WO2016165305A1 - 磁性料粉 - Google Patents

磁性料粉 Download PDF

Info

Publication number
WO2016165305A1
WO2016165305A1 PCT/CN2015/092710 CN2015092710W WO2016165305A1 WO 2016165305 A1 WO2016165305 A1 WO 2016165305A1 CN 2015092710 W CN2015092710 W CN 2015092710W WO 2016165305 A1 WO2016165305 A1 WO 2016165305A1
Authority
WO
WIPO (PCT)
Prior art keywords
oxide
cerium oxide
magnetic powder
srco
molar ratio
Prior art date
Application number
PCT/CN2015/092710
Other languages
English (en)
French (fr)
Inventor
周连明
Original Assignee
南通万宝实业有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南通万宝实业有限公司 filed Critical 南通万宝实业有限公司
Publication of WO2016165305A1 publication Critical patent/WO2016165305A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/10Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials non-metallic substances, e.g. ferrites, e.g. [(Ba,Sr)O(Fe2O3)6] ferrites with hexagonal structure
    • H01F1/11Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials non-metallic substances, e.g. ferrites, e.g. [(Ba,Sr)O(Fe2O3)6] ferrites with hexagonal structure in the form of particles

Definitions

  • the invention relates to the field of permanent ferrite materials, in particular to a magnetic powder.
  • barium ferrite permanent magnet materials Due to its high saturation magnetization, high coercivity and high magnetic energy product, barium ferrite permanent magnet materials are widely used in magnetic recorders, air conditioners, audio transducers, separators, holding devices, and motor rotors. With the development of technology, DC variable frequency motors have begun to use permanent magnets instead of induction coils, which reduces the loss of induced current and magnetic field in the rotor of the motor. The high saturation magnetization and high magnetic energy product of barium ferrite materials are more energy efficient. Key areas of research.
  • the electromagnetic properties of the material can be further improved by the addition of alkaline earth metal oxides MgO, CaO, etc.; for example, for Nd-Co
  • alkaline earth metal oxides MgO, CaO, etc. for example, for Nd-Co
  • the influence of the magnetic structure of bulk materials confirmed the lattice occupancy of rare earth ions and transition metal ions.
  • the effect of La-Co co-doping on the magnetic properties of barium ferrite materials showed that the composite doping significantly improved the coercivity.
  • the force has a maximum value, but the saturation magnetization decreases as the amount of doping increases.
  • the present invention relates to a permanent magnet barium ferrite powder and a preparation method thereof by the prior art search, Chinese invention patent 201210273058.4 (announcement date January 1, 2014); the invention uses iron scales and The cerium carbonate is used as a raw material, wherein the molar ratio of cerium carbonate to iron oxide is 1.. (5.5-6), 0.1-0.5% by weight of the dispersing agent and 90-110% by weight of the raw material are added to form a mixture; The mass ratio of the raw materials to the raw materials is (7.5-10): 1 The mixture is wet-milled in a steel ball mill jar, wet-milled to a particle size of 0.7-0.9 ⁇ m; then the milled slurry is dried and set. In the ceramic vessel, the coil kiln is kept at 1050-1350 °C for 120-240 minutes, and the kiln is naturally cooled to obtain the permanent magnet strontium ferrite powder.
  • Chinese invention patent 201210547010.8 discloses a method for selecting a dry pressed yttrium ferrite binder without loss of coercive force, the method comprising the following steps: coarse grinding - preliminary fine grinding - secondary formulation - secondary fine grinding - discharge filtering - dry magnetic field forming - finished sintering, the invention uses magnesium stearate instead of calcium stearate as a binder for dry-pressed permanent ferrite, which lubricates And the role of bonding, does not reduce the coercivity of the magnet.
  • Chinese invention patent 201010197327.4 discloses a permanent magnet barium ferrite magnetic material and a sintering method thereof; the method comprises a barium-containing ferrite pre-sintered material and two The secondary additive is mixed in the ball mill and ball milled, and the separated and dehydrated slurry is prepared by wet molding.
  • the formed body is first dehydrated and dried at room temperature and 400 ° C, and then enters the microwave sintering furnace according to a certain process system. Sintering, thereby obtaining a high performance permanent magnet barium ferrite magnetic material.
  • the invention provides a magnetic material powder, wherein the magnetic powder uses SrCO 3 and Fe 2 O 3 as a barium ferrite material, and is composed of cerium oxide, cobalt oxide, zinc oxide, cerium oxide, cerium oxide, manganese oxide and aluminum oxide. Boric acid and kaolin were prepared as composite additives; the magnetic powder had a magnetic energy product of 36.0-38.2 kJ/m 3 , the intrinsic coercive force was 346.1-369.1 kA/m, and the residual magnetization was 433-438 mT.
  • the magnetic powder provided by the invention can reach 38.2 kJ/m 3 in the magnetic energy product, 369.1 kA/m in the internal coercive force, and 438 mT in the residual magnetization, and is commonly used in the field.
  • the magnetic energy product is increased by 57%
  • the coercivity is increased by 55%
  • the residual magnetization is increased by 15%
  • the magnetic properties of the powder are remarkably improved.
  • the magnetic powder uses SrCO 3 and Fe 2 O 3 as the barium ferrite raw materials, and is composed of cerium oxide, cobalt oxide, zinc oxide, cerium oxide, cerium oxide, manganese oxide, aluminum oxide, boric acid, Kaolin is prepared as a composite auxiliary.
  • the molar ratio of SrCO 3 to Fe 2 O 3 is 0.55:5.8
  • the molar ratio of cerium oxide, cobalt oxide, zinc oxide, cerium oxide, cerium oxide, manganese oxide, aluminum oxide, boric acid and kaolin is 0.1:0.2. : 0.1: 0.15: 0.3: 0.3: 0.25: 0.3: 0.2
  • the molar ratio of SrCO 3 to cerium oxide is 0.55: 0.1.
  • the preparation method of the magnetic powder comprises the following steps:
  • the raw materials SrCO 3 and Fe 2 O 3 are used , and the composite additives are cerium oxide, cobalt oxide, zinc oxide, cerium oxide, cerium oxide, manganese oxide, aluminum oxide, boric acid and kaolin.
  • the molar ratio of SrCO 3 and Fe 2 O 3 is 0.55:5.8, and the molar ratio of cerium oxide, cobalt oxide, zinc oxide, cerium oxide, cerium oxide, manganese oxide, aluminum oxide, boric acid and kaolin is 0.1:0.2. : 0.1: 0.15: 0.3: 0.3: 0.25: 0.3: 0.2, and the molar ratio of SrCO 3 to cerium oxide is 0.55: 0.1.
  • Step 2 the above components are added to a ball mill for mixing, adding an appropriate amount of CaCO 3 , compounded into a mixture, and then ball-milled, ball-milled to a slurry particle size of 0.8-1.0 um, then dried at 116 degrees, and pulverized;
  • Step 3 the components treated in the second step are placed in a muffle furnace for calcination, and the temperature is raised to 990 degrees at a heating rate of 14-16 degrees/min, and the temperature is maintained for 4-4.5 hours, then the temperature is lowered, and the natural cooling is cooled. That is, the magnetic powder is obtained.
  • the magnetic powder uses SrCO 3 and Fe 2 O 3 as the barium ferrite raw materials, and is composed of cerium oxide, cobalt oxide, zinc oxide, cerium oxide, cerium oxide, manganese oxide, aluminum oxide, boric acid, Kaolin is prepared as a composite auxiliary.
  • the molar ratio of SrCO 3 to Fe 2 O 3 is 0.57: 5.8, and the molar ratio of cerium oxide, cobalt oxide, zinc oxide, cerium oxide, cerium oxide, manganese oxide, aluminum oxide, boric acid, and kaolin is 0.13: 0.25. : 0.14: 0.17: 0.34: 0.36: 0.3: 0.4: 0.3, and the molar ratio of SrCO 3 to cerium oxide is 0.57: 0.13.
  • the preparation method of the magnetic powder comprises the following steps:
  • the raw materials SrCO 3 and Fe 2 O 3 are used , and the composite additives are cerium oxide, cobalt oxide, zinc oxide, cerium oxide, cerium oxide, manganese oxide, aluminum oxide, boric acid and kaolin.
  • the molar ratio of SrCO 3 to Fe 2 O 3 is 0.57: 5.8, and the molar ratio of cerium oxide, cobalt oxide, zinc oxide, cerium oxide, cerium oxide, manganese oxide, aluminum oxide, boric acid, and kaolin is 0.13: 0.25. : 0.14: 0.17: 0.34: 0.36: 0.3: 0.4: 0.3, and the molar ratio of SrCO 3 to cerium oxide is 0.57: 0.13.
  • Step 2 the above components are added to a ball mill for mixing, adding an appropriate amount of CaCO 3 , compounded into a mixture, and then ball-milled, ball-milled to a slurry particle size of 0.8-1.0 um, then dried at 116 degrees, and pulverized;
  • Step 3 the components treated in the second step are placed in a muffle furnace for calcination, and the temperature is raised to 990 degrees at a heating rate of 14-16 degrees/min, and the temperature is maintained for 4-4.5 hours, then the temperature is lowered, and the natural cooling is cooled. That is, the magnetic powder is obtained.
  • the magnetic powder uses SrCO 3 and Fe 2 O 3 as the barium ferrite raw materials, and is composed of cerium oxide, cobalt oxide, zinc oxide, cerium oxide, cerium oxide, manganese oxide, aluminum oxide, boric acid, Kaolin is prepared as a composite auxiliary.
  • the molar ratio of SrCO 3 to Fe 2 O 3 is 0.6: 5.82
  • the molar ratio of cerium oxide, cobalt oxide, zinc oxide, cerium oxide, cerium oxide, manganese oxide, aluminum oxide, boric acid, and kaolin is 0.15: 0.25. : 0.16: 0.2: 0.35: 0.4: 0.35: 0.4: 0.4
  • the molar ratio of SrCO 3 to cerium oxide is 0.6: 0.15.
  • the preparation method of the magnetic powder comprises the following steps:
  • the raw materials SrCO 3 and Fe 2 O 3 are used , and the composite additives are cerium oxide, cobalt oxide, zinc oxide, cerium oxide, cerium oxide, manganese oxide, aluminum oxide, boric acid and kaolin.
  • the molar ratio of SrCO 3 to Fe 2 O 3 is 0.6: 5.82
  • the molar ratio of cerium oxide, cobalt oxide, zinc oxide, cerium oxide, cerium oxide, manganese oxide, aluminum oxide, boric acid, and kaolin is 0.15: 0.25. : 0.16: 0.2: 0.35: 0.4: 0.35: 0.4: 0.4
  • the molar ratio of SrCO 3 to cerium oxide is 0.6: 0.15.
  • Step 2 the above components are added to a ball mill for mixing, adding an appropriate amount of CaCO 3 , compounded into a mixture, and then ball-milled, ball-milled to a slurry particle size of 0.8-1.0 um, then dried at 116 degrees, and pulverized;
  • step three the components treated in the second step are placed in a muffle furnace and calcined to 14-16.
  • the heating rate of the degree/minute is raised to 990 degrees, and the temperature is maintained for 4 to 4.5 hours, and then the temperature is lowered, and the cooling is naturally cooled to obtain a magnetic powder.
  • the magnetic powder uses SrCO 3 and Fe 2 O 3 as the barium ferrite raw materials, and is composed of cerium oxide, cobalt oxide, zinc oxide, cerium oxide, cerium oxide, manganese oxide, aluminum oxide, boric acid, Kaolin is prepared as a composite auxiliary.
  • the molar ratio of SrCO 3 to Fe 2 O 3 is 0.72: 5.85
  • the molar ratio of cerium oxide, cobalt oxide, zinc oxide, cerium oxide, cerium oxide, manganese oxide, aluminum oxide, boric acid, and kaolin is 0.17: 0.28. : 0.18: 0.2: 0.37: 0.45: 0.35: 0.45: 0.4
  • the molar ratio of SrCO 3 to cerium oxide is 0.72: 0.17.
  • the preparation method of the magnetic powder comprises the following steps:
  • the raw materials SrCO 3 and Fe 2 O 3 are used , and the composite additives are cerium oxide, cobalt oxide, zinc oxide, cerium oxide, cerium oxide, manganese oxide, aluminum oxide, boric acid and kaolin.
  • the molar ratio of SrCO 3 to Fe 2 O 3 is 0.72: 5.85
  • the molar ratio of cerium oxide, cobalt oxide, zinc oxide, cerium oxide, cerium oxide, manganese oxide, aluminum oxide, boric acid, and kaolin is 0.17: 0.28. : 0.18: 0.2: 0.37: 0.45: 0.35: 0.45: 0.4
  • the molar ratio of SrCO 3 to cerium oxide is 0.72: 0.17.
  • Step 2 the above components are added to a ball mill for mixing, adding an appropriate amount of CaCO 3 , compounded into a mixture, and then ball-milled, ball-milled to a slurry particle size of 0.8-1.0 um, then dried at 116 degrees, and pulverized;
  • Step 3 the components treated in the second step are placed in a muffle furnace for calcination, and the temperature is raised to 990 degrees at a heating rate of 14-16 degrees/min, and the temperature is maintained for 4-4.5 hours, then the temperature is lowered, and the natural cooling is cooled. That is, the magnetic powder is obtained.
  • the magnetic powder uses SrCO 3 and Fe 2 O 3 as the barium ferrite raw materials, and is composed of cerium oxide, cobalt oxide, zinc oxide, cerium oxide, cerium oxide, manganese oxide, aluminum oxide, boric acid, Kaolin is prepared as a composite auxiliary.
  • the molar ratio of SrCO 3 to Fe 2 O 3 is 0.75: 5.85
  • the molar ratio of cerium oxide, cobalt oxide, zinc oxide, cerium oxide, cerium oxide, manganese oxide, aluminum oxide, boric acid and kaolin is 0.2:0.3. : 0.2: 0.2: 0.4: 0.5: 0.4: 0.5: 0.5
  • the molar ratio of SrCO 3 to cerium oxide is 0.75: 0.2.
  • the preparation method of the magnetic powder comprises the following steps:
  • the raw materials SrCO 3 and Fe 2 O 3 are used , and the composite additives are cerium oxide, cobalt oxide, zinc oxide, cerium oxide, cerium oxide, manganese oxide, aluminum oxide, boric acid and kaolin.
  • the molar ratio of SrCO 3 to Fe 2 O 3 is 0.75: 5.85
  • the molar ratio of cerium oxide, cobalt oxide, zinc oxide, cerium oxide, cerium oxide, manganese oxide, aluminum oxide, boric acid and kaolin is 0.2:0.3. : 0.2: 0.2: 0.4: 0.5: 0.4: 0.5: 0.5
  • the molar ratio of SrCO 3 to cerium oxide is 0.75: 0.2.
  • Step 2 the above components are added to a ball mill for mixing, adding an appropriate amount of CaCO 3 , compounded into a mixture, and then ball-milled, ball-milled to a slurry particle size of 0.8-1.0 um, then dried at 116 degrees, and pulverized;
  • Step 3 the components treated in the second step are placed in a muffle furnace for calcination, and the temperature is raised to 990 degrees at a heating rate of 14-16 degrees/min, and the temperature is maintained for 4-4.5 hours, then the temperature is lowered, and the natural cooling is cooled. That is, the magnetic powder is obtained.
  • the magnetic powders of Examples 1 to 5 were respectively tested to obtain data as shown in Table 1. Meanwhile, Sr ferrite which is commonly used in the art was also introduced.
  • the material powder is compared with the magnetic powder provided by the present invention in terms of related properties. Among them, the unit of magnetic energy product is kJ/m 3 , the unit of intrinsic coercivity is kA/m, and the unit of residual magnetization is mT.
  • Example 1 Magnetic energy product Intrinsic coercivity Residual magnetization
  • Example 2 37.2 355.6 435
  • Example 3 38.2 369.1 438
  • Example 4 37.1 352.4 434
  • Example 5 36 346.1 433 Sr ferrite material powder 24.3 237.5 382
  • the magnetic powder provided by the present invention is significantly superior to the Sr ferrite material powder commonly used in the field in magnetic energy product, intrinsic coercive force and residual magnetization, especially in the magnetic material of Example 3. Powder is the best in terms of performance in these three aspects, much higher than other examples and Sr ferrite powder, with unexpected effects.
  • the magnetic powder provided by the invention can reach 38.2 kJ/m 3 in the magnetic energy product, 369.1 kA/m in the internal coercive force, and 438 mT in the residual magnetization, which is commonly used in the art.
  • the magnetic energy product is increased by 57%
  • the internal coercivity is increased by 55%
  • the residual magnetization is increased by 15%
  • the magnetic properties of the powder are remarkably improved.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Hard Magnetic Materials (AREA)
  • Magnetic Ceramics (AREA)
  • Soft Magnetic Materials (AREA)
  • Compounds Of Iron (AREA)

Abstract

一种磁性料粉,以SrCO 3和Fe 2O 3为锶铁氧体原料,以氧化镧、氧化钴、氧化锌、氧化锶、氧化钡、氧化锰、三氧化二铝、硼酸、高岭土为复合助剂制备而得。该磁性料粉磁能积为36.0-38.2kJ/m 3,内禀矫顽力为346.1-369.1kA/m,剩余磁化强度为433-438mT,与常用的Sr铁氧体料粉相比磁性能显著提升。

Description

磁性料粉
本发明要求2015年4月17日向中国国家知识产权局提交的、申请号为201510183766.2、名称为“磁性料粉”的中国专利申请的优先权。
技术领域
本发明涉及永磁铁氧体材料领域,具体涉及一种磁性料粉。
背景技术
锶铁氧体永磁材料因其较高的饱和磁化强度、高矫顽力以及高磁能积,广泛应用于磁记录仪、空调、音频变换器、分离器、吸持装置、电机转子中。随着技术的发展,直流变频电机开始采用永磁体取代感应线圈,减少了电机转子感应电流和磁场方面的损失;高饱和磁化强度、高磁能积的锶铁氧体材料,由于更加节能,因此成为研究的重点领域。
本领域技术人员在研究永磁锶铁氧体材料时,为了提高材料的本证磁性能,在材料改性方向进行了大量的研究,如单离子稀土离子或过渡金属离子取代掺杂,多离子稀土-过渡金属(La-Mn或La-Zn或La-Co等)共同掺杂。目前的研究进展表明,复合离子掺杂更容易实现调控铁氧体材料的本证磁性能;同时,通过碱土金属氧化物MgO、CaO等的添加能够进一步改善材料的电磁性能;如对Nd-Co掺杂SrFe12O19铁氧体的电磁微波吸收性能,研究表明掺杂量x=0.2时,矫顽力和饱和磁化强度均出现极大值;如对La-Co共同掺杂对锶铁氧体材料磁结构的影响研究,证实了稀土离子和过渡金属离子的晶格占位趋势;对La-Co共掺对锶铁氧体材料磁性能的影响研究,结果表明复合掺杂明显提高矫顽力,出现极大值,但饱和磁化强度随掺杂量的增加而降低。
经对现有技术的检索,中国发明专利201210273058.4(公告日2014年1月1日)披露了一种本发明涉及一种永磁锶铁氧体料粉及其制备方法;该发明以铁鳞和碳酸锶为原料,其中碳酸锶和氧化铁的摩尔比为1︰(5.5-6),外加原料0.1-0.5wt%的分散剂和原料90-110wt%的水,组成混合料;再按照钢球和原料的质量比为(7.5-10):1将混合料在钢制球磨罐中湿磨,湿磨至粒度为0.7-0.9μm;然后将球磨后的浆料干燥,置 于陶瓷容器中于回转窑在1050-1350℃条件下保温120-240分钟,随窑自然冷却,即得永磁锶铁氧体料粉。
中国发明专利201210547010.8(公告日2014年8月6日)披露了一种不损失矫顽力的干法压制锶永磁铁氧体粘结剂选用方法,该方法包括如下步骤:粗磨—初步细磨—二次配方—二次细磨—出料滤水—干压磁场成型—成品烧结,该发明采用硬酯酸镁取代硬酯酸钙作为干压永磁铁氧体的粘结剂,起到润滑和粘结的作用,不降低磁体的矫顽力。
中国发明专利201010197327.4(公布日2010年10月27日)披露了一种本发明公开一种永磁锶铁氧体磁性材料及其烧结方法;该方法将含锶的铁氧体预烧料与二次添加的助剂在球磨机混合与球磨,分离脱水的料浆采用湿法成型制备成坯体,成型后的坯体首先在室温与400℃脱水干燥,然后进入微波烧结炉按一定的工艺制度进行烧结,由此得到高性能永磁锶铁氧体磁性材料。
但现有技术中制备的锶铁氧体永磁材料综合性能尚有待提高,以满足市场发展的需求。
发明内容
在下文中给出了关于本发明的简要概述,以便提供关于本发明的某些方面的基本理解。应当理解,这个概述并不是关于本发明的穷举性概述。它并不是意图确定本发明的关键或重要部分,也不是意图限定本发明的范围。其目的仅仅是以简化的形式给出某些概念,以此作为稍后论述的更详细描述的前序。
本发明的目的在于提供一种磁性料粉。
本发明提供一种磁性料粉,磁性料粉以SrCO3和Fe2O3为锶铁氧体原料,以氧化镧、氧化钴、氧化锌、氧化锶、氧化钡、氧化锰、三氧化二铝、硼酸、高岭土为复合助剂制备而得;磁性料粉磁能积为36.0-38.2kJ/m3,内禀矫顽力为346.1-369.1kA/m,剩余磁化强度为433-438mT。
本发明提供的磁性料粉,在磁能积上可到达38.2kJ/m3,在内禀矫顽力上可达到369.1kA/m,在剩余磁化强度上可达到438mT,与本领域中常用的Sr铁氧体材料粉相比,分别提高了57%磁能积,提高了55%内禀矫顽力,提高了15%的剩余磁化强度,显著地提升了料粉的磁性性能。
具体实施方式
在下文中将对本发明的示范性实施例进行详细描述。为了清楚和简明起见,在说明书中并未描述实际实施方式的所有特征。然而,应该了解,在开发任何这种实际实施例的过程中必须做出很多特定于实施方式的决定,以便实现开发人员的具体目标,此外,还应该了解,虽然开发工作有可能是非常复杂和费时的,但对得益于本公开内容的本领域技术人员来说,这种开发工作仅仅是例行的任务。
实施例1
在本实施例中,磁性料粉以SrCO3和Fe2O3为锶铁氧体原料,以氧化镧、氧化钴、氧化锌、氧化锶、氧化钡、氧化锰、三氧化二铝、硼酸、高岭土为复合助剂制备而得。其中,SrCO3和Fe2O3的摩尔比为0.55:5.8,氧化镧、氧化钴、氧化锌、氧化锶、氧化钡、氧化锰、三氧化二铝、硼酸、高岭土的摩尔比为0.1:0.2:0.1:0.15:0.3:0.3:0.25:0.3:0.2,SrCO3和氧化镧的摩尔比为0.55:0.1。
磁性料粉的制备方法,包括如下步骤:
步骤一,取原料SrCO3和Fe2O3,复合助剂氧化镧、氧化钴、氧化锌、氧化锶、氧化钡、氧化锰、三氧化二铝、硼酸和高岭土。其中,SrCO3和Fe2O3的摩尔比例为0.55:5.8,氧化镧、氧化钴、氧化锌、氧化锶、氧化钡、氧化锰、三氧化二铝、硼酸和高岭土的摩尔比为0.1:0.2:0.1:0.15:0.3:0.3:0.25:0.3:0.2,SrCO3和氧化镧的摩尔比为0.55:0.1。
步骤二,将上述组分加入球磨机中混合,添加适量CaCO3,配成混合料后球磨,球磨至浆料粒径为0.8-1.0um,之后在116度下进行干燥,解碎;
步骤三,将经过步骤二处理过的各组分置于马弗炉中煅烧,以14-16度/分钟的升温速率升温至990度下,保温4-4.5小时,之后降温,自然冷却降温,即得磁性料粉。
实施例2
在本实施例中,磁性料粉以SrCO3和Fe2O3为锶铁氧体原料,以氧化镧、氧化钴、氧化锌、氧化锶、氧化钡、氧化锰、三氧化二铝、硼酸、高岭土为复合助剂制备而得。其中,SrCO3和Fe2O3的摩尔比为0.57:5.8,氧化镧、氧化钴、氧化锌、氧化锶、氧化钡、氧化锰、三氧化二铝、硼酸、高 岭土的摩尔比为0.13:0.25:0.14:0.17:0.34:0.36:0.3:0.4:0.3,SrCO3和氧化镧的摩尔比为0.57:0.13。
磁性料粉的制备方法,包括如下步骤:
步骤一,取原料SrCO3和Fe2O3,复合助剂氧化镧、氧化钴、氧化锌、氧化锶、氧化钡、氧化锰、三氧化二铝、硼酸和高岭土。其中,SrCO3和Fe2O3的摩尔比为0.57:5.8,氧化镧、氧化钴、氧化锌、氧化锶、氧化钡、氧化锰、三氧化二铝、硼酸、高岭土的摩尔比为0.13:0.25:0.14:0.17:0.34:0.36:0.3:0.4:0.3,SrCO3和氧化镧的摩尔比为0.57:0.13。
步骤二,将上述组分加入球磨机中混合,添加适量CaCO3,配成混合料后球磨,球磨至浆料粒径为0.8-1.0um,之后在116度下进行干燥,解碎;
步骤三,将经过步骤二处理过的各组分置于马弗炉中煅烧,以14-16度/分钟的升温速率升温至990度下,保温4-4.5小时,之后降温,自然冷却降温,即得磁性料粉。
实施例3
在本实施例中,磁性料粉以SrCO3和Fe2O3为锶铁氧体原料,以氧化镧、氧化钴、氧化锌、氧化锶、氧化钡、氧化锰、三氧化二铝、硼酸、高岭土为复合助剂制备而得。其中,SrCO3和Fe2O3的摩尔比为0.6:5.82,氧化镧、氧化钴、氧化锌、氧化锶、氧化钡、氧化锰、三氧化二铝、硼酸、高岭土的摩尔比为0.15:0.25:0.16:0.2:0.35:0.4:0.35:0.4:0.4,SrCO3和氧化镧的摩尔比为0.6:0.15。
磁性料粉的制备方法,包括如下步骤:
步骤一,取原料SrCO3和Fe2O3,复合助剂氧化镧、氧化钴、氧化锌、氧化锶、氧化钡、氧化锰、三氧化二铝、硼酸和高岭土。其中,SrCO3和Fe2O3的摩尔比为0.6:5.82,氧化镧、氧化钴、氧化锌、氧化锶、氧化钡、氧化锰、三氧化二铝、硼酸、高岭土的摩尔比为0.15:0.25:0.16:0.2:0.35:0.4:0.35:0.4:0.4,SrCO3和氧化镧的摩尔比为0.6:0.15。
步骤二,将上述组分加入球磨机中混合,添加适量CaCO3,配成混合料后球磨,球磨至浆料粒径为0.8-1.0um,之后在116度下进行干燥,解碎;
步骤三,将经过步骤二处理过的各组分置于马弗炉中煅烧,以14-16 度/分钟的升温速率升温至990度下,保温4-4.5小时,之后降温,自然冷却降温,即得磁性料粉。
实施例4
在本实施例中,磁性料粉以SrCO3和Fe2O3为锶铁氧体原料,以氧化镧、氧化钴、氧化锌、氧化锶、氧化钡、氧化锰、三氧化二铝、硼酸、高岭土为复合助剂制备而得。其中,SrCO3和Fe2O3的摩尔比为0.72:5.85,氧化镧、氧化钴、氧化锌、氧化锶、氧化钡、氧化锰、三氧化二铝、硼酸、高岭土的摩尔比为0.17:0.28:0.18:0.2:0.37:0.45:0.35:0.45:0.4,SrCO3和氧化镧的摩尔比为0.72:0.17。
磁性料粉的制备方法,包括如下步骤:
步骤一,取原料SrCO3和Fe2O3,复合助剂氧化镧、氧化钴、氧化锌、氧化锶、氧化钡、氧化锰、三氧化二铝、硼酸和高岭土。其中,SrCO3和Fe2O3的摩尔比为0.72:5.85,氧化镧、氧化钴、氧化锌、氧化锶、氧化钡、氧化锰、三氧化二铝、硼酸、高岭土的摩尔比为0.17:0.28:0.18:0.2:0.37:0.45:0.35:0.45:0.4,SrCO3和氧化镧的摩尔比为0.72:0.17。
步骤二,将上述组分加入球磨机中混合,添加适量CaCO3,配成混合料后球磨,球磨至浆料粒径为0.8-1.0um,之后在116度下进行干燥,解碎;
步骤三,将经过步骤二处理过的各组分置于马弗炉中煅烧,以14-16度/分钟的升温速率升温至990度下,保温4-4.5小时,之后降温,自然冷却降温,即得磁性料粉。
实施例5
在本实施例中,磁性料粉以SrCO3和Fe2O3为锶铁氧体原料,以氧化镧、氧化钴、氧化锌、氧化锶、氧化钡、氧化锰、三氧化二铝、硼酸、高岭土为复合助剂制备而得。其中,SrCO3和Fe2O3的摩尔比为0.75:5.85,氧化镧、氧化钴、氧化锌、氧化锶、氧化钡、氧化锰、三氧化二铝、硼酸、高岭土的摩尔比为0.2:0.3:0.2:0.2:0.4:0.5:0.4:0.5:0.5,SrCO3和氧化镧的摩尔比为0.75:0.2。
磁性料粉的制备方法,包括如下步骤:
步骤一,取原料SrCO3和Fe2O3,复合助剂氧化镧、氧化钴、氧化锌、氧化锶、氧化钡、氧化锰、三氧化二铝、硼酸和高岭土。其中,SrCO3和Fe2O3的摩尔比为0.75:5.85,氧化镧、氧化钴、氧化锌、氧化锶、氧化钡、氧化锰、三氧化二铝、硼酸、高岭土的摩尔比为0.2:0.3:0.2:0.2:0.4:0.5:0.4:0.5:0.5,SrCO3和氧化镧的摩尔比为0.75:0.2。
步骤二,将上述组分加入球磨机中混合,添加适量CaCO3,配成混合料后球磨,球磨至浆料粒径为0.8-1.0um,之后在116度下进行干燥,解碎;
步骤三,将经过步骤二处理过的各组分置于马弗炉中煅烧,以14-16度/分钟的升温速率升温至990度下,保温4-4.5小时,之后降温,自然冷却降温,即得磁性料粉。
为了验证本发明提供的磁性料粉的相关性能,分别对实施例1-实施例5中的磁性料粉进行测试,得到如表1的数据;同时,还引入本领域中常用的Sr铁氧体材料粉与本发明提供的磁性料粉进行在相关性能方面进行比较。其中,磁能积单位为kJ/m3,内禀矫顽力单位为kA/m,剩余磁化强度单位为mT。
表1
测试项目 磁能积 内禀矫顽力 剩余磁化强度
实施例1 36.5 346.8 434
实施例2 37.2 355.6 435
实施例3 38.2 369.1 438
实施例4 37.1 352.4 434
实施例5 36 346.1 433
Sr铁氧体材料粉 24.3 237.5 382
由表1可知,本发明提供的磁性料粉在磁能积、内禀矫顽力和剩余磁化强度方面明显优于本领域中常用的Sr铁氧体材料粉,尤其是在实施例3的磁性料粉在这3各方面性能上达到最佳,远高于其他实施例和Sr铁氧体材料粉,具有意想不到的效果。
具体地,本发明提供的磁性料粉在磁能积上可到达38.2kJ/m3,在内 禀矫顽力上可达到369.1kA/m,在剩余磁化强度上可达到438mT,与本领域中常用的Sr铁氧体材料粉相比,分别提高了57%磁能积,提高了55%内禀矫顽力,提高了15%的剩余磁化强度,显著地提升了料粉的磁性性能。
虽然已经详细说明了本发明及其优点,但是应当理解在不脱离由所附的权利要求所限定的本发明的精神和范围的情况下可以进行各种改变、替代和变换。
最后,还需要说明的是,在本文中,诸如第一和第二等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。而且,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的过程、方法、物品或者设备中还存在另外的相同要素。
以上虽然详细描述了本发明的实施例,但是应当明白,上面所描述的实施方式只是用于说明本发明,而并不构成对本发明的限制。对于本领域的技术人员来说,可以在不偏离本发明的精神和范围的情况下对上述实施方式作出各种修改和变更。因此,本发明的范围仅由所附的权利要求及其等效内容来限定。

Claims (6)

  1. 一种磁性料粉,其特征在于,所述磁性料粉以SrCO3和Fe2O3为锶铁氧体原料,以氧化镧、氧化钴、氧化锌、氧化锶、氧化钡、氧化锰、三氧化二铝、硼酸、高岭土为复合助剂制备而得;所述磁性料粉磁能积为36.0-38.2kJ/m3,内禀矫顽力为346.1-369.1kA/m,剩余磁化强度为433-438mT。
  2. 根据权利要求1所述的磁性料粉,其特征在于,所述SrCO3和Fe2O3的摩尔比为(0.55-0.75):(5.80-5.85)。
  3. 根据权利要求2所述的磁性料粉,其特征在于,所述SrCO3和Fe2O3的摩尔比为(0.57-0.72):(5.80-5.85)。
  4. 根据权利要求3所述的磁性料粉,其特征在于,所述SrCO3和Fe2O3的摩尔比为0.6:5.82。
  5. 根据权利要求1所述的磁性料粉,其特征在于,所述氧化镧、氧化钴、氧化锌、氧化锶、氧化钡、氧化锰、三氧化二铝、硼酸、高岭土的摩尔比为(0.1-0.2):(0.2-0.3):(0.1-0.2):(0.15-0.20):(0.3-0.4):(0.3-0.5):(0.25-0.4):(0.3-0.5):(0.2-0.5);其中所述SrCO3和氧化镧的摩尔比为(0.55-0.75):(0.1-0.2)。
  6. 根据权利要求5所述的磁性料粉,其特征在于,所述氧化镧、氧化钴、氧化锌、氧化锶、氧化钡、氧化锰、三氧化二铝、硼酸、高岭土的摩尔比为0.15:0.25:0.16:0.2:0.35:0.4:0.35:0.4:0.4。
PCT/CN2015/092710 2015-04-17 2015-10-23 磁性料粉 WO2016165305A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510183766.2 2015-04-17
CN201510183766.2A CN104817319B (zh) 2015-04-17 2015-04-17 磁性料粉

Publications (1)

Publication Number Publication Date
WO2016165305A1 true WO2016165305A1 (zh) 2016-10-20

Family

ID=53727830

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/092710 WO2016165305A1 (zh) 2015-04-17 2015-10-23 磁性料粉

Country Status (2)

Country Link
CN (1) CN104817319B (zh)
WO (1) WO2016165305A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111377724A (zh) * 2020-03-06 2020-07-07 电子科技大学 一种高性能无La-Co型永磁铁氧体材料及其制备方法
CN112225572A (zh) * 2020-10-17 2021-01-15 马鞍山市旭峰磁电有限公司 一种新型永磁铁氧体磁瓦

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104817319B (zh) * 2015-04-17 2016-09-21 南通万宝实业有限公司 磁性料粉
CN105600827A (zh) * 2015-12-28 2016-05-25 海安南京大学高新技术研究院 一种高磁取向的镧掺杂锶铁氧体及其制备方法
CN106116561B (zh) * 2016-06-28 2018-10-12 南通众兴磁业有限公司 永磁铁氧体磁性材料
CN106116560B (zh) * 2016-06-28 2018-10-12 南通众兴磁业有限公司 永磁铁氧体磁性材料的制备方法
CN106220214A (zh) * 2016-07-02 2016-12-14 南通保来利轴承有限公司 一种用于钛泵的铁氧体复合材料及其制备方法
CN106830910A (zh) * 2016-12-21 2017-06-13 马鞍山起劲磁塑科技有限公司 一种锶铁氧体磁粉的制备方法
CN112142456A (zh) * 2020-09-04 2020-12-29 湖南航天磁电有限责任公司 一种铁氧体吸波材料及其制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1405799A (zh) * 2001-08-27 2003-03-26 株式会社村田制作所 高频磁性材料和使用该材料的高频电路元件
CN1455938A (zh) * 2000-12-15 2003-11-12 住友特殊金属株式会社 永磁体及其制造方法
CN101055796A (zh) * 2006-04-16 2007-10-17 张连墩 M型锶铁氧体磁性材料的制备方法
CN101542646A (zh) * 2007-03-01 2009-09-23 Tdk株式会社 铁素体烧结磁铁
CN104817319A (zh) * 2015-04-17 2015-08-05 南通万宝实业有限公司 磁性料粉

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09260124A (ja) * 1996-03-26 1997-10-03 Sumitomo Special Metals Co Ltd フェライト磁石及びその製造方法
CN104496443A (zh) * 2014-01-22 2015-04-08 安徽大学 一种高磁能积m型钙系永磁铁氧体材料及其制备方法
CN103964828B (zh) * 2014-05-06 2016-04-27 安徽大学 一种高性能永磁铁氧体材料及其制备方法
CN103964829A (zh) * 2014-05-07 2014-08-06 宿州学院 一种自供氧永磁铁氧体预烧料单孔径坯料的制备与烧结

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1455938A (zh) * 2000-12-15 2003-11-12 住友特殊金属株式会社 永磁体及其制造方法
CN1405799A (zh) * 2001-08-27 2003-03-26 株式会社村田制作所 高频磁性材料和使用该材料的高频电路元件
CN101055796A (zh) * 2006-04-16 2007-10-17 张连墩 M型锶铁氧体磁性材料的制备方法
CN101542646A (zh) * 2007-03-01 2009-09-23 Tdk株式会社 铁素体烧结磁铁
CN104817319A (zh) * 2015-04-17 2015-08-05 南通万宝实业有限公司 磁性料粉

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
HU , HEBIN: "Study on the preparation process and property of pre-sintered strontium ferrite", SCIENCE & TECHNOLOGY VISION, vol. 1, no. 26, 30 September 2012 (2012-09-30), pages 54 - 56 *
LI, ZHONGQING ET AL.: "The preparation of high coercive force permanent magnets and selection of additives", J. MAGN. MATER. DEVICES, vol. 29, no. 2, 31 December 1998 (1998-12-31), pages 55 - 57 and 60 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111377724A (zh) * 2020-03-06 2020-07-07 电子科技大学 一种高性能无La-Co型永磁铁氧体材料及其制备方法
CN112225572A (zh) * 2020-10-17 2021-01-15 马鞍山市旭峰磁电有限公司 一种新型永磁铁氧体磁瓦

Also Published As

Publication number Publication date
CN104817319A (zh) 2015-08-05
CN104817319B (zh) 2016-09-21

Similar Documents

Publication Publication Date Title
WO2016165305A1 (zh) 磁性料粉
US10720272B2 (en) Ferrite magnetic material and ferrite sintered magnet
EP3473606B1 (en) Ferrite sintered magnet
KR101082389B1 (ko) 마그네토플럼바이트형 페라이트 자성재료 및 이로부터 유도된 세그멘트형 영구자석
CN104496443A (zh) 一种高磁能积m型钙系永磁铁氧体材料及其制备方法
CN102249658B (zh) 一种稀土永磁铁氧体材料及其制备方法
CN103172360A (zh) 一种磁铅石型钇系永磁铁氧体材料及其制备方法
CN101106001A (zh) 低温度系数永磁铁氧体材料及制造方法
CN104529423A (zh) 一种低温度因数抗应力镍锌铁氧体及其制备方法
CN109354488A (zh) 一种低成本永磁铁氧体材料及其制备方法
CN109851349A (zh) 一种高性能环保型六角永磁铁氧体材料及其制备方法
KR20150048256A (ko) 자성 분말, 그 제조 방법, 및 이를 포함하는 자석
CN105439551A (zh) 一种高磁能积的La-Co共掺锶铁氧体磁性料粉及其制备方法
CN104464998B (zh) 一种高磁能积烧结钕铁硼永磁材料及制备方法
CN107010937A (zh) 一种含Cu2+的W型铁氧体材料及其制备
CN104860668B (zh) 磁性料粉的制备方法
KR100538874B1 (ko) 고특성 페라이트 소결자석 및 그 제조방법
KR102407046B1 (ko) 페라이트 자성재료 및 페라이트 소결자석
JP2002141212A (ja) 回転機
KR102610891B1 (ko) 페라이트 소결 자석의 제조 방법
CN114195502B (zh) 一种稀土掺杂永磁铁氧体及其制备方法
US3450635A (en) Nickel ferrites containing cobalt,lead and silicon
KR102588230B1 (ko) 페라이트 자성재료 및 페라이트 소결자석
KR102664651B1 (ko) 페라이트 소결 자석의 제조 방법
JP3944860B2 (ja) フェライト磁石粉末

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15889001

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15889001

Country of ref document: EP

Kind code of ref document: A1