体を乾燥してカチオン性基含有有機高分子により被覆されたポリアリーレンスルフィド粉体粒子を得る工程(F2)[粉体作製工程]と、を含むポリアリーレンスルフィド粉体粒子の製造方法。
(12)前記工程(A)に用いる有機溶媒がN-メチル-2-ピロリドン、1-クロロナフタレン、1,3-ジメチル-2-イミダゾリジノンの中から選ばれる少なくとも一種の有機溶媒であることを特徴とする前記(10)又は(11)に記載のポリアリーレンスルフィド粉体粒子の製造方法。
(13)前記工程(B)[晶析工程]の後に、工程(B)で得られたポリアリーレンスルフィド微粒子の分散液(本明細書中、晶析液とも表現される)に対し、機械的粉砕を行うこと[分散工程]を特徴とする前記(8)に記載のポリアリーレンスルフィド分散体の製造方法。
(14)前記工程(B)[晶析工程]の後に、工程(B)で得られたポリアリーレンスルフィド微粒子の分散液に対し、機械的粉砕を行うこと[分散工程]を特徴とする前記(10)又は(11)に記載のポリアリーレンスルフィド粉体粒子の製造方法。
(15)前記(8)又は(13)に記載の製造方法により得られたポリアリーレンスルフィド分散体。
(16)前記(10)、(11)又は(14)に記載の製造方法により得られたポリアリーレンスルフィド粉体粒子。
(17)前記(1)~(6)、(15)のいずれか一項に記載のポリアリーレンスルフィド分散体を含有することを特徴とする電着液。
(18)前記(1)~(6)、(15)のいずれか一項に記載のポリアリーレンスルフィド分散体を用いてなる塗料。
(19)前記(1)~(6)、(15)のいずれか一項に記載のポリアリーレンスルフィド分散体を用いて得られた塗膜。』に関する。
 本発明により、ポリアリーレンスルフィド樹脂の濃度が高くても安定であり、かつプラスチック、金属、ガラス等のあらゆる基材に対する接着性、密着性が優れたカチオン性基含有有機高分子化合物で被覆されたポリアリーレンスルフィド粉体粒子(微粒子)及び該粒子からなる分散体を提供することができる。また、本発明で得られた分散体を用いてなる電着液及び塗料も提供することができる。
 以下、本発明の実施の形態について詳細に説明する。
 ポリアリーレンスルフィド微粒子分散液に含有されるポリアリーレンスルフィド粒子は、ポリアリーレンスルフィド樹脂が、カチオン性基含有有機高分子化合物を用いて、水性媒体中に微粒子として分散されたものである。ポリアリーレンスルフィド微粒子の分散方法の詳細については後述する。
 ここで、水性媒体としては、水単独であってもよく、水と水溶性溶媒からなる混合溶媒でもよい。
・ポリアリーレンスルフィド樹脂
 本発明に使用するポリアリーレンスルフィド樹脂は、芳香族環と硫黄原子とが結合した構造を繰り返し単位とする樹脂構造を有するものであり、具体的には、下記式(1)
Figure JPOXMLDOC01-appb-C000001
(式中、R及びRは、それぞれ独立して水素原子、炭素原子数1~4のアルキル基、ニトロ基、アミノ基、フェニル基、メトキシ基、エトキシ基を表す。)で表される構造部位を繰り返し単位とする樹脂である。
 ここで、前記式(1)で表される構造部位は、特に該式中のR及びRは、前記ポリアリーレンスルフィド樹脂の機械的強度の点から水素原子であることが好ましく、その場合、下記式(2)で表されるパラ位で結合するものが好ましいものとして挙げられる。
Figure JPOXMLDOC01-appb-C000002
 これらの中でも、特に繰り返し単位中の芳香族環に対する硫黄原子の結合は前記構造式(2)で表されるパラ位で結合した構造であることが前記ポリアリーレンスルフィド樹脂の耐熱性や結晶性の面で好ましい。また、パラ位で結合した構造とメタ位で結合した構造、パラ位で結合した構造とオルト位で結合した構造を混合して使用することも可能である。
 本発明においては、後述の実施例で製造しているような、パラ-メタPPS共重合体なども使用することができる。
 また、前記ポリアリーレンスルフィド樹脂は、前記式(1)で表される構造部位のみならず、下記の構造式(3)~(6)
Figure JPOXMLDOC01-appb-C000003
で表される構造部位を、前記式(1)で表される構造部位との合計の30モル%以下で含んでいてもよい。特に本発明では上記式(3)~(6)で表される構造部位は10モル%以下であることが、ポリアリーレンスルフィド樹脂の耐熱性、機械的強度の点から好ましい。前記ポリアリーレンスルフィド樹脂中に、上記式(3)~(6)で表される構造部位を含む場合、それらの結合様式としては、ランダム共重合体、ブロック共重合体の何れであってもよい。
 また、前記ポリアリーレンスルフィド樹脂は、その分子構造中に、下記式(7)
Figure JPOXMLDOC01-appb-C000004
で表される3官能性の構造部位、或いは、ナフチルスルフィド結合などを有していてもよいが、他の構造部位との合計モル数に対して、3モル%以下が好ましく、特に1モル%以下であることが好ましい。
 前記ポリアリーレンスルフィド樹脂の製造方法としては、特に限定されないが、例えば1)ジハロゲノ芳香族化合物と、ポリハロゲノ芳香族化合物と、更に必要ならばその他の共重合成分とを、硫黄と炭酸ソーダの存在下で重合させる方法、2)ジハロゲノ芳香族化合物と、ポリハロゲノ芳香族化合物と、更に必要ならばその他の共重合成分とを、極性溶媒中でスルフィド化剤等の存在下に、重合させる方法、3)p-クロルチオフェノールと、更に必要ならばその他の共重合成分とを自己縮合させる方法、等が挙げられる。これらの方法のなかでも、2)の方法が汎用的であり好ましい。反応の際に、重合度を調節するためにカルボン酸やスルホン酸のアルカリ金属塩を添加したり、水酸化アルカリを添加しても良い。上記2)方法のなかでも、加熱した有機極性溶媒とジハロゲノ芳香族化合物と、ポリハロゲノ芳香族化合物とを含む混合物に含水スルフィド化剤を水が反応混合物から除去され得る速度で導入し、有機極性溶媒中でジハロゲノ芳香族化合物と、ポリハロゲノ芳香族化合物とスルフィド化剤とを反応させること、及び反応系内の水分量を該有機極性溶媒1モルに対して0.02~0.5モルの範囲にコントロールすることによりポリアリーレンスルフィド樹脂を製造する方法(特開平07-228699号公報参照。)や、固形のアルカリ金属硫化物及び非プロトン性極性有機溶媒の存在下でジハロゲノ芳香族化合物と、ポリハロゲノ芳香族化合物、アルカリ金属水硫化物及び有機酸アルカリ金属塩を、硫黄源1モルに対して0.01~0.9モルの有機酸アルカリ金属塩及び反応系内の水分量を非プロトン性極性有機溶媒1モルに対して0.02モルの範囲にコントロールしながら反応させる方法(WO2010/058713号パンフレット参照。)で得られるものが特に好ましい。ジハロゲノ芳香族化合物との具体的な例としては、p-ジハロベンゼン、m-ジハロベンゼン、o-ジハロベンゼン、2,5-ジハロトルエン、1,4-ジハロナフタレン、1-メトキシ-2,5-ジハロベンゼン、4,4’-ジハロビフェニル、3,5-ジハロ安息香酸、2,4-ジハロ安息香酸、2,5-ジハロニトロベンゼン、2,4-ジハロニトロベンゼン、2,4-ジハロアニソール、p,p’-ジハロジフェニルエーテル、4,4’-ジハロベンゾフェノン、4,4’-ジハロジフェニルスルホン、4,4’-ジハロジフェニルスルホキシド、4,4’-ジハロジフェニルスルフィド、及び、上記各化合物の芳香環に炭素原子数1~18のアルキル基を核置換基として有する化合物が挙げられ、ポリハロゲノ芳香族化合物として1,2,3-トリハロベンゼン、1,2,4-トリハロベンゼン、1,3,5-トリハロベンゼン、1,2,3,5-テトラハロベンゼン、1,2,4,5-テトラハロベンゼン、1,4,6-トリハロナフタレンなどが挙げられる。また、上記各化合物中に含まれるハロゲン原子は、塩素原子、臭素原子であることが望ましい。
 重合工程により得られたポリアリーレンスルフィド樹脂を含む反応混合物の後処理方法としては、特に制限されるものではないが、例えば、(1)重合反応終了後、先ず反応混合物をそのまま、あるいは酸または塩基を加えた後、減圧下または常圧下で溶媒を留去し、次いで溶媒留去後の固形物を水、反応溶媒(又は低分子ポリマーに対して同等の溶解度を有する有機溶媒)、アセトン、メチルエチルケトン、アルコール類などの溶媒で1回または2回以上洗浄し、更に中和、水洗、濾過及び乾燥する方法、或いは、(2)重合反応終了後、反応混合物に水、アセトン、メチルエチルケトン、アルコール類、エーテル類、ハロゲン化炭化水素、芳香族炭化水素、脂肪族炭化水素などの溶媒(使用した重合溶媒に可溶であり、且つ少なくともポリアリーレンスルフィドに対しては貧溶媒である溶媒)を沈降剤として添加して、ポリアリーレンスルフィドや無機塩等の固体状生成物を沈降させ、これらを濾別、洗浄、乾燥する方法、或いは、(3)重合反応終了後、反応混合物に反応溶媒(又は低分子ポリマーに対して同等の溶解度を有する有機溶媒)を加えて撹拌した後、濾過して低分子量重合体を除いた後、水、アセトン、メチルエチルケトン、アルコール類などの溶媒で1回または2回以上洗浄し、その後中和、水洗、濾過及び乾燥をする方法等が挙げられる。
 尚、上記(1)~(3)に例示したような後処理方法において、ポリアリーレンスルフィド樹脂の乾燥は真空中で行なってもよいし、空気中あるいは窒素のような不活性ガス雰囲気中で行なってもよい。
 また、ポリアリーレンスルフィド樹脂は、酸素濃度が5~30体積%の範囲の酸化性雰囲気中あるいは減圧条件下で熱処理を行い、酸化架橋させることもできる。
 また、ポリアリーレンスルフィド樹脂の物性は、本発明の効果を損ねない限り特に限定されないが、以下の通りである。
(溶融粘度)
 本発明に用いるポリアリーレンスルフィド樹脂は、300℃で測定した溶融粘度(V6)が0.1~1000〔Pa・s〕の範囲であることが好ましく、さらに流動性及び機械的強度のバランスが良好となることから0.1~100〔Pa・s〕の範囲がより好ましく、特に0.1~50〔Pa・s〕の範囲であることが特に好ましい。
(非ニュートン指数)
 本発明に用いるポリアリーレンスルフィド樹脂の非ニュートン指数は、本発明の効果を損ねない限り特に限定されないが、0.90~2.00の範囲であることが好ましい。リニア型ポリアリーレンスルフィド樹脂を用いる場合には、非ニュートン指数が0.90~1.50の範囲であることが好ましく、さらに0.95~1.20の範囲であることがより好ましい。このようなポリアリーレンスルフィド樹脂は機械的物性、流動性、耐磨耗性に優れる。ただし、非ニュートン指数(N値)は、キャピログラフを用いて300℃、オリフィス長(L)とオリフィス径(D)の比、L/D=40の条件下で、剪断速度及び剪断応力を測定し、下記式を用いて算出した値である。
Figure JPOXMLDOC01-appb-M000005
[ただし、SRは剪断速度(秒-1)、SSは剪断応力(ダイン/cm)、そしてKは定数を示す。]N値は1に近いほどPASは線状に近い構造であり、N値が高いほど分岐が進んだ構造であることを示す。
 本発明で使用できるPAS樹脂の一例として、後記する製造例ではポリフェニレンスルフィド樹脂を挙げている。
 [PAS分散体の作製]
 次に、PAS分散体について詳細に説明する。本発明におけるPAS分散体とは、上記PAS樹脂を溶媒と共に加熱溶解する工程(A)(加熱溶解工程)と、予め調整したカチオン性基含有有機高分子化合物水溶液とPAS樹脂溶解液を添加してPAS微粒子を形成させる工程(B)(晶析工程)と、塩基によりカチオン性基含有有機高分子化合物をPAS微粒子表面に析出させ被覆させる工程(C)(塩基析工程)と、カチオン性基含有有機高分子化合物被覆PAS粒子をろ別し、水洗して含水カチオン性基含有有機高分子化合物被覆PAS粒子ウェットケーキを得る工程(D)(ウェットケーキ作製工程)と、得られたウェットケーキを酸により中和して再分散、調整して得られるPAS分散体(工程(E)、分散体作製工程)のことである。
 [加熱溶解工程](工程A)
 PAS分散体を得るためには、まず、PAS樹脂を溶媒で溶解させる。本工程に無機塩を加える場合もあるが、特に加えなくても良い。本発明に用いることのできるPAS樹脂の形態は特に問わないが、具体的に例示するならば粉体、顆粒、ペレット、繊維、フィルム、成形品等が挙げられるが、操作性及び溶解に要する時間を短縮させる観点から、粉末、顆粒、ペレットが望ましい。これらの中でも特に粉体のPAS樹脂が好ましく用いられる。通常、PAS樹脂、溶媒を容器中に投入した後、溶解を行うが、容器へ投入する順序は問わない。
 容器は、高温下で使用することから、耐圧製容器を用いる方が好ましい。
 容器中の雰囲気は、空気雰囲気下、不活性ガス雰囲気下のいずれでも良いが、PAS樹脂と反応したり、PAS樹脂自身を劣化させるような雰囲気を避けるべきであるため、不活性ガス雰囲気下が好ましい。
 ここでいう、不活性ガスとは、窒素ガス、二酸化炭素、ヘリウムガス、アルゴンガス、ネオンガス、クリプトンガス、キセノンガスなどが挙げられ、経済性、入手容易性を勘案して、窒素ガス、アルゴンガス、二酸化炭素ガスが望ましく、より好ましくは窒素ガス或いはアルゴンガスが用いられる。
 無機塩として、特に制限はないが、通常、アルカリ金属、アルカリ土類金属、アンモニアなどの塩化物、臭化物、炭酸塩、硫酸塩等が用いられる。具体的には、塩化ナトリウム、塩化リチウム、塩化カリウム、塩化カルシウム、塩化マグネシウム、塩化アンモニウム等の塩化塩、臭化ナトリウム、臭化リチウム、臭化カリウム、臭化カルシウム、臭化マグネシウム、臭化アンモニウム等の臭化物、炭酸ナトリウム、炭酸カリウム、炭酸リチウム、炭酸カルシウム、炭酸マグネシウム、炭酸アンモニウム等の炭酸塩、硫酸カルシウム、硫酸ナトリウム、硫酸カリウム、硫酸リチウム、硫酸マグネシウム、硫酸アンモニウム等の硫酸塩等が用いられるが、塩化ナトリウム、塩化リチウム、塩化カリウム、塩化カルシウム、塩化マグネシウム、塩化アンモニウム等の塩化物が好ましい。これらは一種または二種以上で用いることができる。
 無機塩を加える場合のPAS樹脂に対する無機塩の重量比率は、PAS 1質量部に対して0.1~10質量部の範囲、好ましくは、0.5~5質量部の範囲である。
 溶媒としては、PAS樹脂を溶解するものであれば、特に制限はないが、例えば、クロロホルム、ブロモホルム、塩化メチレン、1,2-ジクロロエタン、1,1,1-トリクロロエタン、クロロベンゼン、o-ジクロロベンゼン、p-ジクロロベンゼン、2,6-ジクロロトルエン、1-クロロナフタレン、ヘキサフルオロイソプロパノール等のハロゲン系溶媒、N-メチル-2-ピロリジノン、N-エチル-2-ピロリジノン等のN-アルキルピロリジノン系溶媒、N-メチル-ε-カプロラクタム、N-エチル-ε-カプロラクタム等のN-アルキルカプロラクタム系溶媒、1,3-ジメチル-2-イミダゾリジノン、N、N-ジメチルアセトアミド、N,N-ジメチルホルムアミド、ヘキサメチルリン酸トリアミド、ジメチルスルホキシド、ジメチルスルホン、テトラメチレンスルホン等の極性溶媒の中から少なくとも一種選ばれる溶媒が挙げられ、好ましくは、N-メチル-2-ピロリドン、1-クロロナフタレン、o-ジクロロベンゼン、1,3-ジメチル-2-イミダゾリジノンの中から選ばれる少なくとも一種の溶媒である。これらの中でも特に、作業性、水溶性を考慮するとN-メチル-2-ピロリドン、1-クロロナフタレン、1,3-ジメチル-2-イミダゾリジノンが好ましく用いられる。
 溶媒に対するPAS樹脂の重量比率は、溶媒にPASが溶解する限り特に制限はないが、溶媒100質量部に対して0.1~20質量部の範囲を例示することができ、好ましくは、0.1~10質量部であり、より好ましくは、0.1~5質量部である。PAS樹脂を溶解させるために、混合した反応液を、PAS樹脂が溶解するために必要な温度まで上昇させる。
 溶解に必要な温度は、溶媒により異なるが、150℃以上が好ましく、さらに好ましくは200℃以上であり、より好ましくは、250℃以上である。上限としてはPAS樹脂が分解しない温度以下であり、400℃以下が好ましい。上記溶解は必要に応じ加圧下で行われる。
 上記温度にすることにより、PAS樹脂を均一に溶解することが可能になり、PAS粗粒子を安定に製造することができる。
 また、反応液を攪拌してもしなくても良いが、好ましくは攪拌したほうが良く、これにより溶解に要する時間を短くすることができる。
 所定の温度まで上昇させた後、反応液をしばらくの時間維持することが好ましい。維持する時間は、10分~10時間の範囲であり、好ましくは、10分~6時間、より好ましくは20分~2時間の範囲である。
 この操作を行うことにより、PAS樹脂をより十分に溶解させることができる。
 次に上記で得られたポリアリーレンスルフィド溶解液を基に、本発明であるポリアリーレンスルフィド分散体及びそれらから得られるポリアリーレンスルフィド粉体粒子について、製造工程順に詳細に説明する。
 [晶析工程](工程B)
 まず、予めカチオン性基含有有機高分子化合物水溶液を調整する。
 前記カチオン性基含有有機高分子化合物の主骨格は、(メタ)アクリル酸エステル樹脂、(メタ)アクリル酸エステル-スチレン樹脂、(メタ)アクリル酸エステル-エポキシ樹脂、ビニル樹脂、ウレタン樹脂、ポリアミドイミド樹脂のものが挙げられる。また、本発明で使用されるカチオン性基含有有機高分子化合物は、単体でも上記カチオン性基含有有機高分子化合物を1種類以上混合してもよく、酸性の状態で溶解すれば、本発明のPAS分散体、PAS粉体粒子に使用することができる。
 カチオン性基含有有機高分子化合物は、酸性水溶液中で完全に溶解させる。ここで使用する酸としては、塩酸、硫酸、硝酸、リン酸等の無機の酸性物質、メタンスルホン酸、エタンスルホン酸、p-トルエンスルホン酸等のスルホン酸類、酢酸、ギ酸、シュウ酸、アクリル酸、メタクリル酸、アスコルビン酸、メルドラム酸等のカルボン酸類等の有機の酸性物質が好ましい。これらは一種または二種以上で用いることができる。また、カチオン性基含有有機高分子化合物を溶解するための酸量としては、樹脂を完全に溶解させるために、カチオン性基含有有機高分子化合物のアミン価に対して、70~300%がより好ましい。
 また、カチオン性基含有有機高分子化合物のアミン価が40~300mgKOH/gのものを使用することが好ましい。
 このようなカチオン性基含有有機高分子化合物は後述の製造例に記載の方法等で合成して用いても良いし、市販品を用いても良い。市販品の具体例としては、アクリディックWPL-430(DIC株式会社製)等が挙げられる。
 さらに、本発明では、カチオン性基含有有機高分子化合物により、PAS粒子の一部または表面全体を被覆しても、分散安定性に効果が得られる。そのため、PAS100質量部に対して、1質量部~200質量部を使用することが好ましい。中でも5質量部~150質量部になるように使用するのが、最も分散安定性が高くなるため好ましい。
 次に、調整したカチオン性基含有有機高分子化合物水溶液に上記で調整したPAS溶解液を注ぐことで、PAS分散液を得ることができる。
 調整したカチオン性基含有有機高分子化合物水溶液は、撹拌羽根等の撹拌機で高速撹拌された水流を作製する。乱流、または層流でも構わないが、周速は速い方が晶析した粒子サイズを細かく出来るため好ましい。
 PAS溶解液の注水速度は、遅いほど細かい粒子を形成し得る上で好適である。注水方法としては、調整したカチオン性基含有有機高分子化合物溶液を強撹拌した溶液に、直接注水する方法がある。ここで、カチオン性基含有有機高分子化合物溶液の撹拌は、微細なPAS粒子を形成するために、強撹拌が好ましい。
 また、PAS溶解液を注ぎ終えた後に得られたPAS微粒子の分散液(晶析液)に対して機械的粉砕を行うことにより分散させる工程[分散工程]を経ることもできる。これにより、より良好な分散安定性を保持することができる。ここで、機械的粉砕としては、後述する機械的粉砕装置の項目で述べた装置を用いる方法などが挙げられる。
 この晶析工程にけるPAS粒子状態は、カチオン性基含有有機高分子化合物がPAS樹脂粒子の表層に存在しており、まだ強固に固着している状態ではないと考えられる。カチオン性基含有有機高分子化合物末端の塩基性基が対の酸性物質とのイオン結合状態であるため、柔軟にPAS粒子の表層上に存在していると推測されるためである。後工程の塩基析工程で塩基により、カチオン性基含有有機高分子化合物の官能基の塩交換反応が起き、PAS表面に固着されるものである。
 [塩基析工程](工程C)
 上記晶析工程によって水溶性樹脂が表層に存在するPAS樹脂粒子を塩基によって、塩基析出させ、カチオン性基含有有機高分子化合物により被覆されたPAS樹脂粒子を沈殿させたスラリーを作製する工程である。
 本工程は、無機塩を加えて行うこともできる。無機塩を用いる場合には、その種類に特に制限はないが、通常、アルカリ金属、アルカリ土類金属、アンモニアなどの塩化物、臭化物、炭酸塩、硫酸塩等が用いられる。具体的には、塩化ナトリウム、塩化リチウム、塩化カリウム、塩化カルシウム、塩化マグネシウム、塩化アンモニウム等の塩化塩、臭化ナトリウム、臭化リチウム、臭化カリウム、臭化カルシウム、臭化マグネシウム、臭化アンモニウム等の臭化物、炭酸ナトリウム、炭酸カリウム、炭酸リチウム、炭酸カルシウム、炭酸マグネシウム、炭酸アンモニウム等の炭酸塩、硫酸カルシウム、硫酸ナトリウム、硫酸カリウム、硫酸リチウム、硫酸マグネシウム、硫酸アンモニウム等の硫酸塩等が用いられるが、塩化ナトリウム、塩化リチウム、塩化カリウム、塩化カルシウム、塩化マグネシウム、塩化アンモニウム等の塩化物が好ましい。これらは一種または二種以上で用いることができる。無機塩を用いる場合のPAS樹脂に対する無機塩の重量比率は、例えば、PAS 1質量部に対して1~5質量部の範囲で用いることができる。
 塩基析出に使用される塩基としては、水酸化カリウム、水酸化ナトリウム、水酸化リチウム等が挙げられ、中でも水酸化カリウムが好ましい。
 塩基濃度は、使用する各種カチオン性基含有有機高分子化合物、各種PAS樹脂にもよるが、カチオン性基含有有機高分子化合物の末端置換基数による設定が必要であり、系内のpHが11~13になるように調整する。
 [ウェットケーキ作製工程](工程D)
 本工程は、上記塩基析工程で得られたカチオン性基含有有機高分子化合物により被覆されたPAS樹脂粒子を沈殿させたスラリーから、カチオン性基含有有機高分子化合物により被覆されたPAS樹脂粒子をろ別し、ウェットケーキにする工程である。ろ別する方法としては、ろ過や遠心分離等、粒子と液体が分離可能であれば如何なる方法でも構わない。ろ別されたウェットケーキ中の水分量は、15~55%の範囲が好ましく、水分量が低すぎると後工程での再分散でほぐれにくくなり、再分散性が悪くなるため、好ましい水分量は、20~45%である。ウェットケーキは、残存する有機溶媒や、未析出の樹脂を洗浄するため、イオン交換水、蒸留水、純水、水道水等で洗浄を行う。洗浄方法は、ウェットケーキ上から、洗浄溶媒をかけてろ過洗浄してもよいし、ウェットケーキを洗浄溶媒に再解膠して洗浄してもよい。
 [分散体作製工程](工程E)
 上記ウェットケーキ作製工程で得られたウェットケーキを水にビーズミルや超音波分散機等で、再解膠し、前述した無機の酸性物質、有機の酸性物質等でpHを3~6に調整してPAS分散体を得ることができる。ここで得られる分散体中の不揮発分は、15~40%であり、従来のPAS分散体が5~10%程度であることから、顕著に高濃度のPAS分散体が本発明で得られることがわかる。
 [PAS粉体粒子の作製](工程F1及び工程F2)
 さらに、本発明におけるPAS粉体粒子とは、上記工程Dで得られるウェットケーキあるいは、工程Eで得られるPAS分散体から水分を除去し、その後乾燥して得られるカチオン性基含有有機高分子化合物被覆PAS粉体粒子のことである。乾燥後、各種粉砕装置で粉砕して、所望の粒子サイズに調整して使用することが可能である。
 後述の測定方法における平均粒径が1μm以下になるまで上記PAS粗粒子を分散させたPAS粗粒子懸濁液の機械的粉砕を行う。好ましくは平均粒径が500nm未満となるまで機械的粉砕を行う。機械的粉砕装置として、市販の機械的粉砕装置を挙げることができる。特にPAS粗粒子を効率よく分散、粉砕し、粒径の小さなPAS微粒子の分散液を作製するために好適な機械的粉砕装置として、ボールミル装置、ビーズミル装置、サンドミル装置、コロイドミル装置、ディスパー分散攪拌装置、湿式微粒化装置(例えば、スギノマシン製のアルティマイザー、Hielscher社製の超音波分散機等)が挙げられるが、なかでもボールミル装置、ビーズミル装置、サンドミル装置、湿式微粒化装置から選択される装置が好ましい。機械的粉砕の際の粉砕の力は一般に大きくなるほど、また粉砕時間が長くなるほど得られる微粒子の平均粒径は、小さくなる方向にあるが、これらが過度になると凝集が生じやすくなるので、適切な範囲に制御される。例えばビーズミルではビーズ径やビーズ量の選択、周速の調整で、その制御が可能である。
 PAS微粒子分散液においても、場合によっては沈殿物を含む場合もある。その際には、沈殿部と分散部を分離して利用してもよい。分散液のみを得る場合には、沈殿部と分散部の分離を行えばよく、そのためには、デカンテーション、ろ過などを行えば良い。また、より粒径の細かい粒子まで必要な場合には、遠心分離などを行い、粒径の大きなものを完全に沈降させ、デカンテーションやろ過を行い、沈殿部分を除去すればよい。
 本発明で得られたPAS微粒子分散液は、通常24時間静置しても微粒子とカチオン性基含有有機高分子化合物水溶液とが分離しない。
 このようにして得られたPAS微粒子分散液は、その特性から塗料、接着、コーティング、ポリマーコンパウンド分野における有用な添加剤となる。
 以下、実施例を挙げることにより、本発明をより詳細に説明する。しかし、本発明はこれらに限定されるものではない。
 [PAS樹脂の製造]
 本明細書で用いたPAS樹脂の製造方法を製造例として下記に記載する。
(製造例1)ポリアリーレンスルフィド樹脂(以下、PAS-1と表記)の製造
 圧力計、温度計、コンデンサを連結した撹拌翼および底弁付き150リットルオートクレーブに、45%水硫化ソーダ(47.55重量%NaSH)14.148kg、48%苛性ソーダ(48.8重量%NaOH)9.541kgと、N-メチル-2-ピロリドン(以下、NMPと略すことがある)38.0kgを仕込んだ。窒素気流下攪拌しながら209℃まで昇温して、水 12.150kgを留出させた(残存する水分量はNaSH 1モル当り 1.13モル)。その後、オートクレーブを密閉して180℃まで冷却し、パラジクロロベンゼン(以下、「p-DCB」と略記する。) 17.874kg及びNMP 16.0kgを仕込んだ。液温150℃で窒素ガスを用いてゲージ圧で0.1MPaに加圧して昇温を開始した。昇温して260℃になった時点でオートクレーブ上部を散水することで冷却しながら、260℃で2時間反応した。オートクレーブ上部を冷却中、液温が下がらないように一定に保持した。次に降温させると共にオートクレーブ上部の冷却を止めた。反応中の最高圧力は、0.87MPaであった。反応後、冷却し、100℃で底弁を開き、反応スラリーを150リットル平板ろ過機に移送し120℃で加圧ろ過した。得られたケーキに70℃温水50kgを加え撹拌したのち、濾過し、さらに温水25kgを加え濾過した。次に温水25kgを加え1時間撹拌し、濾過したのち、温水25kgを加えろ過する操作を2回繰り返した。得られたケーキを、熱風循環乾燥機を用いて120℃で15時間乾燥し、PAS-1を得た。得られたPAS-1の溶融粘度は10Pa・sであった。
(製造例2)ポリアリーレンスルフィド樹脂(以下、PAS-2と表記)の製造
 圧力計、温度計、コンデンサを連結した撹拌翼および底弁付き150リットルオートクレーブに、45%水硫化ソーダ(47.55重量%NaSH)14.148kg、48%苛性ソーダ(48.8重量%NaOH)9.541kgと、NMP 38.0kgを仕込んだ。窒素気流下攪拌しながら209℃まで昇温して、水 12.150kgを留出させた(残存する水分量はNaSH1モル当り1.13モル)。その後、オートクレーブを密閉して180℃まで冷却し、p-DCB 18.366kg及びNMP 16.0kgを仕込んだ。液温150℃で窒素ガスを用いてゲージ圧で0.1MPaに加圧して昇温を開始した。昇温して260℃になった時点でオートクレーブ上部を散水することで冷却しながら、260℃で2時間反応した。オートクレーブ上部を冷却中、液温が下がらないように一定に保持した。次に降温させると共にオートクレーブ上部の冷却を止めた。反応中の最高圧力は、0.87MPaであった。反応後、冷却し、100℃で底弁を開き、反応スラリーを150リットル平板ろ過機に移送し120℃で加圧ろ過した。得られたケーキに70℃温水50kgを加え撹拌したのち、濾過し、さらに温水25kgを加え濾過した。次に温水25kgを加え1時間撹拌し、濾過したのち、温水25kgを加えろ過する操作を2回繰り返した。得られたケーキを、熱風循環乾燥機を用いて120℃で15時間乾燥し、PAS-2を得た。得られたPAS-2の溶融粘度は2.5Pa・sであった。
(製造例3)ポリアリーレンスルフィド樹脂(以下、PAS-3と表記)の製造
 圧力計、温度計、コンデンサを連結した撹拌翼および底弁付き150リットルオートクレーブに、45%水硫化ソーダ(47.55重量%NaSH)14.148kg、48%苛性ソーダ(48.8重量%NaOH)9.541kgと、NMP 38.0kgを仕込んだ。窒素気流下攪拌しながら209℃まで昇温して、水12.150kgを留出させた(残存する水分量はNaSH1モル当り1.13モル)。その後、オートクレーブを密閉して180℃まで冷却し、p-DCB 17.464kg及びNMP 16.0kgを仕込んだ。液温150℃で窒素ガスを用いてゲージ圧で0.1MPaに加圧して昇温を開始した。昇温して260℃になった時点でオートクレーブ上部を散水することで冷却しながら、260℃で2時間反応した。オートクレーブ上部を冷却中、液温が下がらないように一定に保持した。次に降温させると共にオートクレーブ上部の冷却を止めた。反応中の最高圧力は、0.87MPaであった。反応後、冷却し、100℃で底弁を開き、反応スラリーを150リットル平板ろ過機に移送し120℃で加圧ろ過した。得られたケーキに70℃温水50kgを加え撹拌したのち、濾過し、さらに温水25kgを加え濾過した。次に温水25kgを加え1時間撹拌し、濾過したのち、温水25kgを加えろ過する操作を2回繰り返した。得られたケーキを、熱風循環乾燥機を用いて120℃で15時間乾燥し、PAS-3を得た。得られたPAS-3の溶融粘度は52Pa・sであった。
 [カチオン性基含有有機高分子化合物の製造]
 本明細書で用いられるカチオン性基含有有機高分子化合物の製造方法の一例を以下に記載するが、これら以外のカチオン性基含有有機高分子化合物についても同様の方法で製造することができる。
(製造例4)カチオン性基含有有機高分子化合物(KR-1)の製造
 攪拌装置、モノマー専用滴下装置、開始剤専用滴下装置、温度センサー、および上部に窒素導入装置を有する還流装置を取り付けた反応容器を有する自動重合反応装置(重合試験機DSL-2AS型、轟産業(株)製)の反応容器にプロピレングリコールモノメチルエーテルアセテート(PGMAc)240部とイソブチルアルコール(iBuOH)240部を仕込み、攪拌しながら反応容器内を窒素置換した。反応容器内を窒素雰囲気に保ちながら80℃に昇温させた後、モノマー専用滴下装置より、スチレン240部、メタクリル酸メチル198.3部、メタクリル酸ジメチルアミノエチル360部、アクリル酸ブチル0.8部、アクリル酸イソブチル0.8部、メタクリル酸0.08部の混合液、および開始剤専用滴下装置より、「ABN-E(登録商標)」(有効成分2,2'-アゾビス(2-メチルブチロニトリル、(株)日本ファインケム製)40.0部とPGMAc312部の混合液を5時間かけて滴下した。滴下終了2時間後に「パーブチルO(登録商標)」(有効成分ペルオキシ2-エチルヘキサン酸t-ブチル、日油(株)製)1.6部とPGMAc8.0部の混合液を添加した。その後同温度で4時間反応を継続させた後、不揮発分を50%に調整し、カチオン性基含有有機高分子化合物(KR-1)のPGMAc/iBuOH溶液を得た(固形分アミン価160.8mgKOH/g)。
(製造例5)カチオン性基含有有機高分子化合物(KR-2)の製造
 スチレン 465.68部、メタクリル酸ジメチルアミノエチル 134.32部とする以外は、製造例4と同様にし、不揮発分50%のカチオン性基含有有機高分子化合物(KR-2)のPGMAc/iBuOH溶液を得た(固形分アミン価60mgKOH/g)。
(製造例6)カチオン性基含有有機高分子化合物(KR-3)の製造
 スチレン 160部、メタクリル酸メチル 78.64部、メタクリル酸ジメチルアミノエチル 559.68部とする以外は、製造例4と同様にし、不揮発分50%のカチオン性基含有有機高分子化合物(KR-3)のPGMAc/iBuOH溶液を得た(固形分アミン価250mgKOH/g)。
(製造例7)ポリアリーレンスルフィド樹脂(メタ15%PPS(本明細書中で、パラ-メタPPS共重合体とも表現される))の製造
 150リットルオートクレーブに、フレーク状NaS(60.9質量%) 19.222kgと、N-メチル-2-ピロリドン(以下ではNMPと略すことがある)45.0kgを仕込んだ。窒素気流下攪拌しながら204℃まで昇温して、水4.438kgを留出させた(残存する水分量はNaS 1モル当り1.14モル)。その後、オートクレーブを密閉して180℃まで冷却し、p-ジクロロベンゼン(以下、「p-DCB」と略記する。)21.7201kg、m-ジクロロベンゼン(以下、「m-DCB」と略記する。)3.8330kg(m-DCBとp-DCBの合計に対して15モル%)及びNMP 18.0kgを仕込んだ。液温150℃で窒素ガスを用いて1kg/cm Gに加圧して昇温を開始した。液温220℃で3時間攪拌しつつ、オートクレーブ上部の外側に巻き付けたコイルに80℃の冷媒を流し冷却した。その後昇温して、液温260℃で3時間攪拌し、次に降温させると共にオートクレーブ上部の冷却を止めた。オートクレーブ上部を冷却中、液温が下がらないように一定に保持した。反応中の最高圧力は、8.91kg/cm Gであった。
 得られたスラリーを常法により濾過温水洗を二回繰り返し、水を約50質量%含む濾過ケークを得た。次に、この濾過ケークに水60kg及び酢酸100gを加えて再スラリー化し、50℃で30分間攪拌後、再度濾過した。この際、上記スラリーのpHは4.6であった。ここで得られた濾過ケークに、水60kgを加え30分間攪拌後、再度濾過する操作を5回繰り返した。その後に得られた濾過ケークを120℃で、4.5時間熱風循環乾燥機中で乾燥し、白色粉末状のパラ-メタPPS共重合体を得た。得られたパラ-メタPPS共重合体は融点230℃、リニア型、V6溶融粘度13〔Pa・s〕であった。
 次に、後記する実施例、比較実施例で得たポリアリーレンスルフィド分散液の分散粒径及び沈降性の測定方法を記載する。
 [分散粒径の測定]
 得られたポリアリーレンスルフィド分散液を、「MT-3300EXII」(日機装社製のレーザードップラー式粒度分布計) を用いて測定したD50粒径を分散粒径とした。
 [目視による沈降の確認]
 得られたポリアリーレンスルフィド分散液を24時間静置させた際の上澄みを確認した。上澄みが透明である場合は「沈降あり」、上澄みが確認されない場合は「沈降なし」と判断した。
(実施例1)
・工程(A)[溶解工程]
 下部に開閉可能なバルブを有するオートクレーブ(A)に上記製造例1で製造したPAS-1 10gとNMP 490gを入れた。系内に窒素を通気させ、攪拌しながら加圧下で内温250℃まで上昇させた後、30分間攪拌した。
・工程(B)[晶析工程]
 前記工程(A)に用いたオートクレーブの開閉可能なバルブとパイプで連結させたオートクレーブ[2]に、予め、上記製造例4で製造したカチオン性基含有有機高分子化合物KR-1 1.67gと2%塩酸 6.56 gと水 2000 gを混合させたカチオン性基含有有機高分子化合物水溶液を入れた。このオートクレーブ[2]に、前記工程(A)で溶解させたPASのNMP溶液をオートクレーブ[1]のバルブを開くことで流し込み、オートクレーブ[2]内に晶析液を得た。PASのNMP溶解液をカチオン性基含有有機高分子化合物水溶液に流し込む操作を4回繰り返して得られた晶析液9.64 kgから目開き180μmの金属メッシュを用いて溶け残りを除去した(得られた晶析液のpHは3.2であった)。
・工程(C)[塩基析工程]
 工程(B)で得られた晶析液に5%水酸化カリウム水溶液を滴下してpHを12.5に調整することで表面にカチオン性基含有有機高分子化合物が被覆したPAS微粒子を凝集させた塩基析スラリーを得た(得られた液のpHは12.0であった)。
・工程(D)[ウェットケーキ作製工程]
 前記工程(C)で得られた塩基析スラリーより水性媒体を吸引ろ過し、ろ集した残渣の洗液の電気伝導度が0.5 mS/cm以下になるまでイオン交換水で洗浄して、不揮発分30.0%の含水カチオン性基含有有機高分子化合物被覆PAS粒子ウェットケーキを110.0g得た。
・工程(E)[微粒子分散体作製工程]
 前記工程(D)で得られた含水カチオン性基含有有機高分子化合物被覆PAS粒子ウェットケーキ110.0gと10%酢酸 4.13 g、イオン交換水17.9 gを300 ccのステンレスカップに入れて、Hielscher社製超音波分散機 UP400ST(出力400 W、 周波数24 kHz)にて30分間超音波を照射し、ポリアリーレンスルフィド微粒子分散体(D-1)を得た。得られた分散体の不揮発分は25%であり、分散粒径は294nmであった。また、24時間静置による沈降の目視確認では「沈降なし」であった。
 (実施例2)
 前記実施例1の工程(A)に用いたポリアリーレンスルフィドを、PAS-1に代えてPAS-2を使用する以外は、実施例1の工程(A)~工程(E)と同様にして不揮発分25%のPAS微粒子分散体(D-2)を得た。得られた分散体の分散粒径は280.1nmであった。また、24時間静置による沈降の目視確認では「沈降なし」であった。
 (実施例3)
 前記実施例1の工程(A)に用いたポリアリーレンスルフィドを、PAS-1に代えてPAS-3を使用する以外は、実施例1の工程(A)~工程(E)と同様にして不揮発分25%のPAS微粒子分散体(D-3)を得た。得られた分散体の分散粒径は300.2nmであった。また、24時間静置による沈降の目視確認では「沈降なし」であった。
 (実施例4)
 前記実施例1の工程(A)に用いたNMPを1-クロロナフタレンに代え、温度を230℃にて加熱溶解する操作以外は、実施例1の工程(A)~工程(E)と同様にして不揮発分25%のPAS微粒子分散体(D-4)を得た。得られた分散体の分散粒径は320.5nmであった。また、24時間静置による沈降の目視確認では「沈降なし」であった。
 (実施例5)
 前記実施例1の工程(B)に用いたカチオン性基含有有機高分子化合物を、KR-1に代えてKR-2(1.67g)を用い、また2%塩酸の量を2.45gに代えて、カチオン性基含有有機高分子化合物水溶液を作製した以外は実施例1の工程(A)~工程(E)と同様にして不揮発分25%のPAS微粒子分散体(D-5)を得た。得られた分散体の分散粒径は320.9nmであった。また、24時間静置による沈降の目視確認では「沈降なし」であった。
 (実施例6)
 前記実施例1の工程(B)に用いたカチオン性基含有有機高分子化合物を、KR-1に代えてKR-3(1.67g)を用い、また2%塩酸の量を4.90gに代えて、カチオン性基含有有機高分子化合物水溶液を作製した以外は実施例1の工程(A)~工程(E)と同様にして不揮発分25%のPAS微粒子分散体(D-6)を得た。得られた分散体の分散粒径は250.2 nmであった。また、24時間静置による沈降の目視確認では「沈降なし」であった。
 (実施例7)
 前記実施例1の工程(D)で得られた不揮発分30.0%の含水カチオン性基含有有機高分子化合物被覆PAS粒子ウェットケーキ100 gを真空乾燥器にて減圧下 40℃で12時間乾燥させた後、ジューサーミキサーで粉砕することでカチオン性基含有有機高分子化合物被覆PAS粉体粒子を得た。
 (実施例8)
 工程(A)に用いるポリアリーレンサルファイドを製造例1で得たPAS-1に代えて 製造例7で得たパラ-メタPPS共重合体を使用する以外は、実施例1の工程(A)~工程(D)と同様にして不揮発分25%のポリアリーレンスルフィド微粒子分散体(D-3)を得た。得られた分散体の分散粒径は595nmだった。また、24時間静置による沈降の目視確認では「沈降なし」であった。
 (比較例1)
 前記実施例1の工程(A)における溶解温度280℃を、30℃に代えて操作する以外は、実施例1の工程(A)~工程(E)と同様にして不揮発分25%のPASスラリー(D-7)を得た。得られたスラリーの分散粒径は5.445μmであった。また、24時間静置による沈降の目視確認では「沈降あり」であり、固液分離が確認された。
 (比較例2)
 前記実施例1の工程(A)に用いたポリアリーレンスルフィドを、PAS-1に代えてPAS-2を使用し、溶解温度280℃を30℃に代えて操作する以外は、実施例1の工程(A)~工程(E)と同様にして不揮発分25%のPASスラリー(D-8)を得た。得られたスラリーの分散粒径は11.97μmであった。また、24時間静置による沈降の目視確認では「沈降あり」であり、固液分離が確認された。
[電着塗装評価]
 本発明で得られる分散体は多くの用途展開が考えられる。以下では、その一例として、コーティング分野への展開ついて記載する。コーティング分野における一例として、電着塗装評価を行った。カチオン電着は、被塗物の溶出がないことから、腐食性に優れるコーティング方法の一種である。PAS分散体を電着液として使用する場合、適宜、イオン交換水等で不揮発分を調整したり、必要に応じ各種添加剤を加えて使用したりすることができる。
 試料として、上記の実施例と比較例で得たPAS微粒子分散体、PASスラリーを用いて電着塗装評価を実施した。
<電着液の作製>
 実施例と比較例で得たPAS微粒子分散体をイオン交換水で不揮発分10%に調製した電着液を作製した。
<電着塗装物評価>
 上記にて作製した電着液に陽極、陰極ともにアルミ板を浸して直流電源装置 PB80-1B(TEXIO社製)にて36Vで通電した。その後、ポリアリーレンスルフィドが付着したアルミ板を観察し、平滑性を目視で判定した。
A:均一に付着しており、粒状箇所が見られない
B:粒状箇所が僅かに見られる
C:粒状箇所が多く見られる。
 これら作製したPAS微粒子分散体の分散粒径と電着塗装評価した実施例1~6、8、比較例1及び比較例2の結果を下表にまとめて記す。
Figure JPOXMLDOC01-appb-T000006
 表1から分かるように、本発明により得られたPAS微粒子は分散性に優れ、電着塗装物の良好な平滑性も兼備している。

Claims (15)

  1.  ポリアリーレンスルフィド粒子と、カチオン性基含有有機高分子化合物と、酸と、水性媒体とを含んでなるポリアリーレンスルフィド分散体において、ポリアリーレンスルフィド粒子がカチオン性基含有有機高分子化合物により被覆されていることを特徴とするポリアリーレンスルフィド分散体。
  2.  前記カチオン性基含有有機高分子化合物の主骨格が、(メタ)アクリル酸エステル樹脂、(メタ)アクリル酸エステル-スチレン樹脂、(メタ)アクリル酸エステル-エポキシ樹脂、ビニル樹脂、ウレタン樹脂及びポリアミドイミド樹脂からなる群より選ばれる少なくとも一種であることを特徴とする請求項1に記載のポリアリーレンスルフィド分散体。
  3.  前記カチオン性基含有有機高分子化合物のアミン価が40~300mgKOH/gであることを特徴とする請求項1又は2に記載のポリアリーレンスルフィド分散体。
  4.  前記カチオン性基含有有機高分子化合物において、カチオン性基の中和に用いられる酸が無機酸、スルホン酸、カルボン酸及びビニル性カルボン酸からなる群より選ばれる少なくとも一種の酸であることを特徴とする請求項1~3いずれか一項に記載のポリアリーレンスルフィド分散体。
  5.  前記ポリアリーレンスルフィド分散体中のポリアリーレンスルフィド粒子の分散粒径が1μm以下であることを特徴とする請求項1~4いずれか一項に記載のポリアリーレンスルフィド分散体。
  6.  カチオン性基含有有機高分子化合物で被覆されていることを特徴とするポリアリーレンスルフィド微粒子。
  7.  ポリアリーレンスルフィドを有機溶媒中で加熱して、溶解液とする工程(A)と、
    水にカチオン性基含有有機高分子化合物を添加し溶解させた樹脂水溶液に、工程(A)で得られたポリアリーレンスルフィド溶解液を加えてポリアリーレンスルフィド微粒子を形成させる工程(B)と、
    工程(B)で得られたポリアリーレンスルフィド微粒子と塩基とを反応させてポリアリーレンスルフィド微粒子表面にカチオン性基含有有機高分子化合物を析出させてカチオン性基含有有機高分子により被覆されたポリアリーレンスルフィド粒子を沈殿させる工程(C)と、
    工程(C)で得られたカチオン性基含有有機高分子により被覆されたポリアリーレンスルフィド粒子をろ別、洗浄し、含水カチオン性基含有有機高分子により被覆されたポリアリーレンスルフィド粒子ウェットケーキを得る工程(D)と、
    工程(D)で得られた含水カチオン性基含有有機高分子により被覆されたポリアリーレンスルフィド粒子ウェットケーキと酸とを反応させてカチオン性基含有有機高分子化合物により被覆されたポリアリーレンスルフィド粒子からなる分散体を得る工程(E)と、を含むポリアリーレンスルフィド分散体の製造方法。
  8.  前記工程(A)に用いる有機溶媒がN-メチル-2-ピロリドン、1-クロロナフタレン、1,3-ジメチル-2-イミダゾリジノンの中から選択される少なくとも一種の有機溶媒であることを特徴とする請求項7に記載のポリアリーレンスルフィド分散体の製造方法。
  9.  ポリアリーレンスルフィドを有機溶媒中で加熱して、溶解液とする工程(A)と、
    水にカチオン性基含有有機高分子化合物を添加し溶解させた樹脂水溶液に、工程(A)で得られたポリアリーレンスルフィド溶解液を加えてポリアリーレンスルフィド微粒子を形成させる工程(B)と、
    工程(B)で得られたポリアリーレンスルフィド微粒子と塩基とを反応させてポリアリーレンスルフィド微粒子表面にカチオン性基含有有機高分子化合物を析出させてカチオン性基含有有機高分子により被覆されたポリアリーレンスルフィド粒子を沈殿させる工程(C)と、
    工程(C)で得られたカチオン性基含有有機高分子により被覆されたポリアリーレンスルフィド粒子をろ別、洗浄し、含水カチオン性基含有有機高分子により被覆されたポリアリーレンスルフィド粒子ウェットケーキを得る工程(D)と、
    工程(D)で得られた含水カチオン性基含有有機高分子により被覆されたポリアリーレンスルフィド粒子ウェットケーキを乾燥してカチオン性基含有有機高分子により被覆されたポリアリーレンスルフィド粉体粒子を得る工程(F1)と、を含むポリアリーレンスルフィド粉体粒子の製造方法。
  10.  ポリアリーレンスルフィドを有機溶媒中で加熱して、溶解液とする工程(A)と、
    水にカチオン性基含有有機高分子化合物を添加し溶解させた樹脂水溶液に、工程(A)で得られたポリアリーレンスルフィド溶解液を加えてポリアリーレンスルフィド微粒子を形成させる工程(B)と、
    工程(B)で得られたポリアリーレンスルフィド微粒子と塩基とを反応させてポリアリーレンスルフィド微粒子表面にカチオン性基含有有機高分子化合物を析出させてカチオン性基含有有機高分子により被覆されたポリアリーレンスルフィド粒子を沈殿させる工程(C)と、
    工程(C)で得られたカチオン性基含有有機高分子により被覆されたポリアリーレンスルフィド粒子をろ別、洗浄し、含水カチオン性基含有有機高分子により被覆されたポリアリーレンスルフィド粒子ウェットケーキを得る工程(D)と、
    工程(D)で得られた含水カチオン性基含有有機高分子により被覆されたポリアリーレンスルフィド粒子ウェットケーキと酸とを反応させてカチオン性基含有有機高分子化合物により被覆されたポリアリーレンスルフィド粒子からなる分散体を得る工程(E)と、
    工程(E)で得られたカチオン性基含有有機高分子化合物により被覆されたポリアリーレンスルフィド粒子からなる分散体を乾燥してカチオン性基含有有機高分子により被覆されたポリアリーレンスルフィド粉体粒子を得る工程(F2)と、を含むポリアリーレンスルフィド粉体粒子の製造方法。
  11.  前記工程(A)に用いる有機溶媒がN-メチル-2-ピロリドン、1-クロロナフタレン、1,3-ジメチル-2-イミダゾリジノンの中から選ばれる少なくとも一種の有機溶媒であることを特徴とする請求項9又は10に記載のポリアリーレンスルフィド粉体粒子の製造方法。
  12.  前記工程(B)の後に、工程(B)で得られたポリアリーレンスルフィド微粒子の分散液に対し、機械的粉砕を行うことを特徴とする請求項7に記載のポリアリーレンスルフィド分散体の製造方法。
  13.  前記工程(B)の後に、工程(B)で得られたポリアリーレンスルフィド微粒子の分散液に対し、機械的粉砕を行うことを特徴とする請求項9又は10に記載のポリアリーレンスルフィド粉体粒子の製造方法。
  14.  請求項1、2、3、4又は5に記載のポリアリーレンスルフィド分散体を含有することを特徴とする電着液。
  15.  請求項1、2、3、4又は5に記載のポリアリーレンスルフィド分散体を用いてなる塗料。
PCT/JP2016/062352 2015-05-15 2016-04-19 ポリアリーレンスルフィド分散体及び微粒子、並びにそれらの製造方法 WO2016185856A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP16796250.5A EP3296346A4 (en) 2015-05-15 2016-04-19 ARYLENE POLYSULFIDE DISPERSION, FINE PARTICLES, PROCESS FOR PRODUCING ARYLENE POLYSULFIDE DISPERSION, AND PROCESS FOR PRODUCING FINE PARTICLES
KR1020177029512A KR20180006890A (ko) 2015-05-15 2016-04-19 폴리아릴렌술피드 분산체 및 미립자, 및 그들의 제조 방법
JP2017519082A JP6274548B2 (ja) 2015-05-15 2016-04-19 ポリアリーレンスルフィド分散体及び微粒子、並びにそれらの製造方法
US15/574,241 US20180134852A1 (en) 2015-05-15 2016-04-19 Polyarylene sulfide dispersion, fine particle, and method for producing them
CN201680028322.4A CN107531913A (zh) 2015-05-15 2016-04-19 聚芳硫醚分散体及微粒、以及它们的制造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015100052 2015-05-15
JP2015-100052 2015-05-15

Publications (1)

Publication Number Publication Date
WO2016185856A1 true WO2016185856A1 (ja) 2016-11-24

Family

ID=57319987

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/062352 WO2016185856A1 (ja) 2015-05-15 2016-04-19 ポリアリーレンスルフィド分散体及び微粒子、並びにそれらの製造方法

Country Status (6)

Country Link
US (1) US20180134852A1 (ja)
EP (1) EP3296346A4 (ja)
JP (1) JP6274548B2 (ja)
KR (1) KR20180006890A (ja)
CN (1) CN107531913A (ja)
WO (1) WO2016185856A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017061607A (ja) * 2015-09-25 2017-03-30 国立大学法人東京農工大学 ポリフェニレンサルファイド微粒子
WO2024204841A1 (ja) * 2023-03-31 2024-10-03 ポリプラスチックス株式会社 再生ペレットの離型性を向上させる方法、及び被覆再生ペレット

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6137811A (ja) * 1984-07-30 1986-02-22 Goou Kagaku Kogyo Kk 熱硬化性樹脂組成物
JP2004075820A (ja) * 2002-08-15 2004-03-11 Dainippon Ink & Chem Inc 水性顔料分散液、その製造方法及び水性記録液
JP2010084137A (ja) * 2008-09-02 2010-04-15 Nippon Paper Chemicals Co Ltd ブロック共重合体及びその用途
JP2010209344A (ja) * 1999-07-23 2010-09-24 Nippon Paper Chemicals Co Ltd 水性分散液およびその製造方法
WO2015178105A1 (ja) * 2014-05-22 2015-11-26 Dic株式会社 ポリアリーレンスルフィド分散体及び粉体粒子、並びにそれらの製造方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3715543A1 (de) * 1987-04-07 1988-10-27 Bayer Ag Pulverkompositionen auf der basis von polyarylensulfiden
WO2009119466A1 (ja) * 2008-03-28 2009-10-01 東レ株式会社 ポリフェニレンサルファイド樹脂微粒子の製造方法、ポリフェニレンサルファイド樹脂微粒子、およびその分散液
WO2015064484A1 (ja) * 2013-10-29 2015-05-07 東レ株式会社 炭素繊維強化ポリアリーレンスルフィドの製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6137811A (ja) * 1984-07-30 1986-02-22 Goou Kagaku Kogyo Kk 熱硬化性樹脂組成物
JP2010209344A (ja) * 1999-07-23 2010-09-24 Nippon Paper Chemicals Co Ltd 水性分散液およびその製造方法
JP2004075820A (ja) * 2002-08-15 2004-03-11 Dainippon Ink & Chem Inc 水性顔料分散液、その製造方法及び水性記録液
JP2010084137A (ja) * 2008-09-02 2010-04-15 Nippon Paper Chemicals Co Ltd ブロック共重合体及びその用途
WO2015178105A1 (ja) * 2014-05-22 2015-11-26 Dic株式会社 ポリアリーレンスルフィド分散体及び粉体粒子、並びにそれらの製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3296346A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017061607A (ja) * 2015-09-25 2017-03-30 国立大学法人東京農工大学 ポリフェニレンサルファイド微粒子
WO2024204841A1 (ja) * 2023-03-31 2024-10-03 ポリプラスチックス株式会社 再生ペレットの離型性を向上させる方法、及び被覆再生ペレット

Also Published As

Publication number Publication date
EP3296346A1 (en) 2018-03-21
EP3296346A4 (en) 2019-01-09
US20180134852A1 (en) 2018-05-17
JPWO2016185856A1 (ja) 2018-03-29
KR20180006890A (ko) 2018-01-19
CN107531913A (zh) 2018-01-02
JP6274548B2 (ja) 2018-02-07

Similar Documents

Publication Publication Date Title
JP6090639B2 (ja) ポリアリーレンスルフィド分散体及び粉体粒子、並びにそれらの製造方法
JP5186752B2 (ja) 分散液およびポリアリーレンサルファイド微粒子
US8563681B2 (en) Process for producing fine polyphenylene sulfide resin particles, fine polyphenylene sulfide resin particles, and dispersion thereof
JP5477300B2 (ja) ポリアミドイミド樹脂微粒子の製造方法、ポリアミドイミド樹脂微粒子
JP6274548B2 (ja) ポリアリーレンスルフィド分散体及び微粒子、並びにそれらの製造方法
JP5821213B2 (ja) ポリフェニレンサルファイド樹脂微粒子分散液の製造方法
JP2009173878A (ja) ポリフェニレンサルファイド微粒子、その分散液、およびそれらの製造方法
JP5347647B2 (ja) ポリフェニレンサルファイド樹脂微粒子の製造方法、ポリフェニレンサルファイド樹脂微粒子、およびその分散液
JP2014005409A (ja) ポリフェニレンサルファイド樹脂微粒子分散液の凝集方法
JP5589373B2 (ja) ポリフェニレンサルファイド樹脂微粒子分散液、およびその製造方法
JP2017095563A (ja) ポリアリーレンスルフィドと全芳香族リニアポリマーからなる複合粒子分散体、粉体粒子、及びそれらの製造方法
JP5481797B2 (ja) ポリフェニレンサルファイド微粒子の製造方法
JP2014024957A (ja) ポリフェニレンサルファイド樹脂微粒子分散液の製造方法
JP2009500475A (ja) 酸化亜鉛ポリマーナノ複合材料及び酸化亜鉛ポリマーナノ複合材料の製造方法
JP2017095564A (ja) ポリアリーレンスルフィドと全芳香族リニアポリマーからなる複合粒子分散体、粉体粒子、及びそれらの製造方法
WO2016185857A1 (ja) 樹脂分散体、微粒子、及びそれらの製造方法
JP6977712B2 (ja) ポリアリーレンスルフィド組成物、その製造方法及び塗膜
JP2009242499A (ja) ポリフェニレンサルファイド微粒子分散液の製造方法
JPWO2016171121A1 (ja) 樹脂分散体、微粒子、及びそれらの製造方法
JPWO2015111546A1 (ja) ポリフェニレンスルフィド樹脂微粒子、その製造方法および分散液
JP2017186391A (ja) 電着塗料組成物、その製造方法及び電着塗膜
JP2015137324A (ja) 加熱濃縮によるポリフェニレンサルファイド樹脂微粒子の回収方法
JP2014159558A (ja) ポリアミドイミド樹脂微粒子分散液、およびポリアミドイミド樹脂微粒子分散液の製造方法
JP2016000841A (ja) 精製されたナノ金属粒子水性分散液の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16796250

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20177029512

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2017519082

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15574241

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE