WO2016178371A1 - 偏光板保護フィルム、それが具備された偏光板、液晶表示装置、及び偏光板保護フィルムの製造方法 - Google Patents

偏光板保護フィルム、それが具備された偏光板、液晶表示装置、及び偏光板保護フィルムの製造方法 Download PDF

Info

Publication number
WO2016178371A1
WO2016178371A1 PCT/JP2016/062690 JP2016062690W WO2016178371A1 WO 2016178371 A1 WO2016178371 A1 WO 2016178371A1 JP 2016062690 W JP2016062690 W JP 2016062690W WO 2016178371 A1 WO2016178371 A1 WO 2016178371A1
Authority
WO
WIPO (PCT)
Prior art keywords
polarizing plate
protective film
carbon atoms
plate protective
group
Prior art date
Application number
PCT/JP2016/062690
Other languages
English (en)
French (fr)
Inventor
洋介 水谷
Original Assignee
コニカミノルタ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタ株式会社 filed Critical コニカミノルタ株式会社
Priority to JP2017516584A priority Critical patent/JP6702316B2/ja
Priority to KR1020177031149A priority patent/KR102035406B1/ko
Publication of WO2016178371A1 publication Critical patent/WO2016178371A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L65/00Compositions of macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain; Compositions of derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • C08L67/02Polyesters derived from dicarboxylic acids and dihydroxy compounds
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2365/00Characterised by the use of macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain; Derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2467/00Characterised by the use of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Derivatives of such polymers
    • C08J2467/02Polyesters derived from dicarboxylic acids and dihydroxy compounds

Definitions

  • the present invention relates to a polarizing plate protective film having a high surface hardness and excellent dimensional stability and haze stability even when placed in a high temperature environment, a polarizing plate provided with the same, a liquid crystal display device, and a polarizing plate protective film. It relates to a manufacturing method.
  • a polarizing plate to be combined with an image display device equipped with an organic electroluminescence element (hereinafter also referred to as an organic EL element) generally has a configuration in which a polarizer is disposed between two protective films, and is reflected by the polarizing plate.
  • a protective film provided with a phase difference on the organic EL element side is used.
  • a liquid crystal display (LCD) includes a liquid crystal cell and a pair of polarizing plates that sandwich the liquid crystal cell.
  • the polarizing plate on the viewing side in particular is required to have high scratch resistance in order to prevent the surface from being scratched. It has been studied to increase the surface hardness of the polarizing plate protective film used. For example, in order to raise the surface hardness of a polarizing plate protective film, the technique which laminates
  • a cellulose acetate film that has been widely used as a base film has a drawback that it has hygroscopicity and moisture permeability, and a cycloolefin-based resin has few such disadvantages, water resistance, heat resistance, transparency, It has attracted attention as a thermoplastic resin that has excellent dimensional stability and is excellent as a protective film.
  • a cycloolefin-based resin is used as a polarizing plate protective film, the surface hardness is not sufficient for the thinning required for the polarizing plate protective film with the enlargement of the display screen and the expansion of the mobile market in recent years, There was a problem of being easily scratched.
  • Patent Document 2 discloses a technique for increasing the surface hardness by adding a barbituric acid derivative to a cycloolefin resin.
  • the present invention has been made in view of the above-mentioned problems and circumstances, and the problem to be solved is a polarizing plate protective film having high surface hardness and excellent dimensional stability and haze stability even when placed in a high temperature environment. Is to provide. Moreover, it is providing the polarizing plate and liquid crystal display device which were equipped. Furthermore, it is providing the manufacturing method of the polarizing plate protective film.
  • the present inventor can increase the surface hardness by using a polyester-based additive having a specific structure represented by the following general formula (1) in the process of examining the cause of the above-mentioned problem in order to solve the above-mentioned problems.
  • the inventors have found that a polarizing plate protective film excellent in dimensional stability and haze stability can be realized even when placed in a high temperature environment, and have reached the present invention.
  • a polarizing plate protective film having a resin layer containing a cycloolefin-based resin, wherein the resin layer has a thickness of 50 ⁇ m or less and contains a polyester-based additive represented by the following general formula (1)
  • a polarizing plate protective film having a resin layer containing a cycloolefin-based resin, wherein the resin layer has a thickness of 50 ⁇ m or less and contains a polyester-based additive represented by the following general formula (1)
  • a polarizing plate protective film having a resin layer containing a cycloolefin-based resin, wherein the resin layer has a thickness of 50 ⁇ m or less and contains a polyester-based additive represented by the following general formula (1)
  • a polarizing plate protective film having a resin layer containing a cycloolefin-based resin, wherein the resin layer has a thickness of 50 ⁇ m or less and contains a polyester-based additive represented by the following general formula (1)
  • a polarizing plate protective film having a resin layer containing
  • G is selected from the group consisting of alkylene diols having 2 to 12 carbon atoms, cycloalkylene diols having 6 to 12 carbon atoms, oxyalkylene diols having 4 to 12 carbon atoms, and arylene diols having 6 to 12 carbon atoms. Represents a group derived from at least one species.
  • A is derived from at least one selected from the group consisting of alkylene dicarboxylic acids having 4 to 12 carbon atoms, cycloalkylene dicarboxylic acids having 6 to 12 carbon atoms, and arylenedicarboxylic acids having 8 to 16 carbon atoms. Represents a group. n represents an integer of 0 or more. ) 2. 2. The polarizing plate protective film according to item 1, wherein B in the general formula (1) represents a group derived from a hydroxy group-containing monocarboxylic acid containing an aromatic ring.
  • Item 3 The polarizing plate protective film according to Item 1 or 2, wherein the polyester-based additive has a number average molecular weight in the range of 300 to 700.
  • the content of the polyester-based additive in the resin layer is in the range of 2 to 10% by mass with respect to the cycloolefin-based resin, any one of items 1 to 3
  • the polarizing plate protective film of description is in the range of 2 to 10% by mass with respect to the cycloolefin-based resin, any one of items 1 to 3
  • a polarizing plate comprising the polarizing plate protective film according to any one of items 1 to 6 on one side of a polarizer.
  • a liquid crystal display device comprising the polarizing plate according to item 7.
  • G is selected from the group consisting of alkylene diols having 2 to 12 carbon atoms, cycloalkylene diols having 6 to 12 carbon atoms, oxyalkylene diols having 4 to 12 carbon atoms, and arylene diols having 6 to 12 carbon atoms. Represents a group derived from a compound.
  • A represents a group derived from a compound selected from the group consisting of alkylene dicarboxylic acids having 4 to 12 carbon atoms, cycloalkylene dicarboxylic acids having 6 to 12 carbon atoms, and arylenedicarboxylic acids having 8 to 16 carbon atoms.
  • n represents an integer of 0 or more.
  • the above means of the present invention can provide a polarizing plate protective film having a high surface hardness and excellent dimensional stability and haze stability even when placed in a high temperature environment.
  • a polarizing plate and a liquid crystal display device provided with the same can be provided.
  • the manufacturing method of the polarizing plate protective film can be provided.
  • the polyester-based additive having a specific structure represented by the general formula (1) is a compound having a cyclic structure having a hydroxy group at the terminal.
  • this compound is added to the cycloolefin resin, it is considered that the density of the resin layer increases by filling the free volume of the cycloolefin resin with good compatibility. For this reason, it is presumed that a polarizing plate protective film having a large increase in hardness and less dimensional stability and haze reduction even when placed in a high temperature environment can be obtained.
  • Example of composition of polarizing plate protective film Example of configuration of liquid crystal display device
  • the polarizing plate protective film of the present invention is a polarizing plate protective film having a resin layer containing a cycloolefin-based resin, and the resin layer has a thickness of 50 ⁇ m or less and is represented by the general formula (1).
  • a polyester-based additive is a technical feature common to the inventions according to claims 1 to 9.
  • B in the general formula (1) represents a group derived from a hydroxy group-containing monocarboxylic acid containing an aromatic ring from the viewpoint of manifesting the effects of the present invention.
  • the number average molecular weight of the polyester-based additive is preferably in the range of 300 to 700. When the number average molecular weight is 300 or more, bleeding out is easily suppressed, and when the number average molecular weight is 700 or less, compatibility with the cycloolefin-based resin is hardly impaired, and an increase in haze is easily suppressed.
  • the content of the polyester additive in the resin layer is preferably in the range of 2 to 10% by mass with respect to the cycloolefin resin.
  • the thickness of the resin layer is preferably in the range of 15 to 50 ⁇ m.
  • the polarizing plate protective film of the present invention can be suitably provided for a polarizing plate.
  • the polarizing plate of the present invention can be suitably included in a liquid crystal display device.
  • the manufacturing method of the polarizing plate protective film of this invention is a manufacturing method of the polarizing plate protective film which manufactures the polarizing plate protective film which has a resin layer containing a cycloolefin type resin, Comprising: It represents with the said General formula (1). It is preferable to form the resin layer through a step of casting a solution containing a polyester additive and a cycloolefin resin on a substrate.
  • is used to mean that the numerical values described before and after it are included as a lower limit value and an upper limit value.
  • the polarizing plate protective film of the present invention is a polarizing plate protective film having a resin layer containing a cycloolefin-based resin, and the resin layer has a thickness of 50 ⁇ m or less and is represented by the following general formula (1).
  • a polyester-based additive is represented by the following general formula (1).
  • G is selected from the group consisting of alkylene diols having 2 to 12 carbon atoms, cycloalkylene diols having 6 to 12 carbon atoms, oxyalkylene diols having 4 to 12 carbon atoms, and arylene diols having 6 to 12 carbon atoms. Represents a group derived from at least one species.
  • FIG. 1 is an example of a polarizing plate protective film of the present invention.
  • the polarizing plate protective film 1 of the present invention may use the resin layer 2 as a base film as it is, but preferably has a hard coat layer 3 on the resin layer 2.
  • the thickness of the polarizing plate protective film 1 is preferably in the range of 15 to 50 ⁇ m from the recent thinning of the polarizing plate protective film.
  • the thickness of the hard coat layer is preferably in the range of 1 to 10 ⁇ m. More preferably, it is in the range of 1 to 8 ⁇ m. More preferably, it is in the range of 3 to 5 ⁇ m.
  • the polarizing plate protective film of the present invention is a polarizing plate protective film having a resin layer containing a cycloolefin-based resin, and contains the polyester-based additive represented by the general formula (1). .
  • the present inventor has found a phenomenon that the surface hardness is increased by adding a polyester-based additive having a structure represented by the general formula (1) to the cycloolefin-based resin. Such a phenomenon is not observed in the cellulose ester resin and is a characteristic of the cycloolefin resin. As described above, the phenomenon that the above characteristics change to a specific compound is not clear, but it is presumed that the density of the base material is increased by filling the free volume of the resin with the compatibility of these additives. For this reason, since it has the characteristic that the raise of hardness is large and there is little fall of heat resistance, it is thought that it is excellent in dimensional stability even if it puts in a high temperature environment.
  • the polyester-based additive is obtained by subjecting a diol and a dicarboxylic acid to a dehydration condensation reaction; a hydroxyl group (derived from a diol) at the molecular end of the resulting reaction product is converted to a carboxy group of a hydroxy group-containing monocarboxylic acid having a ring structure. And a compound obtained by a dehydration condensation reaction.
  • the polyester-based additive has a structure represented by the following general formula (1).
  • B represents a group derived from a hydroxy group-containing monocarboxylic acid having a ring structure.
  • the ring structure refers to a structure having an aliphatic hydrocarbon ring, an aliphatic hetero ring, an aromatic hydrocarbon ring or an aromatic hetero ring, preferably a structure having an aliphatic hydrocarbon ring or an aromatic hydrocarbon ring.
  • the hydroxy group-containing monocarboxylic acid having a ring structure may be an alicyclic monocarboxylic acid having 5 to 20 carbon atoms, an aromatic monocarboxylic acid having 7 to 20 carbon atoms, and a mixture thereof.
  • the alicyclic monocarboxylic acid having 5 to 20 carbon atoms is preferably an alicyclic monocarboxylic acid having 6 to 15 carbon atoms.
  • Examples of alicyclic monocarboxylic acids include 4-hydroxycyclohexyl acetic acid, 3-hydroxycyclohexyl acetic acid, 2-hydroxycyclohexyl acetic acid, 4-hydroxycyclohexyl propionic acid, 4-hydroxycyclohexyl butyric acid, 4-hydroxycyclohexyl glycolic acid, 4 -Hydroxy-o-methylcyclohexyl acetic acid, 4-hydroxy-m-methylcyclohexyl acetic acid, 4-hydroxy-p-methylcyclohexyl acetic acid, 5-hydroxy-m-methylcyclohexyl acetic acid, 6-hydroxy-o-methylcyclohexyl acetic acid, 2 , 4-dihydroxycyclohexyl acetic acid, 2,5-dihydroxycyclohexy
  • the aromatic monocarboxylic acid having 7 to 20 carbon atoms is preferably an aromatic monocarboxylic acid having 7 to 15 carbon atoms.
  • aromatic monocarboxylic acids include 4-hydroxybenzoic acid, 3-hydroxybenzoic acid, 2-hydroxybenzoic acid, 4-hydroxy-o-toluic acid, 3-hydroxy-p-toluic acid, 5-hydroxy- m-toluic acid, 6-hydroxy-o-toluic acid, 2,4-dihydroxybenzoic acid, 2,5-dihydroxybenzoic acid, 2- (hydroxymethyl) benzoic acid, 3- (hydroxymethyl) benzoic acid, 4- (Hydroxymethyl) benzoic acid, 2- (1-hydroxy-1-methylethyl) benzoic acid, 3- (1-hydroxy-1-methylethyl) benzoic acid, 4- (1-hydroxy-1-methylethyl) benzoic acid Acid etc. are included.
  • a hydroxy group-containing monocarboxylic acid containing an aromatic ring (an aromatic monocarboxylic acid containing a hydroxy group) from the viewpoint of imparting sufficient hydrophobicity to the polarizing plate protective film and easily suppressing deterioration of the polarizer due to moisture. It is preferably a group derived from
  • G is a group consisting of an alkylene diol having 2 to 12 carbon atoms, a cycloalkylene diol having 6 to 12 carbon atoms, an oxyalkylene diol having 4 to 12 carbon atoms, and an arylene diol having 6 to 12 carbon atoms.
  • alkylene diols having 2 to 12 carbon atoms examples include ethylene glycol, 1,2-propylene glycol, 1,3-propylene glycol, 1,2-butanediol, 1,3-butanediol, 1,2-propane.
  • cycloalkylene diols having 6 to 12 carbon atoms examples include hydrogenated bisphenol A (2,2-bis (4-hydroxycyclohexyl) propane), hydrogenated bisphenol B (2,2-bis (4-hydroxycyclohexyl) Butane and the like are included.
  • Examples of the oxyalkylene diol having 4 to 12 carbon atoms include diethylene glycol, triethylene glycol, tetraethylene glycol, dipropylene glycol, tripropylene glycol and the like.
  • arylene diols having 6 to 12 carbon atoms examples include bisphenol A and bisphenol B.
  • Diol is used as one or a mixture of two or more.
  • alkylene glycols having 2 to 12 carbon atoms are preferable in terms of excellent compatibility with cycloolefin resins.
  • A is at least one selected from the group consisting of alkylene dicarboxylic acids having 4 to 12 carbon atoms, cycloalkylene dicarboxylic acids having 6 to 12 carbon atoms, and arylenedicarboxylic acids having 8 to 16 carbon atoms. Represents a derived group.
  • alkylene dicarboxylic acid having 4 to 12 carbon atoms examples include succinic acid, maleic acid, fumaric acid, glutaric acid, adipic acid, azelaic acid, sebacic acid, dodecanedicarboxylic acid and the like.
  • Examples of the cycloalkylene dicarboxylic acid having 6 to 16 carbon atoms include 1,2-cyclohexanedicarboxylic acid, 1,3-cyclohexanedicarboxylic acid, 1,4-cyclohexanedicarboxylic acid, 1,5-decahydronaphthalenedicarboxylic acid, 1,4-decahydronaphthalenedicarboxylic acid and the like are included.
  • arylene dicarboxylic acids having 8 to 16 carbon atoms include phthalic acid, terephthalic acid, isophthalic acid, 1,5-naphthalenedicarboxylic acid, 1,4-naphthalenedicarboxylic acid and the like.
  • the dicarboxylic acid is preferably used as one kind or a mixture of two or more kinds.
  • the dicarboxylic acid is preferably a mixture of alkylene dicarboxylic acid and arylene dicarboxylic acid.
  • n represents an integer of 0 or more.
  • the number average molecular weight of the polyester-based additive is preferably 300 to 30,000, more preferably 300 to 700, and more preferably 300 to 600. If the number average molecular weight is above a certain level, bleeding out is likely to be suppressed. When the number average molecular weight is not more than a certain value, the compatibility with the cycloolefin-based resin is hardly impaired, and haze increase is easily suppressed.
  • the number average molecular weight of the polyester-based additive can be measured by gel permeation chromatography. Specifically, using a gel permeation chromatography (GPC) measuring device (“HLC-8330” manufactured by Tosoh Corporation), the number average molecular weight (Mn) of the ester compound in terms of standard polystyrene is measured under the following measurement conditions. Can be measured.
  • GPC gel permeation chromatography
  • the acid value of the polyester-based additive is preferably 0.5 mgKOH / g or less, more preferably 0.3 mgKOH / g or less.
  • the hydroxyl value of the polyester-based additive is preferably 25 mgKOH / g or less, more preferably 15 mgKOH / g or less.
  • the synthesis of the polyester-based additive can be carried out by a conventional method of hot-melt condensation by esterification reaction or transesterification reaction of dicarboxylic acid, diol, and end-capping monocarboxylic acid, or dicarboxylic acid and end-capping monocarboxylic acid. It can be performed by any of the interfacial condensation methods of acid chloride and diol. The charging ratio of the diol and the dicarboxylic acid is adjusted so that the molecular terminal is a diol.
  • the addition amount of the polyester-based additive having the structure represented by the general formula (1) with respect to the cycloolefin-based resin is preferably in the range of 2 to 10% by mass. More preferably, it is in the range of 3 to 7% by mass.
  • the amount added is 2% by mass or more, and an effect of increasing the hardness of the polarizing plate protective film is recognized, and if it is 10% by mass or less, it is preferable from the viewpoint of improving dimensional stability and haze stability in a high temperature environment.
  • the polarizing plate protective film of the present invention has a resin layer containing a cycloolefin resin.
  • the cycloolefin resin according to the present invention include (co) polymers of cycloolefin monomers having the following structure.
  • R 1 to R 4 are each independently a hydrogen atom, hydrocarbon group, halogen atom, hydroxy group, ester group, carboxy group, alkoxy group, cyano group, amide group, imide group, silyl group, or A hydrocarbon group substituted with a polar group (that is, a halogen atom, a hydroxy group, an ester group, an alkoxy group, a cyano group, an amide group, an imide group, or a silyl group).
  • a polar group that is, a halogen atom, a hydroxy group, an ester group, an alkoxy group, a cyano group, an amide group, an imide group, or a silyl group.
  • two or more of R 1 to R 4 may be bonded to each other to form an unsaturated bond, a monocycle or a polycycle, and this monocycle or polycycle has a double bond.
  • an aromatic ring may be formed.
  • R 1 and R 2 , or R 3 and R 4 may form an alkylidene group.
  • p and m are integers of 0 or more.
  • R 1 and R 3 each represents a hydrogen atom or a hydrocarbon group having 1 to 10, more preferably 1 to 4, and particularly preferably 1 to 2 carbon atoms.
  • R 2 and R 4 are a hydrogen atom or a monovalent organic group, and at least one of R 2 and R 4 represents a polar group having a polarity other than a hydrogen atom or a hydrocarbon group.
  • m is an integer of 0 to 3
  • Examples of the polar group of the specific monomer include a carboxy group, a hydroxy group, an alkoxycarbonyl group, an aryloxycarbonyl group, an amino group, an amide group, and a cyano group. These polar groups have a linking group such as a methylene group. It may be bonded via.
  • a hydrocarbon group in which a divalent organic group having a polarity such as a carbonyl group, an ether group, a silyl ether group, a thioether group, or an imino group is bonded as a linking group can also be exemplified.
  • a carboxy group, a hydroxy group, an alkoxycarbonyl group or an aryloxycarbonyl group is preferable, and an alkoxycarbonyl group or an aryloxycarbonyl group is particularly preferable.
  • a monomer in which at least one of R 2 and R 4 is a polar group represented by the formula — (CH 2 ) n COOR is obtained by using a cycloolefin-based resin having a high glass transition temperature, a low hygroscopic property, and various materials. It is preferable at the point from which it has the outstanding adhesiveness.
  • R is a hydrocarbon group having 1 to 12 carbon atoms, more preferably 1 to 4 carbon atoms, particularly preferably 1 to 2 carbon atoms, and preferably an alkyl group.
  • copolymerizable monomer examples include cycloolefins such as cyclobutene, cyclopentene, cycloheptene, cyclooctene, dicyclopentadiene and norbornene.
  • the number of carbon atoms of the cycloolefin is preferably 4-20, and more preferably 5-12.
  • the cycloolefin resin can be used alone or in combination of two or more.
  • a preferred molecular weight of the cycloolefin resin according to the present invention is 0.2 to 5 dL / g, more preferably 0.3 to 3 dL / g, particularly preferably 0.4 to 1.5 dL / g in terms of intrinsic viscosity [ ⁇ ] inh.
  • the number average molecular weight (Mn) in terms of polystyrene measured by gel permeation chromatography (GPC) is 8000 to 100,000, more preferably 10,000 to 80,000, particularly preferably 12,000 to 50,000, and the weight average molecular weight (Mw) ) Is preferably in the range of 20,000 to 300,000, more preferably 30,000 to 250,000, particularly preferably 40,000 to 200,000.
  • Inherent viscosity [ ⁇ ] inh , number average molecular weight and weight average molecular weight are in the above ranges, so that heat resistance, water resistance, chemical resistance, mechanical properties of cycloolefin resin, and solubility in solvents are good. Become.
  • the glass transition temperature (Tg) of the cycloolefin resin according to the present invention is usually 110 ° C. or higher, preferably 110 to 350 ° C., more preferably 120 to 250 ° C., and particularly preferably 120 to 220 ° C.
  • Tg is 110 ° C. or higher, there is no deformation due to use under high temperature conditions or secondary processing such as coating or printing.
  • Tg is 350 ° C. or lower, the solubility in a solvent is good.
  • the polarizing plate protective film has a resin layer containing a cycloolefin resin. 50% by mass or more of the resin layer is preferably a cycloolefin resin, and more preferably 70 to 90% by mass.
  • the cycloolefin-based resin may be a specific hydrocarbon-based resin described in, for example, Japanese Patent Application Laid-Open No. 9-221577 and Japanese Patent Application Laid-Open No. 10-287732, or a known heat, as long as the effects of the present invention are not impaired.
  • Plastic resins, thermoplastic elastomers, rubber polymers, ultraviolet absorbers, organic fine particles, inorganic fine particles, etc. may be blended, specific wavelength dispersing agents, sugar ester compounds, antioxidants, peeling accelerators, rubber particles, An additive such as a plasticizer may be included.
  • the base film may further contain an ultraviolet absorber as necessary in order to improve the weather resistance.
  • the ultraviolet absorber may preferably have a transmittance at a wavelength of 370 nm of 10% or less, more preferably 5% or less, and even more preferably 2% or less.
  • ultraviolet absorbers examples include oxybenzophenone compounds, benzotriazole compounds, salicylic acid ester compounds, benzophenone compounds, cyanoacrylate compounds, triazine compounds, nickel complex compounds, inorganic powders, and the like.
  • benzotriazole ultraviolet absorbers, benzophenone ultraviolet absorbers, and triazine ultraviolet absorbers are preferable, and benzotriazole ultraviolet absorbers and benzophenone ultraviolet absorbers are more preferable.
  • the content of the UV absorber is preferably 1.0 to 5% by mass with respect to the base film, although it depends on the type of UV absorber and the use conditions.
  • the base film can further contain fine particles (matting agent) in order to impart slipperiness or the like to the surface.
  • the fine particles may be composed of an inorganic compound or a resin.
  • inorganic compounds include silicon dioxide, titanium dioxide, aluminum oxide, zirconium oxide, calcium carbonate, talc, clay, calcined kaolin, calcined calcium silicate, hydrated calcium silicate, aluminum silicate, magnesium silicate, calcium phosphate, etc. Is mentioned.
  • silicone resin examples include silicone resin, fluororesin and acrylic resin.
  • silicone resins are preferable, and those having a three-dimensional network structure are particularly preferable.
  • Tospearl 103, 105, 108, 120, 145, 3120 and 240 manufactures a brand name for silicone resin.
  • fine particles of silicon dioxide are preferable in that the turbidity of the film can be lowered.
  • silicon dioxide fine particles include Aerosil R972, R972V, R974, R812, 200, 200V, 300, R202, OX50, TT600 (manufactured by Nippon Aerosil Co., Ltd.) and friction while keeping the film haze low. Aerosil 200V, Aerosil R972V, and Aerosil R812 are preferable because the effect of lowering the coefficient is great.
  • Martens hardness is a microhardness meter that uses a Vickers indenter and a triangular pyramid indenter with an accuracy between ridges of 115 degrees, and is a hardness measured with a test force loaded. From the relationship of the test force-indentation depth curve, it is defined as “a value obtained by dividing the test force F by the surface area As intruded by the indenter from the surface”, and the unit is represented by N / mm 2 . Martens hardness (HMT115) is represented by the following formula (A).
  • HMT115 Fmax / (26.43 ⁇ hmax 2 )
  • Fmax maximum test force
  • hmax maximum depth
  • the Martens hardness is measured at 23 ° C. For example, it can be performed using an ultra-micro hardness meter DUH-211 (manufactured by Shimadzu Corporation).
  • Resin layer according to the present invention at 23 ° C., preferably Martens hardness of the resin layer is 143N / mm 2 or more, and more preferably is at 159N / mm 2 or more.
  • a higher Martens hardness is preferable because the surface of the polarizing plate protective film is less likely to be scratched.
  • the upper limit is about 200 N / mm 2 due to the availability of materials such as additives and manufacturing conditions.
  • the haze of the base film measured by a method according to JIS K-7136 can be 0.8% or less, preferably 0.5% or less.
  • Haze can be adjusted by the molecular weight and content of the polyester-based additive.
  • the molecular weight or content of the polyester-based additive is set below a certain level, or an aromatic ring having high affinity with the cellulose ester is introduced into the hydroxy group-containing monocarboxylic acid to be end-capped. It is preferable to do.
  • the resin layer can be manufactured by an arbitrary method, but it is manufactured by a solution casting method from the viewpoint that it is easy to form a film even with a resin having a relatively large molecular weight, and that an additive is easily added to the resin layer uniformly. It is preferable.
  • a step of casting a solution containing a cycloolefin-based resin on a substrate to form the resin layer specifically through a step of casting a solution containing a cycloolefin-based resin on the substrate, It is preferable to form a resin layer.
  • the resin layer includes 1) a step of preparing the dope solution by dissolving the above-described components in a solvent, 2) a step of casting the dope solution on an endless substrate, and 3) drying the cast dope and then peeling it off. To obtain a film-like product, and 4) a process of drying and stretching the film-like material.
  • the film (base film) having only the resin layer according to the present invention is also referred to as a resin film.
  • Examples of the solvent used in the step 1) include, for example, chlorinated solvents such as chloroform and dichloromethane; aromatic solvents such as toluene, xylene, benzene, and mixed solvents thereof; methanol, ethanol, isopropanol, n-butanol, Examples thereof include alcohol solvents such as 2-butanol; methyl cellosolve, ethyl cellosolve, butyl cellosolve, dimethylformamide, dimethyl sulfoxide, dioxane, cyclohexanone, tetrahydrofuran, acetone, methyl ethyl ketone (MEK), ethyl acetate, and diethyl ether. These solvents may be used alone or in combination of two or more.
  • chlorinated solvents such as chloroform and dichloromethane
  • aromatic solvents such as toluene, xylene, benzene, and mixed solvents thereof
  • the concentration of the cycloolefin resin in the dope is higher because the drying load after casting on the substrate can be reduced.
  • the load increases, and the filtration accuracy deteriorates.
  • the concentration that achieves both of these is preferably 10 to 35% by mass, and more preferably 15 to 25% by mass.
  • the substrate in the casting process is preferably a mirror-finished surface, and a stainless steel belt or a drum whose surface is plated with a casting is preferably used as the substrate.
  • the cast width can be 1 ⁇ 4m.
  • the surface temperature of the substrate in the casting process is set from ⁇ 50 ° C. to a temperature at which the solvent does not boil and foam. A higher temperature is preferable because the web can be dried at a higher speed. However, if the temperature is too high, the web may foam or the flatness may deteriorate.
  • a preferable substrate temperature is appropriately determined within the range of 0 to 100 ° C., and more preferably 5 to 30 ° C.
  • the method for controlling the temperature of the substrate is not particularly limited, and there are a method of blowing warm air or cold air, and a method of bringing hot water into contact with the back side of the substrate. It is preferable to use hot water because heat is efficiently transmitted, and the time until the temperature of the substrate becomes constant is short.
  • hot air considering the temperature drop of the web due to the latent heat of vaporization of the solvent, hot air above the boiling point of the solvent may be used, and air at a temperature higher than the target temperature may be used while preventing foaming. .
  • the amount of residual solvent when peeling the web from the substrate is preferably within the range of 10 to 150% by weight, more preferably 20 to 40% by weight or 60 to 130% by weight. And particularly preferably within the range of 20 to 30% by mass or 70 to 120% by mass.
  • Residual solvent amount is defined by the following formula.
  • Residual solvent amount (% by mass) ⁇ (MN) / N ⁇ ⁇ 100 Note that M is the mass of a sample collected during or after the production of the web or film, and N is the mass after heating M at 115 ° C. for 1 hour.
  • the web is peeled off from the substrate, and further dried, so that the residual solvent amount is preferably 1% by mass or less, more preferably 0.1% by mass or less, and particularly preferably. It is in the range of 0 to 0.01% by mass.
  • a roller drying method (a method in which webs are alternately passed through a plurality of upper and lower rollers) and a tenter method for drying while transporting the web are employed.
  • the stretching ratio in the maximum stretching direction is preferably 5 to 80%, more preferably 12 to 60%.
  • it can be 0 to 60% in the transport direction (MD direction) and 5 to 70% in the width direction (TD direction).
  • the stretch ratio (%) is defined by the following formula.
  • Stretching rate (%) ⁇ ((stretching direction) length of stretched film ⁇ (stretching direction) length of stretched film) / (stretching direction) length of stretched film) ⁇ ⁇ 100
  • the stretching temperature may be in the range of 120 to 180 ° C, preferably 140 to 180 ° C, more preferably 145 to 165 ° C.
  • the residual solvent of the film-like material at the start of stretching is preferably less than 5% by mass, more preferably 4% by mass or less, and even more preferably 2% by mass or less, from the viewpoint of suppressing an increase in haze.
  • the solvent is evaporated by providing the drying step in the process of transporting the film-like material (film raw fabric) from which the cast dope has been peeled off from the substrate. Is preferred.
  • the method of stretching the film-like material is not particularly limited, and a method of stretching a difference in peripheral speed between a plurality of rolls and using the difference in the peripheral speed of the roll between them in the MD direction; It may be a method of fixing with a clip or a pin and extending the gap between the clip or the pin in the TD direction.
  • the stretching in the TD direction is preferably performed by a tenter, and may be a pin tenter or a clip tenter.
  • the resin layer can be formed through a step of stretching in an oblique direction using a tenter capable of oblique stretching.
  • An obliquely stretchable tenter is a device that widens a film original in an oblique direction with respect to its traveling direction (moving direction of the middle point in the film width direction) in an oven heating environment.
  • the tenter includes an oven, a pair of rails on the left and right on which a gripping tool for transporting the film travels, and a number of gripping tools that travel on the rails.
  • Both ends of the film fed out from the film roll and sequentially supplied to the entrance portion of the tenter are gripped by a gripping tool, the film is guided into the oven, and the film is released from the gripping tool at the exit portion of the tenter.
  • the film released from the gripping tool is wound around the core.
  • Each of the pair of rails has an endless continuous track, and the gripping tool which has released the grip of the film at the exit portion of the tenter travels outside and is sequentially returned to the entrance portion.
  • the other steps may be the same as known solution casting methods; for example, paragraphs 0109 to 0140 of JP2012-48214A.
  • the polarizing plate protective film of the present invention preferably has a hard coat layer.
  • a hard coat layer By having a hard coat layer, the impact resistance and ease of handling of the polarizing plate can be improved.
  • the material for forming the hard coat layer is not particularly limited as long as it shows a hardness of “H” or higher in the pencil hardness test specified in JIS K5700, but contains a cured product of an actinic radiation curable compound.
  • an actinic radiation curable compound a component containing a monomer having an ethylenically unsaturated double bond is preferably used.
  • the actinic radiation curable compound include an ultraviolet curable compound and an electron beam curable compound, and a compound that is cured by ultraviolet irradiation is preferable from the viewpoint of excellent mechanical film strength (abrasion resistance, pencil hardness).
  • Examples include organic hard coat materials such as organic silicone, melamine, epoxy, acrylate, and polyfunctional (meth) acrylic compounds; inorganic hard coat materials such as silicon dioxide; and the like.
  • organic hard coat materials such as organic silicone, melamine, epoxy, acrylate, and polyfunctional (meth) acrylic compounds
  • inorganic hard coat materials such as silicon dioxide; and the like.
  • (meth) acryl means acryl and methacryl.
  • (Meth) acrylates have one polymerizable unsaturated group in the molecule, two have, two or more, (meth) acrylate oligomers containing three or more polymerizable unsaturated groups in the molecule Can be mentioned.
  • pentaerythritol polyfunctional acrylate, dipentaerythritol polyfunctional acrylate, pentaerythritol polyfunctional methacrylate, dipentaerythritol polyfunctional methacrylate, or the like can be used as the polyfunctional acrylate.
  • (Meth) acrylates may be used alone or in combination of two or more.
  • various additives can be further blended as necessary within the range where the effects of the present invention are not impaired.
  • antioxidants for example, antioxidants, UV stabilizers, UV absorbers, surfactants, leveling agents, antistatic agents, and the like can be used.
  • the hard coat layer of the present invention has an average particle size of 0.2 to 10 ⁇ m. By containing the inner particles, slipperiness may be imparted, or high refractive index fine particles may be dispersed and contained to impart a refractive index.
  • the leveling agent is particularly effective in reducing surface irregularities when a hard coat layer is applied.
  • a dimethylpolysiloxane-polyoxyalkylene copolymer is suitable as the silicone leveling agent.
  • the particles having an average particle size of 0.2 to 10 ⁇ m are preferably inorganic particles.
  • inorganic particles include silica, zinc oxide, ITO (indium oxide / tin oxide), and ATO (antimony oxide / tin oxide). ), At least one selected from the group consisting of tin oxide, indium oxide, tungsten oxide, composite tungsten oxide, and antimony oxide.
  • silica fine particles are preferred because the effect of improving the surface hardness can be particularly increased and the strength can be particularly increased.
  • ITO, ATO, tungsten oxide, or composite tungsten oxide it is preferable to use ITO, ATO, tungsten oxide, or composite tungsten oxide.
  • UV stabilizer for example, a hindered amine UV stabilizer having high stability against UV rays is preferably used.
  • the hard coat layer contains an ultraviolet stabilizer, radicals, active oxygen and the like generated by ultraviolet rays are inactivated, and ultraviolet stability, weather resistance, and the like can be improved.
  • UV absorber examples include salicylic acid UV absorbers, benzophenone UV absorbers, benzotriazole UV absorbers, cyanoacrylate UV absorbers, triazine UV absorbers, and benzoxazinone UV absorbers. 1 type or 2 types or more selected from these groups can be used. Among these, from the viewpoint of dispersibility, triazine-based UV absorbers and benzoxazinone-based UV absorbers are preferable.
  • a polymer having an ultraviolet absorbing group in the molecular chain is also preferably used. By using a polymer having an ultraviolet absorbing group in such a molecular chain, it is possible to prevent deterioration of the ultraviolet absorbing function due to bleeding out of the ultraviolet absorbent.
  • Examples of the ultraviolet absorbing group include a benzotriazole group, a benzophenone group, a cyanoacrylate group, a triazine group, a salicylate group, and a benzylidene malonate group.
  • a benzotriazole group, a benzophenone group, and a triazine group are particularly preferable.
  • a polarizing plate protective film having a hard coat layer (also referred to as a polarizing plate protective film with an HC layer) is 1) a step of preparing the resin film described above, and 2) an active energy ray cured product layer on the resin film. After applying a coating liquid, it can be manufactured through a process of drying and curing to obtain an active energy ray cured product layer (hard coat layer).
  • the step of preparing the resin film of 1) is as described above.
  • the application of the coating solution for the active energy ray cured layer in the above 2) can be performed by any means such as a dipping method, a die coater method, a wire bar method, and a spray method.
  • Curing of the coating film of the coating solution for active energy ray cured layer of 2) can be performed by irradiating active energy rays.
  • the light source that irradiates active energy rays include a low-pressure mercury lamp, a medium-pressure mercury lamp, a high-pressure mercury lamp, an ultrahigh-pressure mercury lamp, a carbon arc lamp, a metal halide lamp, and a xenon lamp.
  • Irradiation light amount is sufficient if 20 ⁇ 10000mJ / cm 2 degrees, and preferably 50 ⁇ 2000mJ / cm 2.
  • the irradiation time is preferably 0.5 seconds to 5 minutes, and more preferably 3 seconds to 2 minutes from the viewpoint of work efficiency.
  • the dry layer thickness of the hard coat layer is preferably in the range of 1 to 8 ⁇ m, more preferably in the range of 3 to 5 ⁇ m.
  • a polarizer is an element that passes only light having a plane of polarization in a certain direction
  • a typical polarizer known at present is a polyvinyl alcohol polarizing film.
  • the polyvinyl alcohol polarizing film includes those obtained by dyeing iodine on a polyvinyl alcohol film and those obtained by dyeing a dichroic dye.
  • the polyvinyl alcohol polarizing film may be a film (preferably a film further subjected to durability treatment with a boron compound) dyed with iodine or a dichroic dye after uniaxially stretching the polyvinyl alcohol film; After the alcohol film is dyed with iodine or a dichroic dye, it may be a uniaxially stretched film (preferably a film further subjected to a durability treatment with a boron compound).
  • the absorption axis of the polarizer is parallel to the stretching direction of the film.
  • the ethylene unit content described in JP-A-2003-248123, JP-A-2003-342322, etc. is 1 to 4 mol%
  • the degree of polymerization is 2000 to 4000
  • the degree of saponification is 99.0 to 99.99 mol%.
  • Ethylene-modified polyvinyl alcohol or the like is used.
  • an ethylene-modified polyvinyl alcohol film having a hot water cutting temperature of 66 to 73 ° C. is preferably used.
  • the thickness of the polarizer is preferably 5 to 30 ⁇ m, and more preferably 10 to 20 ⁇ m in order to reduce the thickness of the polarizing plate.
  • the above-mentioned polarizing plate protective film or substrate film may be disposed as required, or another polarizing plate protective film may be disposed.
  • Examples of other polarizing plate protective films include commercially available cellulose acylate films (for example, Konica Minoltak KC8UX, KC4UX, KC5UX, KC8UY, KC4UY, KC12UR, KC8UCR-3, KC8UCR-4, KC8UCR-5, KC4FR-1 KC8UY-HA, KC8UX-RHA, KC8UE, KC4UE, KC4HR-1, KC4KR-1, KC4UA, KC6UA or more manufactured by Konica Minolta Co., Ltd.) and the like.
  • cellulose acylate films for example, Konica Minoltak KC8UX, KC4UX, KC5UX, KC8UY, KC4UY, KC12UR, KC8UCR-3, KC8UCR-4, KC8UCR-5, KC4FR-1 KC8UY-HA, KC8UX-
  • the polarizing plate protective film of the present invention is provided on one side of the polarizer and the retardation film is provided on the other side of the polarizer.
  • the other polarizing plate protective film is preferably a retardation film.
  • the retardation of the retardation film depends on the type of liquid crystal cell to be combined.
  • the retardation Ro (590) in the in-plane direction measured at a wavelength of 590 nm under the conditions of 23 ° C. and 55% RH is 20 to 100 nm.
  • the retardation Rth (590) in the thickness direction is preferably 70 to 300 nm.
  • a protective film having a retardation in the above range is suitable as a retardation film such as a VA liquid crystal cell. Each retardation value can be measured by the following method.
  • Retardation Ro and Rth are defined by the following equations, respectively.
  • n x represents a refractive index in the slow axis direction x in which the refractive index is maximized in the plane direction of the film
  • n y represents a refractive index in a direction y orthogonal to the slow axis direction x in the in-plane direction of the film
  • nz represents the refractive index in the thickness direction z of the film
  • d (nm) represents the thickness of the film
  • Ro is measured with KOBRA-21DH, Oji Scientific Instruments Co., Ltd., when light having a measurement wavelength of 590 nm is incident on the polarizing plate protective film after humidity adjustment in parallel to the normal line of the film surface.
  • the in-plane slow axis in the plane of the polarizing plate protective film is the tilt axis (rotation axis), and the measured wavelength from the angle of ⁇ (incident angle ( ⁇ )) with respect to the normal of the film surface
  • a retardation value R ( ⁇ ) when light of 590 nm is incident is measured.
  • the retardation value R ( ⁇ ) can be measured at 6 points every 10 ° in the range of 0 to 50 °.
  • the in-plane slow axis is an axis having the maximum refractive index in the film plane, and can be confirmed by KOBRA-21ADH.
  • the measured Ro and R (theta), calculated from the average refractive index and film thickness of the above, the KOBRA-21ADH, n x, calculates the n y and n z, and Rth at a measurement wavelength of 590nm To do.
  • the retardation can be measured under conditions of 23 ° C. and 55% RH.
  • the polarizing plate of the present invention can be obtained through a step of bonding the polarizer and the polarizing plate protective film of the present invention through an adhesive; and a step of cutting the bonded laminate into a predetermined size. It can.
  • the adhesive used for the bonding may be a completely saponified polyvinyl alcohol aqueous solution (water glue) or an active energy ray-curable adhesive.
  • the liquid crystal display device of the present invention includes a liquid crystal cell and a pair of polarizing plates sandwiching the liquid crystal cell.
  • FIG. 2 is a schematic diagram showing an example of a basic configuration of the liquid crystal display device.
  • the liquid crystal display device 10 of the present invention includes a liquid crystal cell 30, a first polarizing plate 50 and a second polarizing plate 70 that sandwich the liquid crystal cell 30, and a backlight 90.
  • the display mode of the liquid crystal cell 30 may be various display modes such as STN, TN, OCB, HAN, VA (MVA, PVA), and IPS.
  • the VA (MVA, PVA) mode is used. It is preferable that
  • the first polarizing plate 50 includes a first polarizer 51, a polarizing plate protective film 53 (F1) disposed on the surface of the first polarizer 51 opposite to the liquid crystal cell, and a first polarizer.
  • the second polarizing plate 70 includes a second polarizer 71, a polarizing plate protective film 73 (F3) disposed on the liquid crystal cell side surface of the second polarizer 71, and a liquid crystal of the second polarizer 71. And a polarizing plate protective film 75 (F4) disposed on the surface opposite to the cell.
  • One of the polarizing plate protective films 55 (F2) and 73 (F3) may be omitted as necessary.
  • the polarizing plate protective film 53 (F1) and 75 (F4); preferably the polarizing plate protective film 53 (F1) may be the polarizing plate protective film of the present invention.
  • the polarizing plate protective film 53 (F1) includes a base film 53A and an active energy ray cured product layer 53B, and the base film 53A is in contact with the first polarizer 51.
  • the liquid crystal display device in which the polarizing plate protective film 53 (F1) is the polarizing plate protective film of the present invention has high scratch resistance on the surface, so that the display screen can be hardly damaged.
  • the polarizing plate protective film of the present invention is preferably used not only as a polarizing plate protective film for a liquid crystal display device but also as a protective film for an image display device provided with a touch panel, an image display device such as an organic EL display or a plasma display, and the like. be able to.
  • Polyester additives PE10 and PE11 were synthesized as polyester additives for comparison with the polyester additives PE1 to PE9 having the structure represented by the general formula (1). Further, (A-4) described in JP-A-2014-132071 was used as the comparative compound PE12.
  • polyester additive PE1 341 parts of ethylene glycol, 410 parts of terephthalic acid and succinic acid in a molar ratio of 5: 5, 610 parts of 4-hydroxybenzoic acid, and 0.35 part of tetraisopropyl titanate as an esterification catalyst, thermometer, stirrer and slow Charged to a 2 L four-necked flask equipped with a cooling tube and stirred under stirring in a nitrogen stream with a reflux condenser to reflux an excess amount of monohydric alcohol, until the acid value reached 2 ° C. The water produced was continuously removed by continuous heating. Subsequently, unreacted ethylene glycol was distilled off at 200 ° C. under reduced pressure of 4 ⁇ 10 2 Pa or less to obtain a polyester-based additive PE1.
  • Polyester additives PE2 to PE4 and PE9 to PE11 in the same manner except that the types of diol (G), dicarboxylic acid (A), and end-capping monocarboxylic acid (B) were changed as shown in Table 1.
  • polyester additives PE5 to PE8 ⁇ Synthesis of polyester additives PE5 to PE8>
  • polyester additives PE5 to PE8 having different molecular weights were synthesized by changing the reaction time.
  • the number average molecular weight of the obtained polyester-based additive was measured by the following method.
  • COP1 cycloolefin resin (ARTON G7810, manufactured by JSR Corporation)
  • COP2 Cycloolefin resin (ARTON R5000, manufactured by JSR Corporation)
  • COP3 Cycloolefin resin (ARTON RX4500, manufactured by JSR Corporation)
  • HC1 hard coat layer coating solution 1
  • a hard coat layer coating solution 1 having the following composition was prepared. After mixing an ultraviolet curable resin, a surfactant, and propylene glycol monomethyl ether, the mixed solution was stirred for 30 minutes to prepare a hard coat layer coating solution 1.
  • UV curable resin (OPSTAR Z7527, manufactured by JSR) 100 parts by mass Surfactant (Surflon S-651, manufactured by AGC Seimi Chemical Co., Ltd.) 0.1 part by mass Methyl ethyl ketone 30 parts by mass ⁇
  • Preparation of polarizing plate protective film 1 [Preparation of main dope]
  • a main dope having the following composition was prepared. First, dichloromethane and ethanol were added to the pressure dissolution tank. The cycloolefin resin was added to a pressure dissolution tank containing a mixed solution of dichloromethane and ethanol with stirring. This is completely dissolved with heating and stirring. This was designated as Azumi Filter Paper No. The main dope was prepared by filtration using 244.
  • the above components were put into a sealed container and dissolved while stirring to prepare a main dope.
  • the dope was uniformly cast on a stainless steel belt substrate at a temperature of 31 ° C. and a width of 1800 mm.
  • the temperature of the stainless steel belt was controlled at 28 ° C.
  • the solvent was evaporated on the stainless steel belt substrate until the amount of residual solvent in the cast film was 30%. Subsequently, it peeled from the stainless steel belt base
  • the hard coat layer coating solution 1 was applied to one side of the resin film 1 obtained above using a micro gravure so as to have a dry film thickness of 3 ⁇ m and dried.
  • the coating film was cured by irradiating the coating film with ultraviolet rays at a light amount of 270 mJ / cm 2 in the atmosphere to prepare a polarizing plate protective film 1 in which a hard coat layer was formed on the resin film 1.
  • Evaluation of polarizing plate protective film >> Evaluation of Martens hardness, heat-resistant dimensional stability, and heat-resistant haze with respect to the produced resin films 1 to 24 and resin films 1 to 24 having a hard coat layer, with respect to a resin layer (resin film) having no hard coat layer Went.
  • the polarizing plate protective film provided with the hard coat layer on the resin layer was evaluated for pencil hardness, heat resistance curl and heat resistance haze.
  • Martens hardness was measured on a resin layer (resin film) having no hard coat layer.
  • Martens hardness (Vickers hardness) is a microhardness tester using a Vickers indenter and a triangular pyramid indenter with an accuracy of 115 degrees between ridges, and is measured with a test force loaded. From the relationship of the force-indentation depth curve, it is defined as “a value obtained by dividing the test force F by the surface area As intruded by the indenter from the surface”, and the unit is represented by N / mm 2 . Martens hardness (HMT115) is represented by the following formula.
  • HMT115 Fmax / (26.43 ⁇ hmax 2 )
  • Fmax Maximum test force (set to 12mN)
  • ⁇ Heat-resistant dimensional stability> The dimensional change rate in the stretching (MD) direction after putting each sample into a 90 ° C. thermostatic chamber for 500 hours was measured using a measuring microscope STM6 (manufactured by OLYMPUS). The absolute value of the rate of change was evaluated by ranking as follows. A: Change rate is less than 0.05% B: Change rate is 0.05% or more and less than 0.20% X: Change rate is 0.20% or more ⁇ Heat resistant haze> Stabilization of haze in a high temperature environment by measuring the change in haze after conditioning each resin film at 23 ° C and 55% RH for 12 hours and then treating in an environment of 80 ° C and 90% RH for 120 hours Sex was evaluated.
  • the haze was measured according to JIS K-7136 using a haze meter NDH-2000 (manufactured by Nippon Denshoku Industries Co., Ltd.).
  • the light source of the haze meter was a halogen bulb of 5V9W, and the light receiving part was a silicon photocell (with a relative visibility filter).
  • the haze was measured under the conditions of 23 ° C. and 55% RH, and the difference obtained by subtracting the haze before the treatment from the haze value after the treatment was evaluated by the following ranking.
  • the surface hardness of the polarizing plate protective film having a hard coat layer was measured by a pencil hardness evaluation method based on JIS K 5400. Specifically, the hard coat film was conditioned at 23 ° C. and 55% RH for 24 hours. Thereafter, the operation of scratching the surface of the hard coat layer with a pencil of each hardness using a 1 kg weight was repeated five times, and the maximum value of the hardness at which one scratch or less was obtained. The larger the maximum value, the higher the hardness.
  • a polarizing plate protective film satisfying the requirements of the present invention has high surface hardness and excellent dimensional stability and haze even when placed in a high temperature environment. Moreover, it turns out that it is useful as a polarizing plate and a liquid crystal display device which comprise this.
  • the pencil hardness was 2H.
  • the same results as those of the resin layer 16 having a thickness of 50 ⁇ m and the polarizing plate protective film 16 were obtained, but it was not possible to meet a high thin film requirement.
  • the polarizing plate protective film of the present invention is a thin film, has high surface hardness and excellent dimensional stability and haze stability even when placed in a high temperature environment, and can be preferably included in a polarizing plate and a liquid crystal display device.

Abstract

本発明の課題は、表面硬度が高く高温環境下に置かれても寸法安定性及びヘイズの安定性に優れた偏光板保護フィルムを提供することである。また、それが具備された偏光板、液晶表示装置を提供することである。さらにその偏光板保護フィルムの製造方法を提供することである。 本発明の偏光板保護フィルムは、シクロオレフィン系樹脂を含有する樹脂層を有する偏光板保護フィルムであって、前記樹脂層が、厚さが50μm以内であり、下記一般式(1)で表されるポリエステル系添加剤を含有することを特徴とする。 一般式(1):B-(G-A)-G-B

Description

偏光板保護フィルム、それが具備された偏光板、液晶表示装置、及び偏光板保護フィルムの製造方法
 本発明は、表面硬度が高く高温環境下に置かれても寸法安定性及びヘイズの安定性に優れた偏光板保護フィルム、それが具備された偏光板、液晶表示装置、及び偏光板保護フィルムの製造方法に関する。
 近年、表示装置において、大型化や薄膜化等の要求が強く、偏光板を含む各部材の高機能化が進んでいる。
 有機エレクトロルミネッセンス素子(以下、有機EL素子ともいう。)を搭載する画像表示装置に組み合わせる偏光板は、一般的に二つの保護フィルム間に偏光子が配置された構成を有し、偏光板に反射防止機能を付加するために、有機EL素子側に位相差を付与した保護フィルムが用いられている。また、液晶表示装置(LCD)は、液晶セルと、それを挟持する一対の偏光板とを有している。
 これらの表示装置に用いられている偏光板のうち、特に視認側の偏光板は、表面の傷付きを防止するため、高い耐擦傷性を有することが求められ、そのため、視認側の偏光板に用いられる偏光板保護フィルムの表面硬度を高めることが検討されている。例えば、偏光板保護フィルムの表面硬度を高めるために、基材フィルム上にハードコート層を積層する技術が知られている(例えば、特許文献1参照。)。
 一方、基材フィルムとして、従来広く用いられているセルロースアセテートフィルムは、吸湿性や透湿性を有するという欠点があり、シクロオレフィン系樹脂は、この欠点が少なく、耐水性、耐熱性、透明性や寸法安定性などが良好で、保護フィルムとして優れた熱可塑性樹脂として注目されている。しかしながら、シクロオレフィン系樹脂を偏光板保護フィルムとして用いた場合、近年の表示画面の大型化やモバイル市場の拡大に伴い偏光板保護フィルムに求められる薄膜化に対して、表面硬度が十分ではなく、傷がつきやすいという問題があった。
 この対策として、薄膜でも高い表面硬度を得るため、シクロオレフィン系樹脂に、添加剤を加えることが考えられる。例えば、特許文献2では、シクロオレフィン系樹脂にバルビツール酸の誘導体を添加することにより、表面硬度を上げる技術が開示されている。
 しかしながら、シクロオレフィン系樹脂にこのような添加剤を加えると、硬度は高くなるものの、耐熱性が劣り、高温環境下に置かれたときの寸法安定性やヘイズが劣化するという問題があり、特に近年のスマートホンなど、小型モバイル機器に搭載される偏光板保護フィルムとしては不十分であった。
 したがって、高度に薄膜であって、かつ高い表面硬度を有し、耐熱性の優れたシクロオレフィン系樹脂を用いた偏光板保護フィルムが要望されていた。
特開2013-127058号公報 特開2014-132071号公報
 本発明は、上記問題・状況に鑑みてなされたものであり、その解決課題は、表面硬度が高く高温環境下に置かれても寸法安定性及びヘイズの安定性に優れた偏光板保護フィルムを提供することである。また、それが具備された偏光板、液晶表示装置を提供することである。さらにその偏光板保護フィルムの製造方法を提供することである。
 本発明者は、上記課題を解決すべく、上記問題の原因等について検討する過程において下記一般式(1)で表される特定構造のポリエステル系添加剤を用いることで、表面硬度を高くでき、高温環境下に置かれても寸法安定性及びヘイズの安定性に優れた偏光板保護フィルムを実現することができることを見いだし本発明に至った。
 すなわち、本発明に係る上記課題は、以下の手段により解決される。
 1.シクロオレフィン系樹脂を含有する樹脂層を有する偏光板保護フィルムであって、前記樹脂層が、厚さが50μm以下であり、下記一般式(1)で表されるポリエステル系添加剤を含有することを特徴とする偏光板保護フィルム。
 一般式(1):B-(G-A)-G-B
(式中、
 Bは、環構造を含むヒドロキシ基含有モノカルボン酸から誘導される基を表す。
 Gは、炭素原子数2~12のアルキレンジオール、炭素原子数6~12のシクロアルキレンジオール、炭素原子数4~12のオキシアルキレンジオール及び炭素原子数6~12のアリーレンジオールからなる群より選ばれる少なくとも1種から誘導される基を表す。
 Aは、炭素原子数4~12のアルキレンジカルボン酸、炭素原子数6~12のシクロアルキレンジカルボン酸、及び炭素原子数8~16のアリーレンジカルボン酸からなる群より選ばれる少なくとも1種から誘導される基を表す。nは、0以上の整数を表す。)
 2.前記一般式(1)中のBが、芳香族環を含むヒドロキシ基含有モノカルボン酸から誘導される基を表すことを特徴とする第1項に記載の偏光板保護フィルム。
 3.前記ポリエステル系添加剤の数平均分子量が、300~700の範囲内であることを特徴とする第1項又は第2項に記載の偏光板保護フィルム。
 4.前記樹脂層中の前記ポリエステル系添加剤の含有量が、前記シクロオレフィン系樹脂に対して2~10質量%の範囲内であることを特徴とする第1項から第3項までのいずれか一項に記載の偏光板保護フィルム。
 5.前記樹脂層の上にハードコート層を有することを特徴とする第1項から第4項までのいずれか一項に記載の偏光板保護フィルム。
 6.前記樹脂層の厚さが、15~50μmの範囲内であることを特徴とする第1項から第5項までのいずれか一項に記載の偏光板保護フィルム。
 7.偏光子の片側に第1項から第6項までのいずれか一項に記載の偏光板保護フィルムが、具備されていることを特徴とする偏光板。
 8.第7項に記載の偏光板が、具備されていることを特徴とする液晶表示装置。
 9.シクロオレフィン系樹脂を含有する樹脂層を有する偏光板保護フィルムを製造する偏光板保護フィルムの製造方法であって、下記一般式(1)で表されるポリエステル系添加剤を含有し、かつ、シクロオレフィン系樹脂を含有する溶液を基体上に流延する工程を経て、前記樹脂層を形成することを特徴とする偏光板保護フィルムの製造方法。
 一般式(1):B-(G-A)-G-B
(式中、
 Bは、環構造を含むヒドロキシ基含有モノカルボン酸から誘導される基を表す。
 Gは、炭素原子数2~12のアルキレンジオール、炭素原子数6~12のシクロアルキレンジオール、炭素原子数4~12のオキシアルキレンジオール及び炭素原子数6~12のアリーレンジオールからなる群より選ばれる化合物から誘導される基を表す。
 Aは、炭素原子数4~12のアルキレンジカルボン酸、炭素原子数6~12のシクロアルキレンジカルボン酸、及び炭素原子数8~16のアリーレンジカルボン酸からなる群より選ばれる化合物から誘導される基を表す。nは、0以上の整数を表す。)
 本発明の上記手段により、表面硬度が高く高温環境下に置かれても寸法安定性及びヘイズの安定性に優れた偏光板保護フィルムを提供することができる。また、それが具備された偏光板、液晶表示装置を提供することができる。さらにその偏光板保護フィルムの製造方法を提供することができる。
 本発明の効果の発現機構ないし作用機構については、明確にはなっていないが、以下のように推察している。
 一般式(1)で表される特定構造のポリエステル系添加剤は、末端にヒドロキシ基を有する環状構造を有する化合物である。シクロオレフィン系樹脂にこの化合物を添加すると、シクロオレフィン樹脂の自由体積をこの添加剤が相溶良く埋めることで樹脂層の密度が増加すると考えられる。このため、硬度の上昇が大きく、高温環境下に置かれても寸法安定性やヘイズの低下が少ない偏光板保護フィルムを得ることができるものと推定している。
偏光板保護フィルムの構成の一例 液晶表示装置の構成の一例
 本発明の偏光板保護フィルムは、シクロオレフィン系樹脂を含有する樹脂層を有する偏光板保護フィルムであって、前記樹脂層が、厚さが50μm以下であり、前記一般式(1)で表されるポリエステル系添加剤を含有することを特徴とする。この特徴は、請求項1から請求項9までの請求項に係る発明に共通する技術的特徴である。
 本発明の実施態様としては、本発明の効果発現の観点から、一般式(1)中のBが、芳香族環を含むヒドロキシ基含有モノカルボン酸から誘導される基を表すことが好ましい。また、ポリエステル系添加剤の数平均分子量が、300~700の範囲内であることが好ましい。数平均分子量が300以上であるとブリードアウトを抑制しやすく、数平均分子量が700以下であるとシクロオレフィン系樹脂との相溶性を損ないにくく、ヘイズの上昇を抑制しやすい。
 さらに、本発明においては、前記樹脂層中の前記ポリエステル系添加剤の含有量が、前記シクロオレフィン系樹脂に対して2~10質量%の範囲内であることが好ましい。これにより、表面硬度が高く、ヘイズが低く耐熱性にも優れる効果が得られる。
 本発明の実施態様としては、樹脂層の上にハードコート層を有することが、最表面の硬度を上げることから好ましい。
 また、前記樹脂層の厚さが、15~50μmの範囲内であることが好ましい。
 本発明の偏光板保護フィルムは、偏光板に好適に具備され得る。本発明の偏光板は、液晶表示装置に好適に具備され得る。
 本発明の偏光板保護フィルムの製造方法は、シクロオレフィン系樹脂を含有する樹脂層を有する偏光板保護フィルムを製造する偏光板保護フィルムの製造方法であって、前記一般式(1)で表されるポリエステル系添加剤を含有し、かつ、シクロオレフィン系樹脂を含有する溶液を基体上に流延する工程を経て、前記樹脂層を形成することが好ましい。
 以下、本発明とその構成要素、及び本発明を実施するための形態・態様について詳細な説明をする。なお、本願において、「~」は、その前後に記載される数値を下限値及び上限値として含む意味で使用する。
 《偏光板保護フィルムの概要》
 本発明の偏光板保護フィルムは、シクロオレフィン系樹脂を含有する樹脂層を有する偏光板保護フィルムであって、前記樹脂層が、厚さが50μm以下であり、下記一般式(1)で表されるポリエステル系添加剤を含有することを特徴とする。
 一般式(1):B-(G-A)-G-B
(式中、
 Bは、環構造を含むヒドロキシ基含有モノカルボン酸から誘導される基を表す。
 Gは、炭素原子数2~12のアルキレンジオール、炭素原子数6~12のシクロアルキレンジオール、炭素原子数4~12のオキシアルキレンジオール及び炭素原子数6~12のアリーレンジオールからなる群より選ばれる少なくとも1種から誘導される基を表す。
 Aは、炭素原子数4~12のアルキレンジカルボン酸、炭素原子数6~12のシクロアルキレンジカルボン酸、及び炭素原子数8~16のアリーレンジカルボン酸からなる群より選ばれる少なくとも1種から誘導される基を表す。nは、0以上の整数を表す。)
 図1は、本発明の偏光板保護フィルムの一例である。本発明の偏光板保護フィルム1は、樹脂層2を基材フィルムとしてそのまま用いてもよいが、樹脂層2の上にハードコート層3を有していることが好ましい。
 偏光板保護フィルム1の厚さは、最近の偏光板保護フィルムの薄型化から樹脂層の厚さが、15~50μmの範囲内であることが好ましい。また、ハードコート層の厚さは1~10μmの範囲内であることが好ましい。1~8μmの範囲内であることがより好ましい。さらに好ましくは3~5μmの範囲内である。
 《ポリエステル系添加剤》
 本発明の偏光板保護フィルムは、シクロオレフィン系樹脂を含有する樹脂層を有する偏光板保護フィルムであって、前記一般式(1)で表されるポリエステル系添加剤を含有することを特徴とする。
 本発明者は、シクロオレフィン系樹脂に、前記一般式(1)で表される構造を有するポリエステル系添加剤を含有させることにより、表面の硬度が増加する現象を見いだした。このような現象は、セルロースエステル系樹脂には見られないもので、シクロオレフィン系樹脂の特徴である。このように、特定の化合物に上記特性が変化する現象は、明確ではないが樹脂の自由体積をこれらの添加剤が相溶良く埋めることで基材密度が増加することによるものと推定される。このため硬度の上昇が大きく、耐熱性の低下が少ないという特徴を有するため、高温環境下に置かれても寸法安定性に優れるものと考えられる。
 ポリエステル系添加剤は、ジオールとジカルボン酸とを脱水縮合反応させた後;得られる反応生成物の分子末端の(ジオール由来の)ヒドロキシ基を、環構造を有するヒドロキシ基含有モノカルボン酸のカルボキシ基と脱水縮合反応させて得られる化合物である。
 ポリエステル系添加剤は、下記一般式(1)で表される構造を有する。
 一般式(1):B-(G-A)-G-B
 式中、Bは、環構造を有するヒドロキシ基含有モノカルボン酸から誘導される基を表す。環構造とは、脂肪族炭化水素環、脂肪族ヘテロ環、芳香族炭化水素環又は芳香族ヘテロ環を有する構造をいい、好ましくは脂肪族炭化水素環又は芳香族炭化水素環を有する構造をいう。環構造を有するヒドロキシ基含有モノカルボン酸は、炭素原子数5~20の脂環式モノカルボン酸、炭素原子数7~20の芳香族モノカルボン酸及びそれらの混合物でありうる。
 炭素原子数5~20の脂環式モノカルボン酸は、好ましくは炭素原子数6~15の脂環式モノカルボン酸でありうる。脂環式モノカルボン酸の例には、4-ヒドロキシシクロヘキシル酢酸、3-ヒドロキシシクロヘキシル酢酸、2-ヒドロキシシクロヘキシル酢酸、4-ヒドロキシシクロヘキシルプロピオン酸、4-ヒドロキシシクロヘキシル酪酸、4-ヒドロキシシクロヘキシルグリコール酸、4-ヒドロキシ-o-メチルシクロヘキシル酢酸、4-ヒドロキシ-m-メチルシクロヘキシル酢酸、4-ヒドロキシ-p-メチルシクロヘキシル酢酸、5-ヒドロキシ-m-メチルシクロヘキシル酢酸、6-ヒドロキシ-o-メチルシクロヘキシル酢酸、2,4-ジヒドロキシシクロヘキシル酢酸、2,5-ジヒドロキシシクロヘキシル酢酸、2-(ヒドロキシメチル)シクロヘキシル酢酸、3-(ヒドロキシメチル)シクロヘキシル酢酸、4-(ヒドロキシメチル)シクロヘキシル酢酸、2-(1-ヒドロキシ-1-メチルエチル)シクロヘキシル酢酸、3-(1-ヒドロキシ-1-メチルエチル)シクロヘキシル酢酸、4-(1-ヒドロキシ-1-メチルエチル)シクロヘキシル酢酸等が含まれる。
 炭素原子数7~20の芳香族モノカルボン酸は、好ましくは炭素原子数7~15の芳香族モノカルボン酸でありうる。芳香族モノカルボン酸の例には、4-ヒドロキシ安息香酸、3-ヒドロキシ安息香酸、2-ヒドロキシ安息香酸、4-ヒドロキシ-o-トルイル酸、3-ヒドロキシ-p-トルイル酸、5-ヒドロキシ-m-トルイル酸、6-ヒドロキシ-o-トルイル酸、2,4-ジヒドロキシ安息香酸、2,5-ジヒドロキシ安息香酸、2-(ヒドロキシメチル)安息香酸、3-(ヒドロキシメチル)安息香酸、4-(ヒドロキシメチル)安息香酸、2-(1-ヒドロキシ-1-メチルエチル)安息香酸、3-(1-ヒドロキシ-1-メチルエチル)安息香酸、4-(1-ヒドロキシ-1-メチルエチル)安息香酸等が含まれる。
 これらの中でも、偏光板保護フィルムに十分な疎水性を付与し、偏光子の水分による劣化を抑制しやすい点から、芳香環を含むヒドロキシ基含有モノカルボン酸(ヒドロキシ基を含む芳香族モノカルボン酸)から誘導される基であることが好ましい。
 式中、Gは、炭素原子数2~12のアルキレンジオール、炭素原子数6~12のシクロアルキレンジオール、炭素原子数4~12のオキシアルキレンジオール及び炭素原子数6~12のアリーレンジオールからなる群より選ばれる少なくとも1種から誘導される基を表す。
 炭素原子数2~12のアルキレンジオールの例には、エチレングリコール、1,2-プロピレングリコール、1,3-プロピレングリコール、1,2-ブタンジオール、1,3-ブタンジオール、1,2-プロパンジオール、2-メチル-1,3-プロパンジオール、1,4-ブタンジオール、1,5-ペンタンジオール、2,2-ジメチル-1,3-プロパンジオール(ネオペンチルグリコール)、2,2-ジエチル-1,3-プロパンジオール(3,3-ジメチロールペンタン)、2-n-ブチル-2-エチル-1,3プロパンジオール(3,3-ジメチロールヘプタン)、3-メチル-1,5-ペンタンジオール1,6-ヘキサンジオール、2,2,4-トリメチル-1,3-ペンタンジオール、2-エチル-1,3-ヘキサンジオール、2-メチル-1,8-オクタンジオール、1,9-ノナンジオール、1,10-デカンジオール、1,12-ドデカンジオール等が含まれる。
 炭素原子数6~12のシクロアルキレンジオールの例には、水素化ビスフェノールA(2,2-ビス(4-ヒドロキシシクロヘキシル)プロパン)、水素化ビスフェノールB(2,2-ビス(4-ヒドロキシシクロヘキシル)ブタン等が含まれる。
 炭素原子数4~12のオキシアルキレンジオールの例には、ジエチレングリコール、トリエチレングリコール、テトラエチレングリコール、ジプロピレングリコール、トリプロピレングリコール等が含まれる。
 炭素原子数6~12のアリーレンジオールの例には、ビスフェノールA、ビスフェノールB等が含まれる。
 ジオールは、1種又は2種以上の混合物として使用される。中でも、シクロオレフィン系樹脂との相溶性に優れる点で、炭素原子数2~12のアルキレングリコールが好ましい。
 式中、Aは、炭素原子数4~12のアルキレンジカルボン酸、炭素原子数6~12のシクロアルキレンジカルボン酸、及び炭素原子数8~16のアリーレンジカルボン酸からなる群より選ばれる少なくとも1種から誘導される基を表す。
 炭素原子数4~12のアルキレンジカルボン酸の例には、コハク酸、マレイン酸、フマル酸、グルタル酸、アジピン酸、アゼライン酸、セバシン酸、ドデカンジカルボン酸等が含まれる。
 炭素原子数6~16のシクロアルキレンジカルボン酸の例には、1,2-シクロヘキサンジカルボン酸、1,3-シクロヘキサンジカルボン酸、1,4-シクロヘキサンジカルボン酸、1,5-デカヒドロナフタレンジカルボン酸、1,4-デカヒドロナフタレンジカルボン酸等が含まれる。
 炭素原子数8~16のアリーレンジカルボン酸の例には、フタル酸、テレフタル酸、イソフタル酸、1,5-ナフタレンジカルボン酸、1,4-ナフタレンジカルボン酸等が含まれる。
 ジカルボン酸は、1種又は2種以上の混合物として使用されることが好ましい。ジカルボン酸は、アルキレンジカルボン酸とアリーレンジカルボン酸の混合物であることが好ましい。アルキレンジカルボン酸とアリーレンジカルボン酸の含有割合は、アルキレンジカルボン酸:アリーレンジカルボン酸=40:60~99:1であることが好ましく、50:50~90:10であることがより好ましい。
 式中、nは、0以上の整数を表す。
 ポリエステル系添加剤の数平均分子量は、好ましくは300~30000、より好ましくは300~700の範囲内であり、より好ましくは300~600である。数平均分子量が一定以上であると、ブリードアウトを抑制しやすい。数平均分子量が一定以下であると、シクロオレフィン系樹脂との相溶性を損ないにくくヘイズ上昇を抑制しやすい。
 ポリエステル系添加剤の数平均分子量は、ゲルパーミエーションクロマトグラフィーにより測定されうる。具体的には、ゲルパーミエーションクロマトグラフィー(GPC)測定装置(東ソー株式会社製「HLC-8330」)を用いて、下記の測定条件で、エステル化合物の標準ポリスチレン換算の数平均分子量(Mn)を測定することができる。
 (測定条件)
 カラム:「TSK gel SuperHZM-M」×2本及び「TSK gel SuperHZ-2000」×2本
 ガードカラム:「TSK SuperH-H」
 展開溶媒:テトラヒドロフラン
 流速:0.35mL/分
 ポリエステル系添加剤の数平均分子量は、縮合又は重縮合の反応時間によって調整することができる。
 ポリエステル系添加剤の酸価は、好ましくは0.5mgKOH/g以下、より好ましくは0.3mgKOH/g以下である。ポリエステル系添加剤の水酸基価は、好ましくは25mgKOH/g以下、より好ましくは15mgKOH/g以下である。
 ポリエステル系添加剤の合成は、常法によりジカルボン酸、ジオール、及び末端封止用モノカルボン酸のエステル化反応又はエステル交換反応による熱溶融縮合法、又はジカルボン酸及び末端封止用モノカルボン酸の酸クロライドとジオールとの界面縮合法のいずれかの方法で行うことができる。ジオールとジカルボン酸の仕込み比は、分子末端がジオールとなるように調整される。
 一般式(1)で表される構造を有するポリエステル系添加剤のシクロオレフィン系樹脂に対する添加量は2~10質量%の範囲内であることが好ましい。より好ましくは、3~7質量%の範囲内である。添加量は、2質量%以上の場合で、偏光板保護フィルム硬度上昇の効果が認められ、10質量%以下であると、高温環境下における寸法安定性及びヘイズの安定性を高める観点から好ましい。
 《シクロオレフィン系樹脂》
 本発明の偏光板保護フィルムは、シクロオレフィン系樹脂を含有する樹脂層を有する。本発明に係るシクロオレフィン系樹脂としては、次のような構造を有するシクロオレフィン単量体の(共)重合体が挙げられる。
Figure JPOXMLDOC01-appb-C000001
 〔式中、R~Rは、それぞれ独立に、水素原子、炭化水素基、ハロゲン原子、ヒドロキシ基、エステル基、カルボキシ基、アルコキシ基、シアノ基、アミド基、イミド基、シリル基、又は極性基(すなわち、ハロゲン原子、ヒドロキシ基、エステル基、アルコキシ基、シアノ基、アミド基、イミド基、又はシリル基)で置換された炭化水素基である。ただし、R~Rは、二つ以上が互いに結合して、不飽和結合、単環又は多環を形成していてもよく、この単環又は多環は、二重結合を有していても、芳香環を形成してもよい。RとRとで、又はRとRとで、アルキリデン基を形成していてもよい。p、mは0以上の整数である。〕
 上記一般式(2)中、R及びRが水素原子又は炭素数1~10、さらに好ましくは1~4、特に好ましくは1~2の炭化水素基を表す。R及びRが水素原子又は1価の有機基であって、R及びRの少なくとも一つは水素原子又は炭化水素基以外の極性を有する極性基を表す。mは0~3の整数、pは0~3の整数であり、より好ましくはm+p=0~4、さらに好ましくは0~2、特に好ましくはm=1、p=0であるものである。m=1、p=0である特定単量体は、得られるシクロオレフィン系樹脂のガラス転移温度が高くかつ機械的強度も優れたものとなる点で好ましい。
 上記特定単量体の極性基としては、カルボキシ基、ヒドロキシ基、アルコキシカルボニル基、アリールオキシカルボニル基、アミノ基、アミド基、シアノ基などが挙げられ、これら極性基はメチレン基などの連結基を介して結合していてもよい。また、カルボニル基、エーテル基、シリルエーテル基、チオエーテル基、イミノ基など極性を有する2価の有機基が連結基となって結合している炭化水素基なども極性基として挙げられる。これらの中では、カルボキシ基、ヒドロキシ基、アルコキシカルボニル基又はアリールオキシカルボニル基が好ましく、特にアルコキシカルボニル基又はアリールオキシカルボニル基が好ましい。
 さらに、R及びRの少なくとも一つが式-(CHCOORで表される極性基である単量体は、得られるシクロオレフィン系樹脂が高いガラス転移温度と低い吸湿性、各種材料との優れた密着性を有するものとなる点で好ましい。上記の特定の極性基にかかる式において、Rは炭素原子数1~12、さらに好ましくは1~4、特に好ましくは1~2の炭化水素基、好ましくはアルキル基である。
 共重合性単量体の具体例としては、シクロブテン、シクロペンテン、シクロヘプテン、シクロオクテン、ジシクロペンタジエン、ノルボルネンなどのシクロオレフィンを挙げることができる。
 シクロオレフィンの炭素数としては、4~20が好ましく、さらに好ましいのは5~12である。
 本発明において、シクロオレフィン系樹脂は1種単独で、又は2種以上を併用することができる。
 本発明に係るシクロオレフィン系樹脂の好ましい分子量は、固有粘度〔η〕inhで0.2~5dL/g、さらに好ましくは0.3~3dL/g、特に好ましくは0.4~1.5dL/gであり、ゲルパーミエーションクロマトグラフィー(GPC)で測定したポリスチレン換算の数平均分子量(Mn)は8000~100000、さらに好ましくは10000~80000、特に好ましくは12000~50000であり、重量平均分子量(Mw)は20000~300000、さらに好ましくは30000~250000、特に好ましくは40000~200000の範囲のものが好適である。
 固有粘度〔η〕inh、数平均分子量及び重量平均分子量が上記範囲にあることによって、シクロオレフィン系樹脂の耐熱性、耐水性、耐薬品性、機械的特性と、溶媒への溶解性が良好となる。
 本発明に係るシクロオレフィン系樹脂のガラス転移温度(Tg)としては、通常、110℃以上、好ましくは110~350℃、さらに好ましくは120~250℃、特に好ましくは120~220℃である。Tgが110℃以上の場合は、高温条件下での使用、又はコーティング、印刷などの二次加工により変形することがない。一方、Tgが350℃以下であれば、溶媒への溶解性が良好となる。
 偏光板保護フィルムは、シクロオレフィン系樹脂を含有する樹脂層を有する。樹脂層中の50質量%以上がシクロオレフィン系樹脂であることが好ましく、より好ましくは70~90質量%以上である。
 シクロオレフィン系樹脂には、本発明の効果を損なわない範囲で、例えば特開平9-221577号公報、特開平10-287732号公報に記載されている、特定の炭化水素系樹脂、又は公知の熱可塑性樹脂、熱可塑性エラストマー、ゴム質重合体、紫外線吸収剤、有機微粒子、無機微粒子などを配合しても良く、特定の波長分散剤、糖エステル化合物、酸化防止剤、剥離促進剤、ゴム粒子、可塑剤、などの添加剤を含んでも良い。
 以上説明したシクロオレフィン系樹脂は、市販品を好ましく用いることができ、市販品の例としては、JSR(株)からアートン(ARTON)G、アートンF、アートンR、及びアートンRXという商品名で発売されており、また日本ゼオン(株)からゼオノア(ZEONOR)ZF14、ZF16、ゼオネックス(ZEONEX)250又はゼオネックス280という商品名で市販されており、これらを使用することができる。
 〈紫外線吸収剤〉
 基材フィルムは、耐候性を向上させるために、必要に応じて紫外線吸収剤をさらに含みうる。紫外線吸収剤は、好ましくは波長370nmでの透過率が10%以下、より好ましくは5%以下、更に好ましくは2%以下となるものでありうる。
 紫外線吸収剤の例には、オキシベンゾフェノン系化合物、ベンゾトリアゾール系化合物、サリチル酸エステル系化合物、ベンゾフェノン系化合物、シアノアクリレート系化合物、トリアジン系化合物、ニッケル錯塩系化合物、無機粉体等が挙げられる。中でも、ベンゾトリアゾール系紫外線吸収剤、ベンゾフェノン系紫外線吸収剤、トリアジン系紫外線吸収剤が好ましく、ベンゾトリアゾール系紫外線吸収剤、ベンゾフェノン系紫外線吸収剤がより好ましい。
 紫外線吸収剤の含有量は、紫外線吸収剤の種類や使用条件等にもよるが、基材フィルムに対して1.0~5質量%が好ましい。
 〈微粒子〉
 基材フィルムは、表面に滑り性等を付与するために、微粒子(マット剤)をさらに含みうる。微粒子は、無機化合物で構成されてもよいし、樹脂で構成されてもよい。
 無機化合物の例には、二酸化ケイ素、二酸化チタン、酸化アルミニウム、酸化ジルコニウム、炭酸カルシウム、タルク、クレイ、焼成カオリン、焼成ケイ酸カルシウム、水和ケイ酸カルシウム、ケイ酸アルミニウム、ケイ酸マグネシウム及びリン酸カルシウム等が挙げられる。
 樹脂の例には、シリコーン樹脂、フッ素樹脂及びアクリル樹脂が含まれる。中でもシリコーン樹脂が好ましく、特に三次元の網状構造を有するものが好ましく、例えば、トスパール103、同105、同108、同120、同145、同3120及び同240(以上東芝シリコーン(株)製)の商品名で市販されているものが挙げられる。
 これらの中でも、フィルムの濁度を低くしうる点で、二酸化ケイ素の微粒子が好ましい。二酸化ケイ素の微粒子の例には、アエロジルR972、R972V、R974、R812、200、200V、300、R202、OX50、TT600(以上日本アエロジル(株)製)が挙げられ、フィルムのヘイズを低く保ちながら摩擦係数を下げる効果が大きいことから、好ましくはアエロジル200V、アエロジルR972V、アエロジルR812である。
 《樹脂層の物性》
 〈マルテンス硬度〉
 樹脂層の表面硬度は、マルテンス硬度を測定することで評価することができる。マルテンス硬度(ビッカース硬度)とは、ビッカース圧子及び稜線同士の確度が115度の三角錐圧子を用いた微小硬度計で、試験力が負荷された状態で測定される硬度であり、負荷増加時の試験力-押し込み深さ曲線の関係から『試験力Fを、表面から圧子の侵入した表面積Asで除した値』と定義され、単位はN/mmで表される。マルテンス硬度(HMT115)は、下記式(A)で表される。
 式(A) :HMT115=Fmax/(26.43×hmax
 Fmax=最大試験力
 hmax=深さ最大値
 マルテンス硬度の測定は、23℃において行われる。例えば、超微小硬度計DUH-211(島津製作所製)を用いて行うことができる。
 本発明に係る樹脂層は、23℃において、樹脂層のマルテンス硬度が143N/mm以上であることが好ましく、より好ましくは159N/mm以上であることである。マルテンス硬度は高い方が偏光板保護フィルムの表面に傷が付きにくいため好ましいが、上限は添加剤等の材料入手、製造条件などの制約により200N/mm程度である。
 (ヘイズ)
 基材フィルムの、JIS K-7136に準拠した方法で測定されるヘイズは、0.8%以下、好ましくは0.5%以下でありうる。
 ヘイズは、ポリエステル系添加剤の分子量や含有量によって調整されうる。ヘイズを低くするためには、例えばポリエステル系添加剤の分子量や含有量を一定以下としたり、末端封止するヒドロキシ基含有モノカルボン酸に、セルロースエステルとの親和性が高い芳香環を導入したりすることが好ましい。
 《樹脂層の製造方法》
 樹脂層は、任意の方法で製造されうるが、比較的分子量の大きな樹脂でも製膜しやすい、また添加剤を樹脂層中に均一に添加しやすい等の点から、溶液流延法で製造されることが好ましい。シクロオレフィン系樹脂を含有する溶液を基体上に流延する工程を経て、前記樹脂層を形成すること、具体的にはシクロオレフィン系樹脂を含有する溶液を基体上に流延する工程を経て、樹脂層を形成することが好ましい。
 樹脂層は、1)前述の各成分を溶剤に溶解させてドープ液を調製する工程、2)ドープ液を無端の基体上に流延する工程、3)流延したドープを乾燥した後、剥離して膜状物を得る工程、4)膜状物を乾燥及び延伸する工程を経て製造されうる。
 なお、以下の記載において、本発明に係る樹脂層のみのフィルム(基材フィルム)を樹脂フィルムともいう。
 上記1)の工程用いられる溶剤としては、例えば、クロロホルム、ジクロロメタンなどの塩素系溶剤;トルエン、キシレン、ベンゼン、及びこれらの混合溶剤などの芳香族系溶剤;メタノール、エタノール、イソプロパノール、n-ブタノール、2-ブタノールなどのアルコール系溶剤;メチルセロソルブ、エチルセロソルブ、ブチルセロソルブ、ジメチルホルムアミド、ジメチルスルホキシド、ジオキサン、シクロヘキサノン、テトラヒドロフラン、アセトン、メチルエチルケトン(MEK)、酢酸エチル、ジエチルエーテル;などが挙げられる。これら溶剤は1種のみ用いてもよいし、2種以上を併用してもよい。
 溶液流延法では、ドープ中のシクロオレフィン系樹脂の濃度は、濃度が高い方が基体に流延した後の乾燥負荷が低減できて好ましいが、シクロオレフィン系樹脂の濃度が高すぎると濾過時の負荷が増えて、濾過精度が悪くなる。これらを両立する濃度としては、10~35質量%が好ましく、さらに好ましくは、15~25質量%の範囲内である。流延(キャスト)工程における基体は、表面を鏡面仕上げしたものが好ましく、基体としては、ステンレススティールベルト又は鋳物で表面をメッキ仕上げしたドラムが好ましく用いられる。
 キャストの幅は1~4mとすることができる。流延工程の基体の表面温度は-50℃から溶媒が沸騰して発泡しない温度以下に設定される。温度が高い方がウェブの乾燥速度が速くできるので好ましいが、あまり高すぎるとウェブが発泡したり、平面性が劣化したりする場合がある。
 好ましい基体温度としては0~100℃の範囲内で適宜決定され、5~30℃がさらに好ましい。又は、冷却することによってウェブをゲル化させて残留溶剤を多く含んだ状態でドラムから剥離することも好ましい方法である。基体の温度を制御する方法は特に制限されないが、温風又は冷風を吹きかける方法や、温水を基体の裏側に接触させる方法がある。温水を用いる方が熱の伝達が効率的に行われるため、基体の温度が一定になるまでの時間が短く好ましい。
 温風を用いる場合は溶剤の蒸発潜熱によるウェブの温度低下を考慮して、溶剤の沸点以上の温風を使用しつつ、発泡も防ぎながら目的の温度よりも高い温度の風を使う場合がある。
 特に、流延から剥離するまでの間で基体の温度及び乾燥風の温度を変更し、効率的に乾燥を行うことが好ましい。
 樹脂フィルムが良好な平面性を示すためには、基体からウェブを剥離する際の残留溶剤量は10~150質量%の範囲内が好ましく、さらに好ましくは20~40質量%又は60~130質量%の範囲内であり、特に好ましくは、20~30質量%又は70~120質量%の範囲内である。
 残留溶剤量は下記式で定義される。
  残留溶剤量(質量%)={(M-N)/N}×100
 なお、Mはウェブ又はフィルムを製造中又は製造後の任意の時点で採取した試料の質量で、NはMを115℃で1時間の加熱後の質量である。
 また、樹脂フィルムの乾燥工程においては、ウェブを基体より剥離し、さらに乾燥し、残留溶剤量を1質量%以下にすることが好ましく、さらに好ましくは0.1質量%以下であり、特に好ましくは0~0.01質量%の範囲内である。
 フィルム乾燥工程では一般にローラー乾燥方式(上下に配置した多数のローラーにウェブを交互に通し乾燥させる方式)やテンター方式でウェブを搬送させながら乾燥する方式が採られる。
 延伸工程では、最大延伸方向(延伸率が最大となる方向)の延伸率は、好ましくは5~80%、より好ましくは12~60%の範囲内としうる。例えば、互いに直交する2軸方向に延伸する場合、搬送方向(MD方向)に0~60%、幅方向(TD方向)に5~70%としうる。延伸率(%)は、下記式で定義される。
 延伸率(%)={(延伸後のフィルムの(延伸方向)長さ-延伸前のフィルムの(延伸方向)長さ)/延伸前のフィルムの(延伸方向)長さ)}×100
 延伸温度は、120~180℃、好ましくは140~180℃、より好ましくは145~165℃の範囲内としうる。
 延伸開始時の膜状物の残留溶媒は、ヘイズの上昇を抑制する観点から、好ましくは5質量%未満、より好ましくは4質量%以下、さらに好ましくは2質量%以下としうる。延伸開始時の残留溶媒を5質量%未満に保持するには、流延したドープを基体から剥離した膜状物(フィルム原反)を、搬送する過程において前記乾燥工程を設け溶媒を蒸発させることが好ましい。
 膜状物を延伸する方法は、特に限定されず、複数のロールに周速差をつけ、その間でロール周速差を利用してMD方向に延伸する方法や;テンターにより膜状物の両端をクリップやピンで固定し、クリップやピンの間隔をTD方向に広げて延伸する方法等であってよい。中でも、TD方向の延伸は、テンターによって行うことが好ましく、ピンテンターでもクリップテンターでもよい。
 また、斜め延伸可能なテンターを用いて、斜め方向に延伸する工程を経て樹脂層を形成することもできる。斜め延伸可能なテンターは、フィルム原反を、オーブンによる加熱環境下で、その進行方向(フィルム幅方向の中点の移動方向)に対して斜め方向に拡幅する装置である。このテンターは、オーブンと、フィルムを搬送するための把持具が走行する左右で一対のレールと、該レール上を走行する多数の把持具とを備えている。フィルムロールから繰り出され、テンターの入口部に順次供給されるフィルムの両端を、把持具で把持し、オーブン内にフィルムを導き、テンターの出口部で把持具からフィルムを開放する。把持具から開放されたフィルムは巻芯に巻き取られる。一対のレールは、それぞれ無端状の連続軌道を有し、テンターの出口部でフィルムの把持を開放した把持具は、外側を走行して順次入口部に戻されるようになっている。
 その他の工程については、公知の溶液流延法;例えば特開2012-48214号の段落0109~0140と同様としうる。
 《ハードコート層》
 本発明の偏光板保護フィルムは、ハードコート層を有することが好ましい。ハードコート層を有することで、偏光板の耐衝撃性や取扱い容易性等を向上させることができる。
 ハードコート層を形成する材料としては、JIS K5700に規定される鉛筆硬度試験で、「H」以上の硬度を示すものであれば、特に制限はないが、活性線硬化性化合物の硬化物を含有することが好ましく、活性線硬化性化合物としては、エチレン性不飽和二重結合を有するモノマーを含む成分が好ましく用いられる。活性線硬化性化合物としては、紫外線硬化性化合物や電子線硬化性化合物が挙げられるが、紫外線照射により硬化する化合物が、機械的膜強度(耐擦傷性、鉛筆硬度)に優れる点から好ましい。
 例えば、有機シリコーン系、メラミン系、エポキシ系、アクリレート系、多官能(メタ)アクリル系化合物等の有機系ハードコート材料;二酸化ケイ素等の無機系ハードコート材料;等が挙げられる。中でも、接着力が良好であり、生産性に優れる観点から、(メタ)アクリレート系、多官能(メタ)アクリル系化合物のハードコート形成材料の使用が好ましい。ここで(メタ)アクリルとはアクリル及びメタクリルを示す。
 (メタ)アクリレートは、重合性不飽和基を分子内に一つ有するもの、二つ有するもの、三つ以上有するもの、重合性不飽和基を分子内に三つ以上含有する(メタ)アクリレートオリゴマーを挙げることができる。例えば、多官能アクリレートとして、ペンタエリスリトール多官能アクリレート、ジペンタエリスリトール多官能アクリレート、ペンタエリスリトール多官能メタクリレート、及びジペンタエリスリトール多官能メタクリレート等を用いることができる。(メタ)アクリレートは、単独で用いられても良く、2種類以上のものを用いても良い。
 また、本発明に係るハードコート層中には、本発明の効果が損なわれない範囲で、さらに各種の添加剤を必要に応じて配合することができる。例えば、酸化防止剤、紫外線安定剤、紫外線吸収剤、界面活性剤、レベリング剤、帯電防止剤などを用いることができるまた、本発明のハードコート層は平均粒径サイズ0.2~10μmの範囲内の粒子を含有することで、滑り性を付与してもよく、高屈折率微粒子を分散含有し、屈折率を付与してもよい。
 レベリング剤は、特に、ハードコート層を塗工する際、表面凹凸低減に効果的である。レネリング剤としては、例えば、シリコーン系レベリング剤として、ジメチルポリシロキサン-ポリオキシアルキレン共重合体が好適である。
 平均粒径サイズ0.2~10μmの範囲内の粒子としては、無機粒子が好ましく、無機粒子の例としては、シリカ、酸化亜鉛、ITO(酸化インジウム/酸化スズ)、ATO(酸化アンチモン/酸化スズ)、酸化スズ、酸化インジウム、酸化タングステン、複合酸化タングステン及び酸化アンチモンからなる群から選択される少なくとも1種類以上が挙げられる。この中で、表面硬度の向上効果を特に高くすることができ、強度を特に高くすることができることからシリカ微粒子が好ましい。また、ハードコート層に紫外線吸収性能を付加し、ハードコート層の経時劣化を抑制するという観点から、ITO、ATO、酸化タングステン又は複合酸化タングステンを用いることが好ましい。
 上記紫外線安定剤としては、例えば、紫外線に対する安定性が高いヒンダードアミン系紫外線安定剤が好適に用いられる。ハードコート層が紫外線安定剤を含有することにより、紫外線によって発生するラジカル、活性酸素等が不活性化され、紫外線安定性、耐候性等を向上させることができる。
 上記紫外線吸収剤としては、例えば、サリチル酸系紫外線吸収剤、ベンゾフェノン系紫外線吸収剤、ベンゾトリアゾール系紫外線吸収剤、シアノアクリレート系紫外線吸収剤、トリアジン系紫外線吸収剤、ベンゾオキサジノン系紫外線吸収剤等を挙げることができ、これらの群より選択される1種又は2種以上のものを用いることができる。中でも、分散性の点から、トリアジン系紫外線吸収剤、ベンゾオキサジノン系紫外線吸収剤が好ましい。また、上記紫外線吸収剤としては、分子鎖に紫外線吸収基を有するポリマーも好適に使用される。かかる分子鎖に紫外線吸収基を有するポリマーを用いることで、紫外線吸収剤のブリードアウト等による紫外線吸収機能の劣化を防止することができる。この紫外線吸収基としては、ベンゾトリアゾール基、ベンゾフェノン基、シアノアクリレート基、トリアジン基、サリシレート基、ベンジリデンマロネート基等が挙げられる。中でも、ベンゾトリアゾール基、ベンゾフェノン基、トリアジン基が特に好ましい。
 〈ハードコート層を有する偏光板保護フィルムの製造方法〉
 ハードコート層を有する偏光板保護フィルム(HC層有りの偏光板保護フィルムともいう。)は、1)前述の樹脂フィルムを準備する工程と、2)当該樹脂フィルム上に活性エネルギー線硬化物層用塗布液を塗布した後、乾燥及び硬化させて活性エネルギー線硬化物層(ハードコート層)を得る工程とを経て製造されうる。
 上記1)の樹脂フィルムを準備する工程は前述したとおりである。
 上記2)の活性エネルギー線硬化層用塗布液の塗布は、例えばディッピング法、ダイコーター法、ワイヤーバー法、スプレー法等の任意の手段にて行うことができる。
 上記2)の活性エネルギー線硬化層用塗布液の塗膜の硬化は、活性エネルギー線を照射して行うことができる。活性エネルギー線(好ましくは紫外線)を照射する光源の例には、低圧水銀灯、中圧水銀灯、高圧水銀灯、超高圧水銀灯、カーボンアーク灯、メタルハライドランプ、キセノンランプ等が挙げられる。照射光量は20~10000mJ/cm程度あればよく、好ましくは50~2000mJ/cmである。照射時間は、好ましくは0.5秒~5分、作業効率等の観点からより好ましくは3秒~2分としうる。
 ハードコート層のドライ層厚としては、層厚が1~8μmの範囲内が好ましく、より好ましくは3~5μmの範囲内である。
 〈偏光子〉
 偏光子は、一定方向の偏波面の光だけを通す素子であり、現在知られている代表的な偏光子は、ポリビニルアルコール系偏光フィルムである。ポリビニルアルコール系偏光フィルムには、ポリビニルアルコール系フィルムにヨウ素を染色させたものと、二色性染料を染色させたものとがある。
 ポリビニルアルコール系偏光フィルムは、ポリビニルアルコール系フィルムを一軸延伸した後、ヨウ素又は二色性染料で染色したフィルム(好ましくはさらにホウ素化合物で耐久性処理を施したフィルム)であってもよいし;ポリビニルアルコール系フィルムをヨウ素又は二色性染料で染色した後、一軸延伸したフィルム(好ましくは、さらにホウ素化合物で耐久性処理を施したフィルム)であってもよい。偏光子の吸収軸は、フィルムの延伸方向と平行である。
 例えば、特開2003-248123号公報、特開2003-342322号公報等に記載のエチレン単位の含有量1~4モル%、重合度2000~4000、ケン化度99.0~99.99モル%のエチレン変性ポリビニルアルコール等が用いられる。中でも、熱水切断温度が66~73℃であるエチレン変性ポリビニルアルコールフィルムが好ましく用いられる。
 偏光子の厚さは、5~30μmであることが好ましく、偏光板を薄型化するためなどから、10~20μmであることがより好ましい。
 〈他の偏光板保護フィルム〉
 偏光子の他方の面には、必要に応じて前述の偏光板保護フィルムや基材フィルムが配置されてもよいし、他の偏光板保護フィルムが配置されてもよい。
 他の偏光板保護フィルムの例には、市販のセルロースアシレートフィルム(例えば、コニカミノルタタック KC8UX、KC4UX、KC5UX、KC8UY、KC4UY、KC12UR、KC8UCR-3、KC8UCR-4、KC8UCR-5、KC4FR-1、KC8UY-HA、KC8UX-RHA、KC8UE、KC4UE、KC4HR-1、KC4KR-1、KC4UA、KC6UA以上コニカミノルタ(株)製)等が含まれる。
 本発明では、偏光子の片側に本発明の偏光板保護フィルムが具備され、前記偏光子の他の片側に位相差フィルムが具備されていることが好ましい。
 他の偏光板保護フィルムは位相差フィルムであることが好ましい。位相差フィルムのリターデーションは、組み合わされる液晶セルの種類にもよるが、例えば23℃・55%RHの条件下、波長590nmで測定される面内方向のリターデーションRo(590)は20~100nmであることが好ましく、厚さ方向のリターデーションRth(590)は70~300nmであることが好ましい。リターデーションが上記範囲である保護フィルムは、例えばVA型液晶セル等の位相差フィルムとして適している。各リターデーション値は、以下の方法で測定されうる。
 リターデーションRo及びRthは、それぞれ以下の式で定義される。
 式(I):Ro=(n-n)×(nm)
 式(II):Rth={(n+n)/2-n}×d(nm)
 (式(I)及び(II)において、
 nは、フィルムの面内方向において屈折率が最大になる遅相軸方向xにおける屈折率を表し;
 nは、フィルムの面内方向において前記遅相軸方向xと直交する方向yにおける屈折率を表し;
 nは、フィルムの厚さ方向zにおける屈折率を表し;
 d(nm)は、フィルムの厚さを表す)
 リターデーションRo及びRthは、例えば以下の方法によって求めることができる。
 1)偏光板保護フィルムを、23℃・55%RHで調湿する。調湿後の偏光板保護フィルムの平均屈折率をアッベ屈折計などで測定する。
 2)調湿後の偏光板保護フィルムに、当該フィルム表面の法線に平行に測定波長590nmの光を入射させたときのRoを、KOBRA-21DH、王子計測機器(株)にて測定する。
 3)KOBRA-21ADHにより、偏光板保護フィルムの面内の遅相軸を傾斜軸(回転軸)として、当該フィルムの表面の法線に対してθの角度(入射角(θ))から測定波長590nmの光を入射させたときのリターデーション値R(θ)を測定する。リターデーション値R(θ)の測定は、θが0~50°の範囲で、10°毎に6点行うことができる。面内遅相軸とは、フィルム面内のうち屈折率が最大となる軸をいい、KOBRA-21ADHにより確認することができる。
 4)測定されたRo及びR(θ)と、前述の平均屈折率と膜厚とから、KOBRA-21ADHにより、n、n及びnを算出して、測定波長590nmでのRthを算出する。リターデーションの測定は、23℃・55%RH条件下で行うことができる。
 本発明の偏光板は、偏光子と本発明の偏光板保護フィルムとを接着剤を介して貼り合わる工程と;貼り合わせた積層物を所定の大きさに裁断する工程とを経て得ることができる。貼り合わせに用いられる接着剤は、完全ケン化型ポリビニルアルコール水溶液(水糊)であってもよいし、活性エネルギー線硬化性接着剤を用いて行ってもよい。
 《液晶表示装置》
 本発明の液晶表示装置は、液晶セルと、それを挟持する一対の偏光板とを含む。
 図2は、液晶表示装置の基本的な構成の一例を示す模式図である。図2に示されるように、本発明の液晶表示装置10は、液晶セル30と、それを挟持する第一の偏光板50及び第二の偏光板70と、バックライト90とを含む。
 液晶セル30の表示モードは、例えばSTN、TN、OCB、HAN、VA(MVA、PVA)、IPS等の種々の表示モードであってよく、高いコントラストを得るためにはVA(MVA、PVA)モードであることが好ましい。
 第一の偏光板50は、第一の偏光子51と、第一の偏光子51の液晶セルとは反対側の面に配置された偏光板保護フィルム53(F1)と、第一の偏光子51の液晶セル側の面に配置された偏光板保護フィルム55(F2)とを含む。
 第二の偏光板70は、第二の偏光子71と、第二の偏光子71の液晶セル側の面に配置された偏光板保護フィルム73(F3)と、第二の偏光子71の液晶セルとは反対側の面に配置された偏光板保護フィルム75(F4)とを含む。偏光板保護フィルム55(F2)と73(F3)の一方は、必要に応じて省略されうる。
 そして、偏光板保護フィルム53(F1)と75(F4)の少なくとも一方;好ましくは偏光板保護フィルム53(F1)が、本発明の偏光板保護フィルムでありうる。偏光板保護フィルム53(F1)は、基材フィルム53Aと、活性エネルギー線硬化物層53Bとを有し、かつ基材フィルム53Aが第一の偏光子51と接している。偏光板保護フィルム53(F1)が本発明の偏光板保護フィルムである液晶表示装置は、表面の耐擦傷性が高いので、表示画面に傷を付きにくくしうる。
 本発明の偏光板保護フィルムは、液晶表示装置の偏光板保護フィルムとしてだけでなく、タッチパネルを備えた画像表示装置や、有機ELディスプレイやプラズマディスプレイ等の画像表示装置等の保護フィルムとしても好ましく用いることができる。
 以下、実施例を挙げて本発明を具体的に説明するが、本発明はこれらに限定されるものではない。なお、実施例において「部」又は「%」の表示を用いるが、特に断りがない限り「質量部」又は「質量%」を表す。
 以下の実施例で使用した化合物をその略号とともに示す。
 〔ポリエステル系添加剤の合成〕
 一般式(1)で表される構造を有するポリエステル系添加剤PE1~PE9と比較のポリエステル系添加剤としてポリエステル系添加剤PE10及びPE11を合成した。また、比較の化合物PE12として、特開2014-132071号公報に記載の(A-4)を用いた。
 〈ポリエステル系添加剤PE1の合成〉
 エチレングリコール341部、テレフタル酸とコハク酸を5:5のモル比で410部、4-ヒドロキシ安息香酸610部、及びエステル化触媒としてテトライソプロピルチタネート0.35部を、温度計、撹拌機及び緩急冷却管を備えた2Lの四つ口フラスコに仕込み、窒素気流中で撹拌拌下、還流凝縮器を付して過剰量の1価アルコールを還流させながら、酸価が2以下になるまで230℃で加熱を続けて、生成する水を連続的に除去した。次いで、200℃で4×10Pa以下の減圧下にて、未反応のエチレングリコールを留去してポリエステル系添加剤PE1を得た。
 〈ポリエステル系添加剤PE2~PE4及びPE9~PE11の合成〉
 ジオール(G)、ジカルボン酸(A)、及び末端封止用モノカルボン酸(B)の種類を表1に示されるように変更した以外は同様にしてポリエステル系添加剤PE2~PE4及びPE9~PE11を得た。
 〈ポリエステル系添加剤PE5~PE8の合成〉
 PE4の合成において、反応時間を変えて、異なる分子量のポリエステル系添加剤PE5~PE8を合成した。
 得られたポリエステル系添加剤の数平均分子量を、以下の方法で測定した。
 (数平均分子量(Mn)の測定)
 ゲルパーミエーションクロマトグラフィー(GPC)測定装置(東ソー株式会社製「HLC-8330」)を用いて、下記条件で、ポリエステル化合物の標準ポリスチレン換算の数平均分子量(Mn)を測定した。
 カラム:「TSK gel SuperHZM-M」×2本及び「TSK gel SuperHZ-2000」×2本
 ガードカラム:「TSK SuperH-H」
 展開溶媒:テトラヒドロフラン
 流速:0.35mL/分
 これらの結果を表1に示す。
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-C000003
 〔シクロオレフィン系樹脂〕
COP1:シクロオレフィン系樹脂(ARTON G7810、JSR(株)製)
COP2:シクロオレフィン系樹脂(ARTON R5000、JSR(株)製)
COP3:シクロオレフィン系樹脂(ARTON RX4500、JSR(株)製)
 〔ハードコート層塗布液〕
 (ハードコート層塗布液1(HC1))の調製)
 下記組成のハードコート層塗布液1を調製した。紫外線硬化型樹脂と界面活性剤とプロピレングリコールモノメチルエーテルを混合した後、当該混合液を30分間撹拌し、ハードコート層塗布液1を調製した。
 紫外線硬化型樹脂(オプスターZ7527、JSR社製)
                          100質量部
 界面活性剤(サーフロンS-651、AGCセイミケミカル社製)
                          0.1質量部
 メチルエチルケトン                 30質量部
 《偏光板保護フィルム1の作製》
 〔主ドープの調製〕
 下記組成の主ドープを調製した。まず加圧溶解タンクにジクロロメタンとエタノールを添加した。ジクロロメタンとエタノールの混合溶液の入った加圧溶解タンクにシクロオレフィン樹脂を撹拌しながら投入した。これを加熱し、撹拌しながら、完全に溶解し。これを安積濾紙(株)製の安積濾紙No.244を使用してろ過し、主ドープを調製した。
 (主ドープ)
 COP1                     100質量部
 ジクロロメタン                  200質量部
 エタノール                     10質量部
 以上の成分を密閉容器に投入し、撹拌しながら溶解して主ドープを調製した。次いで、無端ベルト流延装置を用い、ドープを温度31℃、1800mm幅でステンレスベルト基体上に均一に流延した。ステンレスベルトの温度は28℃に制御した。
 ステンレスベルト基体上で、流延(キャスト)したフィルム中の残留溶剤量が30%になるまで溶剤を蒸発させた。次いで、剥離張力128N/mで、ステンレスベルト基体上から剥離した。剥離したフィルムを、延伸開始時の残留溶剤は5質量%であった。フィルム原反を剥離後、剥離したフィルム原反を、160℃の条件下で幅方向(TD方向)に、延伸率30%で一軸延伸した。次いで、乾燥ゾーンを多数のローラーで搬送させながら乾燥を終了させ、テンタークリップで挟んだ端部をレーザーカッターでスリットし、その後、巻き取り、厚さ40μmの樹脂フィルム1(樹脂層1)を作製した。
 上記で得られた樹脂フィルム1の片面に、マイクログラビアを用いてハードコート層塗布液1を、ドライ膜厚3μmになるように塗布し、乾燥した。
 次いで、高圧水銀ランプを使用して、大気下で当該塗膜に光量270mJ/cmで紫外線照射して硬化し、樹脂フィルム1にハードコート層が形成された偏光板保護フィルム1を作製した。
 《偏光板保護フィルム2の作製》
 偏光板保護フィルム1の作製において主ドープを以下のように変えた他は、偏光板保護フィルム1の作製と同様にして樹脂フィルム2及び偏光板保護フィルム2を作製した。
 (主ドープ)
 COP1                     100質量部
 ジクロロメタン                  200質量部
 エタノール                     10質量部
 PE1                        5質量部
 《偏光板保護フィルム3~24の作製》
 偏光板保護フィルム2の作製において、主ドープに含まれるシクロオレフィン系樹脂の種類、ポリエステル系添加剤の種類と添加量、及び樹脂層の厚さを表2のように変えて、偏光板保護フィルム2の作製と同様にして樹脂フィルム3~24及び偏光板保護フィルム3~24を作製した。
 《偏光板保護フィルムの評価》
 作製した樹脂フィルム1~24及びハードコート層を有する樹脂フィルム1~24に対して、ハードコート層を有しない樹脂層(樹脂フィルム)に対して、マルテンス硬度、耐熱寸法安定性及び耐熱ヘイズの評価を行った。樹脂層上にハードコート層を備えた偏光板保護フィルムに対しては、鉛筆硬度、耐熱カール及び耐熱ヘイズの評価を行った。
 〈マルテンス硬度〉
 マルテンス硬度の測定は、ハードコート層を有しない樹脂層(樹脂フィルム)に対して行った。
 樹脂層の表面硬度は、マルテンス硬度を測定して評価した。マルテンス硬度(ビッカース硬度)は、ビッカース圧子及び稜線同士の確度が115度の三角錐圧子を用いた微小硬度計で、試験力が負荷された状態で測定される硬度であり、負荷増加時の試験力-押し込み深さ曲線の関係から『試験力Fを、表面から圧子の侵入した表面積Asで除した値』と定義され、単位はN/mmで表される。マルテンス硬度(HMT115)は、下記式で表される。
HMT115=Fmax/(26.43×hmax
Fmax=最大試験力(12mNに設定)
hmax=深さ最大値
更に、今回の測定条件は『Fmax = 12mN』で実施した。
樹脂フィルムの両面を測定し、その平均値を表2に示した。
 〈耐熱寸法安定性〉
 各試料を90℃の恒温槽へ500時間投入後の延伸(MD)方向の寸法変化率を、測定顕微鏡STM6(OLYMPUS社製)を用いて測定した。変化率の絶対値を以下のランク付けをおこなって評価した。
◎:変化率が0.05%未満
○:変化率が0.05%以上0.20%未満
×:変化率が0.20%以上
 〈耐熱ヘイズ〉
 各樹脂フィルムを23℃・55%RHで12時間調湿後、80℃・90%RHの環境下で120時間処理した後のヘイズの変化を測定することで、高温環境下でのヘイズの安定性を評価した。
 ヘイズの測定は、JIS K-7136に準拠して、ヘーズメーターNDH-2000(日本電色工業株式会社製)にてヘイズ(全ヘイズ)の測定を行った。ヘーズメーターの光源は、5V9Wのハロゲン球とし、受光部は、シリコンフォトセル(比視感度フィルター付き)とした。
 ヘイズの測定は、23℃・55%RHの条件下にて行い、処理後のヘイズ値から処理前のヘイズを引いた差を以下のランク付けを行って評価した。
◎:差が0.03%未満
○:差が0.03%以上0.05%未満
△:差が0.05%以上
 〈鉛筆硬度〉
 ハードコート層を有する偏光板保護フィルムの表面硬度を、JIS K 5400に準拠した鉛筆硬度評価法にて測定した。具体的には、ハードコートフィルムを23℃55%・RH下で24時間調湿した。その後、ハードコート層の表面を1kgの重りを用いて各硬度の鉛筆で引っ掻く操作を5回繰り返し、傷が1本以下となる硬度の最大値を求めた。最大値の値が大きいほど、硬度が高いことを示す。
 〈耐熱カール〉
 樹脂層上にハードコート層を設けると、高温下の環境で樹脂層とハードコート層の熱膨張率が異なるためカールを発生する。このため耐熱寸法性の指標として、カールを測定した。各試料を23℃・55%RHで12時間調湿後、90℃の恒温槽へ500時間投入後の延伸(MD)方向のカールを測定した。
 JIS K 7619-1988の「写真フィルムのカールの測定法」中の方法Aのカール測定用型板を用いて行った。ここで、カールがプラスとはフィルムのハードコート層塗設側が湾曲の内側になるカールをいい、マイナスとは、塗設側が湾曲の外側になるカールをいう。また、カールは以下の数式Aで表される。
 (数式A) カール=1/R   Rは曲率半径(m)
 測定結果のカール量の絶対値により、以下のようにランク付した。
◎:絶対値で5未満
○:絶対値で5以上10未満
△:絶対値で10以上15未満
×:絶対値で15以上
 〈耐熱ヘイズ〉
 樹脂フィルムの耐熱ヘイズの測定と同様にして、ハードコート層を有する樹脂フィルムに対して、80℃・90%RHの環境下で120時間処理した後のヘイズの変化を測定した。
Figure JPOXMLDOC01-appb-T000004
 上記結果から、本発明の要件を満たす偏光板保護フィルムは表面硬度が高く高温環境下に置かれても寸法安定性及びヘイズに優れていることがわかる。また、これを具備する偏光板及び液晶表示装置として有用であることが分かる。
 なお、偏光板保護フィルム4の作製において、樹脂層の厚さを80μmに変更した以外は偏光板保護フィルム4と同様にして作製した樹脂フィルム及び偏光板保護フィルムを評価した結果、鉛筆硬度は2Hでその他の特性は、厚さ50μmの樹脂層16及び偏光板保護フィルム16と同等の結果が得られたが、高い薄膜要求に対しては、応えられなかった。
 本発明の偏光板保護フィルムは、薄膜であり、表面硬度が高く高温環境下に置かれても寸法安定性及びヘイズの安定性に優れ、偏光板、液晶表示装置に好ましく具備することができる。
 1 偏光板保護フィルム
 2 樹脂層
 3 ハードコート層
 10 液晶表示装置
 30 液晶セル
 50 第一の偏光板
 51 第一の偏光子
 53 保護フィルム(F1)
 55 保護フィルム(F2)
 70 第二の偏光板
 71 第二の偏光子
 73 保護フィルム(F3)
 75 保護フィルム(F4)
 90 バックライト

Claims (9)

  1.  シクロオレフィン系樹脂を含有する樹脂層を有する偏光板保護フィルムであって、前記樹脂層が、厚さが50μm以下であり、下記一般式(1)で表されるポリエステル系添加剤を含有することを特徴とする偏光板保護フィルム。
     一般式(1):B-(G-A)-G-B
    (式中、
     Bは、環構造を含むヒドロキシ基含有モノカルボン酸から誘導される基を表す。
     Gは、炭素原子数2~12のアルキレンジオール、炭素原子数6~12のシクロアルキレンジオール、炭素原子数4~12のオキシアルキレンジオール及び炭素原子数6~12のアリーレンジオールからなる群より選ばれる少なくとも1種から誘導される基を表す。
     Aは、炭素原子数4~12のアルキレンジカルボン酸、炭素原子数6~12のシクロアルキレンジカルボン酸、及び炭素原子数8~16のアリーレンジカルボン酸からなる群より選ばれる少なくとも1種から誘導される基を表す。
     nは、0以上の整数を表す。)
  2.  前記一般式(1)中のBが、芳香族環を含むヒドロキシ基含有モノカルボン酸から誘導される基を表すことを特徴とする請求項1に記載の偏光板保護フィルム。
  3.  前記ポリエステル系添加剤の数平均分子量が、300~700の範囲内であることを特徴とする請求項1又は請求項2に記載の偏光板保護フィルム。
  4.  前記樹脂層中の前記ポリエステル系添加剤の含有量が、前記シクロオレフィン系樹脂に対して2~10質量%の範囲内であることを特徴とする請求項1から請求項3までのいずれか一項に記載の偏光板保護フィルム。
  5.  前記樹脂層の上にハードコート層を有することを特徴とする請求項1から請求項4までのいずれか一項に記載の偏光板保護フィルム。
  6.  前記樹脂層の厚さが、15~50μmの範囲内であることを特徴とする請求項1から請求項5までのいずれか一項に記載の偏光板保護フィルム。
  7.  偏光子の片側に請求項1から請求項6までのいずれか一項に記載の偏光板保護フィルムが、具備されていることを特徴とする偏光板。
  8.  請求項7に記載の偏光板が、具備されていることを特徴とする液晶表示装置。
  9.  シクロオレフィン系樹脂を含有する樹脂層を有する偏光板保護フィルムを製造する偏光板保護フィルムの製造方法であって、下記一般式(1)で表されるポリエステル系添加剤を含有し、かつ、シクロオレフィン系樹脂を含有する溶液を基体上に流延する工程を経て、前記樹脂層を形成することを特徴とする偏光板保護フィルムの製造方法。
     一般式(1):B-(G-A)-G-B
    (式中、
     Bは、環構造を含むヒドロキシ基含有モノカルボン酸から誘導される基を表す。
     Gは、炭素原子数2~12のアルキレンジオール、炭素原子数6~12のシクロアルキレンジオール、炭素原子数4~12のオキシアルキレンジオール及び炭素原子数6~12のアリーレンジオールからなる群より選ばれる化合物から誘導される基を表す。
     Aは、炭素原子数4~12のアルキレンジカルボン酸、炭素原子数6~12のシクロアルキレンジカルボン酸、及び炭素原子数8~16のアリーレンジカルボン酸からなる群より選ばれる化合物から誘導される基を表す。
     nは、0以上の整数を表す。)
PCT/JP2016/062690 2015-05-01 2016-04-22 偏光板保護フィルム、それが具備された偏光板、液晶表示装置、及び偏光板保護フィルムの製造方法 WO2016178371A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2017516584A JP6702316B2 (ja) 2015-05-01 2016-04-22 偏光板保護フィルム、それが具備された偏光板、液晶表示装置、及び偏光板保護フィルムの製造方法
KR1020177031149A KR102035406B1 (ko) 2015-05-01 2016-04-22 편광판 보호 필름, 그것이 구비된 편광판, 액정 표시 장치, 및 편광판 보호 필름의 제조 방법

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-093795 2015-05-01
JP2015093795 2015-05-01

Publications (1)

Publication Number Publication Date
WO2016178371A1 true WO2016178371A1 (ja) 2016-11-10

Family

ID=57217632

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/062690 WO2016178371A1 (ja) 2015-05-01 2016-04-22 偏光板保護フィルム、それが具備された偏光板、液晶表示装置、及び偏光板保護フィルムの製造方法

Country Status (4)

Country Link
JP (1) JP6702316B2 (ja)
KR (1) KR102035406B1 (ja)
TW (1) TWI601767B (ja)
WO (1) WO2016178371A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022025077A1 (ja) * 2020-07-29 2022-02-03 コニカミノルタ株式会社 光学フィルム、偏光板および液晶表示装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008213324A (ja) * 2007-03-05 2008-09-18 Fujifilm Corp 熱可塑性フイルム及びその製造方法、並びに、偏光板、光学補償フイルム、反射防止フイルム及び液晶表示装置
JP2010271620A (ja) * 2009-05-25 2010-12-02 Konica Minolta Opto Inc 偏光板保護フィルム
JP2013029792A (ja) * 2011-07-29 2013-02-07 Fujifilm Corp 環状オレフィン系樹脂フィルム、偏光板及び液晶表示装置
JP2013127058A (ja) * 2011-11-14 2013-06-27 Fujifilm Corp セルロースアシレートフィルム、偏光板保護フィルム、偏光板及び液晶表示装置
WO2015023714A2 (en) * 2013-08-13 2015-02-19 E. I. Du Pont De Nemours And Company Plasticizers comprising poly(trimethylene ether) glycol esters
JP2015083646A (ja) * 2013-10-25 2015-04-30 株式会社Adeka 防湿剤、セルロース系樹脂組成物、およびこれを用いたフィルム

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7709067B2 (en) * 2005-05-10 2010-05-04 Konica Minolta Opto, Inc. Cellulose ester film, polarizing plate and liquid crystal display
EP1929337A4 (en) * 2005-09-26 2010-03-31 Fujifilm Corp POLARIZING PLATE AND LIQUID CRYSTAL DISPLAY DEVICE
WO2007043385A1 (ja) * 2005-10-12 2007-04-19 Konica Minolta Opto, Inc. 位相差フィルム、偏光板及び垂直配向型液晶表示装置
WO2008102647A1 (ja) * 2007-02-21 2008-08-28 Konica Minolta Opto, Inc. セルロースエステルフィルムおよびその製造方法
KR101249443B1 (ko) * 2007-04-27 2013-04-03 주식회사 엘지화학 극성 작용기를 포함하는 고리형 올레핀계 중합체 및 이를이용한 광학 이방성 필름
JP2009227932A (ja) * 2008-03-25 2009-10-08 Fujifilm Corp シクロオレフィン系樹脂フィルム及びその製造方法
JP2009265643A (ja) * 2008-03-31 2009-11-12 Fujifilm Corp 延伸フィルム、延伸フィルムの製造方法、および偏光板
US9151870B2 (en) * 2010-12-08 2015-10-06 Konica Minolta, Inc. Optical film, and polarizing plate and liquid crystal display device using same
JP5905440B2 (ja) 2012-12-04 2016-04-20 富士フイルム株式会社 シクロオレフィン系樹脂フィルム、偏光板、および液晶表示装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008213324A (ja) * 2007-03-05 2008-09-18 Fujifilm Corp 熱可塑性フイルム及びその製造方法、並びに、偏光板、光学補償フイルム、反射防止フイルム及び液晶表示装置
JP2010271620A (ja) * 2009-05-25 2010-12-02 Konica Minolta Opto Inc 偏光板保護フィルム
JP2013029792A (ja) * 2011-07-29 2013-02-07 Fujifilm Corp 環状オレフィン系樹脂フィルム、偏光板及び液晶表示装置
JP2013127058A (ja) * 2011-11-14 2013-06-27 Fujifilm Corp セルロースアシレートフィルム、偏光板保護フィルム、偏光板及び液晶表示装置
WO2015023714A2 (en) * 2013-08-13 2015-02-19 E. I. Du Pont De Nemours And Company Plasticizers comprising poly(trimethylene ether) glycol esters
JP2015083646A (ja) * 2013-10-25 2015-04-30 株式会社Adeka 防湿剤、セルロース系樹脂組成物、およびこれを用いたフィルム

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022025077A1 (ja) * 2020-07-29 2022-02-03 コニカミノルタ株式会社 光学フィルム、偏光板および液晶表示装置

Also Published As

Publication number Publication date
KR102035406B1 (ko) 2019-10-22
JP6702316B2 (ja) 2020-06-03
TWI601767B (zh) 2017-10-11
JPWO2016178371A1 (ja) 2018-02-22
KR20170131652A (ko) 2017-11-29
TW201706343A (zh) 2017-02-16

Similar Documents

Publication Publication Date Title
TWI593997B (zh) A polarizing plate protective film includes a polarizing plate and a polarizing plate protective film
KR20160070810A (ko) 편광판 및 이것을 사용한 액정 표시 장치
WO2016111316A1 (ja) 偏光板保護フィルムとその製造方法、偏光板及び液晶表示装置
TWI559037B (zh) A polarizing plate, a polarizing plate manufacturing method, and a liquid crystal display device
JP2009098636A (ja) 光学フィルム、偏光板、及び液晶表示装置
JP2013061561A (ja) 偏光板およびこれを用いた表示装置
WO2015093307A1 (ja) 積層ポリエステルフィルム、及び、それを用いた偏光板
JP6981205B2 (ja) 光学フィルムおよび偏光板
JP2016212146A (ja) 光学フィルム及びその製造方法
JP6059808B2 (ja) 光学フィルム、それを用いた偏光板および液晶表示装置
JP7099440B2 (ja) 偏光板およびこれを具備する表示装置
TWI408160B (zh) 透明保護薄膜、光學補償薄膜、偏光板及液晶顯示裝置
JP2017121777A (ja) プロテクトフィルム積層体
JP2017122854A (ja) 液晶表示装置
JP6136226B2 (ja) 光学フィルムのロール体とその製造方法、包装体、偏光板および液晶表示装置
JP6702316B2 (ja) 偏光板保護フィルム、それが具備された偏光板、液晶表示装置、及び偏光板保護フィルムの製造方法
JP6969555B2 (ja) 光学フィルム、偏光板、及び表示装置
JP2001356214A (ja) 光学異方体及びその製造方法とそれを用いた偏光板及び液晶表示装置
JP2017102368A (ja) 偏光板保護フィルム及びそれを具備した偏光板
WO2014148559A1 (ja) 光学フィルム、それを用いた偏光板および液晶表示装置
JP2017088715A (ja) 光学フィルム
JP2007304620A (ja) 光学異方体の製造方法とそれを用いた偏光板及び液晶表示装置
KR102309520B1 (ko) 폴리에스테르계 필름 및 이의 제조 방법
JP2017114027A (ja) 樹脂フィルムロール、樹脂フィルムロールの製造方法、偏光板及び画像表示装置
WO2016038922A1 (ja) 光学フィルム、偏光板および画像表示装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16789507

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017516584

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20177031149

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16789507

Country of ref document: EP

Kind code of ref document: A1