WO2016170678A1 - 半導体装置およびマルチチップモジュール - Google Patents

半導体装置およびマルチチップモジュール Download PDF

Info

Publication number
WO2016170678A1
WO2016170678A1 PCT/JP2015/062514 JP2015062514W WO2016170678A1 WO 2016170678 A1 WO2016170678 A1 WO 2016170678A1 JP 2015062514 W JP2015062514 W JP 2015062514W WO 2016170678 A1 WO2016170678 A1 WO 2016170678A1
Authority
WO
WIPO (PCT)
Prior art keywords
circuit
input
output
pin
resistance
Prior art date
Application number
PCT/JP2015/062514
Other languages
English (en)
French (fr)
Inventor
植松 裕
大坂 英樹
鳥羽 忠信
健一 新保
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Priority to JP2016563870A priority Critical patent/JP6339232B2/ja
Priority to US15/535,219 priority patent/US9933475B2/en
Priority to PCT/JP2015/062514 priority patent/WO2016170678A1/ja
Publication of WO2016170678A1 publication Critical patent/WO2016170678A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/28Testing of electronic circuits, e.g. by signal tracer
    • G01R31/2851Testing of integrated circuits [IC]
    • G01R31/2853Electrical testing of internal connections or -isolation, e.g. latch-up or chip-to-lead connections
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/28Testing of electronic circuits, e.g. by signal tracer
    • G01R31/2851Testing of integrated circuits [IC]
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/50Testing of electric apparatus, lines, cables or components for short-circuits, continuity, leakage current or incorrect line connections
    • G01R31/66Testing of connections, e.g. of plugs or non-disconnectable joints
    • G01R31/67Testing the correctness of wire connections in electric apparatus or circuits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/498Leads, i.e. metallisations or lead-frames on insulating substrates, e.g. chip carriers
    • H01L23/49838Geometry or layout
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/10Bump connectors ; Manufacturing methods related thereto
    • H01L24/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L24/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/065Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L27/00
    • H01L25/0655Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L27/00 the devices being arranged next to each other
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/065Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L27/00
    • H01L25/0657Stacked arrangements of devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/50Testing of electric apparatus, lines, cables or components for short-circuits, continuity, leakage current or incorrect line connections
    • G01R31/52Testing for short-circuits, leakage current or ground faults
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/50Testing of electric apparatus, lines, cables or components for short-circuits, continuity, leakage current or incorrect line connections
    • G01R31/54Testing for continuity
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • H01L2224/13001Core members of the bump connector
    • H01L2224/1302Disposition
    • H01L2224/13025Disposition the bump connector being disposed on a via connection of the semiconductor or solid-state body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16135Disposition the bump connector connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip
    • H01L2224/16145Disposition the bump connector connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being stacked
    • H01L2224/16146Disposition the bump connector connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being stacked the bump connector connecting to a via connection in the semiconductor or solid-state body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/16227Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation the bump connector connecting to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/1623Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation the bump connector connecting to a pin of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/17Structure, shape, material or disposition of the bump connectors after the connecting process of a plurality of bump connectors
    • H01L2224/171Disposition
    • H01L2224/1718Disposition being disposed on at least two different sides of the body, e.g. dual array
    • H01L2224/17181On opposite sides of the body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2225/00Details relating to assemblies covered by the group H01L25/00 but not provided for in its subgroups
    • H01L2225/03All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00
    • H01L2225/04All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices not having separate containers
    • H01L2225/065All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices not having separate containers the devices being of a type provided for in group H01L27/00
    • H01L2225/06503Stacked arrangements of devices
    • H01L2225/06513Bump or bump-like direct electrical connections between devices, e.g. flip-chip connection, solder bumps
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2225/00Details relating to assemblies covered by the group H01L25/00 but not provided for in its subgroups
    • H01L2225/03All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00
    • H01L2225/04All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices not having separate containers
    • H01L2225/065All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices not having separate containers the devices being of a type provided for in group H01L27/00
    • H01L2225/06503Stacked arrangements of devices
    • H01L2225/06517Bump or bump-like direct electrical connections from device to substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2225/00Details relating to assemblies covered by the group H01L25/00 but not provided for in its subgroups
    • H01L2225/03All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00
    • H01L2225/04All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices not having separate containers
    • H01L2225/065All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices not having separate containers the devices being of a type provided for in group H01L27/00
    • H01L2225/06503Stacked arrangements of devices
    • H01L2225/06541Conductive via connections through the device, e.g. vertical interconnects, through silicon via [TSV]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/1517Multilayer substrate
    • H01L2924/15192Resurf arrangement of the internal vias
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/153Connection portion
    • H01L2924/1531Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface
    • H01L2924/15311Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface being a ball array, e.g. BGA

Definitions

  • This disclosure relates to a technology for monitoring a connection state of a wiring path and identifying an abnormal portion in a semiconductor LSI, a semiconductor LSI package, and a printed wiring board used in information devices, control devices for infrastructure, automobiles, and the like.
  • wiring for connecting the chips in the package is provided. If there is a defect in this wiring, even if there is no defect in each chip, it becomes a defective product as a multichip module.
  • Patent Document 1 JP-A-2008-122338
  • This publication describes a method for inspecting wiring between circuit blocks and a circuit for facilitating inspection.
  • a test pin is provided so that a signal can be applied from the outside of the IC to the cathode of the diode connected to the V DD side in the input protection circuit of IC # i + 1 to be inspected, and changed to an easy-to-inspect input protection circuit is doing.
  • the inspection pin of the inspection target IC # i + 1 is connected to the GND via the resistor Rm, and the failure excitation input “H level” is output from the boundary scan flip-flop to the output pin d of the connection target IC # i. .
  • Current flows along the current path from the power supply voltage supply pin of IC # i to the resistor Rm to the inspection target wiring (wiring between the pin e of IC # i + 1 and the pin d of IC # i). .
  • This current is measured, and if there is an abnormality in the current, it is determined that there is a failure. It has the feature that it can also identify the location of failure.
  • SiP System Package
  • HBM High Bandwidth Memory
  • JEDEC JEDEC
  • LSIs mounted on the interposer are connected with about 20 ⁇ m diameter solder called micro bumps, and breakage and poor connection are problems in mounting.
  • Patent Document 1 The inspection technique disclosed in Patent Document 1 can be used to monitor the state of breakage of the microbump. Specifically, as the breakage of the microbump portion proceeds, the electrical resistance of the microbump portion increases, so that the voltage generated in the external resistor portion is lowered when a static current is passed, and the breakage state can be visualized. .
  • the state of the wiring is visualized by connecting the wiring part (micro bump part) to be inspected and an external voltage observation resistor in series. Therefore, it is effective for the target connected 1: 1 like the signal wiring, but the test of the wiring part connected to many target pins through many paths from one pin like power supply / ground is possible. There was a problem that it was difficult in principle.
  • the signal pins 51-1 to 51-4 for data signals, the power supply pin 52-1 and the ground pins 53-1 and 53-2 have the bump arrangement as shown in FIG.
  • the ratio of the numbers is 4: 1: 2. Therefore, since the number of power supplies and grounds is small relative to the number of signals, if even one breaks, the power supply impedance around the broken part increases and the power supply noise of the input / output circuit deteriorates. State grasping is also an important factor for ensuring operational reliability.
  • the bump connection part causes the breakage of the connection part due to the mounting state of the LSI and the current distribution during operation mounted on the product, it is indispensable to monitor the state of the apparatus during operation.
  • a semiconductor LSI package that constitutes a System Package (SiP) is mounted on a product by a multichip module, and an additional circuit to the semiconductor LSI is added to ensure the operational reliability of the semiconductor LSI during product operation.
  • SiP System Package
  • an inspection circuit that grasps the electrical / physical connection status of signals, power supplies, and ground pins while the equipment is operating, while minimizing it.
  • a semiconductor device includes a first circuit block having first and second output circuits, and a second circuit block having first and second input circuits.
  • the output pin from the first output circuit and the input pin to the first input circuit are connected by wiring, and the output pin from the second output circuit and the input pin to the second input circuit are wired
  • a step of switching from a low to a high logic input to the first output circuit and a low to high input to the second output circuit A wave logic input is given, and the power supply fluctuation waveform branched by the path switching circuit in the previous stage of the first input circuit is observed by the voltage observation circuit to check the connection state of the power supply pins.
  • the first output circuit has a logic input for transitioning from Low ⁇ High ⁇ Low, and the DC resistance is measured during the High period.
  • a logic input that is fixed for a sufficient time (in the order of ⁇ s) is given, and a power supply fluctuation waveform branched by a path switching circuit in the previous stage of the first input circuit is observed by the voltage observation circuit, and the first The connection state of the wiring path that connects the output pin from the output circuit and the input pin to the first input circuit is inspected.
  • a multichip module includes a first semiconductor LSI having first and second output circuits, and a second semiconductor circuit having first and second input circuits.
  • a semiconductor LSI, an output pin from the first output circuit and an input pin to the first input circuit are connected by wiring, and an output pin from the second output circuit and an input to the second input circuit And a power supply pin and a ground pin of the first and second semiconductor LSIs that supply power to the output circuits and the input circuits.
  • the second semiconductor LSI includes a path switching circuit in front of each input circuit, a resistance switch at the end of the path branched by the path switching circuit, and Resistance cut off And configured to have a voltage monitoring circuit for monitoring the voltage across the resistor in place unit.
  • a means for monitoring the connection state of the power supply, the ground, and the signal pin while the apparatus is operating is provided.
  • Such means can be applied to a wide variety of semiconductor products such as information equipment, infrastructure control equipment, and in-vehicle equipment.
  • FIG. 10 is a circuit diagram of an example of a conventional technique described in Patent Document 1.
  • FIG. It is an example of bump arrangement of a semiconductor LSI to be inspected.
  • FIG. 2 shows an example of a power supply fluctuation waveform when monitoring the connection state of the power supply / ground pin in the first embodiment.
  • FIG. 5 is a configuration diagram of a third embodiment when the present invention is applied to a 3D stacked LSI. It is a fourth embodiment and is a configuration diagram when the present invention is applied to a normal semiconductor package. It is one of the implementation examples of the voltage observation circuit which is one of the basic configurations of the present invention, and is a circuit for digitizing voltage waveform information. It is one of the implementation examples of the voltage observation circuit which is one of the basic configurations of the present invention, and is a circuit for detecting a voltage drop amount.
  • notations such as “first”, “second”, and “third” are attached to identify the constituent elements, and do not necessarily limit the number or order.
  • a number for identifying a component is used for each context, and a number used in one context does not necessarily indicate the same configuration in another context. Further, it does not preclude that a component identified by a certain number also functions as a component identified by another number.
  • FIG. 8 a basic circuit configuration in a first example is shown in FIG.
  • SiP System-in Package
  • a Si interposer A circuit is proposed for monitoring all signal connections via the power supply 11 and the connection state between the power supply VDDQ supplied from the Si interposer 11 and the ground potential VSSQ.
  • FIG. 1 shows a configuration in which a first circuit block 1 and a second circuit block 2 are electrically connected via a wiring block 11 as a broader expression. Power is supplied to the first circuit block 1 and the second circuit block 2 through the wiring block 11.
  • the first circuit block 1 includes output circuits 9-1 and 9-2
  • the second circuit block 2 includes input circuits 10-1 and 10-2.
  • the same configuration can be realized in the case of bidirectional communication having both input and output circuits.
  • two signal systems are described as representatives (corresponding to an arrangement of four bumps indicated by 54 in the example of the bump arrangement shown in FIG. 3). However, even if there are more signal systems than this, it can be realized with the same configuration.
  • the path switching circuit 7-1, 7-2 are arranged in front of the input circuits 10-1 and 10-2.
  • the path switching circuits 7-1 and 7-2 are connected to the output path to the receiver circuits 10-1 and 10-2 and to the resistance switch 6 with respect to the input from the left side (first circuit block 1) in the figure.
  • the output path is switched by input from the control circuit 8.
  • the resistance switch 6 also has a voltage observation circuit 5 for monitoring the voltage across the resistor.
  • all circuits other than the output circuits 9-1 and 9-2 are collectively described as internal circuits.
  • internal circuits connected after the input circuits 10-1 and 10-2 are not shown.
  • Figure 4 shows an example of the configuration of the path switching circuits 7-1 and 7-2.
  • This circuit has a 1-input 2-output configuration as shown in FIG. 4A, and the path and switching timing are controlled by an external control signal or clock.
  • pass transistors 30-1 to 30-3 are used to control the path and input / output availability by a 2-bit control signal.
  • the operation procedure consists of the following four steps. (1) Switch the resistance of the resistance switch 6 to a resistance value (High-Z) of 1 k ⁇ or higher. (2) The route is switched as follows using the route selection circuits 7-2 and 7-2. In 7-1, the output destination is the resistance switch 6, and 7-2 is connected to the receiver circuit 10-2. (3) Determine the input logic to the output circuit 9-1 and the output circuit 9-2. Here, the input logic (signal 1) to the output circuit 9-1 is fixed high, and the input logic (signal 2) to the output circuit 9-2 is a step wave that continues for 1 for a while after the logic switches from 0 to 1. The input is as follows. The signal fixing time of the step wave here is on the order of ⁇ seconds. (4) The voltage observation circuit 5 measures the power supply fluctuation waveform based on the power supply current fluctuation 20 that flows to the resistance switch 6 via the path switching circuit 7-1 via the output circuit 9-1 and monitors the state.
  • the phenomenon observed as the power supply current fluctuation 20 is that when the input logic (signal 1) to the output circuit 9-1 is fixed high, the power supply line 14 and the path are short-circuited, and the power supply line state is the signal pin 41- Come out through 1. In this state, if a signal that switches the input logic (signal 2) to the output circuit 9-2 from 0 to 1 is given, when this is switched, it tries to draw the power supply current from the outside, and the surrounding impedance As a result, the power supply current fluctuates.
  • one of the signal pins 41-1 near the power supply / ground pins 42 and 43 is used as a path for transmitting the power supply or the ground current, and the other signal pin 41-2 in the vicinity thereof is used as the power supply.
  • the connection state of a specific power supply or ground pin is measured by a physical quantity such as power supply or ground fluctuation.
  • the output of the output circuit 9-1 is fixed to High and the input to the output circuit 9-2 is set to a step wave for switching from Low to High.
  • the output of the output circuit 9-1 is fixed to Low, and the input to the output circuit 9-2 is a step wave switching from High to Low.
  • the reason why the resistance setting value of the resistance switch 6 is set to High-Z of k ⁇ or more is to observe the generated power supply fluctuation with as large an amplitude as possible.
  • FIG. 6 shows the state of power supply fluctuation after the step wave is input at the logic switching time.
  • a vibration waveform corresponding to the maximum value of the power source impedance viewed from the target circuit unit and the frequency at which the maximum value exists is generated.
  • two types of voltage waveform 22-1 generated in a normal bump connection state and a voltage waveform 22-2 generated in an abnormal bump connection state such as breakage are described.
  • the inductance of the power feeding system increases, so that the frequency of the anti-resonance impedance of the power feeding system decreases and the impedance maximum value increases. For this reason, there is a change in which the period of power supply fluctuation becomes longer and the amplitude of power supply fluctuation becomes larger.
  • the amount of measurement to estimate these changes includes the maximum voltage drop difference (23-1, 23-2), maximum voltage drop time difference (24-1, 24-2), as shown in Figure 6, and This is realized by combining any one or more of the difference in vibration period (25-1, 25-2). Therefore, the voltage observation circuit 5 only needs to have a function capable of measuring either of these.
  • the output of the output circuit 9-1 is fixed to High and the input to the output circuit 9-2 is changed from Low to observe the state of the power supply pin 42 in FIG. It is an example of a power fluctuation waveform observed as a step wave for switching to High.
  • the waveform shows the same tendency as in FIG.
  • the first example is a circuit for measuring voltage fluctuation as a waveform, which is shown in FIG. FIG. 11 includes a multi-stage level shift circuit, comparators 82-1 to 82-4 connected thereto, FF circuits 83-1 to 83-4, and shift registers 84-1 to 84-4.
  • a current to flow through the level shift circuit shown in FIG. 81 the voltage is reduced by the resistance, compared with a predetermined threshold voltage Vref by a comparator circuit, and 0 or 1 is written to FF according to the magnitude relationship.
  • This circuit repeats this at specific time intervals, stores the digital information in the shift register circuit, and can quantify which range the voltage is at which time.
  • the resolution of the power fluctuation waveform observed in the multi-stage shift register is used as the boundary line of the 0, 1 pattern area to increase the resolution. Can be supplemented.
  • this circuit can be used to obtain a power fluctuation waveform, the above-mentioned maximum voltage drop difference, maximum voltage drop time difference, and vibration period difference should be observed using the data measured by this circuit. Can do. Although it is a circuit that is suitable for knowing voltage waveform information in detail, it is necessary to increase the number of level shift stages and the number of bits of the shift register if sufficient voltage resolution and time resolution are to be obtained. A trade-off occurs.
  • the configuration example of the second voltage observation circuit 5 is a circuit for detecting that the voltage drop amount exceeds a certain value as shown in FIG.
  • This circuit includes a level shift circuit 91, a comparator 93, and a hold circuit 94.
  • the comparator 93 has only one stage.
  • a signal of Logic 1 can be transmitted to the hold circuit 94 only when the amount of voltage drop exceeds a certain value. Since the threshold value Vref of the voltage drop amount for detection can be changed by the switch circuit 92, the desired voltage drop amount can be known by changing this threshold value according to the measurement object. This is a method of observing only the difference in the amount of voltage drop described above, but has a feature that the circuit scale and power can be suppressed.
  • the operation procedure at this time consists of the following four steps.
  • the resistance of the resistance switch 6 is set to a resistance value (within a range of 0.1 ⁇ to 10 ⁇ ) comparable to the resistance value at the time of wiring failure (the resistance value when the bump 41-1 is about to break). (Resistance of value, usually around several ohms.)
  • the route selection circuits 7-1 and 7-2 the route is switched as follows.
  • the path selection circuit 7-1 has an output destination as the resistance switch 6, and the path selection circuit 6-2 is connected to the receiver circuit 10-2.
  • the input to the output circuit 9-1 is changed from Low ⁇ High ⁇ Low.
  • the voltage observation circuit 5 measures the power supply fluctuation waveform based on the power supply current fluctuation flowing through the resistance switching device 6 via the path switching circuit 7-1 via the output circuit 9-1 and monitors the state. In this case, when the bump breaks or the like occurs, it appears as a potential difference between both ends of the resistance of the resistance switch 6, so that the situation can be monitored.
  • the rupture state of the bump appears as an analog change in the electrical characteristics in any case of the power source, the ground, and the signal, so that it is possible to monitor the state of the rupture other than the simple disconnection.
  • the operation to monitor sequentially is executed.
  • the input logic to be input to the output circuits 9-1 and 9-2 is, for example, provided with a boundary scan flip-flop circuit in the internal circuit, The corresponding input logic may be output sequentially to the output circuit.
  • the voltage observing circuit 5 for observing the connection state of each power source / ground / signal with a power source fluctuation waveform is constituted by, for example, a circuit shown in FIG.
  • This voltage observation circuit 5 is measured by the current flowing through one connection path (the wiring from the bump on the first circuit block 1 side to the bump on the second circuit block 2 side, including all electrical conductors).
  • One power fluctuation waveform thus recorded is recorded in the shift register.
  • the power fluctuation waveform data is read from the shift register of the voltage observation circuit 5, and is executed by a logic circuit or CPU that calculates each feature quantity of the maximum voltage drop, the maximum voltage drop time, and the vibration cycle.
  • the above-described logic circuit is included in the control circuit (8 in the figure) in FIGS. Although not specifically illustrated, the above-described inspection program executed by the CPU operates, for example, on the internal circuit 1 in FIG.
  • the semiconductor LSI package that constitutes the System Package (SiP) is mounted on the product, and the connection state of each power supply, ground, and signal is observed in advance by the voltage observation circuit 5 at the time of product shipment, and the connection state is normal.
  • the maximum voltage drop of the power supply fluctuation waveform, the maximum voltage drop time, and the feature quantities of the vibration period are calculated and recorded in the memory.
  • the logic circuit evaluates the difference in maximum voltage drop, the difference in maximum voltage drop time, and the difference in vibration period in comparison with each feature amount of the same connection path recorded in the memory. It is determined whether the state of each connection path is normal or abnormal. The logic circuit executes the determination of one connection path, resets the shift register of the voltage observation circuit 5, and repeatedly executes the process of reading the power fluctuation waveform data of the next connection path.
  • FIG. 8 shows a cross-sectional view when utilized in System® Package (SiP).
  • SiP System® Package
  • the semiconductor circuit block can be considered as a plurality of LSIs mounted on the interposer.
  • the connection paths 12, 13, 14, and 15 between the first circuit block 1 and the second circuit block 2 in FIG. 1 include micro bumps that connect each LSI and the interposer, and wiring in the interposer. included.
  • the inspection circuit of this embodiment is suitable mainly for monitoring the connection state of the micro bump portion connecting the LSI and the interposer.
  • FIG. 8 shows an example of unidirectional transmission with two LSIs
  • the number of LSIs and the signal transmission direction may be arbitrary such as bidirectional.
  • FIG. 9 shows an example in which a plurality of DRAMs DIE 1-1 and 1-2 (about 8 at maximum) are three-dimensionally stacked on ASIC DIE 2. Show. In this embodiment, it is possible to monitor the connection state of the through silicon via TSV16 for connecting the upper and lower LSIs.
  • FIG. 10 shows an example in which a normal LSI package is used to inspect the connection state between LSIs when mounted on a board (printed circuit board) 70.
  • a board printed circuit board
  • the communication device since the communication device has a diagnostic control unit (for example, a diagnostic processor), the power fluctuation waveform data from the shift register of the voltage observation circuit 5 executed by the logic circuit or the inspection program. Is a diagnostic controller that evaluates the difference in maximum voltage drop, difference in maximum voltage drop time, and difference in vibration period to determine whether the state of each connection path to be evaluated is normal or abnormal. May be executed.
  • a diagnostic control unit for example, a diagnostic processor
  • each connection path is determined, for example, in the bump arrangement as shown in FIG. 3, which channel signal pin corresponds to the channels 55 and 56 that are a group of signal pins corresponding to the group of data read units. It can also be used to keep track of whether an abnormality is occurring at an early stage, to disconnect a broken or likely broken channel at an early stage, and to switch to an alternative channel.
  • a control device used in a plant or the like provides a diagnosis cycle in addition to a normal control cycle.
  • a connection test can be performed using this diagnostic cycle.
  • an example when applied to an in-vehicle semiconductor component will be described.
  • Cars are difficult to test while driving, but can be tested within minutes after stopping or after the engine has stopped.
  • an inspection can be performed immediately after the engine is turned on, and if there is an abnormality, an alarm can be raised to notify the user.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Engineering & Computer Science (AREA)
  • Geometry (AREA)
  • Tests Of Electronic Circuits (AREA)
  • Testing Of Short-Circuits, Discontinuities, Leakage, Or Incorrect Line Connections (AREA)
  • Semiconductor Integrated Circuits (AREA)

Abstract

半導体LSIを搭載した半導体パッケージやプリント基板において、電源・グランド・信号バンプなどの接続状態のテストを製品稼動状態で検査可能な半導体検査用回路を提供する。その解決手段は、経路切替が可能な回路をドライバ/レシーバの入力部に有し、レシーバ回路近傍の経路切替回路の出力を可変終端内蔵電圧波形回路へと伝えることができる機構を持ち、信号バンプ接続状態観測時は一定の直流抵抗を有する終端でDCレベルを観測し、IO電源バンプ接続状態観測時はステップ波を入力してその応答波形を観測することで、バンプの破断状況を製品稼動状態で観測可能とする。

Description

半導体装置およびマルチチップモジュール
 本開示は、情報機器、インフラ向け制御装置、自動車などに用いられる半導体LSI、半導体LSIパッケージおよびプリント配線基板において、配線経路の接続状態を監視し、異常箇所を特定する技術に関する。
 複数の半導体集積回路チップを一つのパッケージに内蔵するマルチチップモジュールでは、パッケージ内でチップ間を接続する配線が設けられている。この配線に不良が存在すれば、たとえ各チップに不良が存在しなくても、マルチチップモジュールとしては不良品となる。
 かかる当該配線の不良は、パッケージ全体を対象とするファンクションテストによって検出可能である。しかし、ファンクション不良と配線不良との相互関係を明確にすることは必ずしも容易ではなかった。
 本技術分野の背景技術として、特開2008-122338号公報(特許文献1)がある。この公報には、回路ブロック間の配線の検査法と検査容易化回路について記載されている。その代表図の図2において、検査対象IC#i+1の入力保護回路でVDD側につながるダイオードのカソードにIC外部から信号を印加できるように検査用ピンを設け、検査容易化入力保護回路に変更している。検査時に、検査対象IC#i+1の検査用ピンを抵抗Rmを介してGNDに接続して、接続対象IC#iの出力ピンdに、バウンダリスキャンフリップフロップから故障励起入力「Hレベル」を出力させる。検査対象配線(IC#i+1のピンeとIC#iのピンdの間の配線)にIC#iの電源電圧供給ピンから抵抗Rmに向かって検査用ピンへの電流経路に沿って電流が流れる。この電流を測定して、その電流に異常があれば故障と判定している。故障発生箇所の特定も行えるという特長を持っている。
特開2008-122338号公報
 特許文献1の検査方法は、回路ブロック間を繋ぐ入出力回路を介して両者を繋ぐ配線部とその先に繋がる回路ブロックの外側に付けた抵抗に静的電流を流し、そのとき抵抗の両端に発生する電圧を測定して配線部の抵抗変化による電圧の変化から故障を判断する。
 この技術の活用の一例として、DRAM標準化団体であるJEDECで規格化がなされているHBM(High Bandwidth Memory)を搭載したSystem in Package(SiP)を考える。SiPではSiインターポーザに代表される微細配線基板の上にHBMとこれと通信する対象であるLSIを搭載し、インターポーザ内の配線で両者を電気的に接続する。インターポーザ上に搭載されるLSIはマイクロバンプと呼ばれる約20μm径の半田で接続され、これの破断や接続不良が実装上の課題になっている。
 特許文献1に開示された検査技術は、このマイクロバンプの破断の状況をモニタすることに活用できる。具体的には、マイクロバンプ部の破断が進むとこれの電気抵抗が大きくなるので、静的電流を流したときに外付け抵抗部に発生する電圧を低下させ、破断状況の可視化が可能になる。
 この方法では検査対象の配線部(マイクロバンプ部)と外付けの電圧観測用の抵抗が直列に接続されていることにより、状態を可視化する。従って、信号配線のように1:1接続している対象には有効であるが、電源・グランドのように1つのピンから多数の経路で多数の対象ピンに接続されている配線部のテストは原理的に難しいという課題があった。
 例えばHBMの場合、データ信号用の信号ピン51-1~51-4と電源ピン52-1とグランドピン53-1,53-2は図3のようなバンプ配置が定義されており、そのピン数の比は4:1:2である。従って、信号の数に対して、電源やグランドの数が少ないため、1つでも破断するとその破断部周辺の電源インピーダンスが上がり、入出力回路の電源雑音が悪化することから、電源・グランドピンの状態把握も動作信頼性担保のために重要な要素となっている。また、バンプ接続部はLSIの実装状態や、製品に搭載された稼動時の電流分布が、接続部破断の要因となるため、装置稼動状態における状態モニタが不可欠となる。
 本発明は、マルチチップモジュールによりSystem in Package(SiP)を構成する半導体LSIパッケージを製品に搭載して、製品稼働時の半導体LSIの動作信頼性を担保するために、半導体LSIへの追加回路を最小限に抑えつつ、信号・電源・グランドピンの電気・物理的な接続状態を装置稼動状態で把握する検査用回路を提供する。
 上記課題を解決するために本発明では、半導体装置を、第1、および第2の出力回路を有する第1の回路ブロックと、第1、および第2の入力回路を有する第2の回路ブロックと、前記第1の出力回路からの出力ピンと前記第1の入力回路への入力ピンを配線で接続し、および前記第2の出力回路からの出力ピンと前記第2の入力回路への入力ピンを配線で接続する配線ブロックとを備え、前記各出力回路、および前記各入力回路への給電を担う前記第1、および第2の回路ブロックの電源ピン、およびグランドピンが前記配線ブロックの給電用配線、およびグランド用配線と接続され、前記第2の回路ブロックには、各入力回路の前段に経路切り替え回路と、前記経路切り替え回路にて分岐された経路の先に抵抗切り替え器と、及び前記抵抗切り替え器の抵抗の両端の電圧を観測する電圧観測回路とを有するように構成した。
 また、上記課題を解決するために本発明では、前記半導体装置において、前記第1の出力回路にはHigh固定の論理入力を、及び前記第2の出力回路にはLowからHighへの切り替えのステップ波の論理入力を与えて、前記第1の入力回路の前段の経路切り替え回路により分岐された電源変動波形を前記電圧観測回路で観測して前記電源ピンの接続状態を検査するように構成した。
 また、上記課題を解決するために本発明では、前記半導体装置において、前記第1の出力回路に、Low→High→Lowと遷移させる論理入力で、およびHighの期間はDC抵抗を測定するのに十分な時間(μ秒のオーダー)で固定する論理入力を与えて、前記第1の入力回路の前段の経路切り替え回路により分岐された電源変動波形を前記電圧観測回路で観測して、前記第1の出力回路からの出力ピンと前記第1の入力回路への入力ピンとを接続する配線経路の接続状態を検査するように構成した。
 また、上記課題を解決するために本発明では、マルチチップモジュールを、第1、および第2の出力回路を有する第1の半導体LSIと、第1、および第2の入力回路を有する第2の半導体LSIと、前記第1の出力回路からの出力ピンと前記第1の入力回路への入力ピンを配線で接続し、および前記第2の出力回路からの出力ピンと前記第2の入力回路への入力ピンを配線で接続する配線基板とを備え、前記各出力回路、および前記各入力回路への給電を担う前記第1、および第2の半導体LSIの電源ピン、およびグランドピンが前記配線基板の給電用配線、およびグランド用配線と接続され、前記第2の半導体LSIには、各入力回路の前段に経路切り替え回路と、前記経路切り替え回路にて分岐された経路の先に抵抗切り替え器と、及び前記抵抗切り替え器の抵抗の両端の電圧を観測する電圧観測回路とを有するように構成した。
 本発明を適用することで、電源・グランド・信号ピンの接続状態を装置稼動状態でモニタする手段を提供する。このような手段は、情報機器、インフラ用制御機器、車載機器など幅広い半導体製品に適用可能である。
本発明の代表図(第一の実施例)であり、第一の実施例の基本回路構成を表す図である。 特許文献1に記載の従来技術の一例の回路図である。 検査対象の半導体LSIのバンプ配置の例である。 第一の実施例の経路選択回路の一例の回路図である。 第一の実施例の動作原理のうち、電源・グランドピンの接続状態をモニタする場合の動作説明図である。 第一の実施例の電源・グランドピンの接続状態モニタ時の電源変動波形の例を示したものである。 第一の実施例の動作原理のうち、信号ピンの接続状態をモニタする場合の動作説明図である。 第二の実施例であり、本発明をSiPに活用した場合の構成図である。 第三の実施例であり、本発明を3D積層LSIに活用した場合の構成図である。 第四の実施例であり、本発明を通常の半導体パッケージに活用した場合の構成図である。 本発明の基本構成の1つである電圧観測回路の実現例の一つであり、電圧波形情報をデジタル化するための回路である。 本発明の基本構成の1つである電圧観測回路の実現例の一つであり、電圧低下量を検出するための回路である。
 実施の形態について、図面を用いて詳細に説明する。ただし、本発明は以下に示す実施の形態の記載内容に限定して解釈されるものではない。本発明の思想ないし趣旨から逸脱しない範囲で、その具体的構成を変更し得ることは当業者であれば容易に理解される。
 以下に説明する発明の構成において、同一部分又は同様な機能を有する部分には同一の符号を異なる図面間で共通して用い、重複する説明は省略することがある。
 本明細書等における「第1」、「第2」、「第3」などの表記は、構成要素を識別するために付するものであり、必ずしも、数または順序を限定するものではない。また、構成要素の識別のための番号は文脈毎に用いられ、一つの文脈で用いた番号が、他の文脈で必ずしも同一の構成を示すとは限らない。また、ある番号で識別された構成要素が、他の番号で識別された構成要素の機能を兼ねることを妨げるものではない。
 本発明の実施形態として、第一の実施例における基本回路構成を図1に示す。この実施例の具体例としては、例えば図8に示すように、Siインターポーザ11上に搭載されたDRAM DIE 1と、各種制御を行うASIC DIE 2とを含むSystem in Package(SiP)において、Siインターポーザ11を介した全ての信号接続、及びSiインターポーザ11より供給される電源VDDQとグランド電位VSSQとの接続状態をモニタする回路を提案する。
 図1では、より広義な表現として、第1の回路ブロック1と第2の回路ブロック2が、配線ブロック11を介して電気的に接続されている構成を示している。第1の回路ブロック1と第2の回路ブロック2への電源供給は配線ブロック11を経由して行われている。本構成では、第1の回路ブロック1に出力回路9-1,9-2、第2の回路ブロック2に入力回路10-1,10-2を備えた片方向通信のケースを記載しているが、両者に入出力回路を有する双方向通信の場合にも同様な構成で実現できる。また、この図では簡単のため2本の信号系を代表して記載(図3に示すバンプ配置の例において、54で示す4個のバンプの配列を切り出したものに相当する。)しているが、これより多くの信号系があっても同様な構成で実現できる。
 次に、本実施例の特徴を図1を用いて説明する。まず、経路切り替え回路7-1,7-2
が入力回路10-1,10-2の前段に配置されている。経路切り替え回路7-1,7-2は、図中左側(第1の回路ブロック1)からの入力に対して、レシーバ回路10-1,10-2への出力経路と抵抗切り替え器6への出力経路を制御回路8からの入力にて切り替えられる機能を有する。また、抵抗切り替え器6には、その抵抗の両端の電圧をモニタするための電圧観測回路5を有する。
  第1の回路ブロック1には、出力回路9-1,9-2以外の全ての回路を内部回路として纏めて記載している。また、第2の回路ブロック2には、入力回路10-1,10-2の後に接続される内部回路は省略して記載していない。
 経路切り替え回路7-1,7-2の構成例を図4に示す。この回路では図4(A)に外部仕様を示す通り1入力2出力の構成となっており、外部からの制御信号やクロックでその経路と切り替えのタイミングを制御する。図4(B)の構成ではパストランジスタ30-1~30-3を用いて、2bitの制御信号で経路や入出力可否を制御する。
 次に、図1の回路構成を用いて、電源・グランド接続端子の接続状況を判定するための手段について図5を用いて説明する。ここでは、電源バンプ42の破断状況を観測することを想定した手順を示す。
 動作手順は以下の4つのステップからなる。
(1)抵抗切り替え器6の抵抗を1kΩ以上の抵抗値(High-Z)のものに切り替える。
(2)経路選択回路7-2,7-2を用いて以下のように経路を切り替える。7-1は出力先を抵抗切り替え器6にして、7-2はレシーバ回路10-2へと繋ぐ。
(3)出力回路9-1と出力回路9-2への入力論理を決める。ここでは出力回路9-1への入力論理(信号1)はHigh固定とし、出力回路9-2への入力論理(信号2)は0から1に論理が切り替わった後、しばらく1が続くステップ波のような入力とする。ここでのステップ波の信号固定時間はμ秒のオーダーである。
(4)出力回路9-1経由で経路切り替え回路7-1を介して抵抗切り替え器6に流れる電源電流変動20に基づく電源変動波形を電圧観測回路5で測定し、状態をモニタリングする。
 電源電流変動20として観察される現象は、出力回路9-1への入力論理(信号1)をHigh固定すると、電源ライン14とパスがショートされた状態となり、電源ラインの状態が信号ピン41-1を伝って出てくる。その状態で、出力回路9-2への入力論理(信号2)を0から1に切り替わるような信号を与えてやると、ここがスイッチした時に、外から電源電流を引き込もうとして、周りのインピーダンスの関係で電源電流の変動がでる。
 すなわち、測定原理としては、電源・グランドピン42,43の近傍にある信号ピンの1つ41-1を電源あるいはグランド電流を伝える経路として用い、その周辺にある他の信号ピン41-2を電源変動のためのステップ電流源として用いることで、特定電源あるいはグランドピンの接続状況を電源やグランド変動という物理量で測定する。
 すなわち、電源ピン42の破断状況を観測したいときは、出力回路9-1の出力をHigh固定とし、出力回路9-2への入力をLowからHighへの切り替えのステップ波にする。グランドピン43の破断状況を観測したいときは、出力回路9-1の出力をLow固定とし、出力回路9-2への入力をHighからLowへの切り替えステップ波とする。なお、抵抗切り替え器6の抵抗の設定値をkΩ以上のHigh-Zとする理由は、生じた電源変動をなるべく大きな振幅で観測するためである。
 また、図5ではステップ波生成をおこなう出力回路は9-2一つのみであるが、周辺にある複数の回路でステップ波を入力した方が電源・グランド変動振幅が大きくなり、観測しやすくなり好ましい。
 このようにして得られた電源変動波形の例を図6に示す。図6は論理切り替え時刻にてステップ波が入力され、その後の電源変動の様子を示したものである。一般にこのようなステップ入力がなされると、対象回路部から見た電源インピーダンスの極大値とその極大値が存在する周波数に応じた振動波形が発生する。ここでは正常なバンプ接続の状態で発生する電圧波形22-1と破断など異常なバンプ接続状態において発生する電圧波形22-2の2種を記載している。
 一般に、バンプ破断が起こると給電系のインダクタンスが大きくなるため、給電系の反共振インピーダンスの周波数が低くなり、インピーダンス極大値が大きくなる。このため、電源変動の周期が長くなり、電源変動の振幅が大きくなるという変化が見られる。この変化量を測定することで、バンプの接続状態のモニタが可能になる。これら変化を見積もるための測定量としては、図6に示したような最大電圧降下の差(23-1,23-2)、最大電圧降下時刻の差(24-1,24-2)、及び振動周期の差(25-1,25-2)のいずれか一つあるいは複数を組み合わせることで実現される。従って、電圧観測回路5はこれらいずれかを測定できる機能があればよい。
 図6に示した電源変動波形の例は、図5において、電源ピン42の状態を観測するように、出力回路9-1の出力をHigh固定とし、出力回路9-2への入力をLowからHighへの切り替えのステップ波にして観測した電源変動波形の例である。それに対して、グランドピン43の状態を観測するために、出力回路9-1の出力をLow固定とし、出力回路9-2への入力をHighからLowへの切り替えステップ波にして観測した電源変動波形は、図6と同様な傾向を示す。
 電圧観測回路5の構成例について、2つの方式を例として示す。これらはあくまで実現手段の一つであり、その方式を限定するものではない。
 まず一つ目の例は電圧変動を波形として測定するための回路であり、これを図11に示す。図11は多段のレベルシフト回路と、それに繋がるコンパレータ82-1~82-4、FF回路83-1~83-4、シフトレジスタ84-1~84-4から構成される。図の81に示すレベルシフト回路に電流を流すことで、抵抗分だけ電圧を低下させて、それをコンパレータ回路で所定の閾値電圧Vrefと比較し、その大小関係でFFに0または1を書き込む。これを特定の時間間隔で繰り返してシフトレジスタ回路にそのデジタル情報を保存し、どの時刻に電圧がどの範囲にあるかを定量化することができる回路である。
 すなわち、レベルシフト回路の抵抗値の刻み幅を小さくして段数を大きくすれば、多段のシフトレジスタに観察される電源変動波形の情報を、0,1のパターン領域の境界線として、分解能を高めて補足することができる。
 この回路を使うことで電源変動波形を取得できるため、前記した最大電圧降下の差、最大電圧降下時刻の差、振動周期の差のいずれも、この回路で測定したデータを使うことで観測することができる。
  電圧波形の情報を詳しく知るために適した回路であるが、電圧分解能や時間分解能を十分にとろうとすると、レベルシフトの段数、シフトレジスタのビット数を増やす必要があるため、回路規模や電力とトレードオフが発生する。
 二つ目の電圧観測回路5の構成例は、図12に示すように電圧低下量が一定値を超えたことを検出するための回路である。この回路はレベルシフト回路91、コンパレータ93、およびホールド回路94で構成される。コンパレータ93は1段のみである。この方式は電圧の低下量が一定値を超えたときのみホールド回路94に対してLogic 1の信号を伝えることができる。スイッチ回路92で検出のための電圧低下量の閾値Vrefを変えることができるので、測定対象に合わせてこの閾値を変えることで所望の電圧降下量を知ることができる。前記した電圧降下量の差のみを観測する方式であるが、回路規模、電力を抑えられる特徴がある。
 この他にもリングオシレータを用いて発振周波数の変化を観測する方法やインバータの遅延量を観測する電圧回路方式も考えられるが、いずれの方式を用いても良い。
 次に、図1と同じ回路構成で信号ピンの接続状態をモニタする原理を図7を用いて説明する。この場合は、測定対象の信号ピン(この場合は41-1)に対して一定時間静的な電流を流し、そのときに生じる電圧レベルの変化からバンプ破断状況をモニタする。
 このときの動作手順は以下の4つのステップからなる。
(1)抵抗切り替え器6の抵抗を、配線故障時の抵抗値(バンプ41-1が破断しそうになった時の抵抗値)と同程度の抵抗値(0.1Ω乃至10Ωの範囲内で適当な値の抵抗。通常、数Ω程度。)に切り替える。
(2)経路選択回路7-1,7-2を用いて以下のように経路を切り替える。経路選択回路7-1は出力先を抵抗切り替え器6にして、経路選択回路7-2はレシーバ回路10-2へと繋ぐ。
(3)出力回路9-1への入力論理を決める。ここでは出力回路9-1への入力はLow→High→Lowと遷移させる。このときHighの期間はDC抵抗を測定するのに十分な時間(μ秒のオーダー)で固定する。
(4)出力回路9-1経由で経路切り替え回路7-1を介して抵抗切り替え器6に流れる電源電流変動に基づく電源変動波形を電圧観測回路5で測定し、状態をモニタリングする。
  この場合、バンプの破断等が起こるとそれが抵抗切り替え器6の抵抗の両端の電位差として表れるので、これで状況をモニタできる。
 電源・グランド・信号、いずれの場合もバンプの破断状況が電気特性のアナログ的な変化として現れるので、単純な断線以外にも破断しつつある状況のモニタが可能となる。
 図1に示す検査回路構成に基いて、例えばインターポーザ11上に搭載されたDRAM DIE 1と、各種制御を行うASIC DIE 2との間の全ての電源・グランド・信号の接続経路の接続状態を、順次監視する動作を実行する。
 図5、図7に示す第1の回路ブロック1において、出力回路9-1,9-2へ入力する入力論理の与え方は、例えば、内部回路にバウンダリスキャンフリップフロップ回路を備え、検査対象の出力回路へ順次、該当する入力論理を出力させてもよい。
 または、第1の回路ブロック1の内部回路にメモリを搭載している場合は、予め、入力論理のデータパターンとなるようなデータを書き込んでおき、そのデータが検査対象の信号ピンの出力回路へ順次出力されてくるように、そのアドレスを順次読み出すプログラムを搭載しておく手段でもよい。そして、第2の回路ブロック2側から、検査時にその読出しプログラムに起動を掛けて、読み出される入力論理と同期させて、制御回路8が順次、対応する経路切り替え回路7-1~7-nを切り替えて、全ての電源・グランド・信号の接続経路を経由して抵抗切り替え器6に流れる電流によって測定される電源変動波形を電圧観測回路5で測定する。 
  従って、本実施例では、入力論理の生成手段を特定はしない。
 第2の回路ブロック2において、各電源・グランド・信号の接続状態を電源変動波形で観察する電圧観測回路5として、例えば図11に示す回路で構成する。この電圧観測回路5は、1つの接続経路(第1の回路ブロック1側のバンプから第2の回路ブロック2側のバンプまでの配線、電気的導体部を全て含めたもの)を流れる電流によって測定された1つの電源変動波形をシフトレジスタに記録する。第2の回路ブロック2には、電圧観測回路5のシフトレジスタから電源変動波形データを読出し、最大電圧降下、最大電圧降下時刻、および振動周期の各特徴量を算出するロジック回路、またはCPUで実行される検査プログラムを有する。なお、前述のロジック回路は図5や図7の制御回路(図中8)に含まれる。また、具体的に図示はできないが、前述のCPUで実行される検査プログラムは例えば図7の1の内部回路で動作するものである。
 更に、System in Package(SiP)を構成する半導体LSIパッケージを製品に搭載して、製品の出荷時に予め各電源・グランド・信号の接続状態を電圧観測回路5で観測して、接続状態が正常な場合として電源変動波形の最大電圧降下、最大電圧降下時刻、および振動周期の各特徴量を算出して、メモリに記録しておく。
 そして、前記ロジック回路は、メモリに記録してある同一接続経路の各特徴量と比較して、最大電圧降下の差、最大電圧降下時刻の差、振動周期の差を評価して、評価対象の各接続経路の状態が正常か、異常かを判定する。前記ロジック回路は、1つの接続経路の判定を実行すると共に、電圧観測回路5のシフトレジスタをリセットして、次の接続経路の電源変動波形データを読出す処理を繰り返し実行する。
 なお、異常と判定した場合にシステム側にその情報(故障箇所、状態等)を伝達する機能を有する。この機能は図5や図7の制御回路(図中8)に含まれる。
 本発明の第二の実施形態として、System in Package(SiP)に活用したときの断面図を図8に示す。
 この場合、半導体回路ブロックはインターポーザ上に実装された複数のLSIとして考えられる。この構成では、図1の第1の回路ブロック1と第2の回路ブロック2との間の接続経路12,13,14,15は、各LSIとインターポーザを繋ぐマイクロバンプと、インターポーザ内の配線が含まれる。ただし、本実施例の検査回路は、主にLSIとインターポーザを繋ぐマイクロバンプ部の接続状況をモニタするのに適している。
 なお、図8はLSIが2つで片方向伝送の例を図示しているが、このLSI数や信号伝送方向は双方向など任意でよい。
 本発明の第三の実施形態として、ASIC DIE 2の上にDRAM DIE 1-1,1-2を複数個(最大8個程度)3次元積層したLSI間の接続に使用した例を図9に示す。この形態では上下のLSI間を接続するためのシリコン貫通ビアTSV16の接続状態も含めて監視することができる。
 本発明の第四の実施形態として、通常のLSIパッケージをボード(プリント基板)70上に搭載した際のLSI間の接続状態の検査に使用した例を図10に示す。この実施形態ではLSI1,2とパッケージ基板60を繋ぐC4バンプ61-1に加えてBGAボール71-1の接続状態も含めて監視することができる。
 本発明の第五の実施形態として、LSI間の接続状態を検査する回路を組み込んだSystem in Package(SiP)を通信装置に適用した場合を考える。本検査回路を使った検査では、ピン数が100ピン~1000ピン程度の場合、1バンプピン検査当りμ秒程度の検査時間がかかることから数ミリ秒程度の間、インタフェース回路を検査のために占有することになる。
 ただし、通信装置では、常に有効データが流れているわけではなく、アイドル期間がある。このアイドル期間に接続テストを行なえばよい。
 さらなる本発明の第六の実施形態として、通信装置では診断用制御部(たとえば診断プロセッサ等)があるため、前記ロジック回路、または検査プログラムが実行する電圧観測回路5のシフトレジスタから電源変動波形データを読出して、最大電圧降下の差、最大電圧降下時刻の差、振動周期の差を評価して、評価対象の各接続経路の状態が正常か、異常かを判定する処理を、診断用制御部が実行してもよい。
 各接続経路の判定がなされることから、例えば図3のようなバンプ配置において、データの読出し単位のグループに対応する信号ピンの纏まりであるチャネル55,56に対して、どのチャネルの信号ピンに異常が発生しかかっているかを早期に把握して、壊れた、あるいは壊れそうなチャネルを早期に切り離して、代替えのチャネルに切り替えるといったサービスを継続することにも活用できる。
 本発明の第七の実施形態として、プラント制御装置に適用した場合を挙げる。プラントなどに使われる制御装置は、通常の制御周期のほかに診断周期を設けることが一般的である。この診断周期を使って接続検査を実施することができる。
 本発明の第八の実施形態として、車載半導体部品に適用した場合の例を挙げる。自動車は走行中でのテストは困難だが、停車中やエンジン停止後の数分の間に検査ができる。さらにはエンジン投入直後に検査をして、異常があればアラームをあげてユーザに知らせることができる。
1:第1の回路ブロック
1-1~1-2:DRAM DIE
2:第2の回路ブロック、ASIC DIE
5:電圧観測回路
6:抵抗切り替え器
7-1~7-2:経路切り替え回路
8:制御回路
9-1~9-2:出力回路(ドライバ回路)
10-1~10-2:入力回路(レシーバ回路)
11:配線ブロック、インターポーザ
12:第1の信号配線
13:第2の信号配線
14:電源配線
15:グランド配線
20,21:電流経路
22-1~22-2:電圧波形
23-1~23-2:電圧ドロップ量
24-1~24-2:最大電圧降下時刻
25-1~25-2:電圧変動周期
30-1~30-3:パストランジスタ
41-1~41-2:信号用端子
42:電源用端子
43:グランド用端子
51-1~51-4:信号用マイクロバンプ
52-1~52-2:電源用マイクロバンプ
53-1~53-2:グランド用マイクロバンプ
60:LSIパッケージ基板
61-1~61-2:信号用C4バンプ
62-1~62-2:電源用C4バンプ
63-1~63-2:グランド用C4バンプ
70:プリント基板
71-1~71-2:信号用BGAボール
72-1~72-2:電源用BGAボール
73-1~73-2:グランド用BGAボール
81:レベルシフト回路
82-1~4:コンパレータ
83-1~4:FF回路
84-1~4:シフトレジスタ回路
91:レベルシフト回路
92:スイッチ回路
93:コンパレータ
94:ホールド回路

Claims (19)

  1.  第1、および第2の出力回路を有する第1の回路ブロックと、
     第1、および第2の入力回路を有する第2の回路ブロックと、
     前記第1の出力回路からの出力ピンと前記第1の入力回路への入力ピンを配線で接続し、および前記第2の出力回路からの出力ピンと前記第2の入力回路への入力ピンを配線で接続する配線ブロックとを備え、
     前記各出力回路、および前記各入力回路への給電を担う前記第1、および第2の回路ブロックの電源ピン、およびグランドピンが前記配線ブロックの給電用配線、およびグランド用配線と接続され、
     前記第2の回路ブロックには、各入力回路の前段に経路切り替え回路と、前記経路切り替え回路にて分岐された経路の先に抵抗切り替え器と、及び前記抵抗切り替え器の抵抗の両端の電圧を観測する電圧観測回路とを有することを特徴とする半導体装置。
  2.  前記第1の出力回路にはHigh固定の論理入力を、及び前記第2の出力回路にはLowからHighへの切り替えのステップ波の論理入力を与えて、前記第1の入力回路の前段の経路切り替え回路により分岐された電源変動波形を前記電圧観測回路で観測して前記電源ピンの接続状態を検査することを特徴とする請求項1に記載の半導体装置。
  3.  前記第1の出力回路にはLow固定の論理入力を、及び前記第2の出力回路にはHighからLowへの切り替えのステップ波の論理入力を与えて、前記第1の入力回路の前段の経路切り替え回路により分岐された電源変動波形を前記電圧観測回路で観測して前記グランドピンの接続状態を検査することを特徴とする請求項1に記載の半導体装置。
  4.  前記第1の出力回路に、Low→High→Lowと遷移させる論理入力で、およびHighの期間はDC抵抗を測定するのに十分な時間(μ秒のオーダー)で固定する論理入力を与えて、前記第1の入力回路の前段の経路切り替え回路により分岐された電源変動波形を前記電圧観測回路で観測して、前記第1の出力回路からの出力ピンと前記第1の入力回路への入力ピンとを接続する配線経路の接続状態を検査することを特徴とする請求項1に記載の半導体装置。
  5.  前記経路切り替え回路は、3個のパストランジスタを使用して、2bitの制御信号で1入力2出力の構成であることを特徴とする請求項1に記載の半導体装置。
  6.  前記電圧観測回路は、多段のレベルシフト回路と、それに繋がる多段のコンパレータと、多段のFF回路と、および多段のシフトレジスタから構成されていることを特徴とする請求項1に記載の半導体装置。
  7.  前記電圧観測回路は、レベルシフト回路と、コンパレータと、およびホールド回路により構成されていることを特徴とする請求項1に記載の半導体装置。
  8.  前記抵抗切り替え器には0.1Ω乃至10Ωの範囲の抵抗と1kΩ以上の抵抗を備え、
     前記抵抗切り替え器の抵抗を1kΩ以上の抵抗に切り替えることを特徴とする請求項2に記載の半導体装置。
  9.  前記抵抗切り替え器には0.1Ω乃至10Ωの範囲の抵抗と1kΩ以上の抵抗を備え、
     前記抵抗切り替え器の抵抗を0.1Ω乃至10Ωの範囲内で適切な値の抵抗に切り替えることを特徴とする請求項4に記載の半導体装置。
  10.  第1、および第2の出力回路を有する第1の半導体LSIと、
     第1、および第2の入力回路を有する第2の半導体LSIと、
     前記第1の出力回路からの出力ピンと前記第1の入力回路への入力ピンを配線で接続し、および前記第2の出力回路からの出力ピンと前記第2の入力回路への入力ピンを配線で接続する配線基板とを備え、
     前記各出力回路、および前記各入力回路への給電を担う前記第1、および第2の半導体LSIの電源ピン、およびグランドピンが前記配線基板の給電用配線、およびグランド用配線と接続され、
     前記第2の半導体LSIには、各入力回路の前段に経路切り替え回路と、前記経路切り替え回路にて分岐された経路の先に抵抗切り替え器と、及び前記抵抗切り替え器の抵抗の両端の電圧を観測する電圧観測回路とを有することを特徴とするマルチチップモジュール。
  11.  前記第1の出力回路にはHigh固定の論理入力を、及び前記第2の出力回路にはLowからHighへの切り替えのステップ波の論理入力を与えて、前記第1の入力回路の前段の経路切り替え回路により分岐された電源変動波形を前記電圧観測回路で観測して前記電源ピンの接続状態を検査することを特徴とする請求項10に記載のマルチチップモジュール。
  12.  前記第1の出力回路にはLow固定の論理入力を、及び前記第2の出力回路にはHighからLowへの切り替えのステップ波の論理入力を与えて、前記第1の入力回路の前段の経路切り替え回路により分岐された電源変動波形を前記電圧観測回路で観測して前記グランドピンの接続状態を検査することを特徴とする請求項10に記載のマルチチップモジュール。
  13.  前記第1の出力回路に、Low→High→Lowと遷移させる論理入力で、およびHighの期間はDC抵抗を測定するのに十分な時間(μ秒のオーダー)で固定する論理入力を与えて、前記第1の入力回路の前段の経路切り替え回路により分岐された電源変動波形を前記電圧観測回路で観測して、前記第1の出力回路からの出力ピンと前記第1の入力回路への入力ピンとを接続する配線経路の接続状態を検査することを特徴とする請求項10に記載のマルチチップモジュール。
  14.  前記第2の半導体LSIは、前記配線基板の上に搭載され、
     前記第1の半導体LSIは、前記第2の半導体LSIの上に搭載され、
     前記第1の出力回路からの出力ピンと前記第1の入力回路への入力ピンとの接続、および前記第2の出力回路からの出力ピンと前記第2の入力回路への入力ピンとの接続を、前記配線基板の配線に替えて、前記第2の半導体LSIの内部に形成されたシリコン管ビアTSVにより行い、
     前記第1の半導体LSIの電源ピン、およびグランドピンと、前記配線基板の配線との接続にも、前記第2の半導体LSIの内部に形成されたシリコン貫通ビアTSVを使用することを特徴とする請求項10に記載のマルチチップモジュール。
  15.  請求項1乃至9のいずれか1項に記載の半導体装置を有し、
     装置出荷時の正常なピン接続状態の電圧量をメモリ等に保存しておくことで、
     そのときの値との比較により異常時の状態を判断可能とすることを特徴とする半導体システム。
  16.  請求項1乃至9のいずれか1項に記載の半導体装置を有し、
     検査回路により異常を検出したときに、異常個所や状態をシステムに対してアラームを出す機構を有することを特徴とする半導体システム。
  17.  請求項1乃至9のいずれか1項に記載の半導体装置を有し、
     検査回路により異常を検出した際に、
     故障箇所を切り離すか冗長系に切り替えることを特徴とする半導体システム。
  18.  請求項10に記載のマルチチップモジュールを有し、
     検査プログラムの実行を前記第1の半導体LSIおよび前記第2の半導体LSIの動作アイドル時間を利用して行うことを特徴とする半導体システム。
  19.  請求項1乃至9のいずれか1項に記載の半導体装置を有し、
     検査プログラムの実行を行うための診断制御モードを一定の周期ごとに繰り返す
     ことを特徴とする半導体システム。
PCT/JP2015/062514 2015-04-24 2015-04-24 半導体装置およびマルチチップモジュール WO2016170678A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2016563870A JP6339232B2 (ja) 2015-04-24 2015-04-24 半導体装置およびマルチチップモジュール
US15/535,219 US9933475B2 (en) 2015-04-24 2015-04-24 Semiconductor device and multi-chip module
PCT/JP2015/062514 WO2016170678A1 (ja) 2015-04-24 2015-04-24 半導体装置およびマルチチップモジュール

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/062514 WO2016170678A1 (ja) 2015-04-24 2015-04-24 半導体装置およびマルチチップモジュール

Publications (1)

Publication Number Publication Date
WO2016170678A1 true WO2016170678A1 (ja) 2016-10-27

Family

ID=57143866

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/062514 WO2016170678A1 (ja) 2015-04-24 2015-04-24 半導体装置およびマルチチップモジュール

Country Status (3)

Country Link
US (1) US9933475B2 (ja)
JP (1) JP6339232B2 (ja)
WO (1) WO2016170678A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7122740B2 (ja) 2018-03-29 2022-08-22 株式会社新川 接続状態判定装置及び接続状態判定方法

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI628448B (zh) * 2017-03-07 2018-07-01 慧榮科技股份有限公司 電路測試方法
US10057976B1 (en) * 2017-08-31 2018-08-21 Xilinx, Inc. Power-ground co-reference transceiver structure to deliver ultra-low crosstalk
US10431563B1 (en) 2018-04-09 2019-10-01 International Business Machines Corporation Carrier and integrated memory
US10515929B2 (en) 2018-04-09 2019-12-24 International Business Machines Corporation Carrier and integrated memory
JP6897628B2 (ja) 2018-04-26 2021-07-07 株式会社デンソー 半導体装置
EP3790043A4 (en) * 2018-07-10 2021-07-14 Aisin Aw Co., Ltd. CIRCUIT MODULE AND POWER SUPPLY CHIP MODULE
KR102628847B1 (ko) * 2019-06-12 2024-01-25 삼성디스플레이 주식회사 디스플레이 장치
US11309246B2 (en) 2020-02-05 2022-04-19 Apple Inc. High density 3D interconnect configuration

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH063400A (ja) * 1992-06-19 1994-01-11 Fujitsu Ltd テスト回路
JP2006138844A (ja) * 2004-10-14 2006-06-01 Yokogawa Electric Corp Icテスタ
JP2007017229A (ja) * 2005-07-06 2007-01-25 Denso Corp マルチチップモジュール
JP2009210369A (ja) * 2008-03-04 2009-09-17 Yokogawa Electric Corp 半導体試験装置および半導体試験方法
JP2011080808A (ja) * 2009-10-05 2011-04-21 Renesas Electronics Corp 半導体集積回路および半導体集積回路のテスト方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7279921B1 (en) * 2005-06-08 2007-10-09 National Semiconductor Corporation Apparatus and method for testing power and ground pins on a semiconductor integrated circuit
JP2008122338A (ja) * 2006-11-15 2008-05-29 Univ Of Tokushima 電子回路の配線故障検査法とその検査容易化回路
JP4365433B2 (ja) * 2007-09-11 2009-11-18 Okiセミコンダクタ株式会社 半導体集積回路
JP2011257272A (ja) * 2010-06-09 2011-12-22 Sony Corp 半導体装置
US8614584B2 (en) * 2011-03-02 2013-12-24 Sandisk Technologies Inc. System and method for bonded configuration pad continuity check

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH063400A (ja) * 1992-06-19 1994-01-11 Fujitsu Ltd テスト回路
JP2006138844A (ja) * 2004-10-14 2006-06-01 Yokogawa Electric Corp Icテスタ
JP2007017229A (ja) * 2005-07-06 2007-01-25 Denso Corp マルチチップモジュール
JP2009210369A (ja) * 2008-03-04 2009-09-17 Yokogawa Electric Corp 半導体試験装置および半導体試験方法
JP2011080808A (ja) * 2009-10-05 2011-04-21 Renesas Electronics Corp 半導体集積回路および半導体集積回路のテスト方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7122740B2 (ja) 2018-03-29 2022-08-22 株式会社新川 接続状態判定装置及び接続状態判定方法

Also Published As

Publication number Publication date
US20170350933A1 (en) 2017-12-07
JP6339232B2 (ja) 2018-06-06
US9933475B2 (en) 2018-04-03
JPWO2016170678A1 (ja) 2017-04-27

Similar Documents

Publication Publication Date Title
JP6339232B2 (ja) 半導体装置およびマルチチップモジュール
US7466158B2 (en) Multilayer semiconductor device
US8773157B2 (en) Test circuit for testing through-silicon-vias in 3D integrated circuits
JP5165404B2 (ja) 半導体装置と半導体装置の製造方法及びテスト方法
WO2008004414A1 (en) Semiconductor device having defect detecting function
JP2011128159A (ja) 信号測定方法及び装置
JP2016510877A (ja) 犠牲バンプを有するパッケージ完全性モニタ
TWI420121B (zh) 經封裝積體電路以及用以測試裝置的方法及設備
EP2541415A1 (en) Fault mode circuits
KR101959894B1 (ko) 반도체 집적회로 및 그의 내부전압 측정방법
US8593166B2 (en) Semiconductor wafer, semiconductor circuit, substrate for testing and test system
JP2009270835A (ja) 半導体部品の検査方法及び装置
JP2008177265A (ja) 半導体装置及び半導体装置の製造方法
US10156606B2 (en) Multi-chassis test device and test signal transmission apparatus of the same
US20080197872A1 (en) Semiconductor chip, multi-chip semiconductor device, inspection method of the same, and electric appliance integrating the same
JP2005322768A (ja) 半導体集積回路
US9989572B1 (en) Method and apparatus for testing interposer dies prior to assembly
JP2012083262A (ja) 試験装置および試験方法
JP2010165755A (ja) 半導体装置
JP2007218779A (ja) 半導体テスター用テストボード
TWI449933B (zh) 晶片之測試系統
JP2014202634A (ja) 電子回路の双方向信号線の電気検査法
JP2010249689A (ja) 配線故障検査装置及び方法
JP5638738B2 (ja) 半導体装置
Ikiri et al. A DfT Technique for Electrical Interconnect Testing of Circuit Boards with 3D Stacked SRAM ICs

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2016563870

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15889917

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15535219

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15889917

Country of ref document: EP

Kind code of ref document: A1