CN116836653A - 一种导电胶及其制备方法和在锂离子电池中的应用 - Google Patents

一种导电胶及其制备方法和在锂离子电池中的应用 Download PDF

Info

Publication number
CN116836653A
CN116836653A CN202310693927.7A CN202310693927A CN116836653A CN 116836653 A CN116836653 A CN 116836653A CN 202310693927 A CN202310693927 A CN 202310693927A CN 116836653 A CN116836653 A CN 116836653A
Authority
CN
China
Prior art keywords
conductive adhesive
sulfonic acid
conductive
acrylic resin
lithium ion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202310693927.7A
Other languages
English (en)
Other versions
CN116836653B (zh
Inventor
卢其华
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanping Yanping Xindonglai Technology Co ltd
Original Assignee
Nanping Yanping Xindonglai Technology Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanping Yanping Xindonglai Technology Co ltd filed Critical Nanping Yanping Xindonglai Technology Co ltd
Priority to CN202310693927.7A priority Critical patent/CN116836653B/zh
Publication of CN116836653A publication Critical patent/CN116836653A/zh
Application granted granted Critical
Publication of CN116836653B publication Critical patent/CN116836653B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J133/00Adhesives based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Adhesives based on derivatives of such polymers
    • C09J133/02Homopolymers or copolymers of acids; Metal or ammonium salts thereof
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J11/00Features of adhesives not provided for in group C09J9/00, e.g. additives
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J11/00Features of adhesives not provided for in group C09J9/00, e.g. additives
    • C09J11/02Non-macromolecular additives
    • C09J11/04Non-macromolecular additives inorganic
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J11/00Features of adhesives not provided for in group C09J9/00, e.g. additives
    • C09J11/08Macromolecular additives
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J133/00Adhesives based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Adhesives based on derivatives of such polymers
    • C09J133/18Homopolymers or copolymers of nitriles
    • C09J133/20Homopolymers or copolymers of acrylonitrile
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J133/00Adhesives based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Adhesives based on derivatives of such polymers
    • C09J133/24Homopolymers or copolymers of amides or imides
    • C09J133/26Homopolymers or copolymers of acrylamide or methacrylamide
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J9/00Adhesives characterised by their physical nature or the effects produced, e.g. glue sticks
    • C09J9/02Electrically-conducting adhesives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • H01M4/622Binders being polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2227Oxides; Hydroxides of metals of aluminium
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/32Phosphorus-containing compounds
    • C08K2003/321Phosphates
    • C08K2003/325Calcium, strontium or barium phosphate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/002Physical properties
    • C08K2201/005Additives being defined by their particle size in general
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/002Physical properties
    • C08K2201/006Additives being defined by their surface area
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/011Nanostructured additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2203/00Applications
    • C08L2203/20Applications use in electrical or conductive gadgets
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

本发明提供一种导电胶及其制备方法在锂离子电池中的应用,其中,导电胶是由丙烯酸树脂和磺酸基导电材料在高温条件下通过无机交联粒子进行化学热交联制备而成,其制备方法包括制备导电胶前驱体和导电胶化学热交联反应的步骤。本发明的导电胶制备通过化学热交联反应能够形成三维网状结构,该网络结构不仅具有导电性,同时由无机交联粒子作为交联点具备优异的热稳定性和机械稳定性,对于抑制锂离子电池电极体积膨胀和提高电极的循环稳定性具有积极效果。

Description

一种导电胶及其制备方法和在锂离子电池中的应用
技术领域
本发明涉及一种锂电池制备技术领域,具体涉及一种导电胶及其制备方法和在锂离子电池中的应用。
背景技术
锂离子电池当前已被广泛应用于混合动力汽车和纯电动汽车的电源装置。为了追求更高的能量密度和更低的成本,在锂离子电池负极方面,硅基负极正在替代传统的石墨负极。但是,在充放电过程中,硅基负极材料的体积变化较大,这将导致硅颗粒与导电基体之间产生电接触不良,同时存在硅的严重破碎和固体电解质膜的过度生长,硅基负极在使用过程中就会面临容量衰减快、库仑效率低、电极劣化等严重问题。与此相关的胶黏剂对电极的电化学性能,特别是循环寿命和不可逆容量损失起着重要的作用。例如,使用含有大量羧基和羟基的聚丙烯酸、羧甲基纤维素等功能胶黏剂通过氢键或共价键与硅颗粒结合,在硅颗粒表面形成强的相互作用,抑制硅颗粒的膨胀和破碎。但是,由于这些胶黏剂的线性链性质很容易在循环过程中随着硅的连续体积变化而产生滑移,随着电极的持续形变,聚合物长链难以恢复到原来的状态,电极的长效使用寿命仍然受到制约。
发明内容
本发明要解决的技术问题,在于提供一种导电胶及其制备方法和在锂离子电池中的应用,导电胶是由丙烯酸树脂和磺酸基导电材料在高温条件下通过无机交联粒子进行化学热交联制备而成,形成三维网状结构,不仅具有导电性,同时具备优异的热稳定性和机械稳定性,对于抑制锂离子电池电极体积膨胀和提高电极的循环稳定性具有积极效果。
第一方面,本发明提供了一种导电胶,是由丙烯酸树脂和磺酸基导电材料在高温条件下通过无机交联粒子进行化学热交联制备而成;所述丙烯酸树脂和所述磺酸基导电材料的质量比为60~90:10~40;所述高温条件为80~200℃,化学热交联的反应时间为4~24h。
第二方面,本发明提供了一种导电胶的制备方法,包括如下步骤:
S1、利用高速剪切机将丙烯酸树脂和磺酸基导电材料在酯类溶剂中进行分散,得到混合胶液A;
S2、将无机交联粒子在混合胶液A中进行砂磨分散,得到导电胶前驱体B;
S3、将导电胶前驱体B在高温条件下进行化学热交联反应,得到所述导电胶。
第三方面,本发明提供了一种导电胶在锂离子电池中的应用,在所述锂离子电池中包含第一方面所述的导电胶。
本发明具有如下优点:
(1)本发明中的导电胶是由带有羟基的无机交联粒子与线性丙烯酸树脂和磺酸基导电材料通过化学热交联反应形成,化学热交联反应产生的作用力为化学键,保证了三维网络结构的稳定性,这种三维网络结构在硅负极会产生持续形变过程中难以发生不可逆形变,并且相对于线性胶黏剂,其具备的三维网络结构,能均匀覆盖在硅颗粒表面,抑制硅颗粒膨胀的效果更佳。
(2)本发明中的导电胶除了利用传统的线性胶黏剂丙烯酸树脂进行交联,还选用了磺酸基导电材料作为共交联组分,其在电子传输能力上与无机碳纳米材料不相上下,有利于降低电极中非活性组分的性能影响,提升电极的电子电导性;同时在制备导电胶时选用了酯类溶剂,其在电极制备过程中能够起到很好的成膜作用,可以降低电极表面缺陷,并且对电解质阴阳离子具有较好的溶剂化能力,有利于电池内部离子的传输。
(3)本发明中的导电胶选用的交联粒子为无机纳米粒子,比表面积大,羟基含量高,作为导电胶的刚性交联中心,使得导电胶同时具有软段和硬段结构,能够整体提升导电胶的热分解温度和拉伸强度,从而赋予导电胶优异的热稳定性和机械稳定性,对于抑制锂离子电池电极体积膨胀和提高电极的循环稳定性具有积极效果。
附图说明
下面参照附图结合实施例对本发明作进一步的说明。
图1为实施例1制备的具有三维网络结构的导电胶示意图;
图2为利用实施例1和对比例1~4的锂离子电池高温循环测试结果示意图。
具体实施方式
本申请实施例通过提供一种导电胶及其制备方法和锂离子电池,导电胶是由丙烯酸树脂和磺酸基导电材料在高温条件下通过无机交联粒子进行化学热交联制备而成,形成三维网状结构,不仅具有导电性,同时具备优异的热稳定性和机械稳定性,对于抑制锂离子电池电极体积膨胀和提高电极的循环稳定性具有积极效果。
本申请实施例中的技术方案,总体思路如下:本发明的导电胶是由丙烯酸树脂和磺酸基导电材料在高温条件下通过无机交联粒子进行化学交联制备而成。其制备方法包括制备导电胶前驱体和导电胶化学热交联反应的步骤。其中,如图1所示,通过化学热交联反应能够形成三维网状结构,该网络结构不仅具有导电性,同时由无机交联粒子作为交联点具备优异的热稳定性和机械稳定性,对于抑制锂离子电池电极体积膨胀和提高电极的循环稳定性具有积极效果。
具体的,本申请实施例的导电胶,是由丙烯酸树脂和磺酸基导电材料在高温条件下通过无机交联粒子进行化学热交联制备而成;所述丙烯酸树脂和所述磺酸基导电材料的质量比为60~90:10~40;所述高温条件为80~200℃,化学热交联的反应时间为4~24h。所述丙烯酸树脂选自聚丙烯酸、丙烯酸-丙烯腈共聚物、丙烯酸-丙烯酰胺共聚物、丙烯酸-马来酸酐共聚物中的一种或多种的组合;所述丙烯酸树脂的分子量为10~100万。所述磺酸基导电材料选自聚苯乙烯磺酸、聚(3,4-亚乙二氧基噻吩)-聚(苯乙烯磺酸)、聚(4-乙烯基吡啶对甲苯磺酸)中的一种或多种的组合。所述无机交联粒子选自石墨、炭黑、石墨烯、勃姆石、氧化铝、蒙脱土、氧化钛、氧化硅、膨润土、羟基磷灰石中的一种或多种的组合;所述无机交联粒子的表面羟基密度为5~40个/nm2;所述无机交联粒子的比表面积为100~300m2/g;所述无机交联粒子的粒径为10~100nm。
本申请实施例的导电胶的制备方法,具体包括如下步骤:
S1、利用高速剪切机将丙烯酸树脂和磺酸基导电材料在酯类溶剂中进行分散,得到混合胶液A;
S2、将无机交联粒子在混合胶液A中进行砂磨分散,得到导电胶前驱体B;
S3、将导电胶前驱体B在高温条件下进行化学热交联反应,得到所述导电胶。
所述丙烯酸树脂和所述磺酸基导电材料的质量比为60~90:10~40;所述无机交联粒子的用量为所述丙烯酸树脂和所述磺酸基导电材料总质量用量的1~10%。
所述导电胶前驱体B的固含量为5~40%。
所述酯类溶剂选自碳酸二甲酯、醋酸乙酯、醋酸丁酯、丙二醇甲醚醋酸酯、柠檬酸酯、环氧酸酯、丁二酸二甲酯、戊二酸二甲酯、已二酯二甲酯中的一种或多种的组合。
所述导电胶前驱体B的化学热交联反应温度为80~200℃,化学热交联反应时间为4~24h。
本发明实施例还提供了一种导电胶在锂离子电池中的应用,使所述锂离子电池中包含本发明所述的导电胶,例如,采用本发明所述的导电胶制备锂离子电池的极片,包括正极极片和负极极片。
下面结合具体实施例来对本发明进行进一步说明。
实施例1
本实施例提供一种导电胶,其中丙烯酸树脂为分子量10万的聚丙烯酸;磺酸基导电材料为聚(3,4-亚乙二氧基噻吩)-聚(苯乙烯磺酸);无机交联粒子为石墨,表面羟基密度为20个/nm2、比表面积为150m2/g、粒径为40nm,其制备方法如下:
(1)用高速剪切机将70份的聚丙烯酸和30份聚(3,4-亚乙二氧基噻吩)-聚(苯乙烯磺酸)导电材料在碳酸二甲酯溶剂中进行均匀分散,得到混合胶液A;
(2)将5份的石墨在混合胶液A中进行砂磨分散,得到固含量为10%的导电胶前驱体B;
(3)将导电胶前驱体B在120℃的条件下进行化学热交联反应,反应时间为8h,得到所述导电胶。
实施例2
本实施例与实施例1的区别在于,丙烯酸树脂为分子量40万的丙烯酸-丙烯腈共聚物;磺酸基导电材料为聚苯乙烯磺酸。
实施例3
本实施例与实施例1的区别在于,无机交联粒子石墨替换为氧化铝,表面羟基密度为5个/nm2、比表面积为100m2/g、粒径为100nm。
实施例4
本实施例与实施例1的区别在于,聚丙烯酸的用量为90份,聚(3,4-亚乙二氧基噻吩)-聚(苯乙烯磺酸)导电材料的用量为10份,石墨的用量为10份。
实施例5
本实施例与实施例1的区别在于,聚丙烯酸的用量为60份,聚(3,4-亚乙二氧基噻吩)-聚(苯乙烯磺酸)导电材料的用量为40份,石墨的用量为1份。
实施例6
本实施例与实施例1的区别在于,聚丙烯酸的用量为90份;聚(3,4-亚乙二氧基噻吩)-聚(苯乙烯磺酸)导电材料的用量为10份;无机交联粒子为羟基磷灰石,用量为5份,表面羟基密度为40个/nm2、比表面积为300m2/g、粒径为10nm。
实施例7
本实施例与实施例1的区别在于,丙烯酸树脂为分子量100万的丙烯酸-丙烯酰胺共聚物;磺酸基导电材料为聚(4-乙烯基吡啶对甲苯磺酸);石墨用量为8份;导电胶前驱体B的固含量为40%。
实施例8
本实施例与实施例1的区别在于,酯类溶剂选用丁二酸二甲酯;导电胶前驱体B的固含量为5%。
实施例9
本实施例与实施例1的区别在于,导电胶前驱体B的化学热交联反应温度为80℃,反应时间为24h。
实施例10
本实施例与实施例8的区别在于,导电胶前驱体B的化学热交联反应温度为200℃,反应时间为4h。
对比例1
本对比例的功能胶制备过程为:利用高速剪切机将70份的聚丙烯酸和30份的羧甲基纤维素在碳酸二甲酯溶剂中进行均匀分散,得到固含量为10%的混合胶液,即为功能胶。
对比例2
本对比例与对比例1的区别在于,将羧甲基纤维素替换成聚(3,4-亚乙二氧基噻吩)-聚(苯乙烯磺酸)导电材料。
对比例3
本对比例与对比例2的区别在于,功能胶除包含70份的聚丙烯酸和30份的羧甲基纤维素外,还包括5份的石墨。
对比例4
本对比例与对比例1的区别在于,制得固含量为10%的混合胶液后,将混合胶液置于120℃反应4h。
利用实施例1~7的导电胶和对比例1~4的功能胶进行锂离子电池极片的制作,制作方法如下:
将97份的镍钴锰酸锂正极材料、1.5份的炭黑、0.5份的碳纳米管和1份的粘结剂以NMP为溶剂制备正极浆料,在12μm的铝箔上进行涂布,然后经过烘烤得到正极极片,正极极片的双面涂布面密度为42.0mg/cm2
将95份的石墨-硅氧(硅氧占比15%)负极材料、0.8份的炭黑、0.2份的碳纳米管、4份的导电胶或功能胶以去离子水为溶剂制备负极浆料,在6μm的铜箔上进行涂布,然后经过烘烤得到负极极片,负极极片的双面涂布密度为18.1mg/cm2
将上述正极极片和负极极片进行辊压、模切和烘烤,然后选用厚度为9μm的商用隔膜进行叠片组装,完成注液、封装和化成后得到锂离子电池。
对利用实施例1-7和对比例1~4的功能胶制备的极片和锂离子电池进行性能测试,结果如表1所示,具体测试如下:
极片电阻率:取面积为S的圆形极片样品,置于两探针电阻测试仪下测试阻值R,测量极片的厚度为d,根据公式ρ=R*S/d计算,得到电阻率ρ;
极片膨胀率:测试极片的初始厚度为d0,测试满电状态下的极片厚度为d1,极片的膨胀率为d1/d0×100%;
直流内阻DCR值:将锂离子电池以1/3C倍率进行恒流恒压充电至截止电压,在1/3C的倍率下进行恒流放电90min并静置30min,记录静置结束电压为V0,然后以1C倍率放电10s,记录放电结束电压为V1,得到DCR值为(V0-V1)/I1C
高温循环性能:将电池置于在45℃下,以1C倍率进行恒流恒压充电至截止电压,以1C倍率进行恒流放电至截止电压,循环500周,得到放电容量保持率;如图2所示,为利用实施例1和对比例1~4的锂离子电池高温循环测试结果示意图。
高温存储性能:将锂离子电池常温下以1/3C倍率进行恒流恒压充电至截止电压,并以1/3C的倍率进行恒流放电90min,记录容量C0,然后将锂离子电池置于55℃下静置90天,再在常温下以1/3C的倍率进行恒流放电至截止电压,记录容量C1,得到高温存储容量保持率C1/C0×100%。
表1极片和锂离子电池的性能测试结果
与对比例1~3相比,利用实施例1~7制备的导电胶进行的锂离子电池极片和锂离子电池的制作。测试极片的电阻率结果表明,极片的电阻率降低幅度达27%,导电胶制作的极片导电效果得到了改善,并且锂离子电池的直流内阻也降低了36%,电性能表现优异;与此同时,极片的膨胀程度获得了明显抑制,说明带有羟基的无机交联粒子与线性丙烯酸树脂和磺酸基导电材料通过化学热交联反应形成了稳定的化学键,保证了三维网络结构的热稳定性和机械稳定性,使得硅负极持续的形变过程难以发生不可逆形变,相对于线性胶黏剂,稳定的三维网络结构更能均匀的覆盖在硅颗粒表面抑制硅颗粒的体积膨胀,同时由于导电材料的交联参与,导电胶赋予了锂离子电池更低的内阻和更为优异的循环性能;与实施例1~7相比,虽然对比例4通过加热反应,聚丙烯酸和羧甲基纤维素也可以形成网络交联结构,但由于缺少无机纳米粒子作为功能胶的刚性交联中心,其整体的热稳定性和机械稳定性相对较差,锂离子电池的高温循环性能和高温存储性能改善效果有限。
虽然以上描述了本发明的具体实施方式,但是熟悉本技术领域的技术人员应当理解,我们所描述的具体的实施例只是说明性的,而不是用于对本发明的范围的限定,熟悉本领域的技术人员在依照本发明的精神所作的等效的修饰以及变化,都应当涵盖在本发明的权利要求所保护的范围内。

Claims (10)

1.一种导电胶,其特征在于:是由丙烯酸树脂和磺酸基导电材料在高温条件下通过无机交联粒子进行化学热交联制备而成;所述丙烯酸树脂和所述磺酸基导电材料的质量比为60~90:10~40;所述高温条件为80~200℃,化学热交联的反应时间为4~24h。
2.根据权利要求1所述的一种导电胶,其特征在于:所述丙烯酸树脂选自聚丙烯酸、丙烯酸-丙烯腈共聚物、丙烯酸-丙烯酰胺共聚物、丙烯酸-马来酸酐共聚物中的一种或多种的组合;
所述丙烯酸树脂的分子量为10~100万。
3.根据权利要求1所述的一种导电胶,其特征在于:所述磺酸基导电材料选自聚苯乙烯磺酸、聚(3,4-亚乙二氧基噻吩)-聚(苯乙烯磺酸)、聚(4-乙烯基吡啶对甲苯磺酸)中的一种或多种的组合。
4.根据权利要求1所述的一种导电胶,其特征在于:所述无机交联粒子的用量为所述丙烯酸树脂和所述磺酸基导电材料总质量用量的1~10%;所述无机交联粒子选自石墨、炭黑、石墨烯、勃姆石、氧化铝、蒙脱土、氧化钛、氧化硅、膨润土、羟基磷灰石中的一种或多种的组合;
所述无机交联粒子的表面羟基密度为5~40个/nm2
所述无机交联粒子的比表面积为100~300m2/g;
所述无机交联粒子的粒径为10~100nm。
5.一种导电胶的制备方法,其特征在于:包括如下步骤:
S1、利用高速剪切机将丙烯酸树脂和磺酸基导电材料在酯类溶剂中进行分散,得到混合胶液A;
S2、将无机交联粒子在混合胶液A中进行砂磨分散,得到导电胶前驱体B;
S3、将导电胶前驱体B在高温条件下进行化学热交联反应,得到所述导电胶。
6.根据权利要求5所述的一种导电胶的制备方法,其特征在于:所述丙烯酸树脂和所述磺酸基导电材料的质量比为60~90:10~40;所述无机交联粒子的用量为所述丙烯酸树脂和所述磺酸基导电材料总质量用量的1~10%。
7.根据权利要求5所述的一种导电胶的制备方法,其特征在于:所述导电胶前驱体B的固含量为5~40%。
8.根据权利要求5所述的一种导电胶的制备方法,其特征在于:所述酯类溶剂选自碳酸二甲酯、醋酸乙酯、醋酸丁酯、丙二醇甲醚醋酸酯、柠檬酸酯、环氧酸酯、丁二酸二甲酯、戊二酸二甲酯、已二酯二甲酯中的一种或多种的组合。
9.根据权利要求5所述的一种导电胶的制备方法,其特征在于:所述导电胶前驱体B的化学热交联反应温度为80~200℃,化学热交联反应时间为4~24h。
10.一种导电胶在锂离子电池中的应用,特征在于:在所述锂离子电池中包含权利要求1-4任一项所述的导电胶。
CN202310693927.7A 2023-06-13 2023-06-13 一种导电胶及其制备方法和在锂离子电池中的应用 Active CN116836653B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202310693927.7A CN116836653B (zh) 2023-06-13 2023-06-13 一种导电胶及其制备方法和在锂离子电池中的应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202310693927.7A CN116836653B (zh) 2023-06-13 2023-06-13 一种导电胶及其制备方法和在锂离子电池中的应用

Publications (2)

Publication Number Publication Date
CN116836653A true CN116836653A (zh) 2023-10-03
CN116836653B CN116836653B (zh) 2024-09-24

Family

ID=88162630

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202310693927.7A Active CN116836653B (zh) 2023-06-13 2023-06-13 一种导电胶及其制备方法和在锂离子电池中的应用

Country Status (1)

Country Link
CN (1) CN116836653B (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016169398A1 (zh) * 2015-04-22 2016-10-27 北京有色金属研究总院 一种锂离子电池用原位交联聚合物粘结剂及其制备的电极
CN106129416A (zh) * 2016-07-28 2016-11-16 华中科技大学 一种用于硅基锂离子电池负极的导电粘结剂及其制备方法
CN109461937A (zh) * 2018-10-19 2019-03-12 深圳市优宝新材料科技有限公司 一种锂电池用三维混合导电粘结剂以及包含该粘结剂的电池
CN113773778A (zh) * 2021-10-16 2021-12-10 深圳江浩电子有限公司 超级电容器用导电胶及其制备方法
CN115295802A (zh) * 2022-07-07 2022-11-04 中国科学院福建物质结构研究所 一种胶粘剂及其制备方法和在锂离子电池中的应用

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016169398A1 (zh) * 2015-04-22 2016-10-27 北京有色金属研究总院 一种锂离子电池用原位交联聚合物粘结剂及其制备的电极
CN106129416A (zh) * 2016-07-28 2016-11-16 华中科技大学 一种用于硅基锂离子电池负极的导电粘结剂及其制备方法
CN109461937A (zh) * 2018-10-19 2019-03-12 深圳市优宝新材料科技有限公司 一种锂电池用三维混合导电粘结剂以及包含该粘结剂的电池
CN113773778A (zh) * 2021-10-16 2021-12-10 深圳江浩电子有限公司 超级电容器用导电胶及其制备方法
CN115295802A (zh) * 2022-07-07 2022-11-04 中国科学院福建物质结构研究所 一种胶粘剂及其制备方法和在锂离子电池中的应用

Also Published As

Publication number Publication date
CN116836653B (zh) 2024-09-24

Similar Documents

Publication Publication Date Title
CN111384381B (zh) 一种锂离子电池用硅@碳/MXene三元复合材料及其制备方法
CN109546080B (zh) 一种正极极片、及其制备方法和用途
CN111261874B (zh) 一种锂离子电池负极及其制备方法和应用
CN109004220B (zh) 一种硼酸化合物修饰锂离子电池硅负极及其制备方法
CN113113605B (zh) 一种网络结构离子导电粘合剂及其制备方法和应用
CN106299377A (zh) 一种锂离子电池用粘结剂及使用该粘结剂的锂离子电池
CN110323445B (zh) Paa-ca复相粘结剂及其制备方法
CN115566170B (zh) 一种高能量密度快充锂离子电池负极材料的制备方法
CN102916197A (zh) 一种集流体及其制备方法以及锂离子电池电极片、电池
CN111048749B (zh) 一种负极极片、锂离子电池及其制造方法
CN112310403B (zh) 一种锂离子电池硅基负极及其制备方法、应用
CN113571673A (zh) 一种负极厚极片及其制备方法,锂离子电池
CN106876656B (zh) 一种负极浆料的制备方法和负极浆料
WO2022237534A1 (zh) 一种复合粘结剂及其制备方法和应用
CN115172753A (zh) 一种新型锂离子电池水溶型粘结剂及其制备方法和应用
CN111647345A (zh) 一种锂离子电池负极聚合物保护涂层及其制备方法、应用
CN113555540A (zh) 一种快充聚合物锂离子电池
CN116864630A (zh) 一种锂电池正极极片的制造方法
CN117410545A (zh) 一种快充高能量密度型锂离子电池及其应用
CN115050967B (zh) 一种锂电池用涂碳铝箔及其制备方法
CN218827239U (zh) 一种补锂硅基负极片及二次电池
CN116836653B (zh) 一种导电胶及其制备方法和在锂离子电池中的应用
CN113036125A (zh) 正极浆料、正极极片、锂离子电芯、锂离子电池包及应用
CN116014079A (zh) 一种木质素水系复合电池粘结剂及其硅基负极片的制备方法和应用
CN116364930A (zh) 一种复配添加剂及应用该复配添加剂的电化学装置

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant