WO2016169398A1 - 一种锂离子电池用原位交联聚合物粘结剂及其制备的电极 - Google Patents

一种锂离子电池用原位交联聚合物粘结剂及其制备的电极 Download PDF

Info

Publication number
WO2016169398A1
WO2016169398A1 PCT/CN2016/077636 CN2016077636W WO2016169398A1 WO 2016169398 A1 WO2016169398 A1 WO 2016169398A1 CN 2016077636 W CN2016077636 W CN 2016077636W WO 2016169398 A1 WO2016169398 A1 WO 2016169398A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
ion battery
polymer binder
lithium ion
binder
Prior art date
Application number
PCT/CN2016/077636
Other languages
English (en)
French (fr)
Inventor
杨娟玉
卢世刚
武兆辉
于冰
余章龙
史碧梦
Original Assignee
北京有色金属研究总院
国联汽车动力电池研究院有限责任公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京有色金属研究总院, 国联汽车动力电池研究院有限责任公司 filed Critical 北京有色金属研究总院
Publication of WO2016169398A1 publication Critical patent/WO2016169398A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • H01M4/622Binders being polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to an in-situ crosslinked polymer binder for a lithium ion battery and an electrode of a lithium ion battery prepared using the polymer binder.
  • Lithium-ion batteries have the advantages of high specific energy, high operating voltage and long cycle life, and have been rapidly developed since commercialization.
  • the demand for high-energy-density lithium-ion batteries is increasing.
  • electrode materials with higher specific capacities tend to be accompanied by larger volume changes during the process of inserting/de-lithium. During long-term cycling, this volume change can lead to deterioration of the electrode structure, resulting in faster decay of the electrode capacity and shortening the cycle life of the lithium ion battery with a high specific capacity.
  • high specific capacity silicon-based, tin-based negative and Li-S based electrodes are more pronounced.
  • the theoretical specific capacity of silicon in fully lithium intercalation is as high as 4200 mAh/g, which is the highest among the currently developed anode materials; the embedded/deintercalated lithium potential is moderate (slightly higher than graphite materials), and the safety performance is better;
  • the content of the earth's crust is second, and it has a wide range of sources. It is a kind of negative electrode material with great application prospects.
  • silicon undergoes a large volume change ( ⁇ 300%) during the process of intercalation/de-lithiation, causing rapid decay of the electrode capacity, which is the most important factor limiting the use of silicon materials. At present, a large number of studies have modified them from the perspective of materials, and their performance has been greatly improved by nano-materializing and compounding silicon materials.
  • PVDF polyvinylidene fluoride
  • PAA-PCD crosslinked polymer binder by using PAA as cross-linking and polycarbodiimide (PCD) as cross-linking agent (ECS Electrochemistry Letters, 2013, 2(2): A17 -A20), for the silicon/graphite anode, and adjusting the mass ratio of PAA to PCD to 9:1, an optimal effect is achieved.
  • Kim et al. used agarose (Agarose) and polyacrylic acid (PAA) as precursors and vacuum treatment at 150 ° C for 2 h. The -OH in Agarose dehydrates and reacts with -COOH in PAA to form an Agarose/PAA microporous. Polymer binder (RSC Advances, 2014, 4(6): 3014-3018).
  • the binder and the carbon-coated porous micron-silicon obtained by pyrolyzing the agarose precursor at low temperature prepare a porous electrode.
  • the Agarose/PAA microporous adhesive covers the surface of the porous silicon to increase the porosity of the electrode. It provides a channel for the transmission of Li + and effectively buffers the volume change of silicon during charge/discharge.
  • Song et al. obtained a colloidal polymer binder with ion permeability by in-situ crosslinking of water-soluble PAA and PVA precursors (Advanced Functional Materials, 2014, 24(37): 5904-5910).
  • the polymer binder of the crosslinked three-dimensional network structure currently used is mostly formed by the interaction of a hydroxyl group and a carboxyl group between two polymers.
  • Another object of the present invention is to provide an electrode using the in-situ crosslinked polymer binder and the prepared lithium ion battery.
  • the present invention adopts the following technical solutions:
  • the carboxyl group-containing polymer is carboxymethylcellulose, alginic acid, alginic acid hydrogel, ⁇ -cyclodextrin, and polyacrylic acid. At least one.
  • the carboxylate group-containing polymer is at least one of a carboxymethylcellulose salt, an alginate, an alginate hydrogel, a ⁇ -cyclodextrin salt, and a polyacrylate.
  • the small molecule polycarboxylic acid is at least one of a polyvalent fatty acid and a derivative thereof, a polyvalent aromatic carboxylic acid and a derivative thereof;
  • the small molecule polycarboxylate is a polybasic fatty acid salt and a derivative thereof, and a polyvalent aromatic carboxylic acid At least one of an acid salt and a derivative thereof, such as oxalic acid (salt), malic acid (salt), tartaric acid (salt), citric acid (salt), terephthalic acid (salt), and the like.
  • chitosan introduces a more polar amino group, and the amino group can interact with the carboxyl group at normal temperature, so that it can be pulped at room temperature.
  • In situ crosslinking occurs during the process.
  • the three-dimensional network structure formed by in-situ cross-linking in the pulping process can effectively prevent the nano-sized active material from re-agglomerating during the coating process, and is more favorable for the dispersion uniformity of the active material in the electrode.
  • the invention introduces a small molecule polycarboxylic acid and a small molecule polycarboxylate in the polymer binder, increases the number of crosslinking sites between the polymer molecular chains, and forms a denser crosslinked three-dimensional network structure.
  • the mechanical strength of the polymer binder is increased, which is more advantageous for maintaining the stability of the electrode structure.
  • in-situ crosslinking mainly occurs in an amino group in a chitosan molecule and a carboxyl group or a carboxylate group of a polymer having a carboxyl group or a carboxylate group. Between the groups, and between the carboxyl group of the small molecule polycarboxylic acid or small molecule polycarboxylate and the amino group and hydroxyl group of the chitosan molecule, and the hydroxyl group of the polymer containing the carboxyl group or the carboxylate group.
  • the former interaction is at room temperature
  • the latter interaction is carried out during the pulping process, which is carried out during the vacuum heat treatment of the pole piece, and the temperature of the vacuum heat treatment is 80-300 °C.
  • the ratio between the chitosan and the polymer having a carboxyl group and a carboxylate group is not limited, and the mass fraction of the small molecule polycarboxylic acid or the small molecule polycarboxylate additive is 0.01 to 30%.
  • Step 1 the active material and the conductive agent additive are mixed into the solution of the in-situ crosslinked polymer binder in a certain ratio;
  • Step 2 adding an appropriate amount of solvent to adjust the solid content of the slurry, and uniformly dispersing, the solid content of the slurry is between 8 and 60%;
  • Step 3 Apply the uniformly mixed slurry to the metal current collector, and after drying and rolling, heat-treating in a vacuum or a protective atmosphere for 0.5-24 hours.
  • the active material in the electrode is an inorganic non-metal, metal, alloy, oxide material having intercalation/de-lithium activity, and the mass fraction in the electrode is 5-95%.
  • the conductive additive is one or more of metal powder, metal fiber, conductive carbon black, graphite-based material, carbon nanowire/tube, and has a mass fraction of 1-90% in the electrode.
  • the mass fraction of the in-situ crosslinked polymeric binder in the electrode is 1-35%.
  • a lithium ion battery comprising a positive electrode, a negative electrode and an electrolyte solution, wherein the binder used in the positive electrode and the negative electrode of the lithium ion battery is the in-situ crosslinked polymer binder for the lithium ion battery described above.
  • the polymer binder provided by the invention can be cross-linked in situ during the normal temperature pulping process to form a three-dimensional network structure, which effectively prevents the nano-sized active material from re-agglomerating during the coating process, and is more beneficial to the active material. Dispersion uniformity in the electrode;
  • the invention introduces a small molecule polycarboxylic acid or a small molecule polycarboxylate additive, which increases the number of crosslinking sites between the molecular chains, forms a denser crosslinked three-dimensional network structure, and is more advantageous for maintaining the electrode structure. stability;
  • the raw materials selected in the invention are easily available, and the main component chitosan can be obtained from the shell of shrimp and crab, belonging to natural biological materials, non-toxic, non-polluting and widely sourced;
  • the solvent used in the electrode preparation process of the present invention is water, which is cheaper, non-toxic and non-polluting than the commonly used organic solvent N-methylpyrrolidone or N, N-dimethylformamide.
  • FIG. 1 is a cycle performance diagram of a nano-silicon electrode prepared by using a polymer binder of an in-situ crosslinked three-dimensional network structure formed of water-soluble chitosan/sodium alginate/oxalic acid in Example 1.
  • FIG. 1 is a cycle performance diagram of a nano-silicon electrode prepared by using a polymer binder of an in-situ crosslinked three-dimensional network structure formed of water-soluble chitosan/sodium alginate/oxalic acid in Example 1.
  • FIG. 2 is a cycle performance diagram of a silicon/carbon composite electrode prepared by using a polymer binder of an in-situ crosslinked three-dimensional network structure formed of water-soluble chitosan/sodium alginate/oxalic acid in Example 5.
  • FIG. 2 is a cycle performance diagram of a silicon/carbon composite electrode prepared by using a polymer binder of an in-situ crosslinked three-dimensional network structure formed of water-soluble chitosan/sodium alginate/oxalic acid in Example 5.
  • a medium viscosity, sodium glycolate (Alg) having a molecular weight of 800,000 to 120,000 g/mol, a glycosyl uronic acid (M) and a guluronic acid (G) monomer ratio of about 1.56 is formulated into a 2% aqueous solution.
  • a water-soluble chitosan (Chisotan) having a degree of carboxylation of 60% or more was formulated into a 5% aqueous solution.
  • spherical silicon particles having a particle size distribution of 50-150 nm and 0.5 g of conductive carbon black (Super-P) were added to an aqueous solution of 6.5 g of sodium alginate, and after mixing uniformly, 3 g of chitosan solution was added, and then 0.03 g was added.
  • the oxalic acid powder was added with 6.5 g of pure water, and the solid content of the slurry was adjusted to 11.6% and uniformly mixed.
  • the obtained slurry was uniformly applied to a copper current collector, and the supported silicon material was controlled to have a loading of 1.5 mg/cm 2 ; after air drying at room temperature, it was rolled by a roll mill to control a compaction density of 0.7 mg/cm 3 .
  • the mass fraction of the small molecule dicarboxylic acid oxalic acid (Oxalic) in the binder is 10%.
  • the same electrode ratio, and controlling the same loading and compaction density, respectively using polyvinylidene fluoride (PVDF), sodium alginate, water-soluble chitosan as a binder And a sodium alginate/chitosan composite binder was prepared as an electrode for comparison.
  • the solvent selected for preparing the electrode by using the polyvinylidene fluoride binder is N-methylpyrrolidone, and the pole piece is dried by blasting at 60 °C.
  • the electrode prepared above was vacuum dried at 105 ° C for 8 h to remove moisture in the electrode, followed by vacuum heat treatment at 150 ° C for 2 h.
  • the above electrode is used as the working electrode
  • the lithium metal plate is the counter electrode
  • the polypropylene microporous film (Celgard 2300) is the separator
  • the conventional electrolyte 1M LiPF 6 /EC: DEC:EMC (1:1:1) is injected in an argon atmosphere.
  • the glove box is assembled into a button battery.
  • the equipped battery was tested for constant current charge and discharge on the blue battery test system CT2001A tester.
  • the voltage range tested was 0.01-2V and the current density was 100 mA/g.
  • Nano-silicon electrodes using sodium alginate (Alg) and water-soluble chitosan (Chisotan) binders exhibit the first in-line/delithization of the most widely used polyvinylidene fluoride (PVDF) binders Specific capacity, first coulombic efficiency, and cycle performance are consistent with the results reported in the literature.
  • the nano-silicon electrode using Alg/Chisotan composite binder exhibits better electrochemical performance than Alg and Chisotan binder alone.
  • the first embedded/deintercalated lithium specific capacity is 2250/1688 mAh/g, and the capacity retention rate after 20 weeks. -50%.
  • the phonetic performance of the nano-silicon electrode has been further improved.
  • the first embedded/de-lithium specific capacity has been increased to 2345/1905 mAh/g, and the capacity retention rate has increased after 20 weeks. It is 66%.
  • Polyacrylic acid having a molecular weight of 100,000 g/mol is formulated into a 5% aqueous solution; and water-soluble chitosan having a degree of carboxylation of 60% or more is formulated into a 5% aqueous solution.
  • 1.2 g of spherical silicon particles having a particle size distribution of 50-150 nm and 0.5 g of conductive carbon black (Super-P) were added to a mixed solution of 3 g of water-soluble chitosan and 2.4 g of polyacrylic acid, and then 0.0328 g of lemon monohydrate was added. Acid, and adding 10 g of pure water, the solid content of the slurry was adjusted to 11.6% and uniformly mixed.
  • the obtained slurry was uniformly applied to a copper current collector, and the supported silicon material was controlled to have a loading of 1.5 mg/cm 2 ; after air drying at room temperature, it was rolled by a roll mill to control a compaction density of 0.7 mg/cm 3 .
  • the small molecule citric acid (Citric acid) has a mass fraction of 10% in the binder.
  • the same electrode ratio, and controlling the same loading and compaction density, respectively using polyvinylidene fluoride, water-soluble chitosan, polyacrylic acid as a binder and water-soluble shell The polysaccharide/polyacrylic acid composite binder was prepared as an electrode for comparison.
  • the solvent selected for preparing the electrode by using the polyvinylidene fluoride binder is N-methylpyrrolidone, and the pole piece is dried by blasting at 60 °C.
  • the electrode prepared above was vacuum dried at 105 ° C for 8 h to remove moisture in the electrode, followed by vacuum heat treatment at 150 ° C for 2 h.
  • M glycosyl uronic acid
  • G guluronic acid
  • the water-soluble chitosan having a degree of carboxylation of 60% or more is formulated into a 5% aqueous solution.
  • spherical silicon particles having a particle size distribution of 50-150 nm and 0.5 g of conductive carbon black (Super-P) were added to a mixed solution of 7.0 g of sodium alginate hydrogel and 3 g of chitosan, and 0.01 g of a pair was added.
  • the phthalic acid powder was added with 5.5 g of pure water, and the solid content of the slurry was adjusted to 11.6% and uniformly mixed.
  • the obtained slurry was uniformly applied to a copper current collector, and the supported silicon material was controlled to have a loading of 1.5 mg/cm 2 ; after air drying at room temperature, it was rolled by a roll mill to control a compaction density of 0.7 mg/cm 3 .
  • the mass fraction of terephthalic acid (PTA) in the binder was 3.33%.
  • a water-soluble chitosan/alginate hydrogel composite binder was prepared as an electrode for comparison.
  • the solvent selected for preparing the electrode by using the polyvinylidene fluoride binder is N-methylpyrrolidone, and the pole piece is dried by blasting at 60 °C.
  • the electrode prepared above was vacuum dried at 105 ° C for 8 h to remove moisture in the electrode, followed by vacuum heat treatment at 150 ° C for 2 h.
  • a medium viscosity, sodium glycolate having a molecular weight of 800,000 to 1,200,000 g/mol, a glycosyl uronic acid (M) and a guluronic acid (G) monomer ratio of about 1.56 is formulated into a 2% aqueous solution; 100000 g/mol of polyacrylic acid was formulated into a 5% aqueous solution; and water-soluble chitosan having a degree of carboxylation of 60% or more was formulated into a 5% aqueous solution.
  • spherical silicon particles having a particle size distribution of 50-150 nm and 0.5 g of conductive carbon black (Super-P) were added to 4.5 g of aqueous sodium alginate solution, 2 g of polyacrylic acid solution and 2 g of water-soluble chitosan solution, and then added. 0.01 g of malic acid, and adding 7 g of pure water, the solid content of the slurry was adjusted to 11.6% and uniformly mixed.
  • the obtained slurry was uniformly applied to a copper current collector, and the supported silicon material was controlled to have a loading of 1.5 mg/cm 2 ; after air drying at room temperature, it was rolled by a roll mill to control a compaction density of 0.7 mg/cm 3 .
  • the same electrode ratio, and controlling the same loading and compaction density, respectively using polyvinylidene fluoride, sodium alginate, water-soluble chitosan, polyacrylic acid as a binder A water-soluble chitosan/polyacrylic acid/alginate composite binder was prepared as an electrode for comparison.
  • the solvent selected for preparing the electrode by using the polyvinylidene fluoride binder is N-methylpyrrolidone, and the pole piece is dried by blasting at 60 °C.
  • the electrode prepared above was vacuum dried at 105 ° C for 8 h to remove moisture in the electrode, followed by vacuum heat treatment at 150 ° C for 2 h.
  • the above electrode is used as the working electrode
  • the lithium metal plate is the counter electrode
  • the polypropylene microporous film (Celgard 2300) is the separator
  • the conventional electrolyte 1M LiPF 6 /EC: DEC:EMC (1:1:1) is injected in an argon atmosphere.
  • the glove box is assembled into a button battery.
  • the equipped battery was tested for constant current charge and discharge on the blue battery test system CT2001A tester.
  • the test voltage range was 0.01-2V, and the current density was 100 mA/g.
  • the test results are shown in Table 1.
  • a medium viscosity, sodium glycolate having a molecular weight of 800,000 to 12,000 g/mol, a glycosyl uronic acid (M) and a guluronic acid (G) monomer ratio of about 1.56 is formulated into a 2% aqueous solution;
  • the water-soluble chitosan having a degree of hydration of 60% or more is formulated into a 5% aqueous solution.
  • the same electrode ratio, and controlling the same loading and compaction density, respectively using polyvinylidene fluoride, sodium alginate, water-soluble chitosan as a binder and water-soluble A chitosan/alginate composite binder was prepared as an electrode for comparison.
  • the solvent selected for preparing the electrode by using the polyvinylidene fluoride binder is N-methylpyrrolidone, and the pole piece is dried by blasting at 60 °C.
  • the electrode prepared above was vacuum dried at 105 ° C for 8 h to remove moisture in the electrode, followed by vacuum heat treatment at 150 ° C for 2 h.
  • the above electrode is used as the working electrode
  • the lithium metal plate is the counter electrode
  • the polypropylene microporous film (Celgard 2300) is the separator
  • the conventional electrolyte 1M LiPF 6 /EC: DEC:EMC (1:1:1) is injected in an argon atmosphere.
  • the glove box is assembled into a button battery.
  • the equipped battery was tested for constant current charge and discharge on the blue battery test system CT2001A tester.
  • the voltage range tested was 0.005-2V and the current density was 40 mA/g.
  • the cycle performance curves of Si/C composite electrodes using different binders are shown in Figure 2.
  • the first intercalation/deintercalation ratios of Si/C composite electrodes using PVDF, Alg/Chisotan and Alg/Chisotan/Oxalic binders were 922/716, 767/980 and 744/940 mAh/g, respectively, after 50 cycles
  • the capacity retention rates were 37%, 60%, and 81%, respectively. It can be seen that the binder used in the present invention has a significant effect on the Si/C composite electrode.
  • Polyacrylic acid having a molecular weight of 100,000 g/mol is formulated into a 5% aqueous solution; and water-soluble chitosan having a degree of carboxylation of 60% or more is formulated into a 5% aqueous solution.
  • a 5% aqueous solution Take 2.4g of graphite-supported silicon nanoparticle structure of silicon-carbon composite material, wherein the size of the graphite sheet is 2-5um, the size of the silicon nanoparticle is 20-100nm; and 0.3g of conductive carbon black (Super-P) is added.
  • the solid density was prepared by using polyvinylidene fluoride, polyacrylic acid, water-soluble chitosan alone as a binder and a water-soluble chitosan/polyacrylic acid composite binder as electrodes for comparison.
  • the solvent selected for preparing the electrode by using the polyvinylidene fluoride binder is N-methylpyrrolidone, and the pole piece is dried by blasting at 60 °C.
  • the electrode prepared above was vacuum dried at 105 ° C for 8 h to remove moisture in the electrode, followed by vacuum heat treatment at 150 ° C for 2 h.
  • the above electrode is used as the working electrode
  • the lithium metal plate is the counter electrode
  • the polypropylene microporous film (Celgard 2300) is the separator
  • the conventional electrolyte 1M LiPF 6 /EC: DEC:EMC (1:1:1) is injected in an argon atmosphere.
  • the glove box is assembled into a button battery.
  • the equipped battery was tested for constant current charge and discharge on the blue battery test system CT2001A tester.
  • the test voltage range was 0.005-2V, and the current density was 40 mA/g.
  • the test results are shown in Table 2.
  • a medium viscosity, sodium glycolate having a molecular weight of 800,000 to 1,200,000 g/mol, a glycosyl uronic acid (M) and a guluronic acid (G) monomer ratio of about 1.56 is formulated into a 2% aqueous solution; 100000 g/mol of polyacrylic acid was formulated into a 5% aqueous solution; and water-soluble chitosan having a degree of carboxylation of 60% or more was formulated into a 5% aqueous solution.
  • the obtained slurry was uniformly applied to a copper current collector, and the loading amount of the active material was controlled to be 4 mg/cm 2 ; after air drying at room temperature, it was rolled by a roll mill to control a compaction density of 0.97 mg/cm 3 .
  • the mass fraction of small molecule tartaric acid (TA) in the binder was 3.33%.
  • the same electrode ratio, and controlling the same loading and compaction density, respectively using polyvinylidene fluoride, polyacrylic acid, sodium alginate, water-soluble chitosan as a binder A water-soluble chitosan/polyacrylic acid/alginate composite binder was prepared as an electrode for comparison.
  • the solvent selected for preparing the electrode by using the polyvinylidene fluoride binder is N-methylpyrrolidone, and the pole piece is dried by blasting at 60 °C.
  • the electrode prepared above was vacuum dried at 105 ° C for 8 h to remove moisture from the electrode, followed by 150 ° C. Vacuum heat treatment for 2 h.
  • the above electrode is used as the working electrode
  • the lithium metal plate is the counter electrode
  • the polypropylene microporous film (Celgard 2300) is the separator
  • the conventional electrolyte 1M LiPF 6 /EC: DEC:EMC (1:1:1) is injected in an argon atmosphere.
  • the glove box is assembled into a button battery.
  • the equipped battery was tested for constant current charge and discharge on the blue battery test system CT2001A tester.
  • the test voltage range was 0.005-2V, and the current density was 40 mA/g.
  • the test results are shown in Table 2.
  • the obtained slurry was uniformly applied to a copper current collector, and the loading amount of the active material was controlled to be 4 mg/cm 2 ; after air drying at room temperature, it was rolled by a roll mill to control a compaction density of 0.97 mg/cm 3 .
  • a water-soluble chitosan/alginate hydrogel composite binder was prepared as an electrode for comparison.
  • the solvent selected for preparing the electrode by using the polyvinylidene fluoride binder is N-methylpyrrolidone, and the pole piece is dried by blasting at 60 °C.
  • the above electrode is used as the working electrode
  • the lithium metal plate is the counter electrode
  • the polypropylene microporous film (Celgard 2300) is the separator
  • the conventional electrolyte 1M LiPF 6 /EC: DEC:EMC (1:1:1) is injected in an argon atmosphere.
  • the glove box is assembled into a button battery.
  • the equipped battery was tested for constant current charge and discharge on the blue battery test system CT2001A tester.
  • the test voltage range was 0.005-2V, and the current density was 40 mA/g.
  • the test results are shown in Table 2.
  • a medium viscosity, sodium glycolate having a molecular weight of 800,000 to 12,000 g/mol, a glycosyl uronic acid (M) and a guluronic acid (G) monomer ratio of about 1.56 is formulated into a 2% aqueous solution;
  • the water-soluble chitosan having a degree of hydration of 60% or more is formulated into a 5% aqueous solution.
  • the electrode prepared above was vacuum dried at 105 ° C for 8 h to remove moisture in the electrode, followed by vacuum heat treatment at 150 ° C for 2 h.
  • the above electrode is used as the working electrode
  • the lithium metal plate is the counter electrode
  • the polypropylene microporous film (Celgard 2300) is the separator
  • the conventional electrolyte 1M LiPF 6 /EC: DEC:EMC (1:1:1) is injected in an argon atmosphere.
  • the glove box is assembled into a button battery.
  • the equipped battery was tested for constant current charge and discharge on the blue battery test system CT2001A tester.
  • the tested voltage range was 0.01-2V and the current density was 50 mA/g.
  • the test results are shown in Table 3.
  • a medium viscosity, sodium glycolate having a molecular weight of 800,000 to 12,000 g/mol, a glycosyl uronic acid (M) and a guluronic acid (G) monomer ratio of about 1.56 is formulated into a 2% aqueous solution;
  • the water-soluble chitosan having a degree of hydration of 60% or more is formulated into a 5% aqueous solution.
  • the obtained slurry was uniformly coated on an aluminum current collector, and the active sulfur/microporous carbon material was controlled to be loaded at 1.5 mg/cm 2 ; after air drying at room temperature, it was rolled with a roll mill to control the compaction density of 1.2 mg. /cm 3 .
  • a sodium/chitosan composite binder was prepared as an electrode for comparison.
  • the solvent selected for preparing the electrode by using the polyvinylidene fluoride binder is N-methylpyrrolidone, and the pole piece is dried by blasting at 60 °C.
  • the electrode prepared above was vacuum dried at 105 ° C for 8 h to remove moisture in the electrode, followed by vacuum heat treatment at 150 ° C for 2 h.
  • the above electrode is used as the working electrode, the lithium metal plate is the counter electrode, the polypropylene microporous film (Celgard 2300) is the separator, and the conventional electrolyte 1M LiPF 6 /EC: DEC:EMC (1:1:1) is injected in an argon atmosphere.
  • the glove box is assembled into a button battery.
  • the equipped battery was tested for constant current charge and discharge on the blue battery test system CT2001A tester.
  • the test voltage range is 1.6-2.8V, and the current density is 100mA/g.
  • the test results are shown in Table 3.
  • a medium viscosity, sodium glycolate having a molecular weight of 800,000 to 12,000 g/mol, a glycosyl uronic acid (M) and a guluronic acid (G) monomer ratio of about 1.56 is formulated into a 2% aqueous solution;
  • the water-soluble chitosan having a degree of hydration of 60% or more is formulated into a 5% aqueous solution.
  • a sodium/chitosan composite binder was prepared as an electrode for comparison.
  • the solvent selected for preparing the electrode by using the polyvinylidene fluoride binder is N-methylpyrrolidone, and the pole piece is dried by blasting at 60 °C.
  • the electrode prepared above was vacuum dried at 105 ° C for 8 h to remove moisture in the electrode, followed by vacuum heat treatment at 150 ° C for 2 h.
  • the above electrode is used as the working electrode
  • the lithium metal plate is the counter electrode
  • the polypropylene microporous film (Celgard 2300) is the separator
  • the conventional electrolyte 1M LiPF 6 /EC: DEC:EMC (1:1:1) is injected in an argon atmosphere.
  • the glove box is assembled into a button battery.
  • the equipped battery was tested for constant current charge and discharge on the blue battery test system CT2001A tester.
  • the test voltage range was 2-4.8 V and the current density was 20 mA/g.
  • the test results are shown in Table 3.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

本发明公开了一种锂离子电池用原位交联聚合物粘结剂及其制备的电极。该聚合物粘结剂具有三维网状结构,由壳聚糖、含有羧基基团或羧酸盐基团的聚合物中的至少一种、及小分子多元羧酸和小分子多元羧酸盐中的至少一种原位聚合而成。壳聚糖分子链上的氨基基团与另一种聚合物的羧基基团在室温下通过静电作用原位形成的三维网状结构有利于活性材料在电极中的分散均匀性;该聚合物粘结剂在使用时,通过对极片进一步热处理,增强了聚合物链之间的交联作用,提高了循环过程中电极结构的稳定性。使用该原位交联聚合物粘结剂制备电极能够提升锂离子电池电极的电化学性能,尤其是对高比容量的正极富锂材料,负极硅基、锡基材料和Li-S基材料的提升效果更加明显。

Description

一种锂离子电池用原位交联聚合物粘结剂及其制备的电极 技术领域
本发明涉及一种锂离子电池用原位交联聚合物粘结剂及用该聚合物粘结剂制备的锂离子电池的电极。
背景技术
锂离子电池具有比能量高、工作电压高、循环寿命长等优势,自商业化以来得到了迅速的发展。随着锂离子电池在混合动力电动汽车和电动汽车领域的应用,对高能量密度的锂离子电池的需求不断增加。然而,比容量较高的电极材料在嵌/脱锂的过程中,往往会伴随着较大的体积变化。在长期循环过程中,这种体积变化会导致电极结构的劣化,造成电极的容量衰减加快,缩短了高比容量的锂离子电池的循环寿命。尤其是高比容量的硅基、锡基负极和Li-S基电极,表现的更加明显。
对于锂离子电池的负极材料而言,目前商业化应用最广的石墨类负极材料,理论比容量只有372mAh/g,已不能满足高能量密度的锂离子电池的发展需求。
硅在完全嵌锂状态下的理论比容量高达4200mAh/g,是目前开发的负极材料中最高的;嵌/脱锂电位适中(略高于石墨类材料),安全性能较好;且硅元素在地壳中的含量位居第二,来源广泛,是非常有应用前景的一种负极材料。然而,硅在嵌/脱锂的过程中会发生巨大的体积变化(~300%),造成电极的容量迅速衰减,是限制硅材料使用的最主要的因素。目前大量的研究都从材料的角度对其进行改性,通过将硅材料纳米化和复合化,使其性能得到了很大的改观。但是由于硅材料固有的体积效应,长期循环仍会导致粘结剂失效和电极结构破坏。目前商业化应用最广的聚偏氟乙烯(PVDF)粘结剂,由于其自身性质的限制,只能在体积变化小于10%的电极中才能发挥稳定的作用,用于硅基负极时容量衰减的非常迅速。聚合物粘结剂是维持电极结构的主要成分,对体积变化较大的硅基负极材料而言,对粘结剂的结构和性能也有了新的需求。
随着含有极性基团的水溶性聚合物羧甲基纤维素钠(CMC)、海藻酸钠(Alg) 和聚丙烯酸(PAA)等在硅基负极中的应用,使硅基负极的电化学性能得到了很大的改善。因为这些聚合物中的羧基(-COOH)极性基团可以与活性硅颗粒表面以及铜集流体形成较强的结合,更有利于维持硅基负极的电极结构的稳定性。然而,这些聚合物都是直链状结构的高分子,长期循环会引起活性材料颗粒与聚合物粘结剂发生不可逆滑移,导致不可逆容量的增加。
Koo等将聚丙烯酸(PAA)和羧甲基纤维素钠(CMC)复合使用(Angewandte Chemie International Edition,2012,51(35):8762-8767),制备了硅基电极。并在150℃下真空热处理2h,使PAA分子链中的-COOH基团与CMC分子链上的-OH发生脱水缩合反应,形成一种交联网状结构。这种交联后的聚合物更有利于维持电极结构的稳定性,所以表现出比单独使用PAA和CMC粘结剂更优良的电化学性能。Han等以PAA作为交联体,聚碳化二亚胺作(PCD)为交联剂,合成了PAA-PCD交联结构的聚合物粘结剂(ECS Electrochemistry Letters,2013,2(2):A17-A20),用于硅/石墨负极,并调整PAA与PCD的质量比为9:1时,达到了一种最优的效果。Kim等用琼脂糖(Agarose)和聚丙烯酸(PAA)为前驱体,在150℃下真空处理2h,Agarose中的-OH与PAA中的-COOH发生脱水缩合反应,形成一种Agarose/PAA微孔聚合物粘结剂(RSC Advances,2014,4(6):3014-3018)。这种粘结剂与低温下热解琼脂糖前驱体得到的碳包覆多孔微米硅制备了多孔电极,这种Agarose/PAA微孔粘结剂覆盖在多孔硅的表面,提高了电极的孔隙率,为Li+的传输提供了通道,同时有效的缓冲了硅在充/放电过程中的体积变化。Song等通过原位交联水溶性的PAA和PVA前驱体,得到了一种具有离子渗透能力的胶体聚合物粘结剂(Advanced Functional Materials,2014,24(37):5904-5910)。PAA-PVA胶体聚合物粘结剂的-COOH和-OH官能团对硅纳米颗粒和铜集流体表面有较强的粘附力,可变性的聚合物网络结构可以有效地缓冲硅在脱/嵌锂过程中的体积变化和阻止活性硅颗粒发生不可逆滑移。
所以,对于在嵌/脱锂过程中体积变化较大的电极,聚合物粘结剂应具备:含有极性基团,确保与活性材料和集流体之间有足够大的结合力和足够多的结合点;最好具备交联的三维网状结构,有效的覆盖在活性材料表面,防止长期循环造成的活性材料颗粒发生不可逆的滑移,进一步的提高电极结构的稳定性。
目前所使用的交联三维网状结构的聚合物粘结剂,多为两种聚合物之间的羟基和羧基的相互作用形成的。
发明内容
本发明的目的在于提供一种锂离子电池用原位交联聚合物粘结剂。
本发明的另一目的在于提供一种用所述原位交联聚合物粘结剂及制备的锂离子电池的电极。
为实现上述目的,本发明采用以下技术方案:
一种锂离子电池用原位交联聚合物粘结剂,该聚合物粘结剂具有三维网状结构,由壳聚糖、含有羧基基团或羧酸盐基团的聚合物中的至少一种、小分子多元羧酸和小分子多元羧酸盐中的至少一种原位聚合而成。
在本发明的原位交联聚合物粘结剂中,所述含有羧基基团的聚合物为羧甲基纤维素、海藻酸、海藻酸水凝胶、β-环糊精和聚丙烯酸中的至少一种。所述含有羧酸盐基团的聚合物为羧甲基纤维素盐、海藻酸盐、海藻酸盐水凝胶、β-环糊精盐和聚丙烯酸盐中的至少一种。所述小分子多元羧酸为多元脂肪酸及其衍生物、多元芳香羧酸及其衍生物中的至少一种;所述小分子多元羧酸盐为多元脂肪酸盐及其衍生物和多元芳香羧酸盐及其衍生物中的至少一种,如草酸(盐)、苹果酸(盐)、酒石酸(盐)、柠檬酸(盐)、对苯二甲酸(盐)等。
在本发明的原位交联聚合物粘结剂中,壳聚糖引入了极性更强的氨基基团,氨基基团可以在常温下与羧基基团发生相互作用,因此可以在常温制浆的过程中发生原位交联。这种制浆过程中原位交联形成的三维网状结构,可有效防止纳米尺寸的活性材料在涂覆的过程中再次发生团聚,更有利于活性材料在电极中的分散均匀性。本发明在聚合物粘结剂中引入了小分子的多元羧酸、小分子多元羧酸盐,增加了聚合物分子链之间的交联位点数,形成更加密集的交联三维网状结构,提高了聚合物粘结剂机械强度,更有利于维持电极结构的稳定性。
在本发明的原位交联聚合物粘结剂中,原位交联主要发生在壳聚糖分子中的氨基和含有羧基基团、羧酸盐基团的聚合物的羧基或羧酸盐基团之间,以及小分子多元羧酸或小分子多元羧酸盐的羧基与壳聚糖分子的氨基和羟基、含有羧基基团或羧酸盐基团的聚合物的羟基之间。前一种相互作用是在室温环境下 制浆的过程中完成的,后一种相互作用是在对极片进行真空热处理的过程中完成的,真空热处理的温度为80-300℃。壳聚糖与含有羧基基团、羧酸盐基团的聚合物之间的比例没有限制,小分子多元羧酸或小分子多元羧酸盐添加剂的质量分数在0.01-30%。
一种锂离子电池电极,该锂离子电池电极所用粘结剂为以上所述的锂离子电池用原位交联聚合物粘结剂。该电极的具体制备方法如下:
步骤1、将活性材料和导电剂添加剂按一定比例混入到原位交联聚合物粘结剂的溶液中;
步骤2、加入适量的溶剂调节浆料的固含量后分散均匀,浆料的固含量在8-60%之间;
步骤3、将混合均匀的浆料涂覆到金属集流体上,经干燥、辊压处理后,在真空或保护气氛下热处理0.5-24h。
所述电极中的活性材料为具有嵌/脱锂活性的无机非金属、金属、合金、氧化物类材料,在电极中的质量分数为5-95%。
所述导电添加剂为金属粉、金属纤维、导电炭黑、石墨类材料、碳纳米线/管中的一种或几种,在电极中的质量分数为1-90%。
所述电极中原位交联聚合物粘结剂的质量分数为1-35%。
一种锂离子电池,包括正极、负极和电解质溶液,所述锂离子电池中正极、负极电极中所用粘结剂为以上所述的锂离子电池用原位交联聚合物粘结剂。
本发明的优点在于:
1、本发明提供的聚合物粘结剂可以在常温制浆过程中原位交联形成三维网状结构,有效防止纳米尺寸的活性材料在涂覆的过程中再次发生团聚,更有利于活性材料在电极中的分散均匀性;
2、本发明引入了小分子多元羧酸或小分子多元羧酸盐添加剂,增加了分子链之间的交联位点数,形成更加密集的交联三维网状结构,更有利于维持电极结构的稳定性;
3、本发明选用的原料易得,主要成分壳聚糖可以从虾蟹的壳中获得,属于天然的生物材料,无毒无污染且来源广泛;
4、本发明的电极制备过程采用的溶剂为水,与常用的有机溶剂N-甲基吡咯烷酮或N、N-二甲基甲酰胺等相比,价格低廉且无毒无污染。
附图说明
图1为实施例1中用水溶性壳聚糖/海藻酸钠/草酸形成的原位交联三维网状结构的聚合物粘结剂制备的纳米硅电极的循环性能图。
图2为实施例5中用水溶性壳聚糖/海藻酸钠/草酸形成的原位交联三维网状结构的聚合物粘结剂制备的硅/碳复合电极的循环性能图。
具体实施方式
为了便于本领域人员的了解,下面结合具体的实施例对本发明作进一步的详细描述,但是本发明的保护范围不限于下列实施例。
实施例1
将中等黏度的、分子量为800000-1200000g/mol的、苷露糖醛酸(M)和古罗糖醛酸(G)单体比约为1.56的海藻酸钠(Alg)配制成2%的水溶液;将羧化程度大于等于60%的水溶性壳聚糖(Chisotan)配制成5%的水溶液。取1.2g颗粒尺寸分布在50-150nm的球形硅颗粒和0.5g导电碳黑(Super-P)加入到6.5g海藻酸钠的水溶液中混合均匀后,加入3g壳聚糖溶液,再加入0.03g草酸粉末,并加入6.5g的纯水,将浆料的固含量调整到11.6%混合均匀。将所得的浆料均匀涂覆到铜集流体上,控制活性硅材料的负载量在1.5mg/cm2;在室温下风干后,用轧辊机轧实,控制压实密度0.7mg/cm3。所得的电极比例为:活性硅材料:导电添加剂:聚合物粘结剂=60:25:15。其中小分子二元羧酸草酸(Oxalic)在粘结剂中的质量分数为10%。
用相同的活性材料和导电剂,相同的电极配比,并控制相同的负载量和压实密度,分别用聚偏氟乙烯(PVDF)、海藻酸钠、水溶性壳聚糖单独作为粘结剂以及海藻酸钠/壳聚糖复合粘结剂制备成电极作为对比。其中聚偏氟乙烯粘结剂制备电极时选用的溶剂为N-甲基吡咯烷酮,并且极片采用60℃鼓风干燥。
将上述制备的电极在105℃真空干燥8h,除去电极中的水分,随后在150℃下真空热处理2h。
以上述电极为工作电极,金属锂片为对电极,聚丙烯微孔膜(Celgard2300)为隔膜,注入常规电解液1M LiPF6/EC:DEC:EMC(1:1:1),在氩气气氛的手套箱内组装成扣式电池。将装备好的电池在蓝电电池测试系统CT2001A测试仪测试上进行恒流充放电测试。测试的电压范围为0.01-2V,电流密度为100mA/g。
使用不同粘结剂纳米硅电极的循环性能对比图如图1所示。使用海藻酸钠(Alg)和水溶性壳聚糖(Chisotan)粘结剂的纳米硅电极表现出优于目前商业化应用最广的聚偏氟乙烯(PVDF)粘结剂的首次嵌/脱锂比容量、首次库仑效率和循环性能,这与文献报道的结果一致。使用Alg/Chisotan复合粘结剂的纳米硅电极表现出优于单独使用Alg和Chisotan粘结剂的电化学性能,首次嵌/脱锂比容量为2250/1688mAh/g,20周后的容量保持率-50%。在Alg/Chisotan复合粘结剂中添加Oxalic后,纳米硅电极的电话学性能得到了进一步的提升,首次嵌/脱锂比容量提升到了2345/1905mAh/g,20周后的容量保持率也提升到了66%。
实施例2
分子量为100000g/mol的聚丙烯酸配制成5%的水溶液;将羧化程度大于等于60%的水溶性壳聚糖配制成5%的水溶液。取1.2g颗粒尺寸分布在50-150nm的球形硅颗粒和0.5g导电碳黑(Super-P)加入到3g水溶性壳聚糖和2.4g聚丙烯酸的混合溶液中,再加入0.0328g一水合柠檬酸,并加入10g的纯水,将浆料的固含量调整到11.6%混合均匀。将所得的浆料均匀涂覆到铜集流体上,控制活性硅材料的负载量在1.5mg/cm2;在室温下风干后,用轧辊机轧实,控制压实密度0.7mg/cm3。所得的电极比例为:活性硅材料:导电添加剂:聚合物粘结剂=60:25:15。其中小分子柠檬酸(Citric acid)在粘结剂中的质量分数为10%。
用相同的活性材料和导电剂,相同的电极配比,并控制相同的负载量和压实密度,分别用聚偏氟乙烯、水溶性壳聚糖、聚丙烯酸单独作为粘结剂以及水溶性壳聚糖/聚丙烯酸复合粘结剂制备成电极作为对比。其中聚偏氟乙烯粘结剂制备电极时选用的溶剂为N-甲基吡咯烷酮,并且极片采用60℃鼓风干燥。
将上述制备的电极在105℃真空干燥8h,除去电极中的水分,随后在150℃下真空热处理2h。
以上述电极为工作电极,金属锂片为对电极,聚丙烯微孔膜(Celgard2300) 为隔膜,注入常规电解液1M LiPF6/EC:DEC:EMC(1:1:1),在氩气气氛的手套箱内组装成扣式电池。将装备好的电池在蓝电电池测试系统CT2001A测试仪测试上进行恒流充放电测试。测试的电压范围为0.01-2V,电流密度为100mA/g,测试结果如表1所示。
实施例3
取中等黏度的、分子量为800000-1200000g/mol的、苷露糖醛酸(M)和古罗糖醛酸(G)单体比约为1.56的海藻酸钠粉末2g,加入到98g纯水中配制成2%的水溶液,加入0.02g无水CaCl2配制成海藻酸钠水凝胶(Alg hydrogel)。将羧化程度大于等于60%的水溶性壳聚糖配制成5%的水溶液。取1.2g颗粒尺寸分布在50-150nm的球形硅颗粒和0.5g导电碳黑(Super-P)加入到7.0g海藻酸钠水凝胶和3g壳聚糖的混合溶液中,再加入0.01g对苯二甲酸粉末,并加入5.5g的纯水,将浆料的固含量调整到11.6%混合均匀。将所得的浆料均匀涂覆到铜集流体上,控制活性硅材料的负载量在1.5mg/cm2;在室温下风干后,用轧辊机轧实,控制压实密度0.7mg/cm3。所得的电极比例为:活性硅材料:导电添加剂:聚合物粘结剂=60:25:15。其中对苯二甲酸(PTA)在粘结剂中的质量分数为3.33%。
用相同的活性材料和导电剂,相同的电极配比,并控制相同的负载量和压实密度,分别用聚偏氟乙烯、海藻酸钠水凝胶、水溶性壳聚糖单独作为粘结剂以及水溶性壳聚糖/海藻酸钠水凝胶复合粘结剂制备成电极作为对比。其中聚偏氟乙烯粘结剂制备电极时选用的溶剂为N-甲基吡咯烷酮,并且极片采用60℃鼓风干燥。
将上述制备的电极在105℃真空干燥8h,除去电极中的水分,随后在150℃下真空热处理2h。
以上述电极为工作电极,金属锂片为对电极,聚丙烯微孔膜(Celgard2300)为隔膜,注入常规电解液1M LiPF6/EC:DEC:EMC(1:1:1),在氩气气氛的手套箱内组装成扣式电池。将装备好的电池在蓝电电池测试系统CT2001A测试仪测试上进行恒流充放电测试。测试的电压范围为0.01-2V,电流密度为100mA/g,测试结果如表1所示。
实施例4
将中等黏度的、分子量为800000-1200000g/mol的、苷露糖醛酸(M)和古罗糖醛酸(G)单体比约为1.56的海藻酸钠配制成2%的水溶液;分子量为100000g/mol的聚丙烯酸配制成5%的水溶液;将羧化程度大于等于60%的水溶性壳聚糖配制成5%的水溶液。取1.2g颗粒尺寸分布在50-150nm的球形硅颗粒和0.5g导电碳黑(Super-P)加入到4.5g海藻酸钠水溶液、2g聚丙烯酸溶液和2g水溶性壳聚糖溶液中,再加入0.01g对苹果酸,并加入7g的纯水,将浆料的固含量调整到11.6%混合均匀。将所得的浆料均匀涂覆到铜集流体上,控制活性硅材料的负载量在1.5mg/cm2;在室温下风干后,用轧辊机轧实,控制压实密度0.7mg/cm3。所得的电极比例为:活性硅材料:导电添加剂:聚合物粘结剂=60:25:15。其中对苹果酸(MA)在粘结剂中所占的质量分数为3.33%。
用相同的活性材料和导电剂,相同的电极配比,并控制相同的负载量和压实密度,分别用聚偏氟乙烯、海藻酸钠、水溶性壳聚糖、聚丙烯酸单独作为粘结剂以及水溶性壳聚糖/聚丙烯酸/海藻酸钠复合粘结剂制备成电极作为对比。其中聚偏氟乙烯粘结剂制备电极时选用的溶剂为N-甲基吡咯烷酮,并且极片采用60℃鼓风干燥。
将上述制备的电极在105℃真空干燥8h,除去电极中的水分,随后在150℃下真空热处理2h。
以上述电极为工作电极,金属锂片为对电极,聚丙烯微孔膜(Celgard2300)为隔膜,注入常规电解液1M LiPF6/EC:DEC:EMC(1:1:1),在氩气气氛的手套箱内组装成扣式电池。将装备好的电池在蓝电电池测试系统CT2001A测试仪测试上进行恒流充放电测试。测试的电压范围为0.01-2V,电流密度为100mA/g,测试结果如表1所示。
表1 实施例2-4中使用纳米硅作为活性材料电极的的电化学性能
Figure PCTCN2016077636-appb-000001
Figure PCTCN2016077636-appb-000002
实施例5
将中等黏度的、分子量为800000-1200000g/mol的、苷露糖醛酸(M)和古罗糖醛酸(G)单体比约为1.56的海藻酸钠配制成2%的水溶液;将羧化程度大于等于60%的水溶性壳聚糖配制成5%的水溶液。取2.4g片层石墨负载硅纳米颗粒结构的硅碳复合材料,其中石墨片成的尺寸在2-5um,硅纳米颗粒的尺寸在20-100nm;和0.3g导电碳黑(Super-P)加入到7g海藻酸钠的水溶液和3g壳聚糖溶液中,再加入0.01g草酸,并加入4.5g的纯水,将浆料的固含量调整到17%混合均匀。将所得的浆料均匀涂覆到铜集流体上,控制活性材料的负载量在4mg/cm2;在室温下风干后,用轧辊机轧实,控制压实密度0.97mg/cm3。所得的 电极比例为:活性硅材料:导电添加剂:聚合物粘结剂=80:10:10。其中小分子草酸在粘结剂中的质量分数为3.33%。
用相同的活性材料和导电剂,相同的电极配比,并控制相同的负载量和压实密度,分别用聚偏氟乙烯、海藻酸钠、水溶性壳聚糖单独作为粘结剂以及水溶性壳聚糖/海藻酸钠复合粘结剂制备成电极作为对比。其中聚偏氟乙烯粘结剂制备电极时选用的溶剂为N-甲基吡咯烷酮,并且极片采用60℃鼓风干燥。
将上述制备的电极在105℃真空干燥8h,除去电极中的水分,随后在150℃下真空热处理2h。
以上述电极为工作电极,金属锂片为对电极,聚丙烯微孔膜(Celgard2300)为隔膜,注入常规电解液1M LiPF6/EC:DEC:EMC(1:1:1),在氩气气氛的手套箱内组装成扣式电池。将装备好的电池在蓝电电池测试系统CT2001A测试仪测试上进行恒流充放电测试。测试的电压范围为0.005-2V,电流密度为40mA/g。
使用不同粘结剂的Si/C复合材料电极的循环性能曲线如图2所示。使用PVDF、Alg/Chisotan和Alg/Chisotan/Oxalic粘结剂的Si/C复合材料电极的首次嵌/脱锂比容量分别为922/716、767/980和744/940mAh/g,50周循环后的容量保持率分别为37%、60%和81%。由此可见,本发明所使用的粘结剂,对Si/C复合材料电极有很明显的作用效果。
实施例6
分子量为100000g/mol的聚丙烯酸配制成5%的水溶液;将羧化程度大于等于60%的水溶性壳聚糖配制成5%的水溶液。取2.4g片层石墨负载硅纳米颗粒结构的硅碳复合材料,其中石墨片成的尺寸在2-5um,硅纳米颗粒的尺寸在20-100nm;和0.3g导电碳黑(Super-P)加入到3g水溶性壳聚糖溶液和2.6g聚丙烯酸的水溶液中,再加入0.02g苹果酸,并加入6g的纯水,将浆料的固含量调整到17%混合均匀。将所得的浆料均匀涂覆到铜集流体上,控制活性材料的负载量在4mg/cm2;在室温下风干后,用轧辊机轧实,控制压实密度0.97mg/cm3。所得的电极比例为:活性硅材料:导电添加剂:聚合物粘结剂=80:10:10。其中苹果酸在粘结剂中的质量分数为6.67%。
用相同的活性材料和导电剂,相同的电极配比,并控制相同的负载量和压 实密度,分别用聚偏氟乙烯、聚丙烯酸、水溶性壳聚糖单独作为粘结剂以及水溶性壳聚糖/聚丙烯酸复合粘结剂制备成电极作为对比。其中聚偏氟乙烯粘结剂制备电极时选用的溶剂为N-甲基吡咯烷酮,并且极片采用60℃鼓风干燥。
将上述制备的电极在105℃真空干燥8h,除去电极中的水分,随后在150℃下真空热处理2h。
以上述电极为工作电极,金属锂片为对电极,聚丙烯微孔膜(Celgard2300)为隔膜,注入常规电解液1M LiPF6/EC:DEC:EMC(1:1:1),在氩气气氛的手套箱内组装成扣式电池。将装备好的电池在蓝电电池测试系统CT2001A测试仪测试上进行恒流充放电测试。测试的电压范围为0.005-2V,电流密度为40mA/g,测试结果如表2所示。
实施例7
将中等黏度的、分子量为800000-1200000g/mol的、苷露糖醛酸(M)和古罗糖醛酸(G)单体比约为1.56的海藻酸钠配制成2%的水溶液;分子量为100000g/mol的聚丙烯酸配制成5%的水溶液;将羧化程度大于等于60%的水溶性壳聚糖配制成5%的水溶液。取2.4g片层石墨负载硅纳米颗粒结构的硅碳复合材料,其中石墨片成的尺寸在2-5um,硅纳米颗粒的尺寸在20-100nm;和0.3g导电碳黑(Super-P)加入到4g海藻酸钠的水溶液、2g聚丙烯酸溶液和2g水溶性壳聚糖溶液中,再加入0.01g酒石酸,并加入9g的纯水,将浆料的固含量调整到17%混合均匀。将所得的浆料均匀涂覆到铜集流体上,控制活性材料的负载量在4mg/cm2;在室温下风干后,用轧辊机轧实,控制压实密度0.97mg/cm3。所得的电极比例为:活性硅材料:导电添加剂:聚合物粘结剂=80:10:10。其中小分子酒石酸(TA)在粘结剂中的质量分数为3.33%。
用相同的活性材料和导电剂,相同的电极配比,并控制相同的负载量和压实密度,分别用聚偏氟乙烯、聚丙烯酸、海藻酸钠、水溶性壳聚糖单独作为粘结剂以及水溶性壳聚糖/聚丙烯酸/海藻酸钠复合粘结剂制备成电极作为对比。其中聚偏氟乙烯粘结剂制备电极时选用的溶剂为N-甲基吡咯烷酮,并且极片采用60℃鼓风干燥。
将上述制备的电极在105℃真空干燥8h,除去电极中的水分,随后在150℃ 下真空热处理2h。
以上述电极为工作电极,金属锂片为对电极,聚丙烯微孔膜(Celgard2300)为隔膜,注入常规电解液1M LiPF6/EC:DEC:EMC(1:1:1),在氩气气氛的手套箱内组装成扣式电池。将装备好的电池在蓝电电池测试系统CT2001A测试仪测试上进行恒流充放电测试。测试的电压范围为0.005-2V,电流密度为40mA/g,测试结果如表2所示。
实施例8
取中等黏度的、分子量为800000-1200000g/mol的、苷露糖醛酸(M)和古罗糖醛酸(G)单体比约为1.56的海藻酸钠粉末2g,加入到98g纯水中配制成2%的水溶液,在加入0.02g无水CaCl2配制成海藻酸钠水凝胶。将羧化程度大于等于60%的水溶性壳聚糖配制成5%的水溶液。取2.4g片层石墨负载硅纳米颗粒结构的硅碳复合材料,其中石墨片成的尺寸在2-5um,硅纳米颗粒的尺寸在20-100nm;和0.3g导电碳黑(Super-P)加入到7g海藻酸钠水凝胶溶液和3g壳聚糖溶液中,再加入0.01g对苯二甲酸粉末,并加入5g的纯水,将浆料的固含量调整到17%混合均匀。将所得的浆料均匀涂覆到铜集流体上,控制活性材料的负载量在4mg/cm2;在室温下风干后,用轧辊机轧实,控制压实密度0.97mg/cm3。所得的电极比例为:活性硅材料:导电添加剂:聚合物粘结剂=80:10:10。其中小分子的对苯二甲酸在粘结剂中所占的比例为3.33%。
用相同的活性材料和导电剂,相同的电极配比,并控制相同的负载量和压实密度,分别用聚偏氟乙烯、海藻酸钠水凝胶、水溶性壳聚糖单独作为粘结剂以及水溶性壳聚糖/海藻酸钠水凝胶复合粘结剂制备成电极作为对比。其中聚偏氟乙烯粘结剂制备电极时选用的溶剂为N-甲基吡咯烷酮,并且极片采用60℃鼓风干燥。
将上述制备的电极在105℃真空干燥8h,除去电极中的水分,随后在150℃下真空热处理2h。
以上述电极为工作电极,金属锂片为对电极,聚丙烯微孔膜(Celgard2300)为隔膜,注入常规电解液1M LiPF6/EC:DEC:EMC(1:1:1),在氩气气氛的手套箱内组装成扣式电池。将装备好的电池在蓝电电池测试系统CT2001A测试仪测 试上进行恒流充放电测试。测试的电压范围为0.005-2V,电流密度为40mA/g,测试结果如表2所示。
表2 实施例6-8使用硅碳复合材料为活性材料的电极的电化学性能
Figure PCTCN2016077636-appb-000003
实施例9
将中等黏度的、分子量为800000-1200000g/mol的、苷露糖醛酸(M)和古罗糖醛酸(G)单体比约为1.56的海藻酸钠配制成2%的水溶液;将羧化程度大 于等于60%的水溶性壳聚糖配制成5%的水溶液。将2.4g锡/碳复合材料和0.3g电炭黑(Super-P)加入到7g海藻酸钠水溶液和3g水溶性壳聚糖水溶液中,再加入0.01g草酸粉末,并加入2g纯水,将浆料的固含量调整到20%后混合均匀。将所得的浆料均匀涂覆到铝集流体上,控制活性材料的负载量在4mg/cm2;在室温下风干后,用轧辊机轧实,控制压实密度1.5mg/cm3。所得的电极比例为:活性硅材料:导电炭黑:聚合物粘结剂=80:10:10。其中小分子的草酸在粘结剂中所占的比例为3.33%。
用相同的活性材料和导电剂,相同的电极配比,并控制相同的负载量和压实密度,分别用聚偏氟乙烯、海藻酸钠、水溶性壳聚糖单独作为粘结剂以及海藻酸钠/壳聚糖复合粘结剂制备成电极作为对比。其中聚偏氟乙烯粘结剂制备电极时选用的溶剂为N-甲基吡咯烷酮,并且极片采用60℃鼓风干燥。
将上述制备的电极在105℃真空干燥8h,除去电极中的水分,随后在150℃下真空热处理2h。
以上述电极为工作电极,金属锂片为对电极,聚丙烯微孔膜(Celgard2300)为隔膜,注入常规电解液1M LiPF6/EC:DEC:EMC(1:1:1),在氩气气氛的手套箱内组装成扣式电池。将装备好的电池在蓝电电池测试系统CT2001A测试仪测试上进行恒流充放电测试。测试的电压范围为0.01-2V,电流密度为50mA/g,测试结果如表3所示。
实施例10
将中等黏度的、分子量为800000-1200000g/mol的、苷露糖醛酸(M)和古罗糖醛酸(G)单体比约为1.56的海藻酸钠配制成2%的水溶液;将羧化程度大于等于60%的水溶性壳聚糖配制成5%的水溶液。将2.4g硫/微孔碳复合材料、0.15g导电炭黑(Super-P)和0.21g碳纳米管(CNTs)加入到3.5g海藻酸钠水溶液和1.4g水溶性壳聚糖水溶液中,再加入0.01g草酸粉末,并加入7.24g纯水,将浆料的固含量调整到20%后混合均匀。将所得的浆料均匀涂覆到铝集流体上,控制活性硫/微孔碳材料的负载量在1.5mg/cm2;在室温下风干后,用轧辊机轧实,控制压实密度1.2mg/cm3。所得的电极比例为:活性硅材料:导电炭黑:碳纳米管:聚合物粘结剂=80:10:5:5。其中小分子的草酸在粘结剂中所占的比例为 6.67%。
用相同的活性材料和导电剂,相同的电极配比,并控制相同的负载量和压实密度,分别用聚偏氟乙烯、海藻酸钠、水溶性壳聚糖单独作为粘结剂以及海藻酸钠/壳聚糖复合粘结剂制备成电极作为对比。其中聚偏氟乙烯粘结剂制备电极时选用的溶剂为N-甲基吡咯烷酮,并且极片采用60℃鼓风干燥。
将上述制备的电极在105℃真空干燥8h,除去电极中的水分,随后在150℃下真空热处理2h。
以上述电极为工作电极,金属锂片为对电极,聚丙烯微孔膜(Celgard2300)为隔膜,注入常规电解液1M LiPF6/EC:DEC:EMC(1:1:1),在氩气气氛的手套箱内组装成扣式电池。将装备好的电池在蓝电电池测试系统CT2001A测试仪测试上进行恒流充放电测试。测试的电压范围为1.6-2.8V,电流密度为100mA/g,测试结果如表3所示。
实施例11
将中等黏度的、分子量为800000-1200000g/mol的、苷露糖醛酸(M)和古罗糖醛酸(G)单体比约为1.56的海藻酸钠配制成2%的水溶液;将羧化程度大于等于60%的水溶性壳聚糖配制成5%的水溶液。将2.4g富锂固溶体材料Li[Ni0.167Li0.2Co0.167Mn0.553]O2和0.3g导电炭黑(Super-P)加入到4g海藻酸钠溶液和4g水溶性壳聚糖溶液中,并加入0.02g对苯二甲酸粉末,控制浆料的固含量为28%混合均匀。将所得的浆料均匀涂覆到铝集流体上,控制活性材料的负载量在10mg/cm2;在室温下风干后,用轧辊机轧实,控制压实密度1.5mg/cm3。所得的电极比例为:活性硅材料:导电炭黑:聚合物粘结剂=80:10:10。其中小分子的对苯二甲酸在粘结剂中所占的比例为6.67%。
用相同的活性材料和导电剂,相同的电极配比,并控制相同的负载量和压实密度,分别用聚偏氟乙烯、海藻酸钠、水溶性壳聚糖单独作为粘结剂以及海藻酸钠/壳聚糖复合粘结剂制备成电极作为对比。其中聚偏氟乙烯粘结剂制备电极时选用的溶剂为N-甲基吡咯烷酮,并且极片采用60℃鼓风干燥。
将上述制备的电极在105℃真空干燥8h,除去电极中的水分,随后在150℃下真空热处理2h。
以上述电极为工作电极,金属锂片为对电极,聚丙烯微孔膜(Celgard2300)为隔膜,注入常规电解液1M LiPF6/EC:DEC:EMC(1:1:1),在氩气气氛的手套箱内组装成扣式电池。将装备好的电池在蓝电电池测试系统CT2001A测试仪测试上进行恒流充放电测试。测试的电压范围为2-4.8V,电流密度为20mA/g,测试结果如表3所示。
表3 实施例9-11使用不同活性材料的电极的电化学性能
Figure PCTCN2016077636-appb-000004

Claims (11)

  1. 一种锂离子电池用原位交联聚合物粘结剂,其特征在于,该聚合物粘结剂具有三维网状结构,由壳聚糖、含有羧基基团或羧酸盐基团的聚合物中的至少一种、小分子多元羧酸和小分子多元羧酸盐中的至少一种原位聚合而成。
  2. 根据权利要求1所述的锂离子电池用原位交联聚合物粘结剂,其特征在于,所述含有羧基基团的聚合物为羧甲基纤维素、海藻酸、海藻酸水凝胶、β-环糊精和聚丙烯酸中的至少一种。
  3. 根据权利要求1所述的锂离子电池用原位交联聚合物粘结剂,其特征在于,所述含有羧酸盐基团的聚合物为羧甲基纤维素盐、海藻酸盐、海藻酸盐水凝胶、β-环糊精盐和聚丙烯酸盐中的至少一种。
  4. 根据权利要求1所述的锂离子电池用原位交联聚合物粘结剂,其特征在于,所述小分子多元羧酸为多元脂肪酸及其衍生物、多元芳香羧酸及其衍生物中的至少一种。
  5. 根据权利要求1所述的锂离子电池用原位交联聚合物粘结剂,其特征在于,所述小分子多元羧酸盐为多元脂肪酸盐及其衍生物和多元芳香羧酸盐及其衍生物中的至少一种。
  6. 根据权利要求1所述的锂离子电池用原位交联聚合物粘结剂,其特征在于,所述小分子多元羧酸和小分子多元羧酸盐中的至少一种在聚合物粘结剂中的质量分数为0.01-30%。
  7. 根据权利要求1所述的锂离子电池用原位交联聚合物粘结剂,其特征在于,该粘结剂在使用时,于80-300℃进行真空热处理,小分子多元羧酸或小分子多元羧酸盐中的羧基与其他两种分子的羟基之间相互作用,增强了聚合物链之间的交联作用。
  8. 一种锂离子电池电极,其特征在于,该锂离子电池电极所用粘结剂为权利要求1-7所述的锂离子电池用原位交联聚合物粘结剂。
  9. 根据权利要求8所述的锂离子电池电极,其特征在于,所述电极中的活性材料为具有嵌/脱锂活性的无机非金属、金属、合金或氧化物类材料。
  10. 根据权利要求8所述的锂离子电池电极,其特征在于,所述电极中原位交联聚合物粘结剂的质量分数为1-35%。
  11. 一种锂离子电池,包括正极、负极和电解质溶液,其特征在于,所述锂离子电池中正极、负极电极中所用粘结剂为权利要求1-7所述的锂离子电池用原位交联聚合物粘结剂。
PCT/CN2016/077636 2015-04-22 2016-03-29 一种锂离子电池用原位交联聚合物粘结剂及其制备的电极 WO2016169398A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510192487.2A CN106159271B (zh) 2015-04-22 2015-04-22 一种锂离子电池用原位交联聚合物粘结剂及其制备的电极
CN201510192487.2 2015-04-22

Publications (1)

Publication Number Publication Date
WO2016169398A1 true WO2016169398A1 (zh) 2016-10-27

Family

ID=57142861

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/077636 WO2016169398A1 (zh) 2015-04-22 2016-03-29 一种锂离子电池用原位交联聚合物粘结剂及其制备的电极

Country Status (2)

Country Link
CN (1) CN106159271B (zh)
WO (1) WO2016169398A1 (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3322008A1 (en) * 2016-11-11 2018-05-16 Oxis Energy Limited Electrode for lithium sulphur cell
CN109004229A (zh) * 2018-08-03 2018-12-14 中国地质大学(武汉) 一种锂离子电池正极材料添加剂及其正极材料和锂离子二次电池
CN111048737A (zh) * 2018-10-15 2020-04-21 贝特瑞新材料集团股份有限公司 一种负极极片及其制备方法和锂离子电池
WO2022015243A1 (en) * 2020-07-14 2022-01-20 Agency For Science, Technology And Research A hydrogel binder and a free-standing electrode
CN114497748A (zh) * 2022-01-07 2022-05-13 上海工程技术大学 一种纤维素类自修复凝胶电解质材料及其制备方法与应用
CN116836653A (zh) * 2023-06-13 2023-10-03 南平市延平鑫东来科技有限公司 一种导电胶及其制备方法和在锂离子电池中的应用

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106784842A (zh) * 2016-12-25 2017-05-31 常州市鼎日环保科技有限公司 一种锂电池水性环保粘结剂的制备方法
CN106920969A (zh) * 2017-04-12 2017-07-04 哈尔滨工业大学 一种生物质水系导电粘结体系及应用该体系的化学电源
CN107482221B (zh) * 2017-07-05 2019-12-24 长沙理工大学 一种聚合物交联的粘结剂及其制备方法和应用
CN108511688A (zh) * 2018-04-08 2018-09-07 惠州市赛能电池有限公司 一种硅负极极片的热处理制备方法
CN108832126B (zh) * 2018-04-25 2021-07-20 华南理工大学 一种含偶合酰胺键的聚羧酸水性粘结剂及制备方法与其在锂离子电池中的应用
CN110911642B (zh) * 2018-09-14 2021-05-11 多氟多化工股份有限公司 一种极片用粘结剂及其制备方法、硅基极片、锂离子电池
CN109921023A (zh) * 2019-03-07 2019-06-21 北京科技大学 锂离子电池用原位交联三维网状粘结剂的制备及应用方法
CN110148751B (zh) * 2019-06-19 2021-01-12 桑德新能源技术开发有限公司 一种硅碳负极及其制备方法
WO2021131409A1 (ja) * 2019-12-27 2021-07-01 国立大学法人大阪大学 樹脂組成物、重合体、重合体の製造方法、電気化学デバイス用結着剤、電極合剤、電極、電気化学デバイス及び二次電池
CN111106352A (zh) * 2019-12-30 2020-05-05 国联汽车动力电池研究院有限责任公司 一种锂离子电池用交联型水系粘结剂及其制备的电极
CN111613795B (zh) * 2020-04-26 2021-11-12 中山大学 一种用于锂硫电池正极的多功能粘结剂及其制备方法
CN111600075A (zh) * 2020-05-06 2020-08-28 中国科学院高能物理研究所 一种辐照提高锂电池负极极片中粘结剂耐电解液性能的方法
CN111697234B (zh) * 2020-06-19 2022-09-02 中国地质大学(武汉) 一种锂离子电池用水系交联型粘结剂及其制备方法和应用
CN111883774A (zh) * 2020-08-04 2020-11-03 中国地质大学(武汉) 一种锂离子电池用的水系粘结剂、电极片及其制备方法
CN113363482B (zh) * 2021-04-25 2022-12-23 广东工业大学 一种用于锂离子电池硅基负极的复合粘结剂及其制备方法和应用
CN113380985B (zh) * 2021-05-28 2022-06-14 万向一二三股份公司 一种提高负极片稳定性的方法
CN113745519B (zh) * 2021-08-30 2023-01-13 惠州亿纬锂能股份有限公司 一种具有人工sei膜的硅基负极材料及其制备方法和应用
CN117941105A (zh) * 2022-06-17 2024-04-26 宁德时代新能源科技股份有限公司 粘结剂组合物及包括其的负极极片
CN115312777A (zh) * 2022-09-07 2022-11-08 湖北亿纬动力有限公司 一种低曲折度厚电极及其制备方法和应用

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102154821A (zh) * 2010-12-14 2011-08-17 江苏华佳丝绸有限公司 一种环保型真丝面料抗皱方法
CN103337656A (zh) * 2013-07-05 2013-10-02 中国科学院青岛生物能源与过程研究所 一种改性生物质类锂离子电池粘合剂
CN104347879A (zh) * 2014-09-11 2015-02-11 长兴超越动力科技有限公司 一种铅酸蓄电池预混复合负极添加剂

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005087202A1 (en) * 2004-02-10 2005-09-22 Ranbaxy Laboratories Limited Glucosamine polyacrylate inter-polymer complex and processes for their production
CN102760883B (zh) * 2012-07-13 2015-03-18 中国科学院广州能源研究所 锂离子电池用新型壳聚糖及其衍生物水系粘结剂

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102154821A (zh) * 2010-12-14 2011-08-17 江苏华佳丝绸有限公司 一种环保型真丝面料抗皱方法
CN103337656A (zh) * 2013-07-05 2013-10-02 中国科学院青岛生物能源与过程研究所 一种改性生物质类锂离子电池粘合剂
CN104347879A (zh) * 2014-09-11 2015-02-11 长兴超越动力科技有限公司 一种铅酸蓄电池预混复合负极添加剂

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7074309B2 (ja) 2016-11-11 2022-05-24 オーキス エナジー リミテッド リチウム硫黄電池用電極
WO2018087543A1 (en) * 2016-11-11 2018-05-17 Oxis Energy Limited Electrode for lithium sulphur cell
JP2019534533A (ja) * 2016-11-11 2019-11-28 オーキス エナジー リミテッド リチウム硫黄電池用電極
TWI787212B (zh) * 2016-11-11 2022-12-21 英商強生麥特公司 用於鋰硫電池的電極
EP3322008A1 (en) * 2016-11-11 2018-05-16 Oxis Energy Limited Electrode for lithium sulphur cell
CN109004229A (zh) * 2018-08-03 2018-12-14 中国地质大学(武汉) 一种锂离子电池正极材料添加剂及其正极材料和锂离子二次电池
CN109004229B (zh) * 2018-08-03 2021-07-13 中国地质大学(武汉) 一种锂离子电池正极材料添加剂及其正极材料和锂离子二次电池
CN111048737B (zh) * 2018-10-15 2022-09-13 贝特瑞新材料集团股份有限公司 一种负极极片及其制备方法和锂离子电池
CN111048737A (zh) * 2018-10-15 2020-04-21 贝特瑞新材料集团股份有限公司 一种负极极片及其制备方法和锂离子电池
WO2022015243A1 (en) * 2020-07-14 2022-01-20 Agency For Science, Technology And Research A hydrogel binder and a free-standing electrode
CN114497748A (zh) * 2022-01-07 2022-05-13 上海工程技术大学 一种纤维素类自修复凝胶电解质材料及其制备方法与应用
CN114497748B (zh) * 2022-01-07 2023-08-29 上海工程技术大学 一种纤维素类自修复凝胶电解质材料及其制备方法与应用
CN116836653A (zh) * 2023-06-13 2023-10-03 南平市延平鑫东来科技有限公司 一种导电胶及其制备方法和在锂离子电池中的应用

Also Published As

Publication number Publication date
CN106159271B (zh) 2019-04-23
CN106159271A (zh) 2016-11-23

Similar Documents

Publication Publication Date Title
WO2016169398A1 (zh) 一种锂离子电池用原位交联聚合物粘结剂及其制备的电极
CN108232139B (zh) 一种石墨烯复合材料及其制备方法
CN107611394B (zh) 一种碳包覆的核壳结构纳米硅/石墨烯复合负极材料及其制备方法
JP5754855B2 (ja) 非水電解質二次電池用負極及び非水電解質二次電池
US9437870B2 (en) Nano-silicon composite lithium ion battery anode material coated with poly (3,4-ethylenedioxythiophene) as carbon source and preparation method thereof
WO2015188726A1 (zh) 氮掺杂石墨烯包覆纳米硫正极复合材料、其制备方法及应用
CN110061238B (zh) 水溶性自愈合粘结剂及其制备方法和锂离子电池
CN109411713B (zh) 含硅基材料的机械共包覆方法、含硅基材料及锂离子电池
WO2020164353A1 (zh) 一种金属原子掺杂多孔碳纳米复合材料及其制备方法和应用
CN107026262B (zh) 表面石墨烯包覆的高容量球形硬炭负极材料
CN111326715B (zh) 一种电池正极材料及其制备方法与应用
CN108448080A (zh) 一种石墨烯包覆硅/金属复合负极材料及其制备方法
CN109768282B (zh) 一种水性复合粘接剂及其应用
CN106920936B (zh) 一种高性能有机锂离子电池正极材料及其制备方法
CN107408665B (zh) 用于锂离子电池的电极活性涂层及因此的生产方法
CN110323445B (zh) Paa-ca复相粘结剂及其制备方法
CN111106352A (zh) 一种锂离子电池用交联型水系粘结剂及其制备的电极
CN106711460B (zh) 一种电极浆料组合物及其制备电极及锂离子电池的用途
KR101645773B1 (ko) 전극 활물질 슬러리 및 이를 포함하는 리튬 이차 전지
WO2022061531A1 (zh) 负极复合材料、负极、电子化学装置和电子装置
CN112500563B (zh) 一种三维共轭导电聚苯胺的合成方法及作为锂离子电池负极粘结剂的应用
CN110400923A (zh) 电池负极材料、负极材料浆料、负极极片和电化学电池
CN109148865A (zh) 锂或钠离子电池硬炭复合碳微球负极材料的制备方法
KR20210124887A (ko) 사전리튬화된 음극, 그 제조방법 및 사전리튬화된 음극을 포함하는 리튬 이온 전지 및 슈퍼 커패시터
CN108695509B (zh) 高储能效率复合型锂电池正极及其制备方法和锂电池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16782546

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16782546

Country of ref document: EP

Kind code of ref document: A1