WO2016185827A1 - 電子部品、接着シート及び電子部品の製造方法 - Google Patents

電子部品、接着シート及び電子部品の製造方法 Download PDF

Info

Publication number
WO2016185827A1
WO2016185827A1 PCT/JP2016/061523 JP2016061523W WO2016185827A1 WO 2016185827 A1 WO2016185827 A1 WO 2016185827A1 JP 2016061523 W JP2016061523 W JP 2016061523W WO 2016185827 A1 WO2016185827 A1 WO 2016185827A1
Authority
WO
WIPO (PCT)
Prior art keywords
conductive
adhesive layer
printed wiring
wiring board
flexible printed
Prior art date
Application number
PCT/JP2016/061523
Other languages
English (en)
French (fr)
Inventor
佳世 橋爪
山本 正道
淑文 内田
聡志 木谷
Original Assignee
住友電気工業株式会社
住友電工プリントサーキット株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友電気工業株式会社, 住友電工プリントサーキット株式会社 filed Critical 住友電気工業株式会社
Priority to CN201680028825.1A priority Critical patent/CN107615892A/zh
Publication of WO2016185827A1 publication Critical patent/WO2016185827A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/18Printed circuits structurally associated with non-printed electric components
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/30Assembling printed circuits with electric components, e.g. with resistor
    • H05K3/32Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/14Structure, shape, material or disposition of the bump connectors prior to the connecting process of a plurality of bump connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation

Definitions

  • the present invention relates to an electronic component, an adhesive sheet, and an electronic component manufacturing method.
  • a reinforcing plate is partially attached to the surface of the flexible printed wiring board opposite to the component mounting surface, etc., in order to compensate for the strength reduction of the flexible printed wiring board due to the reduction in thickness.
  • the reinforcing plate a metal plate such as stainless steel is generally used.
  • a flexible printed wiring board has been developed in which the grounding circuit of the flexible printed wiring board is electrically connected to the metal reinforcing board so that the reinforcing board has a shielding function against electromagnetic noise.
  • conductive bonding including a bump formed of a conductive paste and an adhesive filled around the bump is used.
  • a method of adhering a reinforcing plate to a flexible printed wiring board by using a layer has been proposed (see JP-A-2015-23065).
  • the degree of integration is increased by downsizing various electronic devices, and more elements are mounted in a narrow area. Therefore, there is a possibility that the element itself may be damaged due to a temperature rise due to heat generation of each element, and a heat radiating member (heat sink) such as an aluminum radiating fin is attached to a surface opposite to the component mounting surface for the purpose of suppressing the temperature rise.
  • heat sink heat radiating member
  • the above-mentioned electrically conductive adhesive and thermally conductive adhesive are used for electric energy or between a flexible printed wiring board and a shield / reinforcement plate or heat radiating member (collectively referred to as a conductive plate) adhered to the flexible printed wiring board. It includes particles that conduct these energies so that the difference in thermal energy is reduced. Moreover, metal particles or ceramic particles are preferably used as such conductive particles. Therefore, the above-mentioned proposals for the electrically conductive adhesive and the thermally conductive adhesive optimize the particles according to the type of energy to be conducted, and are not different from each other in the technical field.
  • a flexible printed wiring board having a cover lay an opening is usually formed in the cover lay so as to expose the ground of the conductive pattern in a conductive region connecting conductive plates such as a reinforcing plate and a heat member.
  • a flexible printed wiring board in which a conductive plate is bonded by an adhesive layer having such electrically conductive bumps may be heated for solder reflow or the like when other elements are mounted.
  • the present invention has been made in view of the above disadvantages, and has a relatively reliable electrical or thermal connection between a flexible printed wiring board and a conductive plate, an electronic component, an adhesive sheet, and an electronic component manufacturing method. It is an issue to provide.
  • An electronic component which has been made to solve the above problems, includes a flexible printed wiring board having a conductive pattern and at least one conductive region of the flexible printed wiring board where the conductive pattern is exposed.
  • One or a plurality of conductive plates to be overlaid and one or a plurality of adhesive regions between the flexible printed wiring board and the conductive plates are filled, and at least a thickness direction electric conductivity is provided between the conductive regions and the conductive plates.
  • An adhesive sheet according to another aspect of the present invention made to solve the above problems includes a release film and a conductive adhesive layer laminated on one or a plurality of adhesive regions on the surface of the release film.
  • the conductive adhesive layer adheres the flexible printed wiring board and the conductive board facing each other, and the conductive pattern of the flexible printed wiring board is electrically conductive at least in the thickness direction between the conductive area exposed on the opposing surface and the conductive board. 1 or a plurality of bumps, wherein the conductive adhesive layer has electrical conductivity or thermal conductivity at least in the thickness direction for each conductive region.
  • an adhesive layer filled around the plurality of bumps, and the shortest distance between the one or more bumps and the outer edge of the adhesion region including the bumps is 2.4 m or less. .
  • the electrical or thermal connection between the flexible printed wiring board and the conductive plate is relatively reliable. If the adhesive sheet which concerns on 1 aspect of this invention is used, the electrical or thermal connection with the flexible printed wiring board of an electronic component and a conductive board can be made comparatively reliable.
  • FIG. 1 is a schematic cross-sectional view in the thickness direction of an electronic component according to an embodiment of the present invention.
  • FIG. 2 is a schematic cross-sectional view taken along line AA of the electronic component in FIG. 3A is a schematic partially enlarged plan view showing an alternative shape of a bump of the electronic component in FIG. 3B is a schematic partially enlarged plan view showing an alternative shape different from that of FIG. 3A of the bump of the electronic component of FIG.
  • FIG. 3C is a schematic partially enlarged plan view showing an alternative shape of the bump of the electronic component of FIG. 1 different from those of FIGS. 3A and 3B.
  • 3D is a schematic partial enlarged plan view showing an alternative shape different from that of FIGS.
  • FIG. 3E is a schematic partial enlarged plan view showing an alternative shape of the bump of the electronic component of FIG. 1 different from that of FIGS. 3A, 3B, 3C, and 3D.
  • FIG. 4 is a schematic cross-sectional view in the thickness direction of the adhesive sheet of one embodiment of the present invention.
  • FIG. 5 is a schematic cross-sectional view in the thickness direction of an electronic component of an embodiment different from FIG. 1 of the present invention.
  • FIG. 6 is a schematic diagram showing a cross section in the thickness direction of the conductive adhesive layer on the conductive plate side of the electronic component of FIG. 5 and a plan view of the element and its vicinity.
  • An electronic component includes a flexible printed wiring board having a conductive pattern, and one or a plurality of conductive printed wiring boards that are superimposed on one or more conductive regions where at least the conductive pattern is exposed.
  • the conductive plate and one or a plurality of adhesive regions between the flexible printed wiring board and the conductive plate are filled, and the conductive region and the conductive plate have electrical conductivity or thermal conductivity at least in the thickness direction.
  • An electronic component comprising a conductive adhesive layer, wherein the conductive adhesive layer has at least one or a plurality of bumps having electrical conductivity or thermal conductivity in the thickness direction for each of the conductive regions, An adhesive layer filled around the plurality of bumps, and a minimum distance of 2.4 m between the one or more bumps and an outer edge of the adhesion region including the bumps Less.
  • the conductive adhesive layer is filled around each of the conductive regions with one or a plurality of bumps having electrical conductivity or thermal conductivity at least in the thickness direction, and around the one or more bumps.
  • the shortest distance between the one or the plurality of bumps and the outer edge of the adhesive region including the adhesive layer is 2.4 mm or less.
  • Each conductive region may have at least one bump disposed so as to bridge between the outer edge of the adhesion region and the outer edge of the conductive region.
  • the at least one bump may be arranged side by side on a single line connecting the outer edge of the conductive region and the adhesion region, and the non-existing portion of the bump on the single line
  • the minimum value of the total length is preferably 2.4 mm or less.
  • Each conductive region may have at least one band-like bump in a plan view arranged so as to bridge between the opposing outer edges of the adhesion region.
  • the occupation area ratio of the one or more bumps in the adhesion region is preferably 0.1% or more and 30% or less. Since the occupation area ratio of one or a plurality of bumps in the adhesion region is within the above range, the connection between the flexible printed wiring board and the conductive board by the conductive adhesive layer can be ensured while ensuring the release of water vapor. .
  • the central vertical cross-sectional shape of the bump may be trapezoidal.
  • the adhesive covers the inclined side of the trapezoid, so that the bump can be prevented from falling off the conductive adhesive layer in the manufacturing process.
  • the conductive adhesive layer is pressure-bonded to a member to be bonded (flexible printed wiring board or conductive plate)
  • the pressure on the side where the bump width is small becomes high, so the adhesion is low.
  • the flexible printed wiring board may further include an insulating layer having one or more openings that define the one or more conductive regions.
  • the flexible printed wiring board can further protect the conductive pattern other than the conductive region by further including an insulating layer having one or more openings that define the one or more conductive regions, and the conductive pattern in the conductive region of the conductive pattern.
  • a conductive plate can be connected via a conductive adhesive layer.
  • the average height of the bumps in the conductive region is preferably 0.3 times or more and 2.2 times or less the average thickness of the insulating layer.
  • the adhesive sheet which concerns on another aspect of this invention is equipped with the release adhesive film and the conductive adhesive layer laminated
  • This conductive adhesive layer However, the flexible printed wiring board and the conductive plate that are opposed to each other are bonded together, and the conductive pattern of the flexible printed wiring board is exposed to the opposing surface and the conductive plate is electrically conductive or thermally conductive at least in the thickness direction. 1 or a plurality of bumps, wherein the conductive adhesive layer has electrical conductivity or thermal conductivity at least in the thickness direction, and the one or the plurality of bumps.
  • the adhesive layer is filled around, and the shortest distance between the one or more bumps and the outer edge of the adhesive region in which the bumps are included is 2.4 mm or less.
  • the conductive adhesive layer is filled in each conductive region with one or a plurality of bumps having electrical conductivity or thermal conductivity at least in the thickness direction, and around the one or more bumps.
  • the shortest distance between the one or the plurality of bumps and the outer edge of the adhesive region including the adhesive layer is 2.4 mm or less.
  • a method of manufacturing an electronic component according to still another aspect of the present invention includes a flexible printed wiring board having a conductive pattern and at least one conductive region of the flexible printed wiring board where the conductive pattern is exposed.
  • One or a plurality of conductive plates, and one or a plurality of adhesion regions among the flexible printed wiring board and the conductive plates are filled, and at least between the conductive regions and the conductive plates is electrically conductive in the thickness direction or
  • a method of manufacturing an electronic component comprising a conductive adhesive layer having thermal conductivity, wherein the adhesive sheet is used, and the conductive adhesive layer is provided on one or a plurality of adhesive regions of the flexible printed wiring board and the conductive plate.
  • the flexible printed wiring board and the conductive plate are electrically and thermally relatively reliably connected by the conductive adhesive layer by using the electronic component manufacturing method. Electronic parts can be manufactured.
  • bridging means that bumps exist continuously or intermittently on a line connecting two points, and the proportion of bumps on this line is preferably 50% or more, more preferably It means 70% or more.
  • Conductive plate means an electrically conductive or thermally conductive plate-like member laminated on a flexible printed wiring board, and a reinforcing plate for reinforcing the flexible printed wiring board or heat dissipation of the flexible printed wiring board. It is a concept including a plate-shaped portion such as a heat sink for increasing heat and an element for releasing heat from an element mounted on the flexible printed wiring board to the flexible printed wiring board.
  • Bump refers to a bump or protrusion.
  • the “occupied area ratio” of the bump in the adhesion region is a numerical value obtained by dividing the sum of the exposed area of the bump on the surface obtained by cutting the conductive adhesive layer at the center in the thickness direction by the cross-sectional area of the conductive adhesive layer.
  • the “center vertical cross-sectional shape” of the bump means a cross-sectional shape in the short direction of the bump in a plan view passing through the center of gravity of the bump.
  • the electronic component 1 shown in FIGS. 1 and 2 is filled in a flexible printed wiring board 2, one conductive board 3 superimposed on the flexible printed wiring board 2, and an adhesive region Ad between the flexible printed wiring board 2 and the conductive board 3. 1 conductive adhesive layer 4.
  • the flexible printed wiring board 2 includes a base film 5, a conductive pattern 6 laminated on the surface side of the base film 5, and a coverlay (insulating layer) 7 laminated on the surface of the conductive pattern 6.
  • the cover lay 7 has an opening 8 that exposes at least a part of the conductive pattern 6.
  • a region exposed from the opening 8 of the conductive pattern 6 is a conductive region Ac that is electrically connected to the conductive plate 3 through the conductive adhesive layer 4.
  • the coverlay 7 has one opening 8 that defines a conductive region Ac. That is, the coverlay 7 can protect the conductive pattern 6 other than the conductive region Ac, and can connect the conductive plate 3 to the conductive pattern 6 in the conductive region Ac through the conductive adhesive layer 4 through the opening 8. enable.
  • the conductive plate 3 is a plate-like member having electrical conductivity.
  • the conductive plate 3 is a reinforcing plate for reinforcing the flexible printed wiring board 2 and is also used as a shield for providing electromagnetic shielding.
  • the conductive plate 3 may be made of any material having electrical conductivity and strength, but a metal is preferably used for the conductive plate 3. Such a metal is not particularly limited, and examples of the metal used for the conductive plate 3 include stainless steel and aluminum.
  • the conductive adhesive layer 4 bonds the flexible printed wiring board 2 and the conductive board 3 facing the front side and the back side to each other, and the conductive pattern 6 is exposed facing the conductive board 3 in the flexible printed wiring board 2.
  • This is a layer formed between the conductive region Ac and the conductive plate 3 for the purpose of developing electrical conductivity at least in the thickness direction.
  • the conductive adhesive layer 4 has a plurality of bumps 9 having electrical conductivity at least in the thickness direction in the conductive region Ac, and an adhesive layer 10 filled in the adhesive region Ad around the bumps 9. Thereby, the conductive adhesive layer 4 can conduct electric energy at least in a direction perpendicular to the surface (thickness direction) by the bumps 9 and has adhesiveness by the adhesive layer 10.
  • One or a plurality of bumps 9 has at least one bump 9a (hereinafter sometimes referred to as a discharge bump) extending to the vicinity of the outer edge of the adhesive region Ad (outer edge of the adhesive layer 10) in plan view in the conductive region Ac.
  • the discharge bump 9a is disposed so as to bridge at least the outer edge of the adhesion region Ad and the outer edge of the conductive region Ac.
  • the discharge bump 9a is formed in a band shape in a plan view and is disposed so as to bridge between the opposing outer edges of the adhesion region Ad.
  • the conductive adhesive layer 4 has at least one discharge bump 9a in a band shape in a plan view arranged so as to bridge between the opposing outer edges of the adhesive region Ad in the conductive region Ac.
  • the electronic component 1 can be heated for the purpose of solder reflow or the like when mounting elements during manufacturing.
  • the coverlay 7 and the like contain a very small amount of moisture, when the flexible printed wiring board 2 is heated, the moisture is evaporated and water vapor is generated. Accordingly, when the electronic component 1 is manufactured, water vapor is generated between the flexible printed wiring board 2 and the conductive adhesive layer 4, and the flexible printed wiring board 2 swells in a dome shape and tries to peel off from the conductive adhesive layer 4. To do.
  • the discharge bumps 9a extending to the vicinity of the outer edge of the adhesion region Ad form a water vapor channel along the surface, and guide the water vapor to the vicinity of the outer edge of the adhesion region Ad.
  • the water vapor guided to the vicinity of the outer edge of the adhesion area Ad easily penetrates the outer adhesive layer 10 and leaks out of the electronic component 1 due to the pressure.
  • water vapor generated during manufacture is easily released to the outside, so that the electrical connection between the conductive pattern 6 and the conductive adhesive layer 4, and thus between the conductive pattern 6 and the metal layer 3.
  • the electrical connection is relatively reliable.
  • the conductive pattern 6 and the conductive pattern 6 can be obtained without incurring costs such as heating the flexible printed wiring board 2 in advance to remove moisture.
  • the reliability of the electrical connection with the metal layer 3 is improved.
  • the conductive adhesive layer 4 has the release bumps 9a disposed so as to bridge between the opposing outer edges of the adhesive region Ad, water vapor can be discharged from the conductive region Ac more efficiently to the outside.
  • the electrical connection between the conductive pattern 6 and the metal layer 3 can be made more reliable.
  • the upper limit of the shortest distance D between one or a plurality of bumps 9 and the outer edge of the adhesive region Ad including the bump 9, that is, the minimum value of the distance from the end of the emission bump 9a to the outer edge of the adhesive region Ad is 2.4 mm.
  • 1.2 mm is more preferable, and 0.8 mm is more preferable.
  • the lower limit of the shortest distance D between one or a plurality of bumps 9 and the outer edge of the adhesion region Ad including the bumps 9 is zero.
  • the electrical resistance between the conductive pattern 6 of the flexible printed wiring board 2 and the conductive plate 3 is preferably 1 ⁇ or less.
  • the base film 5 is composed of a sheet-like member having flexibility and electrical insulation. Specifically, a resin film can be adopted as the base film 5. As a material for this resin film, for example, polyimide, polyethylene terephthalate or the like is preferably used.
  • the lower limit of the average thickness of the base film 5 is preferably 5 ⁇ m and more preferably 10 ⁇ m.
  • the upper limit of the average thickness of the base film 5 is preferably 150 ⁇ m, and more preferably 50 ⁇ m.
  • the average thickness of the base film 5 is less than the above lower limit, the strength of the base film 5 may be insufficient.
  • the electronic component 1 may be unnecessarily thick.
  • the conductive pattern 6 is formed in a desired planar shape (pattern) by etching a metal layer laminated on the base film 5.
  • the conductive pattern 6 can be formed of a conductive material, but is generally formed of a metal such as copper.
  • the method for laminating the metal layer on the base film 5 is not particularly limited.
  • a method of laminating the metal layer on the base film 5 for example, an adhesive method in which a metal foil is bonded with an adhesive, a cast method in which a resin composition that is a material of the base film 5 is applied on the metal foil, a base by sputtering or vapor deposition method.
  • a sputtering / plating method in which a metal layer is formed by electrolytic plating on a thin conductive layer (seed layer) having a thickness of several nanometers formed on the film 5, a laminating method in which a metal foil is attached by hot pressing, or the like can be used. .
  • the lower limit of the average thickness of the conductive pattern 6 is preferably 2 ⁇ m, and more preferably 5 ⁇ m.
  • the upper limit of the average thickness of the conductive pattern 6 is preferably 50 ⁇ m, and more preferably 20 ⁇ m.
  • the electrical conductivity may be insufficient.
  • the electronic component 1 may be unnecessarily thick.
  • the coverlay 7 is a film that has an insulating function and an adhesive function and is laminated on the surfaces of the conductive pattern 6 and the base film 5.
  • a two-layer film having an insulating layer and an adhesive layer can be used.
  • the material of the insulating layer is not particularly limited, but is the same as the material of the resin film constituting the base film 5. be able to.
  • the lower limit of the average thickness of the insulating layer of the coverlay 7 is preferably 5 ⁇ m and more preferably 10 ⁇ m.
  • the upper limit of the average thickness of the insulating layer of the coverlay 7 is preferably 60 ⁇ m, and more preferably 40 ⁇ m. If the average thickness of the insulating layer of the cover lay 7 is less than the lower limit, the insulating property of the cover lay 7 may be insufficient. On the other hand, when the average thickness of the insulating layer of the coverlay 7 exceeds the upper limit, the flexibility of the flexible printed wiring board 2 may be insufficient.
  • the adhesive that constitutes the adhesive layer is not particularly limited, but has excellent flexibility and heat resistance.
  • examples of such adhesives include various resin adhesives such as nylon resin adhesives, epoxy resin adhesives, butyral resin adhesives, and acrylic resin adhesives.
  • the average thickness of the adhesive layer of the coverlay 7 is not particularly limited, but is preferably 20 ⁇ m or more and 30 ⁇ m or less. When the average thickness of the adhesive layer of the cover lay 7 is less than the above lower limit, the adhesiveness may be insufficient, while when the average thickness of the adhesive layer of the cover lay 7 exceeds the above upper limit, There exists a possibility that the flexibility of the flexible printed wiring board 2 may become inadequate.
  • the conductive region Ac is formed in a region facing one conductive plate 3.
  • the conductive pattern 6 exposed in the conductive region Ac is preferably a ground wiring. As a result, the conductive plate 3 is grounded, and the shield function of the conductive plate 3 against electromagnetic wave noise can be enhanced.
  • the opening 8 of the cover lay 7 that defines the conductive region Ac may be formed before the cover lay 7 is laminated on the conductive pattern 6 and the base film 5, and the cover lay 7 is laminated on the conductive pattern 6 and the base film 5. You may form later with a laser etc. Further, the planar shape and size of the opening 8 that defines the conductive region Ac are not particularly limited, and the planar shape and size that can mechanically and electrically connect the exposed portion of the conductive pattern 6 to the conductive adhesive layer 4. I just need it. The planar shape of the opening 8 can be, for example, a circle or a rectangle.
  • the plurality of bumps 9 contain electrically conductive particles and their binders. These bumps 9 are disposed in the conductive adhesive layer 4 so as to exist at least partially in the conductive region Ac of the flexible printed wiring board 2.
  • the plurality of bumps 9 only need to include at least one discharge bump 9a extending to the vicinity of the outer edge of the adhesion region Ad.
  • the planar shape of the plurality of bumps 9 is not particularly limited, but may be a polygonal shape, a cross shape, a star shape, etc. in addition to a circular shape and a belt shape.
  • the arrangement pattern of the bumps 9 in a plan view can be appropriately designed according to the area or shape of the conductive region Ac, for example, a stripe shape in which a plurality of belt-like bumps 9 shown in FIG. A grid in which a plurality of belt-like bumps 9 shown in FIG. 3B intersect, a concentric circle made up of a plurality of ring-like bumps 9 shown in FIG.
  • each of the arrangement patterns has a region where the bump 9 is not formed in the conductive region Ac in plan view.
  • the discharge bump 9 a may have a distance of 0 mm from the outer edge of the adhesive region Ad, that is, its end portion may be exposed or protruded from the end surface of the adhesive layer 10.
  • the emission bumps 9a are arranged on a single line connecting at least a part between the outer edge of the conductive region Ac and the outer edge of the adhesion region Ad, and are dotted or intermittent in a plan view. It may be a row of bumps 9 disposed on the surface.
  • the water vapor is finally guided to the discharge bump 9a in order from the bump 9 in the conductive region Ac to the adjacent bump 9, and the water vapor is discharged to the outside from the discharge bump 9a.
  • the minimum value of the total length of the nonexistent portions of the emission bumps 9a on one line connecting the outer edge of the conductive region Ac and the outer edge of the adhesion region Ad that is, the shortest distance between the bumps 9 of the row-like emission bumps 9a.
  • the upper limit of the minimum value of the sum of the total of the above and the shortest distance from the end of the release bump 9a to the outer edge of the adhesion region Ad is preferably 2.4 mm, more preferably 1.2 mm, and further 0.8 mm preferable.
  • the strip-like or row-like emission bumps 9a are not limited to those extending linearly from the outer edge of the conductive region Ac to the vicinity of the outer edge of the adhesion region Ad, and may be curved or bent. Further, the emission bump 9a may change in width in the middle.
  • the lower limit of the occupied area ratio of the bumps 9 in the adhesion region Ad is preferably 0.1%, and more preferably 1%.
  • the upper limit of the occupied area ratio of the bumps 9 in the adhesion region Ad is preferably 30%, and more preferably 25%.
  • the conductive conductivity of the conductive adhesive layer 4 may be insufficient.
  • the occupation area ratio of the bumps 9 in the adhesion region Ad exceeds the upper limit, the ratio of the adhesive layer 10 is decreased and the mechanical adhesion strength of the conductive adhesion layer 4 may be reduced.
  • the lower limit of the occupied area ratio of the bumps 9 in the conductive region Ac is preferably 1% and more preferably 5%.
  • the upper limit of the occupied area ratio of the bumps 9 in the conductive region Ac is preferably 80% and more preferably 60%.
  • the occupied area ratio of the bumps 9 in the conductive region Ac is less than the lower limit, the electrical conductivity of the conductive adhesive layer 4 may be insufficient.
  • the occupied area ratio of the bumps 9 in the conductive region Ac exceeds the upper limit, the ratio of the adhesive layer 10 is decreased and the mechanical adhesive strength of the conductive adhesive layer 4 may be reduced.
  • the plurality of bumps 9 are preferably arranged in a state in which the periphery is substantially surrounded by the adhesive layer 10 in plan view. That is, as shown in FIG. 2, the conductive adhesive layer 4 is disposed outside the conductive region Ac so that the adhesive layer 10 is present without the other bumps 9 except for the emission bumps 9a. It is preferable.
  • the lower limit of the occupied area ratio of the bumps 9 in the adhesion region Ad outside the conductive region Ac is preferably 0.01%, and more preferably 0.05%.
  • the upper limit of the occupied area ratio of the bumps 9 in the adhesion region Ad outside the conductive region Ac is preferably 20%, and more preferably 15%.
  • the central vertical cross-sectional shape of the bump 9 is trapezoidal. Specifically, the central vertical cross-sectional shape of the bump 9 has a bottom side (lower base) in contact with the conductive plate 3 and a top side (upper base) exposed on the surface of the conductive adhesive layer 4. The width decreases from the top toward the top.
  • the central longitudinal cross-sectional shape of the bump 9 is preferably a symmetrical trapezoidal shape, and the bottom and top are preferably parallel to the surface direction of the conductive adhesive layer 4.
  • An adhesive layer 10 is laminated on the inclined side (leg) in the central longitudinal section of the bump 9.
  • the bumps 9 may be arranged such that the trapezoidal top side is located on the flexible printed wiring board 2 side, or may be arranged such that the trapezoidal top side is located on the conductive plate 3 side. Since the contact area on the top side of the trapezoidal shape of the bump 9 is relatively smaller than the contact area on the bottom side, the bump 9 should be arranged so that the top side is located on the member side where the adhesive pressure is desired to be increased. Thus, the adhesion with this member can be enhanced.
  • the upper limit of the ratio of the average length of the top to the average length of the bottom of the bump 9 is preferably 0.95, and more preferably 0.8. If the ratio of the average length of the top to the average length of the base exceeds the above upper limit, the effect of preventing the bumps 9 from dropping out may not be sufficiently obtained.
  • the lower limit of the ratio of the average length of the top side to the average length of the bottom side of the bump 9 is preferably 0.2, and more preferably 0.4.
  • the ratio of the average length of the top side to the average length of the bottom side is less than the lower limit, the average length of the bottom side becomes too large, and the filling amount of the adhesive filling the periphery of the bump 9 is reduced, resulting in a mechanical problem.
  • the adhesive strength may be reduced, and the average length of the top side may be too small, and the electrical conductivity between the adherends may be reduced.
  • the average length of the bottom side of the bump 9 can be appropriately designed according to the bonding area of the flexible printed wiring board 2 and the conductive plate 3, and can be set to 50 ⁇ m or more and 2000 ⁇ m or less, for example.
  • the average length of the top sides of the bumps 9 can be, for example, 10 ⁇ m or more and 1900 ⁇ m or less.
  • the average interval (distance between the bottom sides) between the bumps 9 can be set to, for example, 50 ⁇ m or more and 2000 ⁇ m or less.
  • the average length of the base of the bump 9 and the average length of the top are the average value of the base length and the average of the top length in the central vertical cross-sectional shape in which the base length of each bump 9 is minimum, respectively.
  • the average interval of the bumps 9 means an average value of the minimum distance (minimum value of the gap) between the adjacent bumps 9.
  • the lower limit of the average height of the bumps 9 is preferably 0.3 times the average thickness of the coverlay 7, more preferably 0.7 times, and even more preferably 1 time.
  • the upper limit of the average height of the bumps 9 is preferably 2.2 times the average thickness of the coverlay 7 and more preferably 2 times.
  • the bumps 9 may not be able to electrically connect the conductive pattern 6 and the conductive plate 3.
  • the thickness of the conductive adhesive layer 4 may be increased more than necessary.
  • Examples of the material of the electrically conductive particles contained in the bump 9 include silver, platinum, gold, copper, nickel, palladium, and solder. As the electrically conductive particles, these can be used alone or in admixture of two or more. Among these, silver powder, silver-coated copper powder, solder powder and the like exhibiting excellent electrical conductivity are preferable.
  • the lower limit of the content of the electrically conductive particles in the bump 9 is preferably 20% by volume, more preferably 30% by volume.
  • the upper limit of the content of the conductive particles in the bump 9 is preferably 75% by volume, and more preferably 60% by volume.
  • binder examples include an epoxy resin, a phenol resin, a polyester, a polyurethane, an acrylic resin, a melamine resin, a polyimide, and a polyamideimide, and one or more of these can be used.
  • a thermosetting resin capable of improving the heat resistance of the bump 9 is preferable, and an epoxy resin is particularly preferable.
  • Examples of the epoxy resin used as the binder include bisphenol A type, bisphenol F type, bisphenol S type, bisphenol AD type, copolymerized type of bisphenol A type and bisphenol F type, naphthalene type, novolak type, biphenyl type, dicyclopentadiene.
  • Examples thereof include an epoxy resin such as a mold and a phenoxy resin which is a polymer epoxy resin.
  • the binder can be used by dissolving in a solvent.
  • the solvent include ester-based, ether-based, ketone-based, ether-ester-based, alcohol-based, hydrocarbon-based, and amine-based organic solvents, and one or more of these are used. be able to.
  • a high boiling point solvent excellent in printability specifically, carbitol acetate or butyl carbitol. It is preferable to use acetate or the like.
  • the adhesive forming the adhesive layer 10 is not particularly limited as long as it has adhesiveness.
  • the adhesive that forms the adhesive layer 10 include an epoxy resin, polyimide, polyester, phenol resin, polyurethane, acrylic resin, melamine resin, and polyamideimide.
  • a thermosetting resin is used from the viewpoint of heat resistance. It is preferable to use an epoxy resin or an acrylic resin from the viewpoint of adhesiveness to the flexible printed wiring board 2, and it is more preferable to use the same kind of adhesive as the conductive slurry for forming the bumps 9.
  • the above-mentioned solvent, curing agent, auxiliary agent and the like can be appropriately added to the adhesive layer 10. Further, in order to improve the electrical conductivity of the conductive adhesive layer 4, electrically conductive particles can be added to the adhesive layer 10.
  • the upper limit of the amount of electrically conductive particles added to the adhesive layer 10 is preferably 20% by volume, more preferably 10% by volume, and even more preferably 5% by volume. When the addition amount of the conductive particles in the adhesive layer 10 exceeds the upper limit, the adhesiveness of the adhesive layer 10 may be reduced due to an increase in impurities in the adhesive layer 10.
  • the lower limit of the average thickness outside the conductive region Ac of the adhesive layer 10 is preferably 10 ⁇ m, and more preferably 15 ⁇ m.
  • the upper limit of the average thickness outside the conductive region Ac of the adhesive layer 10 is preferably 40 ⁇ m, more preferably 35 ⁇ m, and even more preferably 30 ⁇ m. If the average thickness of the adhesive layer 10 is less than the lower limit, the conductive adhesive layer 4 may not exhibit sufficient mechanical adhesive strength and electrical connectivity. When the average thickness of the adhesive layer 10 exceeds the above upper limit, the thickness of the electronic component formed by bonding the flexible printed wiring board 2 and the conductive plate 3 using the conductive adhesive layer 4 is larger than necessary. There is a risk.
  • the adhesive sheet 11 of FIG. 4 is used for manufacturing the electronic component 1 and is itself an embodiment of the present invention.
  • the adhesive sheet 11 includes a release film 12 and a conductive adhesive layer 4 laminated on one adhesive region Ad on the surface of the release film 12.
  • the adhesion area Ad is the same area as the adhesion area Ad of the electronic component 1 of FIG. 1 manufactured using the adhesive sheet 11 as described later.
  • the conductive adhesive layer 4 of the adhesive sheet 11 adheres the flexible printed wiring board 2 and the conductive board 3 that face each other, and the conductive region of the flexible printed wiring board 2 that is exposed so that the conductive pattern 6 faces the conductive board 3. Electrical conductivity is developed at least in the thickness direction between Ac and the conductive plate 3. That is, the above-described electronic component 1 can be obtained by peeling the conductive adhesive layer 4 of the adhesive sheet 11 from the release film 12 and sandwiching it between the flexible printed wiring board 2 and the conductive board 3.
  • the conductive adhesive layer 4 of the adhesive sheet 11 has electrical conductivity at least in the thickness direction in the conductive region Ac (the same region as the conductive region Ac of the electronic component 1 of FIG. 1 manufactured using the adhesive sheet 11).
  • a plurality of bumps 9 and an adhesive layer 10 filled around the plurality of bumps 9 are provided.
  • the shortest distance between the plurality of bumps 9 and the outer edge of the adhesion region Ad including the bumps 9 is 2.4 mm or less.
  • the conductive adhesive layer 4 of the adhesive sheet 11 is the conductive adhesive layer 4 of the electronic component 1, the same components are denoted by the same reference numerals and redundant description is omitted.
  • the conductive adhesive layer 4 is compressed in the thickness direction as a whole, particularly outside the conductive region Ac, but the conductive adhesive layer 4 of the adhesive sheet 11 is compressed. Therefore, the bump 9 and the adhesive layer 10 of the adhesive sheet 11 are not compressed.
  • the lower limit of the average thickness of the adhesive layer 10 in the adhesive sheet 11 is preferably 15 ⁇ m, and more preferably 20 ⁇ m.
  • the upper limit of the average thickness of the adhesive layer 10 in the adhesive sheet 11 is preferably 60 ⁇ m, and more preferably 50 ⁇ m.
  • the conductive adhesive layer 4 may not exhibit sufficient mechanical adhesive strength and electrical connectivity.
  • an electronic component configured by bonding the flexible printed wiring board 2 and the conductive plate 3 using the conductive adhesive layer 4 is used. The thickness may be larger than necessary.
  • the average height of the bumps 9 is preferably equal to or greater than the average thickness of the adhesive layer 10.
  • the bump 9 can be exposed or protruded on the surface of the adhesive layer 10.
  • the end face on the front surface side of the bump 9 is surely brought into contact with the conductive pattern 6 or the conductive plate 3 of the flexible printed wiring board 2, so that the electrical conductivity between the conductive pattern 6 and the conductive plate 3 by the conductive adhesive layer 4 is increased. Can be improved.
  • the upper limit of the protruding length of the bump 9 (the average height of the bump 9 minus the average thickness of the adhesive layer 10) is preferably 100 ⁇ m, more preferably 80 ⁇ m.
  • the adhesive area between the adhesive layer 10, the flexible printed wiring board 2 and the conductive board 3 may be reduced, and the mechanical adhesive strength may be reduced.
  • the material constituting the release film 12 examples include synthetic resin films such as polyethylene, polypropylene, ethylene-vinyl acetate copolymer, ethylene-vinyl alcohol copolymer, polyethylene terephthalate, rubber sheet, paper, cloth, nonwoven fabric, and net.
  • a suitable film-like body comprising a foamed sheet, a metal foil, a laminate of these, or the like can be used.
  • a pigment may be mix
  • the surface of the release film 12 is subjected to release treatment such as silicone treatment, long-chain alkyl treatment, and fluorine treatment as necessary.
  • release treatment such as silicone treatment, long-chain alkyl treatment, and fluorine treatment as necessary.
  • the peelability of the release film 12 can be controlled by adjusting the type of drug used for the peeling treatment or the coating amount thereof.
  • the adhesive sheet 11 includes the conductive adhesive layer 4 on the release film 12. Therefore, if the adhesive sheet 11 is used, the flexible printed wiring board 2 and the conductive plate 3 can be electrically and relatively reliably connected by the conductive adhesive layer 4, and the electronic component 1 can be easily manufactured.
  • the adhesive sheet 11 cures the conductive slurry laminated on the surface of the release film 12 and the step of selectively laminating a conductive slurry having electrical conductivity on the surface of the release film 12 (conductive slurry lamination step). Then, it can be manufactured by a method including a step of forming the bump 9 (bump forming step) and a step of filling the adhesive around the bump 9 to form the adhesive layer 10 (adhesive layer forming step). it can.
  • a conductive slurry containing electrically conductive particles and a binder thereof is selectively laminated so as to have a desired planar shape by printing.
  • the conductive slurry printing method is not particularly limited, and for example, screen printing, gravure printing, offset printing, flexographic printing, inkjet printing, dispenser printing, and the like can be used as the conductive slurry printing method.
  • the planar shape of the conductive slurry to be laminated is a shape corresponding to the plurality of bumps 9. That is, the conductive slurry is mainly laminated in the conductive region Ac, and a part of the conductive slurry extends from the conductive region Ac to the vicinity of the outer edge of the adhesion region Ad in order to form the discharge bump 9a.
  • the conductive slurry laminated on the release film 12 is a composition having electrical conductivity by including electrically conductive particles constituting the bump 9 and a binder.
  • This conductive slurry only needs to have a suitable fluidity capable of forming a pattern by a printing technique in a state where the binder is not cured and can be cured in a bump forming process described later. Therefore, as the conductive slurry having electrical conductivity, for example, those commercially available under the names of conductive paste, conductive ink, conductive paint, conductive adhesive and the like can be used.
  • a curing agent can be added to the conductive slurry.
  • the curing agent include amine curing agents, polyaminoamide curing agents, acid and acid anhydride curing agents, basic active hydrogen compounds, tertiary aminos, and imidazoles.
  • auxiliary agents such as thickeners and leveling agents can be added to the conductive slurry.
  • a conductive slurry can be obtained by mixing each said component, for example with a three roll, a rotary stirring deaerator, etc.
  • the conductive slurry is cured to form the bumps 9 by an appropriate method according to the type of binder of the conductive slurry laminated on the surface of the release film 12.
  • the binder is a thermosetting resin
  • the conductive slurry is cured by heating to form the bumps 9.
  • the solvent is evaporated in this bump forming step.
  • ⁇ Adhesive layer forming step> the adhesive is filled around the plurality of bumps 9 on the surface of the release film 12 to form the adhesive layer 10.
  • the filling of the adhesive is performed only in the adhesive region Ad with the flexible printed wiring board 2 or the conductive plate 3. Thereby, the bump 9 and the adhesive layer 10 constitute the conductive adhesive layer 4.
  • a printing method or a coating method can be used as a method for filling the adhesive in this step.
  • the printing method is not particularly limited, and for example, screen printing, gravure printing, offset printing, flexographic printing, inkjet printing, dispenser printing, or the like can be used.
  • the coating method is not particularly limited, and for example, knife coating, die coating, roll coating, or the like can be used as the coating method.
  • the method of manufacturing the electronic component 1 includes the step of laminating the conductive adhesive layer 4 on one adhesive region of the flexible printed wiring board 2 using the adhesive sheet 11 (conductive adhesive layer laminating step), and the release film 12.
  • the step of peeling release film peeling step
  • the step of laminating the conductive plate 3 on the exposed conductive adhesive layer 4 conductive plate laminating step
  • thermocompression bonding of the laminated flexible printed wiring board 2 and conductive plate 3 And a process (thermocompression process>).
  • the release film 12 is peeled from the conductive adhesive layer 4. Thereby, the surface of the conductive adhesive layer 4 is exposed.
  • the conductive plate lamination step the conductive plate 3 is laminated on the exposed surface of the conductive adhesive layer 4. As a result, the bump 9 and the conductive plate 3 come into contact with each other, and the bump 9 can conduct electricity between the conductive pattern 6 of the flexible printed wiring board 2 and the conductive plate 3.
  • thermocompression bonding step the laminate composed of the flexible printed wiring board 2, the conductive adhesive layer 4, and the conductive plate 3 is integrated by hot pressing.
  • water vapor generated from the flexible printed wiring board 2 by hot pressing is guided to the vicinity of the outer edge of the adhesive region Ad by the discharge bump 9a, and further passes through the adhesive layer 10 and is discharged to the outside.
  • the heating temperature of this hot press is preferably 120 ° C. or more and 200 ° C. or less, and the heating time is preferably 5 seconds or more and 60 minutes or less.
  • the heating method is not particularly limited, and for example, heating can be performed using a heating means such as an oven or a hot plate. Further, in order to improve the adhesiveness between the conductive pattern 6 and the conductive plate 3 and to ensure that they are brought into contact with the bump 9, the bump 9 and the adhesive layer 10 are connected to the flexible printed wiring board 2 and the conductive plate during heating. It is preferable to press by 3.
  • the electronic component 21 shown in FIGS. 5 and 6 includes a flexible printed wiring board 22, an element 23 mounted so as to be superposed on the surface side of the flexible printed wiring board 22, and an element 23 on the surface side of the flexible printed wiring board 22.
  • the heat sink 24 overlapped side by side and a plurality of conductive adhesive layers 25 filled between the flexible printed wiring board 22 and the element 23 and between the flexible printed wiring board 22 and the heat sink 24 are provided.
  • the flexible printed wiring board 22 includes a base film 26, a conductive pattern 27, and a cover lay (insulating layer) 28.
  • the conductive pattern 27 has a ground portion 27a formed between the region where the element 23 is mounted and the region where the heat sink 24 is bonded, and a plurality of wiring portions 27b.
  • the coverlay 28 has a plurality of openings 29 that define a plurality of conductive regions Ac through which the conductive pattern 27 is exposed toward the element 23 and the heat sink 24, respectively.
  • the materials and thicknesses of the base film 26, the conductive pattern 27, and the coverlay 28 of the electronic component 21 of FIGS. 5 and 6 are the same as those of the base film 5, the conductive pattern 6, and the coverlay 7 of the electronic component of FIGS. Therefore, redundant description is omitted.
  • the element 23 is a component that is connected to the conductive pattern 27 of the flexible printed wiring board 22 and becomes a component of an electric circuit.
  • the element 23 is disposed on the back surface and includes a conductive plate portion 23 a for transferring heat to the ground portion 27 a of the conductive pattern 27 and a plurality of leads 23 b connected to the wiring portion 27 b of the conductive pattern 27.
  • the conductive plate portion 23a of the element 23 is overlaid on one of a plurality of conductive regions where the conductive pattern 27 of the flexible printed wiring board 22 is exposed.
  • the heat sink 24 is a heat radiating member (heat sink) having a plurality of fins 24 b extending from the plate-like conductive plate portion 24 a laminated on the flexible printed wiring board 22 to the opposite side of the flexible printed wiring board 22.
  • the conductive plate portion 24a of the heat sink 24 is overlaid on one of a plurality of conductive regions where the conductive pattern 27 of the flexible printed wiring board 22 is exposed.
  • Any material may be used for forming the heat sink 24 as long as it has excellent thermal conductivity, but a metal is preferably used for the heat sink 24. Such a metal is not particularly limited, but aluminum is preferable as the metal forming the heat sink 24.
  • the conductive adhesive layer 25 adheres the flexible printed wiring board 22 and the element 23 or the heat sink 24 facing the front side and the back side to each other, and the ground portion 27a of the conductive pattern 27 of the flexible printed wiring board 22 is a heat sink. Thermal conductivity is developed at least in the thickness direction between the conductive region Ac exposed toward the conductive layer 24 and the conductive plate portion 23a of the element 23 or the conductive plate portion 24a of the heat sink 24.
  • the conductive adhesive layer 25 has, for each conductive region, a plurality of bumps 30 having thermal conductivity at least in the thickness direction, and an adhesive layer 31 filled around the bumps 30.
  • the plurality of bumps 30 of the conductive adhesive layer 25 include at least one emission bump 30a extending to the vicinity of the outer edge of the adhesive region Ad in plan view for each conductive region Ac.
  • the adhesive layer 31 is the same as the adhesive layer 10 in the conductive adhesive layer 4 of the electronic component 1 of FIGS.
  • the adhesive layer 31 has a notch 31a formed so as to expose the front end of the release bump 30a to the outer edge of the adhesive region Ad in a plan view. That is, the notch 31a reduces the shortest distance between the discharge bump 30a and the outer edge of the adhesive region Ad by denting the outer edge of the adhesive region Ad. Thereby, discharge
  • the bump 30 contains thermally conductive particles and a binder thereof.
  • the bumps 30 are the same as the bumps 9 in the conductive adhesive layer 4 of the electronic component 1 shown in FIGS. 1 and 2 except for the heat conductive particles. Therefore, overlapping description of the shape, arrangement, binder material, etc. Is omitted.
  • thermally conductive particles examples include aluminum nitride (AlN), silicon nitride (Si 3 N 4 ), alumina (Al 2 O 3 ), boron nitride (BN), and beryllium oxide (BeO). Etc.
  • AlN aluminum nitride
  • Si 3 N 4 silicon nitride
  • alumina Al 2 O 3
  • boron nitride BN
  • beryllium oxide BeO
  • Etc beryllium oxide
  • the material of the thermally conductive particles is preferably aluminum nitride or boron nitride.
  • a heat conductive particle you may use these individually or in combination of 2 or more types.
  • the lower limit of the average particle diameter of the heat conductive particles is preferably 2 ⁇ m, more preferably 3 ⁇ m, and even more preferably 5 ⁇ m, although it depends on the thickness of the conductive adhesive layer 5.
  • the upper limit of the average particle size of the heat conductive particles is preferably 30 ⁇ m, more preferably 20 ⁇ m, and even more preferably 15 ⁇ m.
  • the “average particle size” means a particle size in which the integrated amount is 50% by mass based on the integrated distribution obtained from the total particle mass under the sieve of each particle size obtained by the sieving method with respect to the particle group. .
  • the lower limit of the content of the heat conductive particles in the bump 30 is preferably 30% by volume, and more preferably 50% by volume.
  • the upper limit of the content of the heat conductive particles of the bump 30 is preferably 90% by volume, and more preferably 70% by volume.
  • the electronic component may combine the configuration of the first embodiment and the configuration of the second embodiment.
  • the electronic component may include one or more conductive adhesive layers having any number of thermal conductivities and one or more conductive adhesive layers having any number of electrical conductivities. Only one conductive adhesive layer having conductivity may be provided.
  • planar shapes of the flexible printed wiring board, the conductive adhesive layer, and the conductive plate in the electronic component are not limited to those of the above-described embodiment, and can be any shape according to the specifications required for the electronic component.
  • a plurality of conductive regions may be provided in one adhesive region.
  • one or more discharge bumps having a small distance to the outer edge of the adhesion region are provided for each conductive region.
  • the number of bumps in the conductive region of the conductive adhesive layer may be only one. In this case, only one discharge bump having a small distance to the outer edge of the adhesive layer is disposed in the conductive region.
  • the release bump may extend so as to be exposed or protrude from the outer edge of the adhesive layer.
  • the tip that is exposed or protrudes from the outer edge of the adhesive layer of the release bump is disposed in the cutout of the adhesive layer, thereby preventing a short circuit between the release bump and other components.
  • the bump may have both electrical conductivity and thermal conductivity.
  • the conductive slurry that forms the bumps can include electrically conductive particles and thermally conductive particles.
  • the lower limit and the upper limit of the content ratios of the electrically conductive particles and the thermally conductive particles of the bump are the content ratios of the above electrically conductive particles according to the volume ratio of the electrically conductive particles and the thermally conductive particles, respectively.
  • the lower limit and the upper limit of the above and the lower limit and the upper limit of the content ratio of the above-described heat conductive particles may be values proportionally distributed.
  • the printed wiring board of the electronic component may have an insulating layer of a type other than the coverlay.
  • the insulating layer other than the coverlay include a solder resist, a light reflection layer, and a coating layer.
  • bumps having electrical conductivity by including electrically conductive particles and bumps having thermal conductivity by including thermally conductive particles may be formed separately.
  • one or more bumps having electrical conductivity and one or more bumps having thermal conductivity may be disposed in the same adhesive region.
  • One or a plurality of bumps having a property and one or a plurality of bumps having a thermal conductivity may be disposed in separate adhesion regions.
  • the electronic component may be manufactured by first laminating a conductive adhesive layer on a conductive plate and adhering a flexible printed wiring board to the opposite surface of the conductive adhesive layer.
  • the shape of the cross section perpendicular to the conductive adhesive layer of the bump is not limited to a strict trapezoid as in the above embodiment.
  • a trapezoid whose top is a circular arc or a base and a top
  • a trapezoidal shape whose side is non-parallel may be used.
  • the central vertical cross-sectional shape of the bump is a shape other than a trapezoid, for example, a semicircular shape, a triangular shape, a rectangular shape, a constricted shape whose width decreases toward the central portion in the height direction, and a width toward the central portion in the height direction. It may be a barrel shape or the like that increases.
  • the flexible printed wiring board may have layers or sheets other than those described above.
  • the flexible printed wiring board may be a flexible printed wiring board in which a conductive pattern or a coverlay is laminated on the back side of the base film, or may be a multilayer flexible printed wiring board having a plurality of base films. .
  • a flexible printed wiring board is provided with a base film and a conductive pattern, it will not specifically limit, It is not necessary to provide the coverlay.
  • a polyimide base film having an average thickness of 25 ⁇ m, a copper foil layer (conductive pattern) having an average thickness of 12 ⁇ m laminated on the surface of the base film, and a surface of the copper foil layer A plurality of DuPont coverlays having an average thickness of 37.5 ⁇ m were laminated, and a circular opening having a diameter of 2 mm was formed on the coverlay to expose the copper foil layer.
  • an adhesive sheet provided with a conductive adhesive layer that exhibits electrical conductivity a sheet provided with a single strip-like discharge bump and an adhesive layer filled around the discharge bump was formed.
  • the release bump was formed by applying a silver paste to the surface of the release film so that the average width was 0.2 mm, the average height was 75 ⁇ m, and the average length was 4 mm, and this was heated.
  • the adhesive layer was filled so as to have an average thickness of 37.5 ⁇ m.
  • the adhesive layer has a rectangular shape in which the longitudinal direction of the discharge bump is equal to the direction of the pair of opposite sides, and the average width in the short direction of the discharge bump is 9 mm (4.4 mm on each side of the discharge bump). .
  • the adhesive layer As for the adhesive layer, the distance from both ends of the release bump to the outer edge of the adhesive layer (adhesion region), that is, the shortest distance between the bump and the outer edge of the adhesive region in which the bump is included (hereinafter referred to as the discharge distance) A plurality of materials having different lengths were formed so that the values shown in Table 1 were obtained.
  • a stainless steel plate having an average thickness of 0.5 mm was prepared as a conductive plate having electrical conductivity.
  • the electronic component of the present invention is particularly suitable as an electronic component incorporated into a small device, for example.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Structure Of Printed Boards (AREA)
  • Combinations Of Printed Boards (AREA)
  • Adhesive Tapes (AREA)
  • Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)

Abstract

本発明の一態様に係る電子部品は、フレキシブルプリント配線板と、1又は複数の伝導領域に重ね合わされる1又は複数の伝導板と、1又は複数の接着領域に充填される伝導性接着層とを備える電子部品であって、前記伝導性接着層が、前記伝導領域毎に、1又は複数のバンプと、この1又は複数のバンプの周囲に充填される接着剤層とを有し、前記1又は複数のバンプとそれが包含される前記接着領域の外縁との最短距離が2.4mm以下である。

Description

電子部品、接着シート及び電子部品の製造方法
 本発明は、電子部品、接着シート及び電子部品の製造方法に関する。
 近年、電子機器の高機能化、小型化、軽量化等の要求に伴い、電子機器内に収容されるフレキシブルプリント配線板も薄型化が促進されている。この薄型化によるフレキシブルプリント配線板の強度低下を補って電子部品を保護すべく、フレキシブルプリント配線板における部品実装面の反対側の面等に部分的に補強板が取り付けられる場合がある。
 上記補強板としては、一般にステンレス等の金属製のものが用いられる。そこで、この金属製補強板にフレキシブルプリント配線板のグランド回路を電気的に導通させることで、電磁波ノイズに対するシールド機能を補強板に持たせたフレキシブルプリント配線板が開発されている。補強板とフレキシブルプリント配線板のグランド回路とを機械的及び電気的に導通させる方法としては、導電性ペーストで形成したバンプと、このバンプの周囲に充填される接着剤とを含む導電性の接着層により、補強板をフレキシブルプリント配線板に接着する方法が提案されている(特開2015-23065号公報参照)。
 また、多数の素子を実装するフレキシブルプリント配線板では、各種電子デバイスの小型化により集積度を高めて狭い領域により多くの素子が実装されるようになってきている。そのため、各素子の発熱による温度上昇により素子自身が破損するおそれがあり、温度上昇を抑制する目的で部品実装面の反対側の面等にアルミニウム製放熱フィン等の放熱部材(ヒートシンク)が取り付けられる場合がある。
 このようにフレキシブルプリント配線板に放熱部材を取り付ける方法として、熱伝導性粒子を含む熱伝導性接着剤を用いて放熱部材をフレキシブルプリント配線板に接着する方法が提案されている(特開2008-214524号公報参照)。
 なお、上述の電気伝導性接着剤及び熱伝導性接着剤は、フレキシブルプリント配線板とこれに接着されるシールド兼用補強板又は放熱部材(総称して伝導板という)との間で、電気エネルギー又は熱エネルギーの差が小さくなるよう、これらのエネルギーを伝導する粒子を含むものである。また、そのような伝導性の粒子としては、金属粒子又はセラミックス粒子が好適に用いられる。従って、上述の電気伝導性接着剤及び熱伝導性接着剤についての提案は、伝導するエネルギーの種類に応じて粒子を最適化するものであって、技術分野が異なるものではない。
特開2015-23065号公報 特開2008-214524号公報
 カバーレイを有するフレキシブルプリント配線板では、通常、補強板や熱部材等の伝導板を接続する伝導領域において導電パターンのグランドを露出させるようカバーレイに開口が形成される。このような電気伝導性のバンプを有する接着層により伝導板を接着したフレキシブルプリント配線板は、他の素子等を実装する際の半田リフロー等のために加熱されることがある。
 しかしながら、フレキシブルプリント配線板のカバーレイ、ソルダーレジスト等の絶縁層中に水分が含まれている場合があり、加熱によって水蒸気が発生することがある。フレキシブルプリント配線板から水蒸気が発生すると、フレキシブルプリント配線板のグランドと接着層との間で膨張が発生し、グランドと電気伝導性のバンプが離間して接続不良が生じ得る。
 本発明は、上記のような不都合に鑑みてなされたものであり、フレキシブルプリント配線板と伝導板との電気的又は熱的な接続が比較的確実な電子部品、接着シート及び電子部品の製造方法を提供することを課題とする。
 上記課題を解決するためになされた本発明の一態様に係る電子部品は、導電パターンを有するフレキシブルプリント配線板と、このフレキシブルプリント配線板のうち少なくとも導電パターンが露出する1又は複数の伝導領域に重ね合わされる1又は複数の伝導板と、前記フレキシブルプリント配線板及び前記伝導板間のうち1又は複数の接着領域に充填され、前記伝導領域及び前記伝導板間に少なくとも厚さ方向に電気伝導性又は熱伝導性を有する伝導性接着層とを備える電子部品であって、前記伝導性接着層が、前記伝導領域毎に、少なくとも厚さ方向に電気伝導性又は熱伝導性を有する1又は複数のバンプと、この1又は複数のバンプの周囲に充填される接着剤層とを有し、前記1又は複数のバンプとそれが包含される前記接着領域の外縁との最短距離が2.4mm以下である。
 上記課題を解決するためになされた本発明の別の態様に係る接着シートは、離型フィルム及びこの離型フィルムの表面の1又は複数の接着領域に積層される伝導性接着層を備え、この伝導性接着層が、対向するフレキシブルプリント配線板及び伝導板を接着すると共に、このフレキシブルプリント配線板のうち導電パターンが対向面に露出する伝導領域及び前記伝導板間に少なくとも厚さ方向に電気伝導性又は熱伝導性を発現させる接着シートであって、前記伝導性接着層が、前記伝導領域毎に、少なくとも厚さ方向に電気伝導性又は熱伝導性を有する1又は複数のバンプと、この1又は複数のバンプの周囲に充填される接着剤層とを有し、前記1又は複数のバンプとそれが包含される前記接着領域の外縁との最短距離が2.4m以下である。
 本発明の一態様に係る電子部品では、フレキシブルプリント配線板と伝導板との電気的又は熱的な接続が比較的確実である。本発明の一態様に係る接着シートを用いれば、電子部品のフレキシブルプリント配線板と伝導板との電気的又は熱的な接続を比較的確実にすることができる。
図1は、本発明の一実施形態の電子部品の厚さ方向の模式的断面図である。 図2は、図1の電子部品のA-A線における模式的断面図である。 図3Aは、図1の電子部品のバンプの代替形状を示す模式的部分拡大平面図である。 図3Bは、図1の電子部品のバンプの図3Aとは異なる代替形状を示す模式的部分拡大平面図である。 図3Cは、図1の電子部品のバンプの図3A及び図3Bとは異なる代替形状を示す模式的部分拡大平面図である。 図3Dは、図1の電子部品のバンプの図3A、図3B及び図3Cとは異なる代替形状を示す模式的部分拡大平面図である。 図3Eは、図1の電子部品のバンプの図3A、図3B、図3C及び図3Dとは異なる代替形状を示す模式的部分拡大平面図である。 図4は、本発明の一実施形態の接着シートの厚さ方向の模式的断面図である。 図5は、本発明の図1とは異なる実施形態の電子部品の厚さ方向の模式的断面図である。 図6は、図5の電子部品の伝導板側の導電性接着層の厚さ方向断面並びに素子及びその近傍の平面視を示す模式図である。
[本発明の実施形態の説明]
 (1)本発明の一態様に係る電子部品は、導電パターンを有するフレキシブルプリント配線板と、このフレキシブルプリント配線板のうち少なくとも導電パターンが露出する1又は複数の伝導領域に重ね合わされる1又は複数の伝導板と、前記フレキシブルプリント配線板及び前記伝導板間のうち1又は複数の接着領域に充填され、前記伝導領域及び前記伝導板間に少なくとも厚さ方向に電気伝導性又は熱伝導性を有する伝導性接着層とを備える電子部品であって、前記伝導性接着層が、前記伝導領域毎に、少なくとも厚さ方向に電気伝導性又は熱伝導性を有する1又は複数のバンプと、この1又は複数のバンプの周囲に充填される接着剤層とを有し、前記1又は複数のバンプとそれが包含される前記接着領域の外縁との最短距離が2.4mm以下である。
 当該電子部品は、前記伝導性接着層が、前記伝導領域毎に、少なくとも厚さ方向に電気伝導性又は熱伝導性を有する1又は複数のバンプと、この1又は複数のバンプの周囲に充填される接着剤層とを有し、前記1又は複数のバンプとそれが包含される前記接着領域の外縁との最短距離が2.4mm以下である。これによって、当該電子部品が製造過程で加熱されたときに、フレキシブルプリント配線板に含まれる水分が蒸発してフレキシブルプリント配線板と伝導性接着層との間に進入しても、この水蒸気がバンプに沿って接着領域の外縁近傍まで案内され、外部に放出される。なお、バンプの外側にさらに接着剤層が存在する場合であっても、接着剤層の外縁までの距離が小さいため、水蒸気が接着剤層を通過して外部に放出される。このため、当該電子部品では、加熱時の水蒸気による伝導性接着層とフレキシブルプリント配線板との剥離が抑制され、フレキシブルプリント配線板と伝導性接着層を介した伝導板との電気的又は熱的な接続が比較的確実である。
 (2)前記伝導領域毎に、前記接着領域の外縁と前記伝導領域の外縁との間を架け渡すように配設される少なくとも1のバンプを有するとよい。伝導領域毎に、接着領域の外縁と伝導領域の外縁との間を架け渡すように配設される少なくとも1のバンプを有することによって、伝導領域毎に水蒸気を排出することができる。
 (3)前記少なくとも1のバンプが、前記伝導領域の外縁と前記接着領域との間を結ぶ一本の線上に並んで配設されるとよく、前記一本の線上におけるバンプの非存在部分の合計長さの最小値は、2.4mm以下が好ましい。伝導領域の外縁と接着領域との間を結ぶ一本の線上におけるバンプの非存在部分の合計長さの最小値を上記上限以下とすることによって、水蒸気の放出をより確実にできるので、フレキシブルプリント配線板と伝導板との電気的又は熱的な接続がより確実となる。
 (4)前記伝導領域毎に、前記接着領域の対向する外縁間を架け渡すように配設される平面視で帯状の少なくとも1のバンプを有するとよい。伝導領域毎に、接着領域の対向する外縁間を架け渡すように配設される平面視で帯状の少なくとも1のバンプを有することによって、各接着領域において発生した水蒸気をより確実に外部に放出することができ、フレキシブルプリント配線板と伝導板との電気的又は熱的な接続がより確実となる。
 (5)前記接着領域における前記1又は複数のバンプの占有面積率は、0.1%以上30%以下が好ましい。接着領域における1又は複数のバンプの占有面積率が上記範囲内であることによって、水蒸気の放出を確実にしつつ、伝導性接着層によるフレキシブルプリント配線板と伝導板との接続を担保することができる。
 (6)前記バンプの中央縦断面形状が台形状であるとよい。バンプの中央縦断面形状が台形状であることによって、台形の傾斜した側辺を接着剤が被覆するため、製造過程における伝導性接着層からのバンプの脱落を防止できる。また、伝導性接着層を被接着部材(フレキシブルプリント配線板又は伝導板)に圧着するとき、バンプの幅が小さい側(台形の頂辺側)の圧力が高くなるため、密着性が低い被接着部材にバンプの幅が小さい側の面を当接させることで、フレキシブルプリント配線板と伝導板との間の電気又は熱の伝達の信頼性を高められる。
 (7)前記フレキシブルプリント配線板が、前記1又は複数の伝導領域を画定する1又は複数の開口を有する絶縁層をさらに備えるとよい。フレキシブルプリント配線板が、1又は複数の伝導領域を画定する1又は複数の開口を有する絶縁層をさらに備えることによって、伝導領域以外の導電パターンを保護することができると共に、導電パターンの伝導領域に伝導性接着層を介して伝導板を接続することができる。
 (8)前記伝導領域における前記バンプの平均高さは、前記絶縁層の平均厚さの0.3倍以上2.2倍以下が好ましい。伝導領域におけるバンプの平均高さが上記範囲内であることによって、絶縁層の開口から露出するフレキシブルプリント配線板の伝導領域にバンプを適切に圧接して、電気又は熱をより確実に伝導することができる。
 (9)また、本発明の別の態様に係る接着シートは、離型フィルム及びこの離型フィルムの表面の1又は複数の接着領域に積層される伝導性接着層を備え、この伝導性接着層が、対向するフレキシブルプリント配線板及び伝導板を接着すると共に、このフレキシブルプリント配線板のうち導電パターンが対向面に露出する伝導領域及び前記伝導板間に少なくとも厚さ方向に電気伝導性又は熱伝導性を発現させる接着シートであって、前記伝導性接着層が、前記伝導領域毎に、少なくとも厚さ方向に電気伝導性又は熱伝導性を有する1又は複数のバンプと、この1又は複数のバンプの周囲に充填される接着剤層とを有し、前記1又は複数のバンプとそれが包含される前記接着領域の外縁との最短距離が2.4mm以下である。
 当該接着シートは、前記伝導性接着層が、前記伝導領域毎に、少なくとも厚さ方向に電気伝導性又は熱伝導性を有する1又は複数のバンプと、この1又は複数のバンプの周囲に充填される接着剤層とを有し、前記1又は複数のバンプとそれが包含される前記接着領域の外縁との最短距離が2.4mm以下である。当該接着シートを用いれば、伝導性接着層をフレキシブルプリント配線板に積層して加熱したときにフレキシブルプリント配線板から水蒸気が発生しても、この水蒸気はバンプに沿って接着領域の外縁近傍まで案内されて、外部に放出される。なお、バンプの外側にさらに接着剤層が存在する場合であっても、接着剤層の外縁までの距離が小さいため、水蒸気は接着剤層を通過して外部に放出される。このため、当該接着シートを用いれば、フレキシブルプリント配線板と伝導板との電気的又は熱的な接続が比較的確実なものとなる。
 (10)本発明のさらに別の態様に係る電子部品の製造方法は、導電パターンを有するフレキシブルプリント配線板と、このフレキシブルプリント配線板のうち少なくとも導電パターンが露出する1又は複数の伝導領域に重ね合わされる1又は複数の伝導板と、前記フレキシブルプリント配線板及び前記伝導板間のうち1又は複数の接着領域に充填され、前記伝導領域及び前記伝導板間に少なくとも厚さ方向に電気伝導性又は熱伝導性を有する伝導性接着層とを備える電子部品の製造方法であって、当該接着シートを用い、前記フレキシブルプリント配線板及び伝導板の一方の前記1又は複数の接着領域に伝導性接着層を積層する工程と、離型フィルムを剥離する工程と、露出した前記伝導性接着層に前記フレキシブルプリント配線板及び前記伝導板の他方を積層する工程と、積層した前記フレキシブルプリント配線板及び前記伝導板間を熱圧着する工程とを備える。
 当該電子部品の製造方法では、当該接着シートを用いるため、当該電子部品の製造方法によって、フレキシブルプリント配線板と伝導板との間を伝導性接着層により電気的又は熱的に比較的確実に接続した電子部品を製造することができる。
 ここで、「架け渡す」とは、2点間を結ぶ線上に連続的又は断続的にバンプが存在することを意味し、この線上でのバンプの存在比率が好ましくは50%以上、より好ましくは70%以上であることをいう。「伝導板」とは、フレキシブルプリント配線板に積層される電気伝導性又は熱伝導性の板状の部材を意味し、フレキシブルプリント配線板を補強するための補強板やフレキシブルプリント配線板の放熱性を高めるためのヒートシンク、フレキシブルプリント配線板に実装される素子からフレキシブルプリント配線板に熱を逃がすための素子等の板状部を含む概念である。「バンプ」とは、隆起又は突起を形成するものをいう。接着領域におけるバンプの「占有面積率」とは、伝導性接着層を厚さ方向の中央で切断した面におけるバンプの表出面積の総和を伝導性接着層の断面積で除した数値である。バンプの「中央縦断面形状」とは、バンプの重心を通る平面視でバンプの短手方向の断面形状を意味する。
[本発明の実施形態の詳細]
 以下、本発明に係る電子部品の実施形態について図面を参照しつつ詳説する。
[電子部品の第一実施形態]
 図1及び図2の電子部品1は、フレキシブルプリント配線板2と、フレキシブルプリント配線板2に重ね合わされる1の伝導板3と、フレキシブルプリント配線板2及び伝導板3間の接着領域Adに充填される1の伝導性接着層4とを備える。
〔フレキシブルプリント配線板〕
 フレキシブルプリント配線板2は、ベースフィルム5とこのベースフィルム5の表面側に積層される導電パターン6と、この導電パターン6の表面に積層されるカバーレイ(絶縁層)7とを有する。
 カバーレイ7は、少なくとも導電パターン6の一部を露出させる開口8を有する。導電パターン6の開口8から露出する領域は、伝導性接着層4を介して伝導板3に電気的に接続される伝導領域Acである。換言すると、カバーレイ7は、伝導領域Acを画定する1の開口8を有する。つまり、カバーレイ7は、伝導領域Ac以外の導電パターン6を保護することができると共に、開口8によって伝導領域Acにおいて導電パターン6に伝導性接着層4を介して伝導板3を接続することを可能にする。
〔伝導板〕
 伝導板3は、電気伝導性を有する板状部材である。この伝導板3は、フレキシブルプリント配線板2を補強するための補強板であり、電磁気的遮蔽を提供するシールドとしても用いられる。伝導板3の材質は、電気伝導性及び強度を有するものであればよいが、伝導板3には金属が好適に用いられる。このような金属は、特に限定されず、伝導板3に用いる金属としては、例えばステンレス鋼、アルミニウム等が挙げられる。
〔伝導性接着層〕
 伝導性接着層4は、表面側及び裏面側に対向するフレキシブルプリント配線板2及び伝導板3を互いに接着すると共に、このフレキシブルプリント配線板2のうち伝導板3に対向して導電パターン6が露出する1の伝導領域Acと伝導板3との間に少なくとも厚さ方向に電気伝導性を発現させる目的で形成された層である。
 伝導性接着層4は、伝導領域Acに、少なくとも厚さ方向に電気伝導性を有する複数のバンプ9と、このバンプ9の周囲の接着領域Adに充填される接着剤層10とを有する。これにより、伝導性接着層4は、バンプ9によって少なくとも表面と垂直な方向(厚さ方向)に電気エネルギーを伝導可能であると共に、接着剤層10によって接着性を有する。
 1又は複数のバンプ9は、伝導領域Acに、平面視で接着領域Adの外縁(接着剤層10の外縁)近傍まで延在する少なくとも1のバンプ9a(以下、放出バンプということがある)を含む。つまり、放出バンプ9aは、少なくとも接着領域Adの外縁と伝導領域Acの外縁との間を架け渡すように配設される。また、この放出バンプ9aは、平面視で帯状に形成され、接着領域Adの対向する外縁間を架け渡すように配設されることが好ましい。換言すると、伝導性接着層4は、伝導領域Acに、接着領域Adの対向する外縁間を架け渡すように配設される平面視で帯状の少なくとも1の放出バンプ9aを有することが好ましい。
 電子部品1は、製造時に素子を実装する際の半田リフロー等の目的で加熱され得る。一般的なフレキシブルプリント配線板2ではカバーレイ7等が微量の水分を含んでいるため、このフレキシブルプリント配線板2が加熱されると、水分が蒸発して水蒸気が発生する。従って、電子部品1の製造時に、フレキシブルプリント配線板2と伝導性接着層4との間に水蒸気が発生し、フレキシブルプリント配線板2がドーム状に膨出して伝導性接着層4から剥離しようとする。
 しかしながら、この接着領域Adの外縁近傍まで延在する放出バンプ9aは、その表面に沿って一時的に水蒸気の流路を形成し、接着領域Adの外縁近傍まで水蒸気を案内する。接着領域Adの外縁近傍まで案内された水蒸気は、その圧力によりさらに外側の接着剤層10を貫通して電子部品1の外部に容易に漏出する。このように、電子部品1では、製造時に発生した水蒸気が容易に外部に放出されるので、導電パターン6と伝導性接着層4との電気的接続、ひいては導電パターン6と金属層3との間の電気的接続が比較的確実である。従って、電子部品1では、伝導性接着層4を介して伝導板3を積層する前に、予めフレキシブルプリント配線板2を加熱して水分を除去する等のコストをかけることなく、導電パターン6と金属層3との間の電気的接続の信頼性が向上している。
 特に、伝導性接着層4が、接着領域Adの対向する外縁間を架け渡すように配設される放出バンプ9aを有することにより、伝導領域Acからより効率よく水蒸気を外部に放出することができ、導電パターン6と金属層3との間の電気的接続をより確実にすることができる。
 1又は複数のバンプ9とそれが包含される接着領域Adの外縁との最短距離D、つまり放出バンプ9aの端から接着領域Adの外縁までの距離の最小値、の上限は、2.4mmが好ましく、1.2mmがより好ましく、0.8mmがさらに好ましい。一方、1又は複数のバンプ9とそれが包含される接着領域Adの外縁との最短距離Dの下限は、0である。1又は複数のバンプ9とそれが包含される接着領域Adの外縁との最短距離Dが上記上限を超える場合、電子部品製造時の加熱によりカバーレイ7から生じる水蒸気を外部に逃がすことができず、バンプ9と導電パターン6との電気的接続が不十分となるおそれがある。
 電子部品1において、フレキシブルプリント配線板2の導電パターン6と伝導板3との間の電気抵抗は1Ω以下が好ましい。導電パターン6と伝導板3との間の電気抵抗を上記上限以下にすることにより、例えば電磁波ノイズに対するシールド機能を高めることができる。
 以下、電子部品1の構成要素について詳述する。
<ベースフィルム>
 ベースフィルム5は、可撓性及び電気絶縁性を有するシート状部材で構成されている。このベースフィルム5としては、具体的には樹脂フィルムを採用可能である。この樹脂フィルムの材料としては、例えばポリイミド、ポリエチレンテレフタレート等が好適に用いられる。
 ベースフィルム5の平均厚さの下限は、5μmが好ましく、10μmがより好ましい。一方、ベースフィルム5の平均厚さの上限は、150μmが好ましく、50μmがより好ましい。ベースフィルム5の平均厚さが上記下限に満たない場合、ベースフィルム5の強度が不十分となるおそれがある。逆に、ベースフィルム5の平均厚さが上記上限を超える場合、電子部品1が不要に厚くなるおそれがある。
<導電パターン>
 導電パターン6は、ベースフィルム5に積層された金属層をエッチングすることによって所望の平面形状(パターン)に形成されている。この導電パターン6は、導電性を有する材料で形成可能であるが、一般的には金属、例えば銅によって形成されている。
 金属層をベースフィルム5に積層する方法は特に限定されない。金属層をベースフィルム5に積層する方法として、例えば金属箔を接着剤で貼り合わせる接着法、金属箔上にベースフィルム5の材料である樹脂組成物を塗布するキャスト法、スパッタリングや蒸着法でベースフィルム5上に形成した厚さ数nmの薄い導電層(シード層)の上に電解メッキで金属層を形成するスパッタ/メッキ法、金属箔を熱プレスで貼り付けるラミネート法等を用いることができる。
 導電パターン6の平均厚さの下限は、2μmが好ましく、5μmがより好ましい。一方、導電パターン6の平均厚さの上限は、50μmが好ましく、20μmがより好ましい。導電パターン6の平均厚さが上記下限に満たない場合、電気伝導性が不十分となるおそれがある。逆に、導電パターン6の平均厚さが上記上限を超える場合、電子部品1が不要に厚くなるおそれがある。
<カバーレイ>
 カバーレイ7は、絶縁機能と接着機能とを有し、導電パターン6及びベースフィルム5の表面に積層されるフィルムである。このカバーレイ7としては、例えば絶縁層と接着剤層とを有する2層フィルムを用いることができる。カバーレイ7を絶縁層と接着剤層との2層構造とする場合、絶縁層の材質は、特に限定されるものではないが、ベースフィルム5を構成する樹脂フィルムの材質と同様のものとすることができる。
 カバーレイ7の絶縁層の平均厚さの下限は、5μmが好ましく、10μmがより好ましい。一方、カバーレイ7の絶縁層の平均厚さの上限は、60μmが好ましく、40μmがより好ましい。カバーレイ7の絶縁層の平均厚さが上記下限に満たない場合、カバーレイ7の絶縁性が不十分となるおそれがある。一方、カバーレイ7の絶縁層の平均厚さが上記上限を超える場合、フレキシブルプリント配線板2の可撓性が不十分となるおそれがある。
 また、カバーレイ7を絶縁層と接着剤層との2層構造とする場合、接着剤層を構成する接着剤は、特に限定されるものではないが、柔軟性や耐熱性に優れたものが好ましい。このような接着剤としては、例えばナイロン樹脂系の接着剤、エポキシ樹脂系の接着剤、ブチラール樹脂系の接着剤、アクリル樹脂系の接着剤などの各種樹脂系の接着剤が挙げられる。カバーレイ7の接着剤層の平均厚さは、特に限定されるものではないが、20μm以上30μm以下が好ましい。カバーレイ7の接着剤層の平均厚さが上記下限に満たない場合、接着性が不十分となるおそれがあり、一方、カバーレイ7の接着剤層の平均厚さが上記上限を超える場合、フレキシブルプリント配線板2の可撓性が不十分となるおそれがある。
<伝導領域>
 伝導領域Acは、1つの伝導板3に対向する領域内に形成される。この伝導領域Acで露出する導電パターン6は、グランド配線であることが好ましい。これによって伝導板3を接地し、伝導板3の電磁波ノイズに対するシールド機能を高めることができる。
 伝導領域Acを画定するカバーレイ7の開口8は、カバーレイ7を導電パターン6及びベースフィルム5に積層する前に形成してもよく、カバーレイ7を導電パターン6及びベースフィルム5に積層した後にレーザー等によって形成してもよい。また、伝導領域Acを画定する開口8の平面形状及び大きさは、特に限定されず、導電パターン6の露出部を伝導性接着層4に機械的及び電気的に接続できる平面形状及び大きさであればよい。開口8の平面形状は、例えば円形や矩形とすることができる。
<バンプ>
 複数のバンプ9は、電気伝導性粒子とそのバインダーとを含有する。これらのバンプ9は、伝導性接着層4において、少なくとも部分的にフレキシブルプリント配線板2の伝導領域Acに存在するよう配設されている。
 複数のバンプ9は、接着領域Adの外縁近傍まで延在する少なくとも1の放出バンプ9aを含むものであればよい。複数のバンプ9の平面形状は、特に限定されないが、円形状、帯状の他に、多角形状、十字状、星形状等とすることができる。また、バンプ9の平面視での配設パターンは、伝導領域Acの面積や形状等に合わせて適宜設計することができ、例えば図3Aに示す複数の帯状のバンプ9が並置されたストライプ状、図3Bに示す複数の帯状のバンプ9が交差した格子状、図3Cに示す複数の円環にした帯状のバンプ9からなる同心円状、図3Dに示す散点状のバンプ9を格子状に配置したもの、図3Eに示す散点状のバンプ9を千鳥状に配置したもの等とすることができ、またこれらを組み合わせたものであってもよい。上記各配設パターンは、平面視で伝導領域Ac内にバンプ9が形成されない領域を有する。
 放出バンプ9aは、図3Bに示すように、接着領域Adの外縁との距離が0mmであるもの、つまりその端部が接着剤層10の端面から露出又は突出するものであってもよい。また、放出バンプ9aは、図3Eに示すように、少なくとも一部が伝導領域Acの外縁と接着領域Adの外縁との間を結ぶ一本の線上に並んで、平面視で点線状又は断続的に配設されたバンプ9の列であってもよい。つまり、伝導領域Ac内のバンプ9から隣接するバンプ9へと順番に、最終的に放出バンプ9aまで水蒸気を案内し、放出バンプ9aから外部に水蒸気を放出するよう構成されてもよい。伝導領域Acの外縁と接着領域Adの外縁との間を結ぶ一本の線上における放出バンプ9aの非存在部分の合計長さの最小値、つまり列状の放出バンプ9aのバンプ9間の最短距離の合計と放出バンプ9aの端から接着領域Adの外縁までの最短距離とを足し合わせた値の最小値、の上限は、2.4mmが好ましく、1.2mmがより好ましく、0.8mmがさらに好ましい。伝導領域Acの外縁と接着領域Adの外縁に至る水蒸気の放出経路におけるバンプ9の非存領域の長さを上記上限以下とすることによって、水蒸気の放出抵抗を低減し、水蒸気をより確実に外部に放出することができる。また、帯状又は列状の放出バンプ9aは、伝導領域Acの外縁から接着領域Adの外縁近傍まで直線的に延伸するものに限られず、湾曲又は屈曲するものであってもよい。また、放出バンプ9aは、途中で幅が変化するものであってもよい。
 接着領域Adにおけるバンプ9の占有面積率の下限は、0.1%が好ましく、1%がより好ましい。一方、接着領域Adにおけるバンプ9の占有面積率の上限は、30%が好ましく、25%がより好ましい。接着領域Adにおけるバンプ9の占有面積率が上記下限に満たない場合、伝導性接着層4の電気伝導性が不十分となるおそれがある。逆に、接着領域Adにおけるバンプ9の占有面積率が上記上限を超える場合、接着剤層10の割合が少なくなって伝導性接着層4の機械的接着強度が低下するおそれがある。
 伝導領域Acにおけるバンプ9の占有面積率の下限は、1%が好ましく、5%がより好ましい。一方、伝導領域Acにおけるバンプ9の占有面積率の上限は、80%が好ましく、60%がより好ましい。伝導領域Acにおけるバンプ9の占有面積率が上記下限に満たない場合、伝導性接着層4の電気伝導性が不十分となるおそれがある。逆に、伝導領域Acにおけるバンプ9の占有面積率が上記上限を超える場合、接着剤層10の割合が少なくなって伝導性接着層4の機械的接着強度が低下するおそれがある。
 複数のバンプ9は、接着剤層10によって平面視で周囲がほぼ取り囲まれた状態で配設されることが好ましい。つまり、伝導性接着層4は、図2に示すように、伝導領域Acの外側においては放出バンプ9aを除いて他のバンプ9が存在せずに接着剤層10が存在するよう配設されることが好ましい。
 伝導領域Acの外側の接着領域Adにおけるバンプ9の占有面積率の下限は、0.01%が好ましく、0.05%がより好ましい。一方、伝導領域Acの外側の接着領域Adにおけるバンプ9の占有面積率の上限は、20%が好ましく、15%がより好ましい。伝導領域Acの外側の接着領域Adにおけるバンプ9の占有面積率が上記下限に満たない場合、水蒸気を放出させる効果が不十分となるおそれがある。逆に、伝導領域Acの外側の接着領域Adにおけるバンプ9の占有面積率が上記上限を超える場合、伝導領域Acの外側のバンプ9が伝導性接着層4の圧縮を阻害することにより、伝導領域Acにおけるバンプ9の導電パターン6との接続が不十分となるおそれがある。
 バンプ9の中央縦断面形状は台形状である。具体的には、バンプ9の中央縦断面形状は、伝導板3に当接する底辺(下底)と、伝導性接着層4の表面に表出する頂辺(上底)とを有し、底辺から頂辺に向かって幅が小さくなる。バンプ9の中央縦断面形状は、左右対称な台形状であることが好ましく、その底辺と頂辺は伝導性接着層4の面方向に平行であることが好ましい。バンプ9の中央縦断面形状における傾斜した側辺(脚)上には接着剤層10が積層される。
 バンプ9は、この台形状の頂辺がフレキシブルプリント配線板2側に位置するように配置されてもよく、また台形状の頂辺が伝導板3側に位置するように配置されてもよい。バンプ9の台形状の頂辺側の当接面積は底辺側の当接面積に対し相対的に小さくなるため、接着圧力を高めたい部材側に頂辺が位置するようにバンプ9を配置することで、この部材との密着性を高めることができる。
 中央縦断面形状において、バンプ9の底辺の平均長さに対する頂辺の平均長さの比の上限は、0.95が好ましく、0.8がより好ましい。底辺の平均長さに対する頂辺の平均長さの比が上記上限を超える場合、バンプ9の脱落防止効果が十分得られないおそれがある。一方、バンプ9の底辺の平均長さに対する頂辺の平均長さの比の下限は、0.2が好ましく、0.4がより好ましい。底辺の平均長さに対する頂辺の平均長さの比が上記下限に満たない場合、底辺の平均長さが大きくなり過ぎバンプ9の周辺に充填される接着剤の充填量が減少して機械的な接着強度が低下するおそれや、頂辺の平均長さが小さくなり過ぎ被接着部材間の電気伝導性が低下するおそれがある。
 中央縦断面形状において、バンプ9の底辺の平均長さは、フレキシブルプリント配線板2及び伝導板3の接着面積等に合わせて適宜設計することができ、例えば50μm以上2000μm以下とすることができる。同様に、バンプ9の頂辺の平均長さは、例えば10μm以上1900μm以下とすることができる。また、バンプ9同士の平均間隔(底辺間の距離)は、例えば50μm以上2000μm以下とすることができる。
 なお、バンプ9の底辺の平均長さ及び頂辺の平均長さとは、それぞれ、各バンプ9の底辺長さが最小となる中央縦断面形状における底辺長さの平均値及び頂辺長さの平均値を意味する。バンプ9の平均間隔とは、隣接するバンプ9間の最小距離(隙間の最小値)の平均値を意味する。
 バンプ9の平均高さの下限は、カバーレイ7の平均厚さの0.3倍が好ましく、0.7倍がより好ましく、1倍がさらに好ましい。一方、バンプ9の平均高さの上限は、カバーレイ7の平均厚さの2.2倍が好ましく、2倍がより好ましい。バンプ9の平均高さが上記下限に満たない場合、バンプ9が導電パターン6と伝導板3とを電気的に接続できなくなるおそれがある。バンプ9の平均高さが上記上限を超える場合、伝導性接着層4の厚さが必要以上に大きくなるおそれがある。
(電気伝導性粒子)
 バンプ9に含有される電気伝導性粒子の材質としては、例えば銀、白金、金、銅、ニッケル、パラジウム、ハンダ等を挙げることができる。電気伝導性粒子として、これらを単体で又は2種以上混合して用いることができる。これらの中でも優れた電気伝導性を示す銀粉末、銀コート銅粉末、ハンダ粉末等が好ましい。
 バンプ9における電気伝導性粒子の含有率の下限は、20体積%が好ましく、30体積%がより好ましい。一方、バンプ9における伝導性粒子の含有率の上限は、75体積%が好ましく、60体積%がより好ましい。電気伝導性粒子の含有率が上記下限に満たない場合、フレキシブルプリント配線板2と伝導板3との間における電気伝導性が不十分となるおそれがある。バンプ9における電気伝導性粒子の含有率が上記上限を超える場合、バインダーが少なくなるので、バンプ9の形成が困難になるおそれや、使用時にバンプ9が破断して電気伝導性を損なうおそれがある。
(バインダー)
 バインダーとしては、例えばエポキシ樹脂、フェノール樹脂、ポリエステル、ポリウレタン、アクリル樹脂、メラミン樹脂、ポリイミド、ポリアミドイミド等を挙げることができ、これらの中から1種又は2種以上を用いることができる。これらの中でも、バンプ9の耐熱性を向上させることができる熱硬化性樹脂が好ましく、エポキシ樹脂が特に好ましい。
 バインダーとして用いるエポキシ樹脂としては、例えばビスフェノールA型、ビスフェノールF型、ビスフェノールS型、ビスフェノールAD型、ビスフェノールA型とビスフェノールF型との共重合型、ナフタレン型、ノボラック型、ビフェニル型、ジシクロペンタジエン型等のエポキシ樹脂や、高分子エポキシ樹脂であるフェノキシ樹脂を挙げることができる。
 また、バインダーは溶剤に溶解して使用することができる。この溶剤としては、例えばエステル系、エーテル系、ケトン系、エーテルエステル系、アルコール系、炭化水素系、アミン系等の有機溶剤を挙げることができ、これらの中から1種又は2種以上を用いることができる。なお、後述するようにバンプ9が電気伝導性を有する伝導性スラリーの印刷によって形成される場合、印刷性に優れた高沸点溶剤を用いることが好ましく、具体的にはカルビトールアセテートやブチルカルビトールアセテート等を用いることが好ましい。
<接着剤層>
 接着剤層10を形成する接着剤は、接着性を有するものであれば特に限定されない。接着剤層10を形成する接着剤として、例えばエポキシ樹脂、ポリイミド、ポリエステル、フェノール樹脂、ポリウレタン、アクリル樹脂、メラミン樹脂、ポリアミドイミド等を挙げることができ、耐熱性の観点から熱硬化性樹脂を用いることが好ましく、フレキシブルプリント配線板2との接着性の観点からはエポキシ樹脂又はアクリル樹脂を用いることが好ましく、バンプ9を形成する伝導性スラリーと同種の接着剤を用いることがさらに好ましい。
 接着剤層10には、上述した溶剤、硬化剤、助剤等を適宜添加することができる。また、接着剤層10には、伝導性接着層4の電気伝導性向上のために電気伝導性粒子を添加することができる。
 接着剤層10への電気伝導性粒子の添加量の上限は、20体積%が好ましく、10体積%がより好ましく、5体積%がさらに好ましい。接着剤層10の伝導性粒子の添加量が上記上限を超える場合、接着剤層10内の不純物の増加によって接着剤層10の接着性が低下するおそれがある。
 接着剤層10の伝導領域Acの外側における平均厚さの下限は、10μmが好ましく、15μmがより好ましい。一方、接着剤層10の伝導領域Acの外側における平均厚さの上限は、40μmが好ましく、35μmがより好ましく、30μmがさらに好ましい。接着剤層10の平均厚さが上記下限に満たない場合、伝導性接着層4が十分な機械的接着強度や電気的接続性を発揮できないおそれがある。接着剤層10の平均厚さが上記上限を超える場合、伝導性接着層4を用いてフレキシブルプリント配線板2と伝導板3とを接着して構成される電子部品の厚さが必要以上に大きくなるおそれがある。
〔利点〕
 電子部品1では、製造過程で加熱されたときに、フレキシブルプリント配線板2に含まれる水分が蒸発してフレキシブルプリント配線板2と伝導性接着層4との間に進入しても、この水蒸気が放出バンプ9aに沿って接着領域Adの外縁近傍まで案内され、さらに外側の接着剤層10を貫通して外部に放出される。このため、電子部品1では、加熱時の水蒸気による伝導性接着層4とフレキシブルプリント配線板2との剥離が抑制され、フレキシブルプリント配線板2と伝導板3との伝導性接着層4を介した電気的接続が比較的確実であり、電気的接続の信頼性が高い。
[接着シート]
 図4の接着シート11は、電子部品1を製造するために用いられるものであり、それ自体が本発明の一実施形態である。
 接着シート11は、離型フィルム12及びこの離型フィルム12の表面の1の接着領域Adに積層される伝導性接着層4を備える。なお、接着領域Adは、後述するように接着シート11を用いて製造される図1の電子部品1の接着領域Adと同じ領域である。
 接着シート11の伝導性接着層4は、対向するフレキシブルプリント配線板2及び伝導板3を接着すると共に、このフレキシブルプリント配線板2のうち導電パターン6が伝導板3に対向するよう露出する伝導領域Acと伝導板3との間に少なくとも厚さ方向に電気伝導性を発現させる。つまり、接着シート11の伝導性接着層4を離型フィルム12から剥離して、フレキシブルプリント配線板2及び伝導板3間に挟み込むことで、上述の電子部品1を得ることができる。
 接着シート11の伝導性接着層4は、伝導領域Ac(接着シート11を用いて製造される図1の電子部品1の伝導領域Acと同じ領域)に、少なくとも厚さ方向に電気伝導性を有する複数のバンプ9と、この複数のバンプ9の周囲に充填される接着剤層10とを有する。複数のバンプ9とそれが包含される接着領域Adの外縁との最短距離は、2.4mm以下である。
 以上のように、接着シート11の伝導性接着層4は、電子部品1の伝導性接着層4であるため、同じ構成要素に同じ符号を付して重複する説明を省略する。なお、電子部品1では、その製造過程で、伝導性接着層4が全体において、特に伝導領域Acの外側において厚さ方向に圧縮されているが、接着シート11の伝導性接着層4は圧縮されておらず、従って接着シート11のバンプ9及び接着剤層10は圧縮されていない。
 接着シート11における接着剤層10の平均厚さの下限は、15μmが好ましく、20μmがより好ましい。一方、接着シート11における接着剤層10の平均厚さの上限は、60μmが好ましく、50μmがより好ましい。接着シート11における接着剤層10の平均厚さが上記下限に満たない場合、伝導性接着層4が十分な機械的接着強度や電気的接続性を発揮できないおそれがある。逆に、接着シート11における接着剤層10の平均厚さが上記上限を超える場合、伝導性接着層4を用いてフレキシブルプリント配線板2と伝導板3とを接着して構成される電子部品の厚さが必要以上に大きくなるおそれがある。
 接着シート11の伝導性接着層4は、バンプ9の平均高さが接着剤層10の平均厚さ以上であることが好ましい。バンプ9の平均高さを接着剤層10の平均厚さ以上とすることによって、バンプ9を接着剤層10の表面に表出又は突出させることができる。これにより、バンプ9の表面側の端面がフレキシブルプリント配線板2の導電パターン6又は伝導板3に確実に当接するため、伝導性接着層4による導電パターン6及び伝導板3間の電気導電性を向上できる。
 バンプ9の突出長さ(バンプ9の平均高さから接着剤層10の平均厚さを引いたもの)の上限は、100μmが好ましく、80μmがより好ましい。バンプ9の突出長さが上記上限を超える場合、接着剤層10とフレキシブルプリント配線板2及び伝導板3との接着面積が低下して機械的接着強度が低下するおそれがある。
<離型フィルム>
 離型フィルム12を構成する材料としては、例えばポリエチレン、ポリプロピレン、エチレン-酢酸ビニル共重合体、エチレン-ビニルアルコール共重合体、ポリエチレンテレフタレート等の合成樹脂フィルム、ゴムシート、紙、布、不織布、ネット、発泡シート、金属箔、これらのラミネート体等からなる適当なフィルム状体を用いることができる。また、離型フィルム12を構成する材料に顔料を配合してもよく、離型フィルム12の少なくとも一方の面に塗工層を形成してもよい。また、離型フィルム12の表面には、剥離性を高めるため、必要に応じてシリコーン処理、長鎖アルキル処理、フッ素処理等の剥離処理を施すことが好ましい。離型フィルム12の剥離性は、剥離処理に用いる薬剤の種類又はその塗工量等を調節することにより制御することができる。
〔利点〕
 接着シート11は、離型フィルム12上に伝導性接着層4を備える。従って、接着シート11を用いれば、伝導性接着層4によってフレキシブルプリント配線板2と伝導板3と電気的に比較的確実に接続することができ、電子部品1を容易に製造することができる。
[接着シートの製造方法]
 接着シート11は、離型フィルム12の表面に電気伝導性を有する伝導性スラリーを選択的に積層する工程(伝導性スラリー積層工程)と、離型フィルム12の表面に積層した伝導性スラリーを硬化してバンプ9を形成する工程(バンプ形成工程)と、バンプ9の周囲に接着剤を充填して接着剤層10を形成する工程(接着剤層形成工程)とを備える方法により製造することができる。
<伝導性スラリー積層工程>
 伝導性スラリー積層工程では、電気伝導性粒子とそのバインダーとを含む伝導性スラリーを、印刷により所望の平面形状となるよう選択的に積層する。この伝導性スラリーの印刷方法は特に限定されず、伝導性スラリーの印刷方法として、例えばスクリーン印刷、グラビア印刷、オフセット印刷、フレキソ印刷、インクジェット印刷、ディスペンサー印刷等を用いることができる。
 積層される伝導性スラリーの平面形状は、複数のバンプ9に対応する形状である。つまり、伝導性スラリーは、主として伝導領域Ac内に積層され、その一部分が、放出バンプ9aを形成するために、伝導領域Ac内から接着領域Adの外縁近傍まで延在している。
(伝導性スラリー)
 離型フィルム12に積層される伝導性スラリーは、バンプ9を構成する電気伝導性粒子とバインダーとを含むことにより電気伝導性を有する組成物である。この伝導性スラリーは、バインダーが硬化していない状態では、印刷技術によってパターンを形成できる適度な流動性を有し、後述するバンプ形成工程において硬化させられるものであればよい。従って、電気伝導性を有する伝導性スラリーとしては、例えば導電性ペースト、導電性インク、導電性塗料、導電性接着剤等の名称で市販されているものを使用することができる。
 また、伝導性スラリーには硬化剤を添加することができる。この硬化剤としては、例えばアミン系硬化剤、ポリアミノアミド系硬化剤、酸及び酸無水物系硬化剤、塩基性活性水素化合物、第三アミノ類、イミダゾール類等を挙げることができる。
 さらに、伝導性スラリーには、上述した成分に加えて、増粘剤、レベリング剤等の助剤を添加することができる。また、伝導性スラリーは、上記各成分を例えば三本ロールや回転攪拌脱泡機等により混合することで得ることができる。
<バンプ形成工程>
 バンプ形成工程では、離型フィルム12の表面に積層した伝導性スラリーのバインダーの種類に応じた適切な方法により、伝導性スラリーを硬化させてバンプ9を形成する。例えばバインダーが熱硬化性樹脂である場合には、加熱により、伝導性スラリーを硬化させてバンプ9を形成する。また、伝導性スラリーが溶剤を含む場合には、このバンプ形成工程において溶剤を蒸発させる。
<接着剤層形成工程>
 接着剤層形成工程では、離型フィルム12の表面の複数のバンプ9の周囲に接着剤を充填し、接着剤層10を形成する。この接着剤の充填は、フレキシブルプリント配線板2又は伝導板3との接着領域Ad内のみに行われる。これにより、バンプ9と接着剤層10とが、伝導性接着層4を構成する。
 この工程における接着剤の充填方法としては、印刷による方法又は塗工による方法を用いることができる。印刷方法は特に限定されず、印刷方法として、例えばスクリーン印刷、グラビア印刷、オフセット印刷、フレキソ印刷、インクジェット印刷、ディスペンサー印刷等を用いることができる。また塗工方法は特に限定されず、塗工方法として、例えばナイフコート、ダイコート、ロールコート等を用いることができる。
[電子部品の製造方法]
 電子部品1を製造する方法は、接着シート11を用い、フレキシブルプリント配線板2の1の接着領域に伝導性接着層4を積層する工程(伝導性接着層積層工程)と、離型フィルム12を剥離する工程(離型フィルム剥離工程)と、露出した伝導性接着層4に伝導板3を積層する工程(伝導板積層工程)と、積層したフレキシブルプリント配線板2及び伝導板3を熱圧着する工程(熱圧着工程>)とを有する。
<伝導性接着層積層工程>
 伝導性接着層積層工程では、フレキシブルプリント配線板2の接着領域Adに伝導性接着層4が当接するよう接着シート11を接着する。
<離型フィルム剥離工程>
 離型フィルム剥離工程では、伝導性接着層4から離型フィルム12を剥離する。これにより、伝導性接着層4の表面が露出する。
<伝導板積層工程>
 伝導板積層工程では、露出した伝導性接着層4の表面に伝導板3を積層する。これにより、バンプ9と伝導板3とが接触し、バンプ9がフレキシブルプリント配線板2の導電パターン6と伝導板3との間で電気を伝導することが可能となる。
<熱圧着工程>
 熱圧着工程では、フレキシブルプリント配線板2、伝導性接着層4及び伝導板3からなる積層体を熱プレスすることによって一体化する。この熱圧着工程において、熱プレスによりフレキシブルプリント配線板2から発生する水蒸気が、放出バンプ9aにより接着領域Adの外縁近傍まで案内され、さらに接着剤層10を通過して外部に放出される。
 この熱プレスの加熱温度は、120℃以上200℃以下が好ましく、加熱時間は5秒以上60分以下が好ましい。加熱温度及び加熱時間を上記範囲とすることで、接着性を効果的に発揮できると共にベースフィルム5等の変質を抑制することができる。
 加熱方法は特に限定されず、例えばオーブンやホットプレート等の加熱手段を用いて加熱することができる。また、導電パターン6と伝導板3との接着性を向上させると共にこれらをバンプ9により確実に当接させるため、加熱の際に、バンプ9及び接着剤層10をフレキシブルプリント配線板2及び伝導板3によりプレスすることが好ましい。
〔利点〕
 当該電子部品の製造方法では、接着シート11を用いるため、熱圧着時にフレキシブルプリント配線板2から生じる水蒸気を外部に放出することができ、フレキシブルプリント配線板2と伝導板3との間を伝導性接着層4により電気的に比較的確実に接続することができる。従って、当該電子部品の製造方法により、電気的接続の信頼性が高い電子部品1を容易に製造することができる。
[電子部品の第二実施形態]
 図5及び図6の電子部品21は、フレキシブルプリント配線板22と、このフレキシブルプリント配線板22の表面側に重ね合わせるよう実装される素子23と、フレキシブルプリント配線板22の表面側に素子23と並んで重ね合わされるヒートシンク24と、フレキシブルプリント配線板22及び素子23間並びにフレキシブルプリント配線板22及びヒートシンク24間にそれぞれ充填される複数の伝導性接着層25とを備える。
<フレキシブルプリント配線板>
 フレキシブルプリント配線板22は、ベースフィルム26、導電パターン27及びカバーレイ(絶縁層)28を有する。導電パターン27は、素子23が実装される領域及びヒートシンク24が接着される領域間に跨るよう形成されるグランド部27aと、複数の配線部27bとを有する。カバーレイ28は、導電パターン27が素子23及びヒートシンク24に向かってそれぞれ露出する複数の伝導領域Acを画定する複数の開口29を有する。
 図5及び図6の電子部品21のベースフィルム26、導電パターン27及びカバーレイ28の材質及び厚みは、図1及び図2の電子部品のベースフィルム5、導電パターン6及びカバーレイ7と同様であるため、重複する説明を省略する。
<素子>
 素子23は、フレキシブルプリント配線板22の導電パターン27に接続されて電気回路の構成要素となる部品である。この素子23は、裏面に配設され、導電パターン27のグランド部27aに熱伝達するための伝導板部23aと、導電パターン27の配線部27bに接続される複数のリード23bとを有する。この素子23の伝導板部23aは、フレキシブルプリント配線板22の導電パターン27が露出する複数の伝導領域のうちの1つに重ね合わされる。
<ヒートシンク>
 ヒートシンク24は、フレキシブルプリント配線板22に積層される板状の伝導板部24aからフレキシブルプリント配線板22と反対側に延出する複数のフィン24bを有する放熱部材(ヒートシンク)である。このヒートシンク24の伝導板部24aは、フレキシブルプリント配線板22の導電パターン27が露出する複数の伝導領域のうちの1つに重ね合わされる。ヒートシンク24を形成する材料は、熱伝導性に優れるものであればよいが、ヒートシンク24には金属が好適に用いられる。このような金属は、特に限定されないが、ヒートシンク24を形成する金属として、アルミニウムが好適である。
<伝導性接着層>
 伝導性接着層25は、表面側及び裏面側に対向するフレキシブルプリント配線板22と素子23又はヒートシンク24とを互いに接着すると共に、このフレキシブルプリント配線板22のうち導電パターン27のグランド部27aがヒートシンク24に向かって露出する伝導領域Acと素子23の伝導板部23a又はヒートシンク24の伝導板部24aとの間に少なくとも厚さ方向に熱伝導性を発現させる。
 この伝導性接着層25は、伝導領域毎に、少なくとも厚さ方向に熱伝導性を有する複数のバンプ30と、このバンプ30の周囲に充填される接着剤層31とを有している。伝導性接着層25の複数のバンプ30は、伝導領域Ac毎に、平面視で接着領域Adの外縁近傍まで延在する少なくとも1の放出バンプ30aを含む。この伝導性接着層25において、接着剤層31は図1及び図2の電子部品1の伝導性接着層4における接着剤層10と同様であるため、重複する説明を省略する。
 また、接着剤層31は、図6に示すように、平面視で放出バンプ30aの先端を接着領域Adの外縁に露出させるよう形成された切欠き31aを有する。つまり、この切欠き31aは、接着領域Adの外縁を凹ませることにより、放出バンプ30aと接着領域Adの外縁との最短距離を小さくしている。これにより、製造時の放出バンプ30aに沿う水蒸気の放出がより促進される。
〔バンプ〕
 バンプ30は、熱伝導性粒子とそのバインダーとを含有する。このバンプ30は、熱伝導性粒子を除いて、図1及び図2の電子部品1の伝導性接着層4におけるバンプ9と同様であるため、その形状や配置、バインダーの材質等の重複する説明を省略する。
(熱伝導性粒子)
 バンプ30に含有される熱伝導性粒子の材質としては、例えば窒化アルミニウム(AlN)、窒化ケイ素(Si)、アルミナ(Al)、窒化ホウ素(BN)、酸化ベリリウム(BeO)等が挙げられる。これらの中で、熱伝導性の観点から、熱伝導性粒子の材質は、窒化アルミニウム又は窒化ホウ素が好ましい。なお、熱伝導性粒子として、これらを単独で又は2種以上を組み合わせて用いてもよい。
 熱伝導性粒子の平均粒径の下限は、伝導性接着層5の厚さにもよるが、2μmが好ましく、3μmがより好ましく、5μmがさらに好ましい。一方、熱伝導性粒子の平均粒径の上限は、30μmが好ましく、20μmがより好ましく、15μmがさらに好ましい。熱伝導性粒子の平均粒径が上記下限未満の場合、熱伝導性粒子の成形が困難になるおそれがある。熱伝導性粒子の平均粒径が上記上限を超える場合、バンプ30の表面が粗くなって被接着部材との接着性が損なわれるおそれがある。なお、「平均粒径」とは、粒子群に対し、篩分法により得た各粒度の篩い下の全粒子質量から得られる積算分布より、積算量が50質量%となる粒径を意味する。
 バンプ30の熱伝導性粒子の含有率の下限は、30体積%が好ましく、50体積%がより好ましい。一方、バンプ30の熱伝導性粒子の含有率の上限は、90体積%が好ましく、70体積%がより好ましい。熱伝導性粒子の含有率が上記下限未満の場合、被接着部材間の熱伝導性が低下するおそれがある。バンプ30の熱伝導性粒子の含有率が上記上限を超える場合、バインダーが少なくなるので、バンプ30の形成が困難になるおそれや、使用時にバンプ30が破断して熱伝導性を損なうおそれがある。
[その他の実施形態]
 今回開示された実施の形態は全ての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は、上記実施形態の構成に限定されるものではなく、請求の範囲によって示され、請求の範囲と均等の意味及び範囲内での全ての変更が含まれることが意図される。
 電子部品は、上述の第1実施形態の構成と第2実施形態の構成とを組み合わせてもよい。具体例として、電子部品は、1以上の任意の数の熱伝導性を有する伝導性接着層と1以上の任意の数の電気伝導性を有する伝導性接着層とを備えていてもよく、熱伝導性を有する伝導性接着層を1つだけ備えていてもよい。
 電子部品におけるフレキシブルプリント配線板、伝導性接着層及び伝導板の平面形状は、上記実施形態のものに限定されず、電子部品に要求される仕様等に応じて任意の形状とできる。
 電子部品において、1つの接着領域に複数の伝導領域が設けられてもよい。この場合、伝導領域毎に、接着領域の外縁までの距離が小さい1つ以上の放出バンプが設けられる。
 電子部品において、伝導性接着層の伝導領域におけるバンプの数が1つだけであってもよい。この場合、伝導領域には、接着剤層の外縁までの距離が小さい1つの放出バンプのみが配設される。
 電子部品において、放出バンプは、接着剤層の外縁から露出又は突出するよう延在してもよい。この場合、放出バンプの接着剤層の外縁から露出又は突出する先端が接着剤層の切欠きの中に配置されることで、放出バンプと他の構成要素との短絡を防止することができる。
 電子部品において、バンプは、電気伝導性及び熱伝導性の両方を有してもよい。
 例えば、バンプを形成する伝導性スラリーは、電気伝導性粒子と熱伝導性粒子とを含むことができる。この場合、バンプの電気伝導性粒子及び熱伝導性粒子の含有率の下限及び上限は、それぞれ、電気伝導性粒子及び熱伝導性粒子の体積比に応じて、上述の電気伝導性粒子の含有率の下限及び上限と上述の熱伝導性粒子の含有率の下限及び上限とを比例配分した値とすればよい。
 電子部品のプリント配線板は、カバーレイ以外の種類の絶縁層を有してもよい。カバーレイ以外の絶縁層としては、例えばソルダーレジスト、光反射層、コーティング層等が挙げられる。
 電子部品において、電気伝導性粒子を含むことにより電気伝導性を有するバンプと熱伝導性粒子とを含むことにより熱伝導性を有するバンプとが別々に形成されてもよい。この場合、フレキシブルプリント配線板の設計に応じて、電気伝導性を有する1又は複数のバンプと熱伝導性を有する1又は複数のバンプとを同一の接着領域に配設してもよく、電気伝導性を有する1又は複数のバンプと熱伝導性を有する1又は複数のバンプとを別々の接着領域に配設してもよい。
 電子部品は、最初に伝導板に伝導性接着層を積層し、伝導性接着層の反対側の面にフレキシブルプリント配線板を接着することにより製造してもよい。
 バンプの伝導性接着層に垂直な断面の形状(中央縦断面形状)は、上記実施形態のような厳密な台形に限定されず、例えば台形の頂辺が円弧である台形状や、底辺と頂辺とが非平行である台形状であってもよい。また、バンプの中央縦断面形状は、台形以外の形状、例えば、半円形、三角形、長方形、高さ方向の中央部分に向かって幅が減少するくびれ形状、高さ方向の中央部分に向かって幅が増大する樽形状等であってもよい。
 フレキシブルプリント配線板は、上述したもの以外の層やシート等を有していてもよい。例えば、フレキシブルプリント配線板は、ベースフィルムの裏面側に導電パターンやカバーレイが積層されているフレキシブルプリント配線板であってもよく、複数のベースフィルムを有する多層フレキシブルプリント配線板であってもよい。また、フレキシブルプリント配線板は、ベースフィルム及び導電パターンを備えるものであれば特に限定されず、カバーレイを備えていなくてもよい。
 以下、実施例に基づき本発明を詳述するが、この実施例の記載に基づいて本発明が限定的に解釈されるものではない。
 フレキシブルプリント配線板として、平均厚さ25μmのポリイミド製ベースフィルムと、このベースフィルムの表面にべた状に積層された平均厚さ12μmの銅箔層(導電パターン)と、この銅箔層の表面に積層された平均厚さ37.5μmのデュポン社製のカバーレイを有し、このカバーレイに直径2mmの円形の開口を形成して銅箔層を露出させたものを複数用意した。
 電気伝導性を発現させる伝導性接着層を備える接着シートとして、1本の帯状の放出バンプと、この放出バンプの周囲に充填される接着剤層とを備えるものを形成した。放出バンプは、剥離フィルムの表面に平均幅0.2mm、平均高さ75μm、平均長さ4mmとなるよう銀ペーストを塗布し、これを加熱して形成した。接着剤層は、平均厚さ37.5μmとなるよう充填した。また、この接着剤層は、放出バンプの長手方向と一対の対向辺の向きが等しく、放出バンプの短手方向の平均幅が9mm(放出バンプの両側に4.4mmずつ)の方形状とした。また、接着剤層については、放出バンプの両端からこの接着剤層(接着領域)の外縁までの距離、つまりバンプとそれが包含される接着領域の外縁との最短距離(以下、放出距離という)がそれぞれ表1に示す値となるように、長さが異なるものを複数形成した。
 電気伝導性を有する伝導板として、平均厚さ0.5mmのステンレス鋼板を用意した。
 伝導性接着層が銅箔層の露出部分に当接するように、接着シートをフレキシブルプリント配線板の表面に積層し、離型フィルムを剥離した後、伝導性接着層の表面に伝導板を積層し、この積層体を圧力1.5MPaで加圧しつつ、温度160℃に加熱して熱圧着することにより、電子部品の試作品No.1~16を得た。
 これらの電子部品の試作品No.1~16について、銅箔層と伝導板との間の電気抵抗を測定した結果を表1に合わせて示す。なお、表中に抵抗値として記載される「-」は、値が大きすぎて測定不能であったことを意味する。
Figure JPOXMLDOC01-appb-T000001
 表1の結果から、放出距離(バンプと接着領域の外縁との最短距離)を2.4mm以下とすることにより、導電パターンと伝導板との電気的接続が得られ、放出距離を1.2mm以下とすることにより、導電パターンと伝導板とのより確実な電気的接続が達成され、放出距離を0.8mm以下とすることにより導電パターンと伝導板との電気抵抗を極めて低減できることが確認された。
 本発明の電子部品は、例えば小型の装置に組み込む電子部品として特に好適である。
1 電子部品
2 フレキシブルプリント配線板
3 伝導板
4 伝導性接着層
5 ベースフィルム
6 導電パターン
7 カバーレイ(絶縁層)
8 開口
9 バンプ
9a 放出バンプ
10 接着剤層
11 接着シート
12 離型フィルム
21 電子部品
22 フレキシブルプリント配線板
23 素子
23a 伝導板部
23b リード
24 ヒートシンク
24a 伝導板部
24b フィン
25 伝導性接着層
26 ベースフィルム
27 導電パターン
27a グランド部
27b 配線部
28 カバーレイ(絶縁層)
29 開口
30 バンプ
30a 放出バンプ
31 接着剤層
31a 切欠き
Ac 伝導領域  Ad 接着領域

Claims (10)

  1.  導電パターンを有するフレキシブルプリント配線板と、
     このフレキシブルプリント配線板のうち少なくとも導電パターンが露出する1又は複数の伝導領域に重ね合わされる1又は複数の伝導板と、
     前記フレキシブルプリント配線板及び前記伝導板間のうち1又は複数の接着領域に充填され、前記伝導領域及び前記伝導板間に少なくとも厚さ方向に電気伝導性又は熱伝導性を有する伝導性接着層と
     を備える電子部品であって、
     前記伝導性接着層が、前記伝導領域毎に、少なくとも厚さ方向に電気伝導性又は熱伝導性を有する1又は複数のバンプと、この1又は複数のバンプの周囲に充填される接着剤層とを有し、
     前記1又は複数のバンプとそれが包含される前記接着領域の外縁との最短距離が2.4mm以下である電子部品。
  2.  前記伝導領域毎に、前記接着領域の外縁と前記伝導領域の外縁との間を架け渡すように配設される少なくとも1のバンプを有する請求項1に記載の電子部品。
  3.  前記少なくとも1のバンプが、前記伝導領域の外縁と前記接着領域との間を結ぶ一本の線上に並んで配設され、前記一本の線上におけるバンプの非存在部分の合計長さの最小値が2.4mm以下である請求項2に記載の電子部品。
  4.  前記伝導領域毎に、前記接着領域の対向する外縁間を架け渡すように配設される平面視で帯状の少なくとも1のバンプを有する請求項1に記載の電子部品
  5.  前記接着領域における前記1又は複数のバンプの占有面積率が0.1%以上30%以下である請求項1から請求項4のいずれか1項に記載の電子部品。
  6.  前記バンプの中央縦断面形状が台形状である請求項1から請求項5のいずれか1項に記載の電子部品。
  7.  前記フレキシブルプリント配線板が、前記1又は複数の伝導領域を画定する1又は複数の開口を有する絶縁層をさらに備える請求項1から請求項6のいずれか1項に記載の電子部品。
  8.  前記伝導領域における前記バンプの平均高さが前記絶縁層の平均厚さの0.3倍以上2.2倍以下である請求項7に記載の電子部品。
  9.  離型フィルム及びこの離型フィルムの表面の1又は複数の接着領域に積層される伝導性接着層を備え、この伝導性接着層が、対向するフレキシブルプリント配線板及び伝導板を接着すると共に、このフレキシブルプリント配線板のうち導電パターンが対向面に露出する伝導領域及び前記伝導板間に少なくとも厚さ方向に電気伝導性又は熱伝導性を発現させる接着シートであって、
     前記伝導性接着層が、前記伝導領域毎に、少なくとも厚さ方向に電気伝導性又は熱伝導性を有する1又は複数のバンプと、この1又は複数のバンプの周囲に充填される接着剤層とを有し、
     前記1又は複数のバンプとそれが包含される前記接着領域の外縁との最短距離が2.4mm以下である接着シート。
  10.  導電パターンを有するフレキシブルプリント配線板と、
     このフレキシブルプリント配線板のうち少なくとも導電パターンが露出する1又は複数の伝導領域に重ね合わされる1又は複数の伝導板と、
     前記フレキシブルプリント配線板及び前記伝導板間のうち1又は複数の接着領域に充填され、前記伝導領域及び前記伝導板間に少なくとも厚さ方向に電気伝導性又は熱伝導性を有する伝導性接着層と
     を備える電子部品の製造方法であって、
     請求項9に記載の接着シートを用い、前記フレキシブルプリント配線板及び前記伝導板の一方の前記1又は複数の接着領域に伝導性接着層を積層する工程と、
     離型フィルムを剥離する工程と、
     露出した前記伝導性接着層に前記フレキシブルプリント配線板及び前記伝導板の他方を積層する工程と、
     積層した前記フレキシブルプリント配線板及び前記伝導板間を熱圧着する工程と
     を備える電子部品の製造方法。
PCT/JP2016/061523 2015-05-18 2016-04-08 電子部品、接着シート及び電子部品の製造方法 WO2016185827A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201680028825.1A CN107615892A (zh) 2015-05-18 2016-04-08 电子部件、粘接片及电子部件的制造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015101409A JP2016219555A (ja) 2015-05-18 2015-05-18 電子部品、接着シート及び電子部品の製造方法
JP2015-101409 2015-05-18

Publications (1)

Publication Number Publication Date
WO2016185827A1 true WO2016185827A1 (ja) 2016-11-24

Family

ID=57320247

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/061523 WO2016185827A1 (ja) 2015-05-18 2016-04-08 電子部品、接着シート及び電子部品の製造方法

Country Status (3)

Country Link
JP (1) JP2016219555A (ja)
CN (1) CN107615892A (ja)
WO (1) WO2016185827A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113983045A (zh) * 2021-10-26 2022-01-28 中国电子科技集团公司第三十八研究所 导电密封条与铝合金框架的胶接方法及密封条

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7067056B2 (ja) * 2017-12-25 2022-05-16 Dic株式会社 補強板接着固定用接着シート

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6452247U (ja) * 1987-09-26 1989-03-31
JP2006080156A (ja) * 2004-09-07 2006-03-23 Nitto Denko Corp 配線回路基板
JP2009218443A (ja) * 2008-03-11 2009-09-24 Sumitomo Electric Ind Ltd 金属補強板を備えたフレキシブルプリント配線板
JP2015023065A (ja) * 2013-07-16 2015-02-02 住友電工プリントサーキット株式会社 電子部品及びその製造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6452247U (ja) * 1987-09-26 1989-03-31
JP2006080156A (ja) * 2004-09-07 2006-03-23 Nitto Denko Corp 配線回路基板
JP2009218443A (ja) * 2008-03-11 2009-09-24 Sumitomo Electric Ind Ltd 金属補強板を備えたフレキシブルプリント配線板
JP2015023065A (ja) * 2013-07-16 2015-02-02 住友電工プリントサーキット株式会社 電子部品及びその製造方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113983045A (zh) * 2021-10-26 2022-01-28 中国电子科技集团公司第三十八研究所 导电密封条与铝合金框架的胶接方法及密封条

Also Published As

Publication number Publication date
JP2016219555A (ja) 2016-12-22
CN107615892A (zh) 2018-01-19

Similar Documents

Publication Publication Date Title
KR101561132B1 (ko) 프린트 배선판용 쉴드 필름 및 프린트 배선판
TW201606043A (zh) 導電性黏接膜、印刷電路板及電子設備
JP6691137B2 (ja) 放熱性回路基板
JP6449111B2 (ja) シールド材、電子部品及び接着シート
TW201841555A (zh) 接地構件、屏蔽印刷配線板及屏蔽印刷配線板之製造方法
JP6794591B1 (ja) 導電性接着シート
US7527873B2 (en) Thermally and electrically conductive interface
JP6320694B2 (ja) 電気部品及びその製造方法
WO2016185827A1 (ja) 電子部品、接着シート及び電子部品の製造方法
JP6239884B2 (ja) 電子部品及びその製造方法
JP2011049175A (ja) 電子部品の接続方法及び接続構造体
WO2014136606A1 (ja) 接着シート及び接着シートの製造方法
JP6088292B2 (ja) 接着シート及びその製造方法
TW202100352A (zh) 電磁波屏蔽膜
JP2014175323A (ja) 接着シート及びその製造方法
JP6568436B2 (ja) 電子部品、接着シート及び電子部品の製造方法
JP2016207990A (ja) プリント配線板及び回路基板
JP6377905B2 (ja) 接着シート及び接着シートの製造方法
WO2015008671A1 (ja) 電子部品及び電子部品の製造方法
JP6262552B2 (ja) 電子部品の製造方法
JP2015142051A (ja) 電子部品及び電子部品の製造方法
JP2014229631A (ja) フレキシブルプリント配線板
JPWO2018070329A1 (ja) プリント配線板及びその製造方法
JP2011210948A (ja) 金属ベース回路基板及び金属ベース回路基板の製造方法
JP5101418B2 (ja) 発光素子搭載用基板、発光素子パネル、発光素子パッケージおよび発光素子搭載用基板の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16796221

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16796221

Country of ref document: EP

Kind code of ref document: A1